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ABSTRACT

The main mechanisms of the Object-Oriented
paradigm are supposed to help produce better and
cheaper software. As with other things, their usage
is more or less intensive, depending mostly on the
designer knowledge, experience and ability. This
paper reviews a set of metrics called MOOD, suited
for evaluating the use of those mechanisms. A
MOOD-to-Eiffel binding is introduced. Some code
fragments are presented to illustrate the concepts
and to clarify the measurement process. A sample of
Eiffel libraries is used to collect these metrics.
Statistical analysis is performed on the sample and
some hypotheses are drawn and discussed. Some
preliminary heuristics that can be used during the
design process are then derived. Those heuristics
can be of some help to designers, mainly if
embedded in CASE tools.

1. INTRODUCTION

The Object-Oriented (OO) paradigm includes a set
of mechanisms such as inheritance, encapsulation,
polymorphism and message-passing that are
believed to allow the construction of more robust
and easily extendible software [Meyer88].
However, by simply using an OO language that
supports those mechanisms, we are not
automatically favored with an increase in software
quality and development productivity, because its
effective use relies on the designer’s ability. In fact,
the OO design activity is not only about mapping
the requirements specification but also on how to
use those mechanisms to maximize their potential
benefits.

The learning curve from novice to experienced
designers is steep, mainly for those going through a
paradigm shift1. Design is a “creative” activity
where multiple alternatives are often available, for
the same partition of the system being modeled. A
great benefit would be obtained if some heuristics
could help in choosing the way, namely by identify-
ing avoidable or at least uncommon practices.
Design metrics can be used for this purpose, as will
be seen in this paper.

Several research works in the OO design metrics
arena were produced in recent years [Dumke95]
[Sellers95] [Campanai94] [Cant94] [Chidamber94]
[Hopkins94] [Abreu93]. However, there is scarce
information on how the proposed metrics should be
used, as well as a lack of experimental validations2.
This paper is hoped to shorten this gap.

A former paper [Abreu94] proposed the MOOD
(Metrics for Object Oriented Design) set of metrics.
These metrics, which will be reviewed here, allow
an evaluation of the use of the mechanisms of the
Object-Oriented paradigm. They are aimed at help-
ing to establish comparisons and derive conclusions
among heterogeneous systems (different size, com-
plexity, application domain and/or OO implementa-
tion language). A metrics collection experiment,

                                                     

1 - It was recognised [Conner94] that, on average, students with some

degree of proficiency in another paradigm (e.g. imperative) had more

difficulties learning how to design the OO way, than those doing it

from the start (i.e. with no previous software development knowledge

whatsoever). The explanation was that students had to unlearn habits.

2  - In other related areas such as OO reuse metrics, some interesting

experimental validation studies were conducted [Melo95], [Lewis91].



that will be described here, is based on a sample of
OO libraries that is reasonably representative of
some of that heterogeneity.

This paper is organized as follows: the next section
introduces the main goals and strategy of the current
research work from which this paper originated.
Section 3 includes a brief review of the MOOD set
along with a detailed binding for the Eiffel lan-
guage. Section 4 describes a MOOD metrics col-
lection experiment, including the tool used, the
sample identification and the results achieved.
Section 5 discusses the results of statistical data
analysis, proposes some design heuristics based on
the MOOD set and provides some preliminary
critiques of the results. Some follow-up research
directions are mentioned in section 6.

2. RESEARCH GOALS AND STRATEGY

The research being carried out in this area by the
Software Engineering Group at INESC, a private
Portuguese non-profit R&D organization, in
cooperation with the Lisbon Technical University,
is focused on two main goals:

•  Improving the OO design process to achieve
better maintainability and reliability

•  Improving the OO estimation process to
achieve better resource allocation

The results of an experiment, where the impact of
object-oriented design on resulting software quality
attributes such as reliability (defect density) and
maintainability (normalized rework effort) was
empirically evaluated, were presented in [Abreu96].
The results achieved so far show that design alter-
natives may have a strong influence on resulting
quality. Quantifying this influence can help to train
novice designers by means of heuristics [Abreu95]
embedded in design tools. On the other hand, being
able to predict the resulting reliability and maintain-
ability is very important for project managers during
the resource allocation (planning) process.

We are also concerned about producing effort and
schedule estimates for OO software development.
Among other things, this requires evaluating the
size and complexity of the software system to be
built. A part of this system is usually built from
scratch and is expected to be the one where most
effort is spent. The remaining part will be reused,
with minor or major adaptations, from existing

component libraries. Selecting, understanding and
adapting components may demand considerable
effort. The activity of producing reusable compo-
nents requires an intense abstraction effort and does
not pay in the short term. A complete model for OO
projects resource estimation, denominated
MOORED (Model for Object-Oriented Resource
Estimates Determination) that accommodates these
concerns, is under study.

3. THE MOOD METRICS SET

3.1 Introduction

The MOOD set includes the Method Hiding Factor
(MHF), Attribute Hiding Factor (AHF), Method
Inheritance Factor (MIF), Attribute Inheritance
Factor (AIF), Polymorphism Factor (POF) and
Coupling Factor (COF). These metrics are defined
at the system or subsystem3 level while in other
approaches, such as the well know set proposed in
[Chidamber94], the metrics are defined at the class
level.

Each MOOD metric is associated with such basic
structural mechanisms of the object-oriented
paradigm as encapsulation (MHF and AHF), inheri-
tance (MIF and AIF), polymorphism (POF) or mes-
sage-passing and association (COF). The mathe-
matical definition of each MOOD metric will be
introduced after the underlying basic concepts are
made clear. Each metric is expressed as a quotient
where the numerator represents the actual use of
one of those mechanisms for a given design. The
denominator, acting as a normalizer, represents the
hypothetical maximum achievable use for the same
mechanism within the same universe of discourse
that is, considering the same classes and inheritance
relations. As a consequence, these metrics are
expressed as percentages, ranging from 0% (no use)
to 100% (maximum use) and thus are dimension-
less. This avoids the misleading, subjective or
"artificial" units that are often found in the metrics
literature.

Being formally defined, the MOOD metrics avoid
subjectivity of measurement and thus allow repli-
cability. In other words, different people at different
times or places can yield the same values when

                                                     

3 - Collection of classes organized in some way to offer a given

functionality as a whole.



measuring the same systems.

These metrics are also expected to be system size
independent. A partial demonstration of this asser-
tion is included in a following section. Size inde-
pendence allows inter-project comparison, thus
fostering cumulative knowledge.

The MOOD metrics definitions make no reference
to specific language constructs. The language
(in)dependence will broaden the applicability of this
set of metrics by allowing comparison of hetero-
geneous system implementations.

3.2 MOOD to Eiffel binding

Each OO programming language has its own
constructs that allow for implementation of OO
mechanisms in somewhat distinct fashions. A
mapping, hereafter referred as binding, of MOOD
concepts and terminology to the adopted implemen-
tation language is thus needed. A binding for the
Eiffel language [Meyer92] is included in this
section. A binding for the C++ language was intro-
duced in [Abreu95]. Bindings for other OO lan-
guages are expected to be defined in the near future.

This section will present a stepwise introduction of
each relevant concept in MOOD, immediately fol-
lowed by the corresponding counterpart in the Eiffel
language. Context swapping (MOOD to Eiffel or
vice-versa) will be identified by the following icons
at the left margin:

CONTEXT MOOD Eiffel

ICON

3.2.1 Methods

The MOOD concept of method is that of a wrapped
piece of procedural code (the body) whose execu-
tion as a whole is triggered by some agent. This is
done through an interface that is identified by a
unique name (within a certain range) and which
may contain some mechanism of interchange with
the calling agent (such as parameters or returned
values). Methods are used to perform operations of
several kinds such as obtaining or modifying the
status of objects.

In Eiffel we count as methods the following
features:

•  class features that have an implementation
(body) within the do ... end clause, even if
declared obsolete4

•  class features with a deferred ... end clause 5

•  external functions with the external ... end
clause 6

•  class constants with the once ... end clause 7

Several methods can share the same implementa-
tion8. This is not just an alias (synonym) mecha-
nism, because these methods can be independently
redefined in any subclasses. Therefore, for the
purpose of MOOD measures, they were considered
as distinct methods.

Some method examples follow:

feature {NONE}

cartesian(a, b: REAL) is
-- “normal” method

do
x := a;
y := b;

end;

a, b: REAL is
-- 2 methods with the same implementation

do
Result := y;

end;

                                                     

4 - Eiffel allows to declare any feature (not only routines) as obsolete.

This allows to denote that the obsolete feature was not discarded only

for the sake of compatibility with older versions and, as such, should

not be used in new code.

5 - One method is said to be deferred when its body (implementation) is

not defined in the current class but instead in one (or more) of its sub-

classes.

6 - These external functions can be implemented in other languages

(e.g. C, Pascal or even assembly code).

7 - These constants have a body similar to the one declared in a do ...

end clause, which is only executed once (first call). Subsequent calls

return the same value (the one calculated in the first call).

8 - by simply mentioning a list of identifiers instead of a single one.



arity: INTEGER is
-- deferred method

deferred
end;

file_owner(uid: INTEGER) : STRING is
-- external method

external
“C”

end;

search_substring(other: STRING; start: INTEGER):
INTEGER is
-- obsolete method
obsolete “Use ’’ substring_index ’’ instead”

do
         Result:=substring_index(other, start);
end;

i: Complex is
-- constant method

once
!! Result.cartesian (0, 1)

end;

3.2.2 Attributes

The MOOD concept of attribute is one of an inde-
pendently identified data structure, either static or
dynamic, transient or persistent, atomic or struc-
tured (e.g. record or array), which is used to store
constants or variables. Attributes are used, among
other things, to represent the status of each object in
the system.

In Eiffel we count as attributes the following
features:

•  class features without an implementation (body);

•  simple constants - attributes that keep the same
value for all class instances; they can have
several types (integer, real, double, boolean,
character, string, bit).

Some examples of attributes are:

feature
-- “normal” attributes
width : INTEGER;.
a, b : REAL;

-- constant attribute

True_constant: STRING is “true”;

3.2.3 Methods and Attributes Visibility

The MOOD concept of visibility, associated with
what is often referred to as the range or scope of an
identifier, is related to the use of information hiding
mechanisms. Each feature (method M or attribute
A) is either visible or hidden from a given class C.
If a feature is visible to a class C, then C can use
that feature. Therefore, we can define the following
logic function:

is visible C M C
iff

j i

C may call M

otherwise

i j j_ ( . , )α α=
≠












1

0

is visible C A C
iff

j i

C may reference A

otherwise

i j j_ ( . , )δ δ=
≠












1

0

We can specify whether an Eiffel feature is visible
by explicit reference to a set of classes (list within
brackets) after the feature keyword, for locally
defined features, or in the export clause, for
inherited features. In the latter clause we can
specify visibilities separately for features or lists of
features. The pre-defined symbol ALL can be used
to refer to all features inherited.

If a feature is visible for a class C (whether this is
the one where the feature was defined or one
declared within the above mentioned set) then, by
default, it is visible to all descendants of class C.

If the class set is omitted then, by default, the
declared features are visible to all classes. This can
be made explicit, after the feature or the export
keywords, by indicating in that set the ANY class (a
pre-defined superclass of all root classes of defined
inheritance hierarchy trees). Then the features could
be used by ANY and all its descendants, that is, by
all classes in the system. This type of visibility is
equivalent to the one obtained through the public
clause in C++.

If the NONE class (a pre-defined descendant of all
existing classes) is declared in the set, then the
corresponding features can only be used within the
range of the class where they were declared, as well
as of their subclasses. The same effect can also be
obtained by indicating an empty set ( {} ). This is



equivalent to the protected 9 clause in C++.

From the preceding discussion, it is evident that a
feature can be visible to some classes and hidden
from the rest. Some examples follow:

feature
-- visible feature to all classes

capacity: INTEGER is
do

Result := area.count
end;

feature {ANY}
-- explicitly visible feature to all classes
...

feature {NONE}
-- visible to current class and its descendants
...

feature {}
-- also visible to current class and its descendants
...

feature {HISTORY_LIST}
-- visible to current class and descendants, as well
as to HISTORY_LIST class and its descendants
...

The visibility of a feature is defined as the
percentage of the system classes, other than the one
where it was defined, for which that feature is
visible. Supposing TC is the total number of classes
in the system under consideration, then the visibili-
ties of method Mα and attribute Aδ, both defined in
class Ci, are given by:

V C M
is visible C M C

TCi

i jj

TC

( . )
_ ( . , )

α
α

=
−

=∑ 1

1

V C A
is visible C A C

TCi

i jj

TC

( . )
_ ( . , )

δ
δ

=
−

=∑ 1

1

The denominator is the number of all classes except
the one where the feature is defined. Function V
may range from zero (the feature is hidden from all

                                                     

9 - There is no equivalent in Eiffel to the private clause of C++.

classes) to one (the feature is visible to all classes).

For the purpose of MOOD measurement, changes in
the visibility of inherited features are accounted for
in the class where they were initially defined. In
other words, changes of visibility in any descendent
class will eventually increase the number of classes
that can potentially use the feature. A similar situa-
tion arises when we have feature name clashing in
multiple inheritance. The resulting visibility of a
feature inherited from two or more classes, which
had different visibilities in each ascending class,
will be the union of the corresponding visibilities.

Some illustrating examples follow:

class A
feature {NONE}

g: INTEGER

-- g is visible to A and its descendants

feature {J, K}
z, w: BOOLEAN

-- z and w are visible to A, J, K and their descen-
dants

class B
feature

x, y: INTEGER is
do

...
end

-- x and y are visible to all classes

feature {D}
f, g, h : INTEGER

-- f, g and h are visible to B, D and their descen-
dants

class C

-- this class inherits from A and B and changes the
visibility of inherited features in the export clauses

inherit
A

export
{B, F, H} ALL;
{H, F, I} g;

end
-- all features inherited from A, except g, become



visible for classes C, B, F, H and respective
descendants;

B
export

{F, G} x, h;
-- features x and h become visible to C, F, G and
their descendants;

{ANY} f;
-- feature f becomes visible for all classes;

{H, I, J} g;
-- feature g (inherited from both A and B)
becomes visible to the set of classes that is the
union of the classes declared in the two export
clauses (C, H, F, I, J and their descendants).

end
end

Since, as previously stated, changes in the visibility
of inherited features are, for MOOD measurements,
only considered in the class where they were
initially defined, we obtain the visibility table10

represented below (Table 1). An “X” indicates that
the feature in the left is visible to the class above
and their descendants (e.g. feature z of class A is
visible to classes B, C, F, H, J, K and respective
descendants, including the ones of A). Shaded
zones represent situations where visibility is not
defined.

A B C D F G H I J K

A.w X X X X X X

A.z X X X X X X

A.g X X X X X X

B.x X X X X X X X X X

B.y X X X X X X X X X

B.f X X X X X X X X X

B.g X X X X X X

B.h X X X X

Table 1 - Visibility table for A and B features

As an example suppose that:

i) C is the only descendant of B;

ii) classes D, F and G belong to disjoined inheri-

                                                     

10 - Assuming that no more inheritance relations hold.

tance hierarchies (thus with no common descen-
dants);

iii) DC Ci( )  is the number of descendants of Ci ;

then:

V B h
DC C DC D DC F DC G

TC
( . )

( ) ( ) ( ) ( )= + + + +
−

4

1

where the constant 4 accounts for classes C, D, F
and G.

3.2.4 Defined Features

Features defined in a class are the ones whose
declaration lies within that class. That includes the
ones that are not implemented (deferred or external
features). We then define the following functions:

M Cd i( )  = methods defined in class Ci

A Cd i( ) = attributes defined in class Ci

We are now able to introduce the Method Hiding
Factor (MHF) and Attribute Hiding Factor (AHF)
as:

MHF
V M

M C

mim

M C

i

TC

d ii

TC

d i

=
−

==

=

∑∑
∑

( ( ))

( )

( )
1

11

1

AHF
V A

A C

mim

A C

i

TC

d ii

TC

d i

=
−

==

=

∑∑
∑

( ( ))

( )

( )
1

11

1

3.2.5 New and Overriding Features

A defined feature can be either a new or an
overriding version of an inherited one. New
features are the ones whose name is different from
any inherited feature and thus do not override them.
Overriding features are the ones that change the
definition of inherited features. The following
functions are then defined:

M C M C M Cd i n i o i( ) ( ) ( )= +  = methods defined in

class Ci

A C A C A Cd i n i o i( ) ( ) ( )= +  = attributes defined in
class Ci

where:



M Cn i( ) = new methods in class Ci

M Co i( ) = overriding methods in class Ci

A Cn i( )= new attributes in class Ci

A Co i( )= overriding attributes in class Ci

In Eiffel we consider the following overriding situa-
tions:

•  feature contained in a redefine clause - explicit
modification of an inherited implementation; this
modification can be located in several places:

i) in the signature (interface) - arguments
or result types; the number of parameters
cannot be altered and the arguments and
result types must conform with those of
the inherited feature;

ii) in the implementation, by transforming a
function without parameters into an
attribute (the opposite is not allowed) or
by changing a method body or even by
changing local declarations;

iii) in the specification, by changing pre or
post-conditions.

•  effectivation of a feature declared as deferred in
one ascendant - the feature gets an implemen-
tation;

•  feature in an undefine clause - it becomes
deferred (in a broad sense the implementation is
also changed).

Notes:

1. We can change the name of a method defined in
a superclass by using a rename clause. The
former method name can then be used by other
methods. This detail should be given attention
since the same identifier, within the same class
hierarchy, can represent distinct features, even
without a redefine statement.

2. Methods declared as frozen, which means they
cannot be redefined, are counted just as the
others.

Some examples about redefinitions follow:

class ARRAY
inherit

INDEXABLE

-- redefinition through undefinition
undefine

consistent
end;

-- redefinition through redefinition
redefine

copy, is_equal
end;

class HISTORY_L_W
inherit

FORM_D
rename

make as form_d_make
end;

-- redefinition of a renamed feature
redefine

form_d_make
end;

feature
frozen make (n: INTEGER) is

-- new frozen feature (note that “old”
make feature was renamed)

require
non_negative_size:n>= 0

do
make_area (n);

ensure
empty_string:count = 0;

end;

class STRING
feature

arity: INTEGER is
deferred
end;

class BOOLEAN
inherit

STRING
end;

feature
arity: INTEGER is



-- redefinition through effectivation
do

Result := area.count
end;

3.2.6 Polymorphic Features

An important characteristic of the object-oriented
paradigm is polymorphism11. This characteristic is
such that a given message sent to class Ci  can be

bound (statically or dynamically) to a named
method implementation in Ci  or one of its descen-

dants. Thus, the message recipient can have as
many distinct implementations as the number of
times this same method is overridden in Ci  descen-

dants. We then define the Polymorphism Factor
(POF) as:

POF
M C

M C DC C

o ii

TC

n i ii

TC=
×

=

=

∑
∑

( )

( ) ( )
1

1

The numerator represents the actual number of
possible different polymorphic situations. The
denominator represents the maximum number of
possible distinct polymorphic situations for class
Ci . This would be the case where all new methods

defined in Ci  would be overridden in all its descen-

dants.

3.2.7 Inherited Features

Inherited features in a class Ci are those which are
inherited and not overridden in that class. An inheri-
tance relation, for instance Cd  inheriting from Ca ,
is represented by C Cd a→ . We then define the
following functions:

M Ci i( )  = methods inherited in class Ci

A Ci i( ) = attributes inherited in class Ci

In multiple inheritance situations, features inherited
from distinct classes are joined (merged in just one
feature) if they have the same signature (interface)12

                                                     

11 - From the ancient Greek “poly” (several) and “morphos” (shapes).

12 - The rename clause can be used to “force” this identity.

and are deferred13. The automatic join can be
avoided by using the rename clause. An example of
this situation is illustrated below:

class INDEXABLE
feature

copy is
do

...
end;

is_equal is
do

...
end;

class RESIZABLE
feature

copy is
do

...
end;

class STRING
-- automatic join of copy
inherit

INDEXABLE
RESIZABLE

class STRING_1
-- avoiding the automatic join
inherit

INDEXABLE
rename
            copy as copy_index
end;

RESIZABLE

3.2.8 Available Features

Available features (methods or attributes) in a class
C are the ones that can be used in association with

C. Available features are the defined plus the
inherited ones. We then define the following
functions:

M C M C M Ca i d i i i( ) ( ) ( )= +  = available methods in
class Ci

                                                     

13 - The undefine clause can be used to discard existing implemen-

tations.



A C A C A Ca i d i i i( ) ( ) ( )= +  = available attributes in
class Ci

Now we can introduce the Method Inheritance
Factor (MIF) and the Attribute Inheritance Factor
(AIF):

MIF
M C

M C

i ii

TC

a ii

TC= =

=

∑
∑

( )

( )
1

1

AIF
A C

A C

i ii

TC

a ii

TC= =

=

∑
∑

( )

( )
1

1

3.2.9 Coupling

Coupling is due to the representation of associations
between classes (static coupling) and message
exchanges between their instances (dynamic
coupling). It can be identified by the existence of
several kinds of references. In MOOD a class Cc  is

said to be a client of another class Cs  (the supplier)

and is represented by C Cc s⇒  if Cc  contains at

least one non-inheritance reference to Cs . A

reference can be made in an attribute or method
argument type, a local method type (returned value)
or even a call to a method belonging to the supplier
class.

Clientele is represented by the is_client logic
function. For the sake of simplicity, clientele shape
and strength (number of references made to the
client class) are not considered. Therefore we have:

is client C C
iff C C C C

otherwisec s
c s c s_ ( , ) =

⇒ ∧ ≠



1

0

Some coupling examples are represented below:

class S -- the supplier
...

class C -- the client
feature {NONE}

cartesian (a, b : S) is
-- clientele through a method argument type

local
x, y : S

-- clientele through a local attribute
do

x := a;
y := b;

end;

Notes:

1. A usual reference is the one made to the
constructor of the supplier class (features in
creation clause). There is no explicit deallo-
cation (destructor feature) in Eiffel since there is
an automatic garbage collector.

2. Generic classes are configurable through specific
parameters. A typical example is that of a class
that implements a list or a stack of some
undefined type. A generic parameter indicates
the type. Because of late binding (run-time) we
can not calculate which is going to be the
supplier of the generic class.

3. Expanded classes14 are counted just as “regular”
ones.

The Coupling Factor (COF) is then defined as:

COF
is client C C

TC TC

i jj

TC

i

TC

=
−

== ∑∑ _ ( , )
11

2

The numerator represents the actual number of cou-
plings not imputable to inheritance. The denomi-
nator is the maximum possible number of non-
inheritance couplings in a system with TC  classes.

4. METRICS COLLECTION EXPERIMENT

4.1 The tool

Manual collection of any metrics is generally a re-
petitive (thus tedious) and time-consuming (thus
expensive) task. To avoid it, a tool for metrics
extraction from source code, named MOODKIT,
was developed at INESC. Version 1.1 supported the
collection on C++ code of all MOOD metrics

                                                     

14 - Usually a feature of the class type C is a reference to that class. If

C is expanded (expanded keyword is declared in the class header) then

the feature is an instance (object) of class C.



described in this paper. It was built using ANSI C
and scripts with standard UNIX commands (awk,
grep, find, etc) and was disclosed as shareware.

A completely re-engineered version 2.0 supporting
both Eiffel and C++ was used in this study. Its core
(metrics definition dictionary, metrics storage, hu-
man-machine interface) is based on a language-
independent central repository with storage,
retrieval and graphical capabilities. It uses specific
“stubs”, based on language parsers, for metrics
capture from source code. Stubs for other languages
are also envisaged. In order to do so, MOOD bind-
ings for those languages must be defined before-
hand.

4.2 The sample

A collection of several class libraries written in the
Eiffel programming language was measured with
MOODKIT. The first four are included in the ISE
standard development environment (version 3). The
whole sample consists of:

•  EiffelBase library - contains reusable compo-
nents covering the needs of many applications in
the area of fundamental data structures and
algorithms;

•  EiffelVision library - includes toolkit-
independent GUI facilities, suitable for building
interactive graphical applications able to run on
different platforms (maps a single source text to
various GUI toolkits);

•  EiffelLex library - lexical analysis library;

•  EiffelParse library - parsing library;

•  Structure library15 - data structure library
based on circular-linked-lists; characteristics like
used memory space and security were optimized;
feature names are intuitive for users of other
Eiffel libraries.

•  Yoocc (Yes! an Object-Oriented Compiler
Compiler) - compiler compiler that uses an
extended parse library that evolved from the ISE
EiffelParse library. It is a tool for automatically
generating a processor framework (Eiffel source

                                                     

15 - This library was developed and is maintained by Nicolas Waquier

(nicolas@esclare.fdn.org). Analyzed version was 2.5 (October 1995).

code) from a grammar [Avotins95a].

•  Trooper (Truly Reusable OO Parser for
Eiffel Re-engineering) - encapsulates the
complexities of lexical analysis and parsing of
Eiffel texts using an extended parse library that
evolved from the ISE EiffelParse library.
Semantic actions can be added to the parsing
constructs to develop different tools such as
pretty-printers, compilers, etc [Avotins95b].

This sample is expected to be a good representation
of a population of reasonably well designed soft-
ware systems written in the Eiffel language. More
than half (EiffelBase, EiffelVision, EiffelLex and
EiffelParse) have been in commercial use for some
time16 and were developed by the creators of the
Eiffel Language. The others were also produced by
trustworthy teams.

For a better perspective on the sample, Table 2 in-
cludes some size metrics for each library. Columns
refer to the total number of declared classes, total
number of declared methods, total number of
declared attributes and total number of lines of
code.

Classes Methods Attributes LOC

EiffelBase 151 2165 480 28658

EiffelVision 550 4477 1547 68162

EiffelLex 30 215 79 5302

EiffelParse 13 88 15 1434

Structure 15 121 18 2300

Trooper 387 409 43 19516

Yoocc 69 230 54 5978

TOTAL 1215 7705 2236 131350

Table 2 - Some indicators of sample size

4.3 The results

4.3.1 Preliminary statistics

Table 3 summarizes the results obtained through

                                                     

16 - Thus with a considerable number of users finding bugs, suggesting

upgrades, etc.



application of MOODKIT on the above sample.
These results will be the basis for the statistical
analysis described in this and the following
sections.

MHF AHF MIF AIF COF POF

EiffelBase 17,68% 21,81% 81,86% 54,50% 1,87% 8,88%

EiffelVision 19,91% 72,15% 90,52% 91,67% 0,51% 2,94%

EiffelLex 35,04% 45,35% 61,40% 71,68% 4,45% 10,38%

EiffelParse 47,92% 29,44% 67,88% 75,00% 7,14% 11,21%

Structure 8,56% 23,41% 20,39% 58,14% 8,78% 5,24%

Trooper 6,47% 4,65% 58,39% 90,53% 0,21% 3,08%

Yoocc 53,80% 39,54% 53,16% 65,16% 0,86% 14,54%

Table 3 - MOOD metrics values for the sample

MOOD metrics can be considered as continuous
random variables:

•  continuous (as opposed to discrete) because in
the interval where they are defined ([0, 100%])
they can take any real value; in other words, if
we take any sub-interval of that interval, MOOD
metrics can take an infinite number of distinct
values within it;

•  random because their precise values for a given
system are not known until a data collection
experiment is performed.

Some questions thus arise regarding the above
sample, from a statistical point of view:

- Is there a central tendency or location of the values
observed for each MOOD metric?

- How spread (dispersed) are the data for each
metric?

Before starting the statistical description of our
sample we need to identify and discard possible
outliers. These are spurious values that can bias our
analysis. To do so we include in Figure 1 the box
plots for each MOOD metric.

Boxplots are formed from "boxes", which contain
the 50% of values falling between the 25th and 75th
percentiles. The line across the box is the median.
The "tails" are lines that extend from the box to the
highest and lowest values, excluding outliers. The
latter are the ones with values between 1,5 and 3
box lengths from the upper and lower edge of the

box. Sometimes these plots also include extremes
that are values more than 3 box-lengths apart from
the upper or lower edge of the box.

MHF

AHF

MIF

AIF

COF

POF

100%80%60%40%20%0%

Structure

EiffelVision

Figure 1 - Box plots for each MOOD metric

The sample described has no extremes, but has two
outliers (AHF for EiffelVision and MIF for Struc-
ture) which are marked with black dots. These were
removed from our sample and substituted by the
mean of all other observed values of the
corresponding metric. We are now in position to
present some descriptive statistics (Table 4), which
include:

•  the sample mean;

•  the variance - a measure of the dispersion around
the mean, equal to the sum of the squared devia-
tions from the mean divided by one less than the
sample size;

•  the standard deviation - the square root of the
variance; has the advantage over variance of
being expressed in the same units of measure as
the random variable under study;

•  the kurtosis - a measure of the extent to which
the distribution is “tail-heavy”, compared to a
normal distribution. In other words, it charac-
terizes its relative peakedness or flatness. Posi-
tive Kurtosis indicates more cases in the extreme
tails than in a normal distribution with the same
variance, which corresponds to a relatively
peaked distribution. Negative Kurtosis indicates
less cases in the extreme tails than in a normal
distribution with the same variance, which
denotes a relatively flat distribution;

•  the skewness - a measure of the asymmetry of a
distribution around its mean. Positive skewness
indicates a distribution with an asymmetric tail
extending toward more positive values (the more



extreme values are greater than the mean).
Negative skewness indicates a distribution with
an asymmetric tail extending towards more
negative values (the more extreme values are
less than the mean).

Variable Mean Variance Std.Dev Kurtosis Skewness

MHF 27,05% 0,0353 18,8% -1,61 0,44

AHF 27,37% 0,0173 13,2% 0,74 -0,44

MIF 68,87% 0,0175 13,2% -0,47 0,69

AIF 72,38% 0,0214 14,6% -1,39 0,31

COF 3,40% 0,0012 3,4% -1,26 0,75

POF 8,04% 0,0019 4,4% -1,39 0,12

Table 4 - Some descriptive statistics for the sample
of MOOD metrics

4.3.2 Finding a Probability Distribution

From Figure 1 and Table 4 we observe that all
metrics seem to have moderate flat distributions,
except AHF that seems to have a moderate peaked
distribution. However, the low kurtosis absolute
values allow to infer that their distributions are not
very far from being normally distributed. Regarding
skewness, all metrics except AHF appear to have
moderate right skewed distributions. Again, the low
absolute values found for skewness support the
hypothesis of normal distributions.

If any assumptions are to be made based on
normality, we need to be more precise and test the
observed sample for goodness of fit with that kind
of distribution.

For that purpose we will use the One-Sample
Kolmogorov-Smirnov Test that is used to test the
null hypothesis that a sample comes from a popu-
lation in which the variable has a given distribution.
Thus we have the following null (H0) and alterna-
tive (H1) hypotheses:

H0: the metric is normally distributed

H1: the metric is not normally distributed

Table 5 includes the results of the test. From it we
can conclude that H1 can be rejected and thus we
accept H0. This does not necessarily means that H0

is true, but simply that the available data does not
allow it to be rejected.

K-S Z 2-Tailed P

MHF 0,5808 0,8887

AHF 0,5120 0,9558

MIF 0,5668 0,9049

AIF 0,4719 0,9791

COF 0,6431 0,8025

POF 0,4379 0,9908

Table 5 - One-Sample Kolmogorov-Smirnov Test
parameters

4.3.3 Confidence Intervals

In a repeated sampling context we expect a large
percentage of the various sample confidence inter-
vals to contain the (unknown) true population mean.
In other words, if we repeatedly draw random
samples of a given size N, from a normally
distributed population and compute the confidence
interval estimates for each, then 1-α percent of them
will contain the true population mean (usually
identified as β). α is called the level of statistical
significance (usually 10%, 5% or 1%) and repre-
sents the probability of a type I error17. The confi-
dence intervals are then characterized by 1-α and
thus are said to be, for instance, 90%, 95% or 99%.
As we make that percentage closer to 100% the
interval becomes larger, as expected. Bigger sample
sizes lead to smaller intervals. In fact, interval

                                                     

17 - If we consider two hypotheses:

H0:  the confidence interval contains β

H1:  the confidence interval does not contain β

we can identify two types of error:

Possible real values for H0:

Action: true false

Reject H0 Type I error Correct decision

Do not reject H0 Correct decision Type II error

Note: rejecting a hypothesis means that the sample information does

not support it; failing to reject it does not necessarily mean it is true!



spread is inversely proportional to the square root of
the sample size.

Since all metrics seem to be normally distributed,
we can derive the following confidence intervals:

Lower limit Upper limit

MHF 15.4% 38.7%

AHF 19.2% 35.5%

MIF 60.6% 77.1%

AIF 63.3% 81.5%

COF 1.3% 5.5%

POF 5.3% 10.8%

Table 6 - 90% Confidence Intervals for mean of
MOOD metrics

5. DISCUSSION

5.1 Design heuristics shape

This section presents a discussion on how the
MOOD metrics can be used to express some recom-
mendations for designers. Those will be based on a
“filters' metaphor”, an Electronic Engineering
analogy whose rationale follows.

Theoretically, a high-pass filter is not expected to
affect signal frequencies above a certain value (the
cutoff frequency). Below that value, the filter acts
as a hindrance for frequency. By analogy, a high-
pass heuristic is the one that suggests that there is a
lower limit for a given metric. Going below that
limit is a hindrance to resulting software quality.
For those who do not like thresholds, we may say
that the analogy is even better, if we realize that
“real” filters do not have them. Indeed their shape is
not a step but a curve with a bigger slope at the
cutoff zone. Resulting software quality charac-
teristics are also expected to be strongly attenuated
(or increased, depending on the direction) as we
approach the cutoff values. The reasoning for a
band-pass heuristic is similar, except that we have
two cutoff zones (a lower and a higher one).

AHF and MHF are a measure of the use of the
information hiding concept that is supported by the
encapsulation mechanism. Information hiding
allows, among other things, to: (i) cope with
complexity by looking at complex components such
as “black boxes”, (ii) reduce "side-effects"

provoked by implementation refinement, (iii) sup-
port a top-down approach, (iv) test and integrate
systems incrementally.

For attributes (AHF) we want this mechanism to be
used as much as possible. Ideally all attributes
would be hidden, thus being only accessed by the
corresponding class methods. Very low values for
AHF should trigger the designers’ attention. The
associated design heuristic shape is that of a high-
pass filter.

The number of visible methods is a measure of the
class functionality. Increasing the overall func-
tionality will then reduce MHF. However, to
implement this functionality we must adopt a top-
down approach, where the abstract interface (visible
methods) should only be the tip of the iceberg. In
other words, the implementation of the class inter-
face should be a stepwise decomposition process,
where more and more details are added. This
decomposition will use hidden methods, thus
obtaining the above mentioned information-hiding
benefits and favoring a MHF increase. This ap-
parent contradiction is reconciled if we consider
MHF to have values within an interval. A very low
MHF would then indicate an insufficiently
abstracted implementation. Conversely, a high MHF
would indicate very little functionality. The design
heuristic shape for MHF is thus the same as for a
band-pass filter.

MIF and AIF are measures of inheritance, a
mechanism for expressing similarity among classes
that allows the portrayal of generalization and
specialization relations and a simplification of the
definition of inheriting classes, by means of reuse.
At first sight we might be tempted to think that
inheritance should be used extensively. However,
the composition of several inheritance relations
builds a directed acyclic graph (inheritance
hierarchy tree), whose depth and width make
understandability and testability quickly fade away.
A band-pass filter shape seems appropriate for the
corresponding heuristics.

Resulting polymorphism potential is measured
through the POF metric. Polymorphism arises from
inheritance and its use has pros and cons. Allowing
binding (usually at run time) of a common message
call to one of several classes (in the same hierarchy)
is supposed to reduce complexity and to allow
refinement of the class hierarchy without side-
effects. On the other hand, if we need to debug such



a hierarchy, by tracing the control flow, this same
polymorphism will make the job harder. This is
particularly true if we compare this situation with
the procedural counterpart, where for a similar
functionality we usually have a series of decision
statements for triggering the required operation. We
can then state that polymorphism ought to be
bounded within a certain range. Naturally, a band-
pass filter is the corresponding shape for the
respective design heuristic.

The COF metric is a measure of coupling between
classes. Coupling can be due to message-passing
among class instances (dynamic coupling) or to
semantic association links (static coupling). It has
been noted [Meyer88] that it is desirable that
classes communicate with as few others as possible
and even then, that they exchange as little
information as possible. Coupling relations increase
complexity, reduce encapsulation and potential
reuse, and limit understandability and maintain-
ability. Thus, it seems that we should avoid it as
much as possible. Very high values of COF should
be avoided by designers. However, for a given
application, classes must cooperate somehow to
deliver some kind of functionality. Therefore, COF
is expected to be lower bounded. Accordingly, the
design heuristic shape will be the one of a band-
pass filter.

As a conclusion we may say that the design heuris-
tics can exhibit two shapes: high-pass (HP) and
band-pass (BP), depending on the metric
considered, as shown in the next table.

Metric MHF AHF MIF AIF COF POF

Shape BP HP BP BP BP BP

Table 7 - Heuristic shapes

5.2 Reasoning with Heuristics

Taking into account the considerations made
regarding the heuristics shape made in the previous
section, we can take as initial thresholds for trigger-
ing the designer attention, the lower and upper
limits of the 90% confidence intervals (contained in
Table 6). For instance, if the Coupling Factor
exceeds 5,5% the designer could be warned some-
how (supposing that he is using a design tool with
embedded metrics capture). He would then realize
that his design lies outside the common good

practices boundaries and that the consequences may
be the ones already referred. Besides this outlier
identification, the MOOD metrics can also help
choose between alternative design implementations
by helping to rank them.

According to heuristics in Table 7, AHF is not
upper bounded. Thus, although EiffelVision is a
sample outlier, it should not be seen as a spurious
one. On the contrary, the authors of this library used
the data hiding mechanism in a more appropriate
fashion than what was found in the other ones!

The MIF value for the Structure library (20,39%) is
well below the lower limit of the confidence inter-
val (60.6%). Thus it seems that the author of this
library has not taken significant advantage of the
inheritance mechanism.

5.3 Size independence

This section includes the analysis of the size inde-
pendence hypothesis for each MOOD metric. For
that purpose Table 8 shows the correlations of each
of the sizes included in Table 2, with the cor-
responding values of each metric (Table 3).

Classes Methods Attributes LOC

MHF -0,47 -0,28 -0,23 -0,36

AHF -0,49 -0,11 -0,04 -0,23

MIF 0,50 0,88 0,84 0,79

AIF 0,76 0,36 0,43 0,51

COF -0,70 -0,49 -0,45 -0,59

POF -0,73 -0,48 -0,48 -0,58

Table 8 - Correlation of MOOD with some size
metrics

Examining Table 8 we see that all metrics except
MIF (shaded zone) are fairly size independent as
they show low correlations18 with most size metrics.
Some metrics have a moderate size dependence on
the number of classes. These few discrepancies
might indicate one of two possibilities:

a) the metrics are ill-defined regarding size-
independence;

b) the sample is somehow biased due to its small

                                                     

18  - Considering a 70% threshold, which seems appropriate.



size and thus the correlation is merely
coincidental.

Since AIF and MIF have similar definitions, but do
not show significant correlation with the same size
metrics, we tend to accept hypothesis b). Therefore
the hypothetical size dependencies can not be con-
clusive until a bigger sample is available and ana-
lyzed.

5.4 Statistical independence

Each MOOD metric should quantify a distinct
feature of an OO system. To achieve this goal they
need to be independent from each other. A measure
of this independence is the linear correlation. Corre-
lation one between two random variables means that
one variable can be expressed as an exact linear
function of the other variable. Correlation zero
means that there is no linear association between
the random variables. Statistically independent
variables thus have zero correlation19. The sign of
the correlation indicates whether their association is
direct (positive sign) or inverse (negative sign).

We then evaluated the linear correlation among the
sample value series for the defined metrics, two by
two. Table 9 summarizes the results achieved.

Variable MHF AHF MIF AIF COF

AHF 0,7451

MIF 0,3761 0,1548

AIF 0,1361 0,3045 0,0958

COF 0,0505 0,2035 0,0754 0,4477

POF 0,8862 0,7084 0,4857 0,5261 0,1315

Table 9 - Correlation among the MOOD metrics

Considering Table 9 we can conclude that most
metric series pairs (except the three shaded) exhibit
a low correlation value. There are no easy explana-
tions for the unexpected correlations, that are
believed to be coincidental, except that they proba-
bly stem from a small sample.

                                                     

19 - Notice that the opposite is not necessarily true since the variables

can be associated somehow non-linearly.

5.5 Criticizing the Results

The results presented in previous sections were
based on assumptions such as sample significance,
normality of distributions, etc. Several identifiable
problems are worth mentioning, which we are
aware may limit the validity of our conclusions.
Among them are:

•  small sample size - thus insufficiently meaning-
ful for the purpose of our study;

•  sampling variation - the very act of selecting a
sample of software systems from a larger popu-
lation introduces randomness in the form of
uncontrolled and unpredictable variation;

•  inappropriate probability distribution - normal
distributions may not apply; however, by the
Central Limit Theorem [Griffiths93] if the
sample size is sufficiently large, which is not the
case, then the normal hypothesis will stand.

In spite of the eventual errors induced, we think the
sample is a good representation of the population of
reasonably well-designed software systems using
the Eiffel Language. The accuracy (i.e. their range
reduction) of the confidence intervals for all metrics
will increase with bigger samples.

6. FUTURE WORK

6.1 Experimental validation

Although the described experiment fulfilled the goal
of extending our perception on the use of the basic
structural mechanisms in object-oriented designs,
we intend to conduct further experiments on larger
samples to assess the consistency and reproduci-
bility of achieved results. The public availability of
the MOODKIT tool will allow people either from
industry or academia to replicate the experiment
herein described with these or other OO systems.
The increase in sample size will also lead to better
(smaller) confidence intervals (and thus refined
heuristics) and will hopefully confirm some criteria
underlying the metrics definition (size inde-
pendence and statistical independence among
metrics themselves).

An experiment conducted at the University of
Maryland (USA) and reported in [Abreu96] evalu-
ated the impact of object-oriented design (expressed
by the MOOD metrics) on resulting software quality
attributes (defect density and rework). The results



achieved so far allow to infer that design alterna-
tives have a strong influence on resulting quality.
Being able to predict the resulting reliability and
maintainability is very important to project
managers during the resource allocation (planning)
process. Another MOOD validation effort has
recently started at University of Southampton
(United Kingdom). Further validation experiments
with a larger sample of projects are sought. The
impact on other quality attributes like efficiency,
portability, usability and functionality must also be
assessed.

Other experiments should also be conducted to
verify application domain dependencies, whose
effect on corresponding design architectures is
expected to be somehow reflected in the MOOD
metrics. We may come across application-domain
specific design heuristics.

6.2 MOOD bindings to other OO languages

Bindings for C++ [Abreu95] and Eiffel [self] were
already produced and embedded in the MOODKIT
tool. To enlarge the applicability of the MOOD
metrics we expect to produce bindings for other OO
languages such as Smalltalk, Java and OOPascal.
These bindings will include (1) a mapping of
concepts and terminology between MOOD and the
language under consideration and (2) a description
of how basic measures needed to compute MOOD
metrics can be performed in that language. Stubs for
the adopted languages, based on parsers built with
lex and yacc, can then be integrated in the
MOODKIT architecture. MOOD independence
regarding implementation languages will also be
further assessed and eventually refined.

6.3 Extending MOOD metrics to the analysis
phase

Metrics should be collected and used to identify
possible flaws as early as possible in the life-cycle,
before too much work is spent based on them. It is a
well-known fact that the effort of correcting and
recovering from those defects increases non-linearly
with elapsed project progress since they are
committed. Looking at the analysis instead of
design would then be a step forward toward cost-
effectiveness. The object-oriented paradigm is sup-
posed, at least theoretically, to allow a seamless
analysis-design-coding transition. Many analysis

and design methods have emerged [Champeaux92]
in the past few years, with their own diagrammatic
representations of differently named abstractions
representing not-so-different basic concepts. This
plethora gave birth to tools, such as ParadigmPlus
or ObjectMaker, supporting multiple analysis and
design methods. These tools map the information
extracted from the distinct diagrams used by those
different methods into a common repository, thus
allowing diagrammatic conversions. Therefore,
despite the apparent diversity of OO analysis
models, we think it is possible to define a common
set of metrics for analysis, a “natural” evolution of
the MOOD set.

6.4 Embedding MOOD metrics in a CASE tool

There is an increasing interest from OO CASE tool
makers in design metrics. Output from the ROSE
tool (which supports the Booch method), for
instance, is being used at Rational [Fay94] to derive
object-oriented metrics. [Darscht94]  reports the
intention to build an OO metrics collection proto-
type integrated with the ObjectMaker tool. Oblog
Software, a private Portuguese R&D company, also
intends to extend its OBLOG CASE tool, that sup-
ports the OBLOG - OBject LOGic method
[Sernadas91], with design metrics and heuristics
based on MOOD.

6.5 Metrics for Object Oriented Design Patterns

Object-oriented design patterns [Gamma95] are cur-
rently a very active research field. They seem to be
one yellow brick road to the promised reuse-land.
Substantial increases in quality and productivity are
expected to happen if software developers really
start using these new “bricks”. However, the
patterns’ adoption greatly depends on their
complexity, adaptability, functionality and reli-
ability. All those characteristics must be quanti-
tatively evaluated in order to define acceptance
criteria, assess reuse potential and risk or compare
different pattern implementations for similar func-
tionalities.

If a pattern has a high complexity, potential users
will not understand it and its adoption will be
jeopardized. Measuring and establishing reasonable
limits for a pattern’s complexity seems to be a must.
A generic OO complexity metric is expected to be
built upon a combination of the MOOD metrics.



The functionality offered by a pattern represents its
power to solve a certain category of problems.
Some patterns have a much wider coverage than
others in the sense that they can solve a given
problem in many different contexts. This function-
ality should also be evaluated quantitatively.

Patterns are not supposed to be used “as is”
(verbatim reuse). Instead, they are supposed to be
somehow configured or adapted (leverage reuse) to
solve a particular problem of the system under
construction. Therefore, their degree of adaptability
should also be quantified. A reduced configuration
capability would degrade the pattern’s desired
generality. Too much flexibility, on the other hand,
would surely depend on several compromises that
would sacrifice efficiency and memory usage opti-
mization, provoke inadmissible increase in com-
plexity and eventually produce undesirable side-
effects.

The unreliability of a system that is built using an
adopted pattern can have its origins in the pattern
itself or apart from it. Testing different systems with
embedded patterns and selecting only the faults that
depend on the pattern's inclusion, should allow us to
correlate them with the pattern’s complexity. From
there we can build predictive models for reliability
or/and redesign patterns for an increased reliability.

Several avenues for future work have been outlined.
There is a vast ground for research in the OO
metrics field. An increasing number of researchers
[Whitty95] are out there to prove it.
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