
A Software Defect Report and Tracking System in an Intranet

A. Monteiro, A.B. Almeida
DAMAG - Portuguese Navy

DAMAG, Praça do Munic´ıpio,
1118 Lisboa Codex, Portugal

bigotte.almeida@mail.damag.pt

M. Goulão, F. B. Abreu, P. Sousa
INESC

R. Alves Redol, 9,
1017 Lisboa Codex, Portugal

fmiguel.goulao | fba | pedro.sousag@inesc.pt

Abstract

This paper describes a case study where SofTrack -
a Software Defect Report and Tracking System - was
implemented using internet technology in a geographically
distributed organization. Four medium to large size
information systems with different levels of maturity are
being analyzed within the scope of this project. They belong
to the Portuguese Navy’s Information Systems Infrastructure
and were developed using typical legacy systems technology:
COBOL with embedded SQL for queries in a Relational
Database environment.

This pilot project of Empirical Software Engineering
has allowed the development of techniques to help
software managers to better understand, control and
ultimately improve the software process. Among them
are the introduction of automatic system documentation,
module’s complexity assessment and effort estimation for
maintenance activities in the organization.

1. Introduction

Software process improvement (SPI) is currently viewed
as a means to achieve a higher quality in the developed
products at a lower cost and within schedule [10]. An
investment in the achievement of quality may lead to
an effective cost reduction due to the decrease of costs
associated with lack of quality [6].

At DAMAG, a department responsible for the
information systems infrastructure and also for analyzing,
developing and integrating management support
methodologies within the Portuguese Navy, a SPI initiative
is currently being carried out.

Before the implementation of the actions described in
this paper, most of the defects found either in-house (by
black box testing) or by final users, were simply handled on
the telephone and no record was made. The systems under
study were built with typical legacy systems technology.

They exhibit common fragilities such as unstructuredness,
unmanaged complexity, insufficient documentation and
unexpected impact of changes. Forecasts of short to medium
term effort required to support the software systems were
not available. This was particularly problematic since the
members of the teams in charge of the systems’ evolution
often have regular militaryassignments (e.g. naval exercises
at sea) and those must be planned with some advance. On the
other hand, without on-line information of pending actions,
the heads of the Software Division could not have control
over the ongoing projects. Ultimately, the final users had no
mechanism of feedback on their submitted requests.

To overcome thisstatus-quo a DAMAG/INESC (a R&D
institute) joint action was set up to define the architecture
and develop a defect and reporting system that could be used
in the Navy Intranet. The SofTrack tool was then developed.

Simply put, SofTrack is a system that combines the
features of a software defect report tracking system with
the collection, analysis and presentation of software process
and product metrics. Moreover, it also embeds a system
responsible for automatically generating documentation on
a software product based on the analysis of its source
code, thus contributing to the existence of updated product
documentation.

The complexity metrics are combined in a proposed
software complexity model. The metric-based quantitative
analysis has allowed identifying error-prone modules due
to their extreme complexity. A restructuring activity is
currently underway to deal with this problem.

Effort estimation based on the complexity of the evolution
actions is another topic that will be addressed in this paper.

SofTrack has a web interface that allows users spread
over distinct buildings to have a view of the evolution of a
software system tailored to their activity.

Although there are some other web based software
evolution tracking systems that provide a strong coverage
of evolution tracking[2], there is still some work to be
done in what concerns the integration of these systems with
tools that deal with the automatic documentation of the

maintained systems implementation and with the issue of
software complexity assessment. We feel the combination
of these features may strengthen the SPI initiatives.

SofTrack is being tested with four applications developed
by different DAMAG teams with COBOL and SQL/DS
in a proprietary system during the last decade. The data
collected is expected to give a reasonable overview of the
main problems detected in this kind of systems within the
organization.

2. Global architecture

The conception and acceptance of SofTrack was not an
easy nut to crack. It raised technological, methodological
and cultural problems. The SofTrack architecture (Figure
1) combines the usage of adapted commercial of the shelf
software (COTS) with software developed by INESC and
DAMAG.

Prod.Struct.
Repository

www
 pages

RARE

Client
browser

LogiscopeSamaritan

SPSS

Servlet

Source Code
Repository

Figure 1. SofTrack Architecture

The physical support of the SofTrack in the Portuguese
Navy Intranet, lies on a web server running Windows NT
with the Internet Information Server (IIS) and on a Unix
workstation. The IIS is enhanced with the usage of a
commercial add-on (ServletExec for Windows) to enable
the support of Java servlets.

The source code files stored in theSource Code
Repository provide the data for the product analysis
supported by SofTrack. They are submitted toLogiscope

[13] andSamaritan [3] (System for Aided MAintenance and
Reengineering of Information Technology ApplicatioNs)
tools, both running on the workstation.

Logiscope is a COTS tool responsible for extracting
information about the overall structure of an application
(call graph), the logical structure of its components (control
graph) and measures of its complexity (product metrics).
Logiscope’s outputs are the inputs for bothSamaritan and
SPSS [12] (Statistical Package for Social Sciences).

Samaritan is a tool responsible for the generation of
updated documentation of the systems under analysis, based
on their source code. The produced documentation is
organized in theProduct Structure Repository and presented
in HTML pages to allow an easy browsing through them.

The process data is collected withRARE (Register and
Analysis of Requests of Evolution [4]), a framework for
evolution actions tracking. The collected data allows the
computation of process metrics.

The SPSS tool is used in the statistical analysis of
the product and process metrics. This is achieved with
SPSS scripts that are run with a defined periodicity,
generating HTML pages containing reports with project
control information.

The client-server structure of SofTrack is implemented
with the usage of aSessionServlet, which is responsible for
dealing with the interaction performed between clients and
the system, on the server side. It implements the security
policy of SofTrack, granting customized privileges to each
user.

3. Product structure - SAMARITAN

The Samaritan is a tool developed at INESC to document
the implementation of information systems. It analyses
the system components and produces a dependency graph
between physical artifacts such as executable images, source
files, functions, databases, data base tables, and attributes of
database tables.

Each node of the graph describes a single physical
artifact and each edge establishes a dependency between
two artifacts.

The graph is stored in the Samaritan internal repository
and can be accessed for different purposes, such as
complexity computation and impact analysis. In large
information systems, the graph is often in the scale of
hundreds of thousands of nodes and edges.

To manage the complexity and fully explore the
dependency graphs, Samaritan allows users to generate
customized sub graphs in a hypertext format, where nodes
are HTML pages and edges are hypertext links between
pages.

The current version of Samaritan is able to parse source
code in C and Cobol languages (in SUN, HP and IBM

systems) with embedded SQL statements for ORACLE,
INFORMIX, SQL/DS and DB2 databases. It also parses
Oracle stored procedures, forms and triggers in PL/SQL
language.

4. Report disclosure problem

SofTrack’s report generation activity is automated,
making updated information available to its users.

SofTrack maintains information about access rights of its
users. At a given point in time, the user will have access
to the reports contained in the groups of reports on his
access list and also to the reports accessible through the
groups of users to which he belongs. These access lists are
defined according to a data disclosure policy that filters the
relevant information for each user profile. To support the
accessibility restrictions, the web server is extended so that
it grants or denies access to pages according to the user’s
access list.

SofTrack has a java servlet (SessionServlet) that is
responsible for controlling data access. It enhances the
HTTP server by enabling request/response services. When
a client sends a request to the web server, the web server
redirects the request information to the servlet and have the
servlet construct the response. Because all user information
is passed to the servlet as part of the HTTP request, it
implements additional authorization as part of its service
method.

Once the user logs in the SofTrack, a cookie is set to
carry his information inside the system. The servlet uses
this cookie to dynamically generate the available links on
the pages it serves back to the client. From here on, the
whole environment is configured for that particular user,
only showing him the available resources for his profile.

When the servlet receives a serve page request, it checks if
the user has access to that URL and serves it back, providing
he does have access. This double check on the accessibility
of the page is performed to prevent users from composing
an unauthorized page request.

With the described approach, the SofTrack is able to
fulfill its requirement of restricted access to data.

5. Process analysis - RARE

The purpose of collecting process metrics is the
detection of eventual process flaws, pitfalls or improvement
opportunities and the monitoring of the product’s quality, to
support the SPI.

Measuring the process requires the help of the people
involved in it, normally by registering how much effort they
spent doing some maintenance activity and when it was
done. The normalization and classification scheme of the

evolution requests used in the realm of this experiment was
developed with the support of the maintenance team in order
to keep it simple to use. It includes a taxonomy for the
evolution action itself, along with process data such as the
effort spent in an evolution action and links to track the
changes back to the source code.

RARE is the basis for the tracking of the evolution of
the software. The managers use it to control the process
and quality of the product, through the analysis of reports
such as control charts, medium time between failures and
medium time to repair. The structure of the RARE database
makes it easy to get more specific reports by filtering the
actions through some characteristic feature.

6. Module complexity assessment

6.1. Definition of an assessment model

Assessing the complexity of a module based on a set
of complexity measures is a somewhat similar problem to
multi-criteria decision making. Although we have several
driving factors to make a judgment, in the end, we want to
get an overall value for complexity or a rank between the
modules.

The core of the collected metrics set consists on textual
complexity metrics [5] and structural complexity metrics [8].
Each metric measures an aspect of software complexity, but
some of these aspects have a high correlation with others.
The collected metrics can be combined using the Principal
Components Analysis technique [7, 9], so that we can get a
smaller number of metrics without a significant information
loss. This method allows us to derive complexity metrics
with a low correlation between them (factors).

Using the metrics collected with Logiscope [13], we
got three factors condensing the information conveyed
by several complexity metrics: F1 (program complexity,
maximum nesting level, direct calls, exit nodes, entry
nodes, maximum number of degrees, intelligent content,
cyclomatic complexity, program level, size, maximum
number of nodes, maximum number of statements, nodes,
edges, operators and estimated number of errors), F2 (mental
effort, unconditional jumps and essential complexity) and F3
(pending nodes).

Using the RAPE records on effective effort, we were able
to compute a linear model with the effort as a dependent
variable and the complexity factors as the estimators. It
turned out that F3 had a neglectible effect on the effort
required to build the modules(�� � �), so it was removed
from our model.

Efforti � �� � �� � F�i � �� � F�i � �i (1)

The �j coefficients were computed by the least square
method and�i represents the residual error for each

case. This model may be instantiated with the parameters
presented in Table 1.

Coeff� Est� StdError t���	 Sign�

��
�
�� ���
� ������ �����
�� ����� ���
� ����� ����

�� ����� ����
 ������ �����

Table 1. Effort model parameters.

The F statistic value (108.561) with a significance of
0.05 is higher than the critical value for a sample of this
dimension (F(2, 38) = 3.23). This means we can reject the
null hypothesis (H� � �� � �� � �).

6.2. Model discussion

The positive coefficients show that an increase in any of
the complexity factors results in the increase of the expected
effort. The adjusted determination coefficient of the model
(R�

adj) is 84.3%. This means that only 15.7% of the effort
variation is not explained by the model. For instance, the
complexity of the database accesses is not accounted for.
Therefore, if a change involves modifying an embedded
SQL statement or change the definition of a table, the model
will underestimate the necessary effort needed to fulfill that
task.

Another limitation is due to the sources of data used by
this approach. There are factors external to the software’s
intrinsic complexity that have an impact on the total effort
required to perform a maintenance activity, such as the
different programmer’s productivity [1, 11]. A programmer
with twice the productivity of another one is likely to need
only half the effort to perform the same evolution action.
There is not enough statistically relevant data to include this
human factor on the model, for now, due to the relatively
low total number of registered evolution actions (41).

These aspects help explaining the current level of
accuracy of effort estimation provided by the model, which
is expected to grow with the re-calibration that new evolution
actions will enable and the inclusion of new factors to cover
the earlier stated limitations.

However, the model gives a good framework for assessing
a module’s complexity. This information is quite useful as
it allows the detection of the most fault prone modules and
thus can help planning re-engineering activities [4].

7. Conclusions

SofTrack is a system that combines several different
technologies, from the informationretrieval techniques used

for extracting data from the source code to the usage of web
technology for making that information available to users in
a distributed environment. It was designed to support a SPI
initiative.

Its implementation has generated awareness in the
organization to the need of producing software in a more
controlled environment. It has led to a significant change
in people’s behaviors, in what concerns the making of
evolution requests by the introduction of a formalism in
that activity.

Instead of the traditional usage of human expertise by
itself to make decisions, the decisions can now be taken with
the help of updated documentation and software metrics.
This makes software development a much more controllable
and predictable activity.

SofTrack provides an important help both in the
understanding of the systems (with the documentation
generated by Samaritan) and the impact analysis of
eventual evolution actions. The effort estimation model for
evolution actions shows the expected dependency between
the complexity of an evolutionaction and the required effort.
The complexity assessment enables the detection of error
prone modules.

References

[1] F. Brooks. The mythical man-month.Addison-Wesley, 1975.
[2] J. Callahan, R. Katsuriya, and R. Hefner. Real-time

verification and validation for large-scale software projects
via the web. http://hopper.cs.wvu.edu/projects/IEEE.html,
1998.

[3] ESW. Samaritan - manual tecnico.Internal Report, 1996.
[4] M. Goulao, A. Monteiro, F. Abreu, A. Almeida, andP. Sousa.

A software evolution experiment. InProceedings of the
ESCOM ENCRESS 98, 1998.

[5] M. Halstead. Elements of software science.Elsevier North-
Holland, New York, 1977.

[6] D. Houston and J. Keats. Cost of software quality: A means
of promoting software process improvement. 1996.

[7] H. Kaiser. The varimax criterion for analytic rotation in
factor analysis.Psychometrica, 1958.

[8] T. McCabe. A complexity measure.IEEE Transactions on
Software Engineering, 2(4), 1976.

[9] E. Reis. Analise factorial das componentes principais: Um
metodo de reduzir a complexidade sem perder informacao.
Giesta ISCTE, 1993.

[10] M. Roberts. Experiences in analizing software inspection
data. InProceedings of the Software Engineering Process
Group Conference, 1996.

[11] H. Sackman, J. Erikson, and E. Grant. Exploratory studies
comparing online and offline programming performance.
CACM, 11(1), 1968.

[12] SPSS. Spss user’s guide.SPSS user manual package, 1997.
[13] Verilog. Logiscope viewer - basic concepts.Logiscope user

manual package, 1993.

