Originally presented at “Pedagogical Patterns: Successes in Teaching Object Technology”
OOPSLA'96 Workshop, October 6, 1996, San Jose, California, USA

Pedagogical Patterns:
Picking the M etaphor from the OO Design Community

Fernando Brito e Abreu

INESC and Lisbon Technical University (ISEG), Portugal
(email: fha@inesc.pt)

Abstract

PedagogicaPatternsarea recentproposalfor formalizing and condensinghe usuallydiffuse andscatteredknowledge
on provensolutionsto teachingandtraining in softwarerelatedmatters.As with DesignPatternsgvery Pedagogical
Patternusesa common architectureincluding the following sections:intent, motivation, applicability, structure,
consequence@nplementationrelatedpatterns exampleinstancesandresourcesTwo completepedagogicapatterns,
the PRCM (PeerReviewand CorrectiveMaintenancePatternandthe PIPR (Preparation|ndustrial Presentatiorand

Roundtable) Pattern are presented here.

1. INTRODUCTION

Training and educatingpeopleis a challengewith many hard questionsand with no single easyanswers:How to
motivatestudentsor trainees™How long shoulda presentatioron newtopicstake?How to preparethemto real-world
situations?How muchwork shouldthey be assigned®Vhich kind of work shouldbe assignedHow shouldthey be
graded? How to grade individuals whgroupassignmentare carriedout?How to distributestudentsn teamsaVhen
shouldyou reviewandsummarizeHow canyou build a coursesothatdistinctinstructorscanteachit in a equivalent,
repeatable fashion? The list is endless ...

In the engineerindieldsit is oftenthe casethat newcomersn theteaching‘business”often hold an academialegree
like a M.Sc.or Ph.D.but had no specific pedagogicakducationor training. If, like oftenis the casethereis nobody
thereto tell themthe tricks of the trade,thesenoviceteachersare condemnedo learnby repeatingthe samemistakes
that generations of peers did in the past.

On the otherhand,| oftencomeacrossexperiencedeacherghathavelong crystallizedtheir teachingmethod.While
they would arguetheir selectionis basedon the besttradeoffthey cameacrosson their lifetime career,| suspecthat
the real reasonis that they had no other sourcesof pedagogicatlueseitherthanthe outcomesof the trial and error
approachtheyusedin the past.Worstthanthat, they do not sharetheir own cluesfound“the hardway” andthe same
situations arise again and again with others.

Facedwith a lack of pedagogicahelp the OO educationand training community has organizedseveralbirds-of-a-
feathermeetingssuchas the Educators’Symposiumat the OOPSLA conferencesand the Symposiumon Teaching
Object Technology at TOOLS conferences. Although many interesting ideas are suggested in such meetings and also
educatiorandtraining columnsin journalssuchas JOOPor ObjectMagazine very little hasbeendoneto producean
homogeneous and condensed repository of best practices.

Pedagogical patterns are a breakthrough in this statug.djy86]. Their bestcontributionis notthe originality of the
approacheshey advocatéut the simpledocumentatiorof solutionsthat havebeenprovento do a goodjob in solving
common problems, such as the ones mentioned above, in a reusable and adaptable format.

With a catalogof pedagogicapatternsevenexperiencegrofessorawill find usefulhints from othercolleaguesAny
instructor should be able to instantiatea pedagogicalpatternfor different lessonsor to adaptit using its own
accumulated knowledge.

2. HOW ARE PEDAGOGICAL PATTERNS BORN?

During the last TOOLS'96 USA conferenceat SantaBarbara, California, in early August, | participatedin the
"Challengesand Successes TeachingOT" workshop.Therel wasfirst facedwith the pedagogicapatternconcept,
its architectureand a few examplesAfter a brainstormingsessionwherea seriesof challengesand possiblesolutions
were generated] suddenlyrealizedthat I could formalize someof my successfulexperiencesf a decadein the
teachingandtraining businessn a reusableand configurableformat. | developeda rough draft of the two examples
includedin next sectionin this fashion.Back homel hadthe time to elaboratetheir currentversionand although



budgetconstraintgdidn’t allow meto be present] submittedthe two to the Workshopon PedagogicaPatternsduring
the OOPSLA’96 at San Jose, California, in October.

The purposeof the referredworkshopsis to gatherthe materialto create,in the shortto mediumterm, a publication
with a comprehensivecollection of pedagogicalpatterns,just like the “gang of four” did with design patterns
[Gamma9s].

3. SOME EXAMPLES

A bunchof pedagogicapatternswere producedn the pastfew months[Lilly96] [Manns96].Theseincludethe PDR
(Plan-Do-Reflect) and the EU (Extended Unit) Patternsby SusanLilly from IBM’'s Object TechnologyUniversity
(USA), theLDLL (Lab-Discussion-Lecture-Lab) Patternby Mary Lynn Mannsfrom the University of North Carolina
at Asheville (USA), the LASD (Lecture-Activity-Student Presentation-Discussion) Patternby Helen Sharpfrom the
OpenUniversity (UK), the TSL (Programming in the Tiny, Small, Large) Patternby Billy B. L. Lim from lllinois
State University (USA), the EPIC (Explore-Present-I nteract-Critique) Patternby JorgenLindskov Knudsenfrom
AarhusUniversity (Denmark),the DIRR (Design-I mplement-Redesign-Reimplement) Patternby SteveHouk andthe
two below by myself. Like with DesignPatternsgvery PedagogicaPatternusesa commonarchitectureincluding the
following sections:intent, motivation, applicability, structure,consequencesmplementation,related patternsand
example instances. The “resources” section was added here and was not part of the original proposal.

3.1 PRCM (Peer Review and Corrective Maintenance) Pattern

I ntent

Expose students to:

- software quality techniques

- group dynamics situations

- software maintenance problems

Motivation

Softwaredevelopersoften haveto do maintenancgeither corrective,adaptiveor evolutive) on productsor parts of
productsthatthey did notproduce.This is enforcedwith OO technologybecausef the emphasison reusewhereyou
tend to adapt and extend existing components.

“Traditional” programmingcourseshowever oftendo not exposestudentdo maintenancéasks.Systemgproducecby
studentsareevaluated'as delivered”’andasso graded.Evenif they getbackto studentsor correction,theywill still
work on their own products, not anybody else’s.

On the other hand, students when faced with group assignments are tempted to cluster arounctttieagueaver
andover again,the oneswith whom they feel betterbecausahey sharecommoninterestsand views and with whom
they do not conflict. Besidesnot mimicking the real world, this situationreducesthe knowledgeand insight sharing
with members of other groups.

Last but not the least, verification and validation techniquesusedby studentsare often restrictedto testing (mostly
black-box). Softwarerevisionsin general,and softwareinspectiontechniquesn particular, althoughrecognizedas
very effective and efficient (due to their possibleearly adoptionon the life-cycle) are seldomtaughtin OO software
developmentcourses.Enforcementof standardizatiorrules and conventionsis also often forgotten in academic
assignments, although being of capital importance in industrial settings.

Applicability
This pattern can be used wheneverthere are team assignmentdo produce any software deliverable such as a
requirements or design specification, source code, test battery, executable system, installation or user manuals.

Structure

i) Initial work

Studentsaregroupedin “n” teams(T1, T2, ..., Tn). Teamsrangingfrom 2 to 4 elementsare usually appropriate All
teamsare given similar effort assignmentdut preferablydistinct in scope.All assignmenthave well defined (as
formally as possible) requirementsand correspondto the production of a given software deliverable. These
requirementsvill be usedfor deliverablevalidation. The rulesandconventiongor producingthe requireddeliverable
are also formally defined and will be used for deliverable verification.

After a stated period of time each team Ti must have produced a prototype Pi of the desired deliverable.



ii) Peer Review

The peerreview sessioroccursfor all groupsat the sametime in a speciallab classduring regularclasshours.Each
prototypePi is reviewedby a teamcomposedf onechosen(by the teammates)elementof teamTi plusall minusone
elements of team Ti+1 (or by T1 for Pn).

By otherwords,eachteamis like a nodein aring structurewhereall prototypesproducedare shiftedone positionfor
review (and maintenanceswe will seefurther on). One studentrepresentinghe original produceris presentin the
review session, to contribute with his (her) special insight derived from having been involved in its conception.
The Faganmodelof softwareinspectionspr oneof its variants,is a goodchoicefor conductingthe review sessionin
this formal approach to reviewing, a copy of the deliverable to be revisveistributedto eachparticipantbeforehand
to allow an independent verification and validation process.

The meetingobjectiveis identifying, classifying and registeringdefects,not proposingsolutionsfor them. Each
participanthasa specificrole (moderator presenterrecorder,producer)which can be accumulatedor review teams
with lessthan4 people.Moderatoris compatiblewith anyotherrole. If possible producershouldnot accumulatewith
either presenteror recorder,not to bias the review results. The moderatoris responsiblefor avoiding problem
resolution(which extendshe meetingduration)and conflicts. The presenteiis responsibldor the meetingpace.The
recorderfills the reviewreport. The producerrole is conductedby the memberrepresentinghe teamwhich produced
the prototype.

The lecturer (or severalteaching assistants)offers assistancewandering around teams and guaranteeingthat
interactionbetweerthemis keptto a minimum to minimize chaos.However,(s)hemustkeepa relatively low profile
during this phase,allowing studentsto learn from each other, but helping to reconciliate possible contradicting
conclusions.

This peerreview meetingshouldtake betweenone to two hours. Eachteam may completethe review activity at a
different time. As they do so, they are invited to leave the lab, to avoid disturbing other reviews still taking place.
A copy of the review report is given to the lecturer.

iii) Corrective Maintenance
After doing a causalanalysisbasedon all the review reportsthe lecturergivesa classsummarizingthe mostcommon
defectsand their possibleworkarounds.Eachteamis assignedhe task of corrective (defectsfound) and perfective
(requirements not met) maintenance of the prothestreviewed,not the onethey producedA givenscheduldor this
rework effort is established.

Consequences

This pattern:

- requires additional work on the part of the lecturer to prepare the detailed requirements checklists;

- forces students to record, and to reflect upon, what happened when they were involved in their work assignments;
- leads students to learn how to delegate and share responsibilities;

- exposes students to the problems and challenges of maintenance;

- allows the introductionof softwarequality principlesand techniquesand actualpracticefor studentsin exercising
them;

- increases the learning potential by sharing other students' experiences and knowledge;

- allows students to give and receive critique to and from peers;

- avoids the frustration of egocentric students when they are required to redo their first solutions.

Implementation

Issues to consider:

- This patterncan be usedrepeatedlywithin the samecourse.An entire coursecan be organizedas a sequencef
instances of this pattern. These instances should not overlap in time.

- The material to be reviewed should not be tiny (see TSL pattern).

- Therating of a teamis split in two parts,one dugo the prototypethey producedand otherto the rework. A careful
weight of eachof the two partsis important. This avoidsthe reductionin the willingnessof studentsto provide a
wholehearted improved solution on both phases. Equal weights can be an appropriate approach.

The review report is composed of:

- a section for the identification of the deliverable being reviewed, preparation times, date, review duration, etc;
- a section for the identification of the review members (and their role if formal reviews are used);

- a section for registering and characterizing the defects found (type, location, description, possible cause);

- a verification and validation (V&V) checklist.



The V&V checklist contains:

- identification of eachelementaryor atomic requirementspecificto eachassignment} this allows the detectionof

missing forward traceability (stated requirements not implemente@yersetraceability(implementatiorfeaturesnot

reflected in design).

- identification of eachrule or conventionto produce(commonto all groups)- this allows the detectionof non
adherence to the adopted standards (naming conventions, documentation guidelines, indentation, use of headers, etc).

Related patterns

- EPIC pattern, since it also advocates peer work.
- DIRR pattern, since it also advocates a rework phase, although in a different framework.

Exampleinstances

This patternhasbeenusedto teachOMT (Object Modeling Technique)and Object Pascalprogrammingconcepts
(using Delphi). However,sinceit is definedin a generalway, it can be usedwith any kind of softwaredeliverable,
either OO or not.

Resour ces

The instantiationof this patternrequiresthe availability of a lab or classroomwhere severalgroupsof studentscan
work with asfew interactionaspossiblefrom othergroupsunderthe supervisionof oneor morelecturers(thathaveto
circulateamongthe groups).The preferredoption is to havean independentable for eachgroup aroundwhich its
members can sit.

3.2PIPR (Preparation, Industrial Presentation and Roundtable) Pattern

I ntent
Bridging the gap between academia and the "real world".

Motivation

It is oftenthe case,mostly in countrieswhere university staff spendtheir lifetime careersin academiccampus that
softwareindustryreality is quite different from the academicne.By the time studentendtheir graduationsandstart
working in industry,they feel completelyunadjustedeitherbecauseheir knowledgeis not applicableor becausdhey
lack somebasicunderstandingf whatis day to day life in industry. This includesdealingwith severalconstraints,
human resourcesallocation, motivation, leadership,team dynamics, client pressure,marketing pressure,conflict

resolution, technology migration problems, past experiences and selected tradeoffs and so on!

On the other hand, industry profits largely from having informal networks with university staff and students
themselvedecausahey can somehowindirectly shapethe academiccurriculato fit their real needs(by making the

staff aware) and by establishing means of picking “eagles” among the students.

Applicability
This patterncan be usedwheneverthe conceptsbeing introducedin the classroomare being (or shouldbe) usedin
production activities going on in the software industry.

Structure

i) Preparation

It is the author'sexperiencghat muchmoreinsightsare gainedif studentsare taughtwhat they are going to seeor
hear beforehand.This includesintroducing,in the classroom,all the theoreticalconceptsrelatedto the industrial
presentationo be carriedout at a later moment(eventuallyon anotherday). Studentggain the ability to criticize and
ask questions that otherwisewould only occur too late. Industrial presentershould also be “prepared” (informal
meetingwith one academidecturer)in the sensethat (s)he must be awareof which is the basicbackgroundof the
intended audience (the students) in order to shape its presentation.

ii) Industrial Presentation

Thethemeof the presentatiorcanbe varied:tools adoption,migratinglegacysystemsgdealingwith humanresources,
calendarand budget constraints,enforcing reuse adoption, configuration managemenprocedures subcontracting
policies, verification and validation mechanismsn use and so on. Thesepresentationgan be carried out in class



(invited speakerapproach)However,it would havemuchmoreimpactif doneat the industry premisedoffices, labs,
...). Presentationshouldbe carriedoutin normalworking dayswhen“real” activity is taking place.Weekendvisits in
empty premisesare not a thrilling and enrichingexperiencelf presentatiorinvolves a site tour, studentsshouldbe
split in small groups and taught to minimize the risk of being intrusive.

iii) Roundtable

After the presentatioris over, all studentsyespectiveteachersand industrial presenter(spatherin one room where
they canaskand sharewith otherswhateverdoubts,questionsand commentshey feel appropriate The teachemay
start with some preliminary questions,although (s)he may already know the answers,in order to stimulate the
discussion session. This meeting should not take more than one hour.

Consequences

The PIPR pattern:

- providesthe studentgandin factthe lecturersthemselvesyith a morerealisticview of whatarethe problemsfaced
by real world projects in the software industry;

- enables lecturers to give more concrete, less abstract, lectures;

- allows students to realize "why" rather than on "how" things are done;

- invites students to reflect on what they have learned;

- makes the learningrocessamorefun by introducingexternalagentsandprobablyexternalvisits (multinationalshave
long understood the benefit of conducting kickoffs).

Implementation

Issues to consider:

- this pattern can be instantiated several times in the same term;

- distantvisits shouldbe avoidedbecausesomestudentanay not afford the costsinvolved and becauset cantaketoo
much time.

Related Patterns
(none so far)

Example Instances

This patternhasbeenusedto teachSoftwareEngineeringProjectManagemenand SoftwareQuality Principlesand
Techniques. Its generality is believed to allow it to be equally applied in other teaching areas.

Resour ces

The instantiationof this methodrequiresthat the lecturer have contactsin industry or that (s)he is allowed the
opportunity and budget to visit a few industries in order to select, negotiate and plan the interaction events.

4. CONCLUDING REMARKS

Pedagogicapatternsare an emergingapproachfor condensinghe knowledgeon provenand reusablesolutionsfor
teaching.Two pedagogicapatternswere proposedhereusing a commonskeleton.Although originally conceivedto
helpteachingobjecttechnologythereis no reasorwhatsoeverhy this sameapproachcannot be appliedsuccessfully
to teaching in many other areas of knowledge, either technological or not. Time, as usual, will be the final judge.

BIBLIOGRAPHY

[Gamma95] GammagE.; Helm,R.; JohnsonR. andVlissides,J., “Design PatternsElementsof Reusable Object-
Oriented Software”, Addison-Wesley, 1995.

[Lilly96] Lilly, Susan, “Patterns for Pedagogy”, Object Magazine, January 1996, pp.93-96.

[Manns96] Manns, Mary Lynn et al., workshopnotes,Workshopon PedagogicaPatterns,OOPSLA’96, San
Jose, California, October 1996.



