SCIENCESPRINGDAY

Department of Mathematics, Faculdade de Ciências e Tecnologia, UNL

Cláudio Fernandes

Assistant Professor (with tenure)

Home page: http://www.claudiomath.com

C*- Algebras of Integral Operators

CENTRO DE ANÁLISE FUNCIONAL E APLICAÇÕES

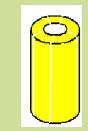
Given the C*-algebra **B** = **alg(PSO,S,UG)**, of Cauchy singular integral operators with shifts acting on the unit circle, we want to investigate the **invertibility** and the **Fredholm property** of its elements.

Figure 1: Fixed points

Methodology

The C*-algebra $\mathbf{B} = alg(PSO, S, UG)$ is an algebra associated with a C*dynamical system and making convenient decompositions of the **maximal ideal space** of a central C*-subalgebra \mathbf{Z} of \mathbf{B} , it is possible associate to each operator **b** in \mathbf{B} a family of new operators **b1**, **b2**, ..., **bk** (related with the fixed points of shifts **g**) belonging to simpler C*-algebras, such that

B is Fredholm (invertible) iff **b1**, **b2**,..., **bk**, are all Fredholm (invertible).


Expected Results

Find new methods to construct **Fredholm** (invertible) **Symbols** for C*algebras of type **B**, that is, to construct maps Φ that associate to each operator **b** in **B** a family of square matrices **b1**, **b2**,..., **bk**,

$$\Phi: B \to M_{n_1}(\mathbb{C}) \oplus M_{n_2}(\mathbb{C}) \oplus \ldots \oplus M_{n_k}(\mathbb{C})$$

 $b \mapsto (b1, b2, ..., bk)$

such that **b** is Fredholm (invertible) iff all the determinants of matrices **b1, b2,...,bk** are nonzero.

Figure 2: Maximal ideal space

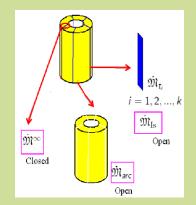


Figure 3: Decomposition which leads to new operators

