SCIENCESPRINGDAY

Mathematics Department

H-Decompositions of Graphs

Teresa Maria Sousa

(PI)

Ph.D., Algorithms, Combinatorics and Optimization

Carnegie Mellon University 2006

Objectives

Given a fixed graph H we want to find the smallest number, $f(n, H)$, such that any graph of order n admits an H-Decomposition with at most $f(n, H)$ elements.

In the monochromatic H -decomposition problem we want to find the smallest number, $f(\mathrm{n}, \mathrm{H}, \mathrm{k})$, such that any k-edge-colored graph on n vertices admits a monochromatic H -Decomposition with at most $\mathrm{f}(\mathrm{n}, \mathrm{H}, \mathrm{k})$ elements.

Methodology

The H -decompositon problem is a problem in extremal graph theory. The tools used involve a wide range of methods, going from simple induction, to Szemeredi's Regularity Lemma or the Stability Method. Results known about the packing number of a graph are also widely used. Monochromatic HDecompositions are closely related with the Ramsey Numbers.

Expected Results

The k-fan graph, denoted by F_{k}, is the graph consisting of k triangles intersecting in exactly on common vertex.
We expect to determine the function $f\left(n, F_{k}\right)$, for all $k \geq 2$.

For Monochromatic decompositions we expect to determine the value of the function $f\left(n, K_{r}, k\right)$, for all $r \geq 3$ and $k \geq 2$, where K_{r} denotes the complete graph on r vertices.

Ramsey coloring for K_{3}

4-Fan graph

