SCIENCESPRINGDAY

Department of Materials Science – CENIMAT|I3N

Solution Synthesis of Dielectrics

CENIMAT I3N/ Microelectronic and Optoelectronics Group

ritasba@campus.fct.unl.pt Che

Mass

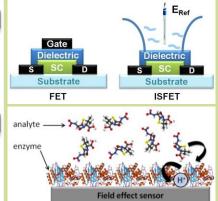
Rita Branquinho

Post-Doc Researcher

♦2012 PhD. Biodetection based on field effect devices.

♦ 2003 Post-graduation in Analytical Chemistry, FCUL.

◆ 2002 Graduation in Chemistry, FCUL.


Objectives

Auto-combustion synthesis of high-k dielectrics

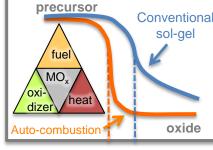
The auto-combustion synthesis is based on a solution of the required metal salt (oxidizing agent) and an organic fuel employed as reducing agent. This redox mixture ignites upon heating at a relatively low temperature, to initiate a self-propagating exothermic reaction that sustains high temperatures yielding the metal oxide.

Application in electronic and biosensor devices

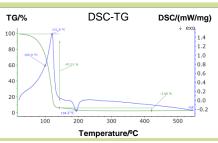
- Development and characterization of solution based electronic devices TFTs and capacitors.
- Development of solution processed field effect biosensors EIS and ISFETs for pH, enzymatic reaction and DNA detection; where the dielectric acts as the sensitive layer.

Methodology

M(oxidizer) _x +	Fuel —		Mo _x +	H ₂ O		CO ₂	*	Na
-NO ₃	Urea	Solvent	$ A _2O_3$	1120	•	992	·	••2
-acac	Glycine	MetoxyEt	Ta ₂ O ₅					
-CI + NH ₄ NO ₃	Citric acid	Water	HfO ₂ ;					


The auto-combustion synthesis requires the study of several parameters to yield uniform thin films at low-temperatures. Variables such as: metal ion nature and concentration; nature of oxidizer (MClx requires a combustion aid; NH_4NO_3); nature of fuel (which controls the reaction rate); fuel/oxidizer ratio (ϕ); type of solvent; must be optimized to obtain high quality films. The deposition (spin-coating and inkjet printing) and annealing processes also need to be optimized.

Expected Results


- Optimization of the precursor solutions for high quality and uniformity dielectric oxide thin films with high dielectric constant.
- Development of printable precursor solutions to allow direct patterning of the dielectric layers by inkjet printing.
- Development of low temperature high quality solution based dielectric thin films for electronic devices – TFTs and capacitors.
- Development of pH sensitive solution based dielectric thin films for field effect biosensors – EIS and ISFETs for pH, enzymatic reaction and DNA detection.

200 °C >400 °C

FTIR ATR

Wavenumber/cm⁻¹