SCIENCESPRINGDAY

Chemistry Department

Membrane design and characterization

REQUIMTE/CQFB – Biochemical and Process Engineering Group

Luísa A. Neves

(Post doc Reseacher, since 2010)

- Since 2013, Member of the Council of European Membrane Society
- 2010, PhD in Chemical Engineering
- 2004, Graduation in Chemical Engineering
- Total Articles: 15; Book Chapters:1

Objectives

The main focus of the research is the design and characterization of novel membranes for different applications:

- 1) Efficient removal of CO₂ from anaesthetic gas circuits using liquid membranes with Task Specific Ionic Liquids (TSILs) and a very efficient enzyme, Carbonic Anhydrase;
- 2) CO₂ capture from flue gas in post-combustion processes at high temperatures using mixed matrix membranes with ionic liquids (MMMs-ILs):
- 3) Yeast Chitin-Glucan Complex Films using Biocompatible Ionic Liquids for Biomedical Applications

CO₂ Xe Xe

Polymeric porous support
Pores filled with IL + CA

Methodology

To pursue my research interests, different characterization techniques were selected to evaluate the potential of the membranes designed for a specific application:

- Scanning electron microscopy (SEM); Thermogravimetric analysis; X-ray photoelectron spectroscopy (XPS); Mechanical Properties; Determination of gases solubility and diffusivity coefficients in ionic liquids; Pure and mixed gas gas permeability measurements (H_2 , O_2 , N_2 , CH_4 , CO_2 and Xe).

MMMs-ILs

Expected Results

Regarding CO_2 capture from anaesthetic gas circuits it is expected to develop an innovative process which combines the properties of an efficient biocatalyst and the affinity of new ionic liquids for CO_2 capture, integrated in a membrane contactor, and to have a prototype ready to be installed and tested at an hospital.

An optimized protocol for the preparation of mixed matrix membranes, with the polymeric matrix, metal organic framework and the task-specific ionic liquid selected will be developed.

Wound dressing materials based on yeast chitin-glucans complex polymer.

Chitin-glucans complex membrane