SCIENCESPRINGDAY

Department of Chemistry

Bacterial gene regulation

BioProt /Bioin- Bacterial Mechanisms of Environmental Adaptation Group Supervisors: Isabel Moura and Marta Carepo

Nathália Castro

(PhD student)

PhD Student in Sustainable Chemistry (FCT-REQUIMTE)

Msc. in Genetics and Molecular Biology at Universidade Federal do Pará , Brazil (UFPA).

Bsc. in Biology (UFPA).

00

Objectives

•Identification and isolation of bacterial genes involved in Mo responsive two component signal transduction systems.

•Heterologous expression, purification and characterization of the target protein, a Mo responsive regulatory protein (*Mor*R)

•Protein-DNA binding studies. Our aim is to elucidate how *Mor*R interacts with DNA, and if post-translational modification, such as phosphorylation, alters the protein conformation and binding.

Methodology

•Molecular cloning for gene isolation: genetic engineering (PCR, restriction enzymes, and ligation of the target gene with pET vector);

•Protein expression: competent cells are used for recombinant plasmid isolation and protein expression.

•Protein purification: different chromatographic steps are used to purify the target protein

•Protein- DNA interaction: EMSA, footprinting, and fluorescence spectroscopy.

•Post translational modification: small phosphodonors have been used and *Mor*R conformational changes have been monitored by gel filtration chromatography and fluorescence spectroscopy

Expected Results


Cloning, expression and purification of the target protein.

•Understand the MorR/DNA binding mechanism.

•Understand the MorR regulation mechanism.

•Investigate the existence of any conformational and functional alteration by post translational modification (phosphorylation)

Study the interaction of Mo with MorR

