
Transactional Memory Verification

COMPUTER SYSTEMS / CR4 Team

DEPARTAMENTO DE INFORMÁTICA

Photo

Ricardo Dias
PhD Student / Supervised by:
Prof. João Lourenço

Currently working on
compiler and runtime
support for software
transactional memory
using automatic
verification techniques.

Funding: PEst-OE/EEI/UI0527/2011

PTDC/EIA-EIA/108963/2008 (RepComp)
PTDC/EIA-EIA/113613/2009 (Synergy-VM)

SFRH/BD/41765/2007 (PhD Scholarship)

Serializable
Snapshot Isolation
Safe SI

0

63

125

188

250

1 2 4 8 16

Linked List - 50% writes Skip List - 50% writes

0

63

125

188

250

1 2 4 8 16

Linked List - 50% writes

Th
ro

ug
hp

ut
 T

x/
s.

Th
ro

ug
hp

ut
 T

x/
s.

Threads

Threads

!"#$%&'()*%+%)
,-.'/0(')12032%4)

56&.%67')!-1')
86%9-&:&)

;:'<&)
86%9-&:&)

"'.=0()86%9-&:&)

>00.)

!"
#$
%&
'(

)#
)*

"&
'

;:'<)/06&:&.'67-)
>'6&02)

>:639');%2:%$9')
>'6&02)

!"!"!"

+%,,"-.#*'/#0%&1).%#' 2)3)&)-"'2"3"-.%#'

Figure 5: Datarace Detection Procedure

The partial order of the read and write accesses in a view, in-
troduced by the use-define relation based in the annotation
{�, •}, allows to assume that the shared variable escaped the
first block, since it was not overwritten in that block.

A thread t writes in a variable var 2 Vars if there is a
write access to that variable in a write view of that thread:

writes(var, t) , 9v 2 Vw(t) : (w, var, �) 2 v

where � 2 {�, •}

Two threads verify the partial safety property if the first
does not write in any variable that has a possible stale-value
in the second thread:

pSafe(t1, t2) , 8var 2 Vars :

¬writes(var, t1) _ ¬psv(var, t2)

Finally, a given program is free of this type of dataraces if
and only if all its threads are safe between themselves, i.e.,
it verifies the following property:

Property 2 (Single Variable Safety).

8t1 6= t2 : pSafe(t1, t2) ^ pSafe(t2, t1)

3. IMPLEMENTATION
The algorithms presented in Section 2 were used to stat-

ically identify dataraces in transactional memory programs
written in Java.

We resorted to the Soot [13], one of the larger and more
mature analysis frameworks for Java Bytecode, to imple-
ment our own Java Bytecode analyzer. Soot is an open
source framework used for code optimizations, transforma-
tions and analysis. It analyzes the programs’ bytecode and
o↵ers an intermediate language between Java source and
bytecode, called Jimple. Our tool uses the generated Jim-
ple code to collect all the useful information described in
Section 2.1.

During the implementation of our algorithm, we encoun-
tered some challenges when analyzing some classes, which
we discuss in the remainder of this Section.

Since we can not analyze native methods, we assume the
worst case scenario. Therefore, when we don’t have access
to a method’s body, we assume that it reads and writes in
all its parameters, and also reads and writes the object in
which it was called. This strategy may increase the num-
ber of false positives reported by the framework, but avoids
yielding false negatives.

Another challenge we had to face was related to the con-
cept of Dynamic Dispatch, i.e., the process of mapping a

method call to a specific sequence of code. Which code
should we analyze when a method is called in an object
that has an interface type, and can be initialized with more
than one class?

To address this issue, we start by looking to all initial-
ization statements, collecting every possible implementing
class for each variable. Then, for every variable v 2 Vars

with multiple implementing classes, the view of a method
called in v is obtained as the union of views of that method
in all its implementing classes.

Finally, if we have no access to the method’s body nor
information about its implementing classes, we treat it as a
native method and assume that it reads and writes in all its
parameters and also in the object in which it was called.

The approaches just described always assume the worst
case scenario and may yield a large number of false posi-
tives. To minimize this e↵ect, an annotation mechanism was
implemented. The annotation mechanism allows the user to
easily state in which parameters a method writes/reads, and
if it writes/reads the object instance where that method was
called. Therefore, when a method is assumed to be native,
MoTH automatically generates annotations for that method
assuming the worst case scenario. The user is then alerted
and allowed to revise the annotation, which will be consid-
ered in future runs of the tool.

Figure 5 illustrates the workflow just described. Firstly,
a program’s Java Bytecode is transformed to jimple code
by the Soot framework. We then analyze this code in or-
der to determine all implementing classes for each variable
(Instance Type Analysis), and compute the views of each
thread (Views Analysis). In this analysis, some method an-
notations are used to determine which read and write ac-
cesses are made in some specific methods (Method Analysis).
Moreover, some native methods are automatically annotated
in this process with the user’s consent. Finally, all the in-
formation is provided to the Sensors for anomaly detection.

4. EXPERIMENTAL VALIDATION
To validate our approach we run a series of tests taken

from the literature, already used in the past to illustrate
dataraces in concurrent programs and/or to validate other
related works. We had access to Teixeira’s tool [15], and
have implemented Artho’s algorithm [1] inMoTH (using static
analysis instead of the dynamic approach followed in [1]).
Since these two works are the basis for our work, we always
report on their results as well. From the empiric compar-
ison of all the results, we can have a deeper insight of the

Heap Program Verification
Tree-based Data Structures

Separation Logic Representation

r.right.left.(left | right)*

r right

right

right
right

left

left

left
left

tree(r) <=> r = nil /\
 E l’,r’. r -> [left:l’,right:r’]
	 	 * tree(l’) * tree(r’)

Heap Path Expressions

Heap Program Verification
Tree-based Data Structures

Separation Logic Representation

r.right.left.(left | right)*

r right

right

right
right

left

left

left
left

tree(r) <=> r = nil /\
 E l’,r’. r -> [left:l’,right:r’]
	 	 * tree(l’) * tree(r’)

Heap Path Expressions

Atomicity Violations Detection

• Improving resource utilization in modern multi-core computers

• Providing software developers with new techniques and tools for parallel and
distributed computing

• Enabling High-Performance Computing for a broader community of researchers
and industry

• Improving the productivity of applications deployed in the Cloud

• Use Transactional Memory Paradigm

• Advance the state-of-the-art in transactional memories

• Development of mathematical models and computational prototypes

• Validation process includes running experimental tests

• Evaluation includes comparison with similar state-of-the-art approaches

• Contribute to more efficient computing

• Bring parallel programming to the masses

• Advance the state-of-the-art in transactional memories

• Prototype that allows to scale applications to computer clusters and/or the Cloud

