
Web applications are built on top of a data repository (e.g., a database) and
commonly developed using an imperative operational style. The natural flow of
application data between repositories and interface is hidden in the application
code and its side-effects.
Data is incrementally gathered and modified until it reaches the desired content
and format. This hinders the evolution of software systems and require a deep
understanding of the implicit data flows by the developer to avoid making mistakes
during application updates.

We aim to support the design of modular and reactive data-centric software
systems focusing on how data flows from data sources to user interface and back.

We propose a reactive dataflow based programming language capable of expressing
most scenarios of data-centric systems, and is amenable to updates in a type safe way
(crash free way). Flows of data are explicit in our language easing application updates.
Our reactive core language is equipped with update operators that allow seamless
introduction of changes and smooth code and data evolution. Changes in data are
seamlessly propagated through the application, providing a dynamic and reactive
programming model. Changes in code require the application to evolve to a new state
where soundness and safety is still guaranteed.
Our language is defined using formal techniques like operational semantics and type
systems, amenable to mechanical verification. We aim at ensuring that updates are
performed safe and seamlessly.

•  A reactive dataflow core language for data-centric systems.
•  Formal definition of the language (operational semantics and type system).
•  Support for code and data evolution by means of dynamic updates.
•  Static checking that well typed systems are kept structurally sound on updates.
•  Compilation to operational code to be executed in the different application layers.
•  Type based access control and information flow based security analysis over

application data and code.
•  A development tool supporting textual and visual programming, and live

programming of applications.

Dynamic Updates on Web Applications

DEPARTAMENTO DE INFORMÁTICA
Miguel Domingues

(PhD Student)

Advised by:
João Costa Seco

Research focus on reactive

dataflow programming
languages and software

evolution.

Funding:

SOFTWARE SYSTEMS / PLASTIC Team

def	
 Post	
 =	
 en'ty(id,	
 'tle,	
 message)	

	

def	
 page	
 =	
 0	

def	
 pageSize	
 =	
 2	

def	
 prev	
 =	
 ac'on	
 {	
 page	
 ß	
 page-­‐1	
 }	

def	
 next	
 =	
 ac'on	
 {	
 page	
 ß	
 page+1	
 }	

def	
 start	
 =	
 page	
 *	
 pageSize	

	

def	
 paged	
 =	
 {	
 p	
 |	

	
 	
 	
 	
 	
 	
 	
 p	
 in	
 Post	
 [start..start+pageSize]	
 }	

update	
 {	

	
 	
 def	
 search	
 =	
 input	
 null	
 	

	
 	
 def	
 filtered	
 =	
 {	
 p	
 |	
 p	
 in	
 Post	
 ∧	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 p.message	
 contains	
 search	
 }	

	
 	
 def	
 paged	
 =	
 {	
 p|	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 	
 p	
 in	
 filtered	
 [start..start+pageSize]	
 }	

}	

PEst-OE/EEI/UI0527/2011

<<	
 Previous	
 Next	
 >>	

Web	
 Page	

Post	
 En'ty	

id	
 $tle	
 message	

1	
 Hello	
 World	
 How	
 are	
 you	
 today?	

2	
 Welcome	
 Are	
 we	
 there	
 yet?	

3	
 Good	
 bye	
 Have	
 a	
 nice	
 day	

…	
 …	
 …	

page	

Hello	
 World	

How	
 are	
 you	
 today?	

	

Welcome	

Are	
 we	
 there	
 yet?	

	
 search	

pageSize	
 =	
 2	

start	

paged	

filtered	

Database	

Flow	
 of	
 Data	

Update	

