
Web applications are built on top of a data repository (e.g., a database) and 
commonly developed using an imperative operational style. The natural flow of 
application data between repositories and interface is hidden in the application 
code and its side-effects. 
Data is incrementally gathered and modified until it reaches the desired content 
and format. This hinders the evolution of software systems and require a deep 
understanding of the implicit data flows by the developer to avoid making mistakes 
during application updates. 
 

We aim to support the design of modular and reactive data-centric software 
systems focusing on how data flows from data sources to user interface and back. 

We propose a reactive dataflow based programming language capable of expressing 
most scenarios of data-centric systems, and is amenable to updates in a type safe way 
(crash free way). Flows of data are explicit in our language easing application updates. 
Our reactive core language is equipped with update operators that allow seamless 
introduction of changes and smooth code and data evolution. Changes in data are 
seamlessly propagated through the application, providing a dynamic and reactive 
programming model. Changes in code require the application to evolve to a new state 
where soundness and safety is still guaranteed. 
Our language is defined using formal techniques like operational semantics and type 
systems, amenable to mechanical verification. We aim at ensuring that updates are 
performed safe and seamlessly. 

•  A reactive dataflow core language for data-centric systems. 
•  Formal definition of the language (operational semantics and type system). 
•  Support for code and data evolution by means of dynamic updates. 
•  Static checking that well typed systems are kept structurally sound on updates. 
•  Compilation to operational code to be executed in the different application layers. 
•  Type based access control and information flow based security analysis over 

application data and code. 
•  A development tool supporting textual and visual programming, and live 

programming of applications. 
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