
Web applications are built on top of a data repository (e.g., a database) and
commonly developed using an imperative operational style. The natural flow of
application data between repositories and interface is hidden in the application
code and its side-effects.
Data is incrementally gathered and modified until it reaches the desired content
and format. This hinders the evolution of software systems and require a deep
understanding of the implicit data flows by the developer to avoid making mistakes
during application updates.

We aim to support the design of modular and reactive data-centric software
systems focusing on how data flows from data sources to user interface and back.

We propose a reactive dataflow based programming language capable of expressing
most scenarios of data-centric systems, and is amenable to updates in a type safe way
(crash free way). Flows of data are explicit in our language easing application updates.
Our reactive core language is equipped with update operators that allow seamless
introduction of changes and smooth code and data evolution. Changes in data are
seamlessly propagated through the application, providing a dynamic and reactive
programming model. Changes in code require the application to evolve to a new state
where soundness and safety is still guaranteed.
Our language is defined using formal techniques like operational semantics and type
systems, amenable to mechanical verification. We aim at ensuring that updates are
performed safe and seamlessly.

•  A reactive dataflow core language for data-centric systems.
•  Formal definition of the language (operational semantics and type system).
•  Support for code and data evolution by means of dynamic updates.
•  Static checking that well typed systems are kept structurally sound on updates.
•  Compilation to operational code to be executed in the different application layers.
•  Type based access control and information flow based security analysis over

application data and code.
•  A development tool supporting textual and visual programming, and live

programming of applications.

Dynamic Updates on Web Applications

DEPARTAMENTO DE INFORMÁTICA
Miguel Domingues

(PhD Student)

Advised by:
João Costa Seco

Research focus on reactive

dataflow programming
languages and software

evolution.

Funding:

SOFTWARE SYSTEMS / PLASTIC Team

def	 Post	 =	 en'ty(id,	 'tle,	 message)	
	

def	 page	 =	 0	
def	 pageSize	 =	 2	

def	 prev	 =	 ac'on	 {	 page	 ß	 page-‐1	 }	
def	 next	 =	 ac'on	 {	 page	 ß	 page+1	 }	
def	 start	 =	 page	 *	 pageSize	
	

def	 paged	 =	 {	 p	 |	
	 	 	 	 	 	 	 p	 in	 Post	 [start..start+pageSize]	 }	

update	 {	
	 	 def	 search	 =	 input	 null	 	
	 	 def	 filtered	 =	 {	 p	 |	 p	 in	 Post	 ∧	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 p.message	 contains	 search	 }	
	 	 def	 paged	 =	 {	 p|	 	 	 	 	 	 	 	 	
	 	 	 	 p	 in	 filtered	 [start..start+pageSize]	 }	
}	

PEst-OE/EEI/UI0527/2011

<<	 Previous	 Next	 >>	

Web	 Page	

Post	 En'ty	

id	 $tle	 message	

1	 Hello	 World	 How	 are	 you	 today?	

2	 Welcome	 Are	 we	 there	 yet?	

3	 Good	 bye	 Have	 a	 nice	 day	

…	 …	 …	

page	

Hello	 World	
How	 are	 you	 today?	
	

Welcome	
Are	 we	 there	 yet?	

	 search	

pageSize	 =	 2	

start	

paged	

filtered	

Database	

Flow	 of	 Data	

Update	

