
Type systems are logic based verification tools, used to minimize execution errors
in Software Systems. By preserving type information during the compilation process,
type systems can also be used in verifiers to check compiled code at loading time.

Multiple core processors allow more efficient and more responsive software systems
to be built. They also make the programming task more difficult due to possible
“bad” interferences between execution threads.

We aim at developing a type system for a concurrent intermediate language, that
ensures that a compiled concurrent program can be safely loaded into a virtual
machine, and executed using the machine’s resources appropriately.

•  Intermediate languages with support for multithreaded programs

•  A behavioral separation type system to detect undesired thread interferences

•  Correctness results for the type system and concurrent properties

•  A certified compiler tool-chain for behavioral separation types in a main-stream VM

Intermediate Languages for Concurrency

SOFTWARE SYSTEMS / PLASTIC Team

DEPARTAMENTO DE INFORMÁTICA

Photo

L. Miguel Lourenço

Advised by João C. Seco

LEI/MEI 2006-2011
PDI 2011

Research focus on typed
intermediate languages

and concurrency analysis

Funding:

PEst-OE/EEI/UI0527/2011

PTDC/EIA-CCO/104583/2008

Virtual	
 Machine	

	

	

	

	

	

	

	

	

	

high-­‐level	

code	

compiled	

code	

compiled	

code	

object	
 object	

object	

To develop logics and type systems for machine languages, to verify which data
operations may be executed in parallel, to maximize performance and flexibility, and which
operations must be executed sequentially, to prevent data corruption.

To follow the Proof-Carrying Code model, annotating compiled code with enough
information to check that it complies to pre-established safety policies before running.

To use behavioral types to express how shared objects can be used safely by multiple
threads, without compromising the program’s correction and machine’s resources.

compiler	

loader/
verifier	

