
View Typestate
SOFTWARE SYSTEMS / PLASTIC Team

DEPARTAMENTO DE INFORMÁTICA

Photo

Filipe Militão
(PhD Student)

Advised by: Luís Caires
(FCT/UNL)

Jonathan Aldrich
(Carnegie Mellon University)

Current research interests include
programming languages and models.

Funding:

Problem:

 - There is a pressing need to improve software quality
and reduce defects (such as bugs) in programs.
 - In object-oriented programs, the mutable state of
objects may have different internal invariants during its
life-time.
 - Multiple references may point to the same object
(aliasing) in non-obvious ways.
 - It is hard to have both flexible and safe verification in
the use of state in the presence of aliasing – it requires
carefully managing the possibility of interferences.

void useFile(File file1, File file2){
 file1.close();
 file2.write(“hello!”);
}

Each reference to an object
should work independently
and its assumptions on the
state should not be broken
by other aliases.

Any writing can
only occur in the
Open state.

Goals:

- Statically (i.e. without
running the code) verify
that a program does not
have conflicting
interferences, using a type
system.
- Prove that its typing rules
guarantee that only
non-conflicting
interferences can happen
in a valid program.
- Develop a prototype for
the core language.

void init(){
 Pair p = new Pair();
 pairInit(p , p);
}
void pairInit(Left l, Right r){
 l.left = 1;
 r.right = 2;
}

1. Disjoin views.
Each alias is the only reference to that part of the object.
Thus, the alias only has permission to part of the state
but that permission is exclusive/unique.

Methodology:
- Assign types that encode state (typestate) to each
reference/alias and track then throughout the program to
ensure state is correct.
- To alias an object, break it down into views – small and
independent permissions to partitions of an object that
coordinate to avoid conflicting interferences.
- We consider 2 kinds of views: disjoint or overlapping.

2. Overlapping views.
The state accessible by a view overlaps others.
However, its representation must then encode an
access pattern – a type describing the structured way in
which the shared mutable state is usable (locally) by an
alias. This pattern expresses the changes that the alias
can do and how the other aliases may interfere with it.

SFRH / BD / 33765 / 2009 and INTERFACES NGN44-2009-2012

Is this call safe?
 If file1 and

file2 point to the
same object this must

be forbidden.

p is aliased in
pairInit
but in a safe
way since the
state usable
by each alias
is separate.

Pair can be broken
in Left and Right.

Consumer uniquely owns the
elements already in the buffer.

A Pipe allows for
consumer-producer style of
sharing where the
Consumer takes elements
from a buffer (here
modeled by a linked-list)
and the Producer inserts
more elements – each
working independently of
the other.

The last node is shared with pattern:
- Consumer: waits for new element and
then gains full ownership of that node.
- Producer: inserts element, forgets node.

	Slide 1

