
We aim at providing an effective support for reasoning about imperative
programs with data structures and aliasing, by extending the
expressiveness of more familiar type-based verification towards more
informative logical reasoning, without compromising soundness and
completeness.

Reasoning about this type of programs, in particular about the global and
shape properties of data structures, is still a major challenge for program
verification. Existing tools require too much effort, a lot of experience from the
user (e.g. jStar, Dafny), and rely on mechanisms that don't scale.

We propose an assertion language that is a purely functional programming
language to express assertions (preconditions, postconditions, and invariants) in
object-based imperative programs with data structures and aliasing.

We develop a novel formal system composed by a set of inference rules
based on Hoare Logic, where we reason statically about programs using an
algorithmic approach with an equational system. In order to express global and
shape properties of data structures we rely on abstractions of the functional
programming language (e.g. iterators and recursive functions).

•  A core imperative programming language that manipulates data structures;

•  A functional specification language for specifying imperative programs;

•  A formal system to reason about global/shape properties of programs that
manipulate data structures and a decision procedure to automate proofs with
this approach;

•  Correctness results for the formal system;

•  A prototype of a programming language that uses this verification process.

Functional Programming Assertions

SOFTWARE SYSTEMS / PLASTIC Team

DEPARTAMENTO DE INFORMÁTICA

Photo

Tiago Santos
(PhD Student)

Advised by Luís Caires

Research Focus on
Program Verification

decl rec isOrange t =
 case t of
 null → true
 | {e:x, l:t1, r:t2} →
 x = “orange”
 and isOrange t1
 and isOrange t2

Funding:

PEst-OE/EEI/UI0527/2011

tree

Pre: { isOrange tree }

Post: { isOrange tree }

insert
green
element

tree

Pre: { isOrange tree }

Post: { isOrange tree }

insert
orange
element

