
Encoding cryptographic primitives in a
calculus with polyadic synchronization

Joana Martinho ∗

Dep. of Mathematics, Instituto Superior Técnico,
Technical University of Lisbon.

Av. Rovisco Pais, 1. 1049-001 Lisboa, Portugal
E-mail: joana dk@portugalmail.pt

António Ravara †

Security and Quantum Information Group,
Instituto de Telecomunicações, and

Dep. of Mathematics, Instituto Superior Técnico,
Technical University of Lisbon.

Av. Rovisco Pais, 1. 1049-001 Lisboa, Portugal
E-mail: aravara@ist.utl.pt

Abstract
We thoroughly study the behavioral theory of epi, a π-calculus
extended with polyadic synchronization. We show that the nat-
ural contextual equivalence, barbed congruence, coincides with
early bisimilarity, which is thus its co-inductive characterization.
Moreover, we relate early bisimilarity with the other usual notions,
ground, late and open, obtaining a lattice of equivalence relations
that clarifies the relashionship among the “standard” bisimilarities.

Furthermore, we apply the theory developed to obtain an ex-
pressiveness result: epi extended with (symmetrical) key encryp-
tion primitives may be fully abstractly encoded in the original epi
calculus. The proposed encoding is sound and complete with re-
spect to barbed congruence. Therefore, cryptographic epi (crypto-
epi) gets behavioral theory for free, what contrasts with other pro-
cess languages with cryptographic constructs that usually require a
big effort to develop such theory.

Therefore, it is thus possible to use crypto-epi to analyze and to
verify properties of security protocols using equational reasoning.
To illustrate this claim, we prove the correctness of a protocol of
secure message exchange.

Categories and Subject Descriptors D.2.4 [Program Verifica-
tion]: Correctness Proofs; F.1.1 [Models of Computation]: Process
Algebra; F.1.3 [Specification, Verification, and Reasoning about
Programs]: Logics and Meanings of Programs; F.3.3 [Program
constructs]: Control Primitives

General Terms Behavioral Theory, Cryptographic Mobile Calcu-
lus

Keywords Barbed Congruence, (Early) Bisimulation, Crypto-
graphic Primitives, Fully Abstract Encoding, π-calculus, Polyadic
Synchronization

∗ Affiliation when developing a preliminary version of this work, until
October 2004.
† Corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
International Conference on Theoretical and Mathematical Foundations of Computer
Science (TMFCS-08) July 7-10 2008, Orlando, FL, USA
Copyright c© 2008 International Society for Research in Science and Technology
(ISRST)

1. Introduction
We study herein the behavioral theory of a π-calculus where, in-
stead of on simple names, processes synchronize in vectors of
names (epi, acronym standing for extended π-calculus). To illus-
trate the expressive power of the calculus and a possible application
area, we show that some cryptographic primitives are derivable in
epi. Therefore, if one extends the calculus with such primitives, the
resulting process language enjoys the same theory of the original
language, and thus one may use it to prove properties of security
protocols.

Extended π-calculus. The π-calculus with polyadic synchro-
nization (epi), proposed by Carbone and Maffeis [CM03] is an ex-
tension of the π-calculus of Milner, Parrow, and Walker [MPW92,
SW01] that generalizes the synchronization mechanism, based on
handshaking, i.e., the simultaneous execution of input/output ac-
tions, by allowing channel names to be composite.

The fact that in epi communication is only established if the
channel vectors match element-wise, enhances its expressive power
with respect to the π-calculus. In particular, Carbone and Maffeis
show that the matching construct1 can be encoded in the π-calculus
with polyadic synchronisation but not in the π-calculus. In addition,
they also prove that the higher the degree of synchronization (i.e.
the maximum length of the channel vectors), the higher the expres-
sive power of the calculus.

Carbone and Maffeis did not fully developed the behavioral the-
ory of the process language they proposed. Defining a grammar and
an operational semantics yields a description language and a rigor-
ous definition of its computational behavior, but a calculus (in the
logical sense) requires a theory to equate terms. A process calculus
is achieved either by axiomatically, inductively, or co-inductively
defining a behavioral equivalence (ideally a congruence).

Goals and contributions. The aim of this paper is twofold: to de-
velop the behavioral theory of epi, defining a contextual equiva-
lence and looking for its co-inductive characterization; and to use
this theory to show how to define cryptographic primitives preserv-
ing it, thus allowing the calculus extended with such primitives to
be used to analyze and to verify security protocols.

The first goal is hence to study in detail the behavioral seman-
tics of epi: (1) defining an operational semantics (a late labeled
transition system semantics); (2) defining the usual equivalence no-
tions (in the context of mobile calculi): contextual and co-inductive

1 The matching construct is a process like if x = y then P which compares
names x and y and, if they coincide, behaves like process P ; otherwise does
nothing.

(ground, late, early and open bisimilarities); and (3) extending re-
sults from the π-calculus to epi, namely obtaining congruence re-
sults, finding which (if any) bisimilarity coincides with the con-
textual equivalence, and establishing a lattice of inter-relations be-
tween the various equivalence relations;2. We find that, in epi, like
in π, barbed congruence coincides with early congruence (early
bisimilarity closed for all substitutions), and thus, we have a co-
inductive characterization of the “natural” contextual equivalence
of the calculus. Moreover, we relate all these “standard” notions of
co-inductive equivalences, ground, late, early, and open, bisimilar-
ities and congruences, obtaining a lattice of equivalence relations
that clarifies the relationship among them. To our knowledge, this
is original work, and provides to epi the basic behavioral theory of
a mobile calculus.

The second goal is to use the theory developed to show that
epi extended with nondeterministic, symmetrical, key encryption
primitives may be used to analyze and to verify security proto-
cols. To explore this possible application area, and to further show
the expressive power of epi, we define a new calculus, the crypto-
graphic π-calculus with polyadic synchronisation (crypto-epi), an
extension of epi with the referred cryptographic primitives (in the
spirit of the spi-calculus of Abadi and Gordon [AG97] — itself an
extension of the π-calculus with constructs that allow for encryp-
tion and decryption of messages — or of the applied π-calculus of
Abadi and Fournet [AF01] — another extension of the π-calculus
with a term algebra). These two primitives are suggested by Car-
bone and Maffeis in the introduction of their paper [CM03] as an-
other argument to support the expressiveness of the calculus they
propose—epi. However, they did not defined nor studied its exten-
sion with such primitives. Herein, we formally define crypto-epi:
(1) adding to the grammar of epi primitives for (symmetrically) en-
coding and decoding names; (2) providing transition rules to deal
with these constructs, enriching the labeled transition system of epi;
(3) extending results from epi to crypto-epi, namely showing that
the new constructs preserve early bisimilarity. Then we show that
crypto-epi is fully abstractly encoded, with respect to barbed con-
gruence, in the original π-calculus with polyadic synchronisation,
thus reflecting the behavioral theory of epi back to crypto-epi, and
allowing the usual reasoning principles using behavioral equiva-
lences to be used in the latter.

The encoding is also proposed by Carbone and Maffeis in the
introduction of their paper, but they do not study its properties. To
our knowledge, our result is original: not only it shows that these
cryptographic primitives may be defined in epi as programming
constructs and do not need to be primitive, re-enforcing the expres-
sive power of epi, but also it provides standard behavioral theory
to a cryptographic mobile process calculus. Moreover, since the
results closely follow those of the pi-calculus, it should be straight-
forward to adapt tools like the Mobility Workbench [Vic94, VM94]
to epi and crypto-epi, achieving a powerful tool to prove by equa-
tional reasoning properties of security protocols. Note that other
cryptographic calculi like the spi-calculus or the applied pi-calculus
have a more evolved and sometimes cumbersome behavioral the-
ory. The extra structure for data handling severely complicates
equational reasoning: naı̈ve adaptation of bisimulations are not ad-
equate; new notions developed are “heavy”, and difficult to auto-
mate [AF01, AG97, BAF07, BNP02, BN05]. To illustrate the use
of the theory developed, we prove the correctness of a protocol of
secure message exchange.

Structure of the paper. We structure the presentation of our work
in the following manner:

2 The result is a lattice similar to that of the π-calculus.

P ::= processes π ::= prefixes
0 inaction τ internal
|π.P prefix |x1 · ... · xk(y) input
| !P replication |x1 · ... · xk〈y〉 output
| (νx)P restriction
| (P |P) parallel composition
| (P + P) choice

Figure 1. crypto-epi syntax.

• In Section 2 we introduce the syntax and a late labeled transition
semantics of the π-calculus with polyadic synchronisation, as
first proposed by Carbone and Maffeis.

• In Section 3 we define the four usual co-inductive notions of
equivalence (ground, late, early and open bisimilarity), and
compare these notions, concluding that they relate to each other
just as in the π-calculus. We further introduce the notions of
barbed bisimilarity, equivalence and congruence, and conclude
the latter coincides with early congruence. Although relying
on a similar result obtained for the π-calculus [San92], the
proof of the coincidence of the notions in epi requires several
adjustments.

• In Section 4 we extend the π-calculus with polyadic synchroni-
sation with the cryptographic primitives proposed by Carbone
and Maffeis in the introduction of their paper [CM03]. In addi-
tion to their work, we give an operational semantics to the new
calculus, adding new rules to the original labeled transition sys-
tem, and moreover, we analyze in detail a simple cryptographic
protocol, proving it correct. Furthermore, we prove fully ab-
stract (with respect to barbed congruence) the encoding they
propose of the cryptographic constructs in epi.

• Section 5 concludes the paper, listing our contributions and
giving directions for future research.

Due to the lack of space, we do not present herein the proofs of the
results obtained. These may be found in a technical report [MR07].

2. epi: π-calculus with Polyadic Synchronization
The π-calculus with polyadic synchronization, epi, is a variant
of the π-calculus where the channels can consist of sequences of
names and communication is established if and only if the channel
vectors match element-wise.3

2.1 Syntax
We introduce the syntax of the calculus in detail and also mention
some of the main differences between this and the π-calculus.
These differences will be explained in further detail in subsequent
parts throughout this section.

DEFINITION 2.1. Processes
Let N be a countable set of names and x, x1, ..., xk, y range over
N for some k ∈ N. The grammar in Figure 1 defines the class of
processes PS , ranged over by P , Q.

The decreasing order of precedence of operators follows that of
the definition, where the prefix operator has the highest precedence.
In what follows we use the notation π for π.0 , and (νz, w)P for
(νz)(νw)P .

All operators used here are also present in the π-calculus and
their behavior is as expected. Nonetheless, note that restriction is

3 We call π-calculus with biadic synchronization the particular case of the
π-calculus with polyadic synchronization where the composite channels
have at most two names.

Action Description fn(α) bn(α)
τ internal ∅ ∅

u〈y〉 free output nm(u) ∪ {y} ∅
u(y) bound output nm(u) {y}
u(y) input nm(u) {y}

Table 1. Actions.

P fn(P) bn(P)
0 ∅ ∅

π.Q fn(π) ∪ (fn(Q)\ bn(π)) bn(π) ∪ bn(Q)
!Q fn(Q) bn(Q)

(νy)Q fn(Q)\{y} {y} ∪ bn(Q)
(Q |R) fn(Q, R) bn(Q, R)
(Q + R) fn(Q, R) bn(Q, R)

Table 2. Names in Processes.

made on names as in the π-calculus and not on composite channels:
this allows for partial restriction.

One should also note that in the π-calculus with polyadic syn-
chronization it is not necessary to include the match operator since
it can be encoded in the calculus. This is not possible in a ‘sen-
sible’ manner using the original π-calculus that, therefore, takes
the match operator as a primitive. This important separation re-
sult between the two calculi was obtained by Carbone and Maf-
feis [CM03], and it is the central expressiveness result about epi.

Consider u = x1 · ... · xk and u = x1 · ... · xk, where k ∈ N,
represent respectively the input and output channel vectors. Then,
nm(u) = nm(u) = {x1, ..., xk}. As in the π-calculus, there
are four possible kinds of actions α in the present calculus, as
seen in Table 1. Let bn(α) denote the set of bound names in α,
fn(α) the set of free names in α and nm(α) the set of all names
in α (the union of the previous two sets). The respective notions
for prefixes, i.e., fn(π), bn(π), and nm(π), are defined similarly.
Furthermore, the notions of bound and free names in a process
P , denoted by bn(P) and fn(P) respectively, follow from those
of the π-calculus. Table 2 presents the rigorous definition of these
notions, where nm(P) denotes the names in the process P . Let
fn(P1, P2) = fn(P1)∪ fn(P2), and consider similar definitions for
bn(P1, P2) and nm(P1, P2).

Note that we sometimes use polyadic CCS-like prefixes a · w
and a · y where no item is being sent or expected to be received.
We do this to highlight the fact that what could be transmitted is
irrelevant, the problem lies in the synchronization of the composite
channels. In general, u.P will be used as shorthand for u〈y〉 .P
for some y, and u.P will be used as shorthand for u(y).P where
y 6∈ fn(P).

Substitution and α-convertibility are defined as in the π-
calculus [SW01], though we now require that the latter takes into
account the possibility of composite channels. Note that given a
substitution σ = {w/z} we denote the result of applying σ to z as
σ(z). In this case, we then have that σ(z) = w. Moreover, substi-
tution may imply the renaming via α-conversion of bound actions
to avoid unwanted captures of free names.

2.2 Late Labeled Transition Semantics
We define herein a late labeled transition semantics of the π-
calculus with polyadic synchronization. In addition, we provide
examples that reflect the differences between this calculus and the
π-calculus.

(PREFIX)
−

α.P
α−→ P

(CH1)
P

α−→ P ′

P + Q
α−→ P ′

(PAR1)
P

α−→ P ′

P |Q α−→ P ′|Q
where bn(α) ∩ fn(Q) = ∅

(RES)
P

α−→ P ′

(νx)P
α−→ (νx)P ′

where x 6∈ nm(α)

(REP-ACT)
P

α−→ P ′

!P
α−→ P ′|!P

(REP-COMM) P
u〈x〉−→ P ′ P

u(z)−→ P ′′

!P
τ−→ (P ′|P ′′{x/z})|!P

(REP-CLOSE) P
u(x)−→ P ′ P

u(x)−→ P ′′

!P
τ−→ (νx)(P ′|P ′′)|!P

where x 6∈ fn(P)

(OPEN)
P

u〈x〉−→ P ′

(νx)P
u(x)−→ P ′

where x 6∈ nm(u)

(CLOSE1) P
u(x)−→ P ′ Q

u(x)−→ Q′

P |Q τ−→ (νx)(P ′|Q′)

(COMM1) P
u〈x〉−→ P ′ Q

u(z)−→ Q′

P |Q τ−→ P ′|Q′{x/z}

(CONV)
P

α−→ P ′

Q
α−→ P ′

if Q =α P

Figure 2. Late transition rules.

DEFINITION 2.2. Late labeled transition relation
Let u = x1 · ... · xk, where k ∈ N. The late labeled transition
relation α−→⊆ PS × PS , where α is an action, is the smallest
relation generated by the set of rules in Figure 2.4

The rules follow in a straightforward manner those of the π-
calculus, considering now vectors of names as channels. Note once
again that the restriction rule, RES, considers singular and not com-
posite names, i.e., restriction is partial. Nevertheless, we enforce
an all-or-nothing behavior, that is, we require the match of all the
names in the vector channel to allow synchronization. The follow-
ing example reflects the consequences of this type of restriction.

EXAMPLE 2.3. Let P = (νx1)x1 · x2〈y〉 and Q = x1 · x2〈y〉 .
Then, P cannot perform the input action because of the restriction
in one of its channel names, while Q can. Consider now P =
x(y)y · z〈v〉 |x〈w〉 . Its reduction performs a substitution in (only)
one of the channel names, yelding w · z〈v〉 .

4 Note that not included in the figure are four rules: the symmetric form
CH2 of CH1 which has Q + P instead of P + Q, and the symmetric forms
PAR2, COMM2 and CLOSE2 of PAR1, COMM1, CLOSE1 in which the
roles of the left and right components are swapped.

3. Observational Semantics
In this section we develop the behavioral theory of epi. In short, we
define a contextual equivalence for epi—barbed congruence—and
find its co-inductive characterization. Following the literature for
the π-calculus [MPW92, San96], with the necessary adjustments
we introduce the “standard” notions of bisimilarity: ground, late,
early, and open. Then study their preservation by the operators of
epi and inter-relate these notions, getting a lattice of discriminating
power. Finally, we show that early congruence (early bisimilarity
closed for all substitutions) coincides with barbed congruence, be-
ing thus its co-inductive characterization.

Although not surprising, these results are technically difficult,
and some proofs deviate from those in the π-calculus. This work is
necessary to provide to epi behavioral theory.

3.1 A Contextual Equivalence
In this part we prove that a “natural” contextual equivalence coin-
cides with early bisimilarity, which is thus a co-inductive charac-
terization of the latter. We rely on a similar result obtained for the
π-calculus by Sangiorgi [San92].

DEFINITION 3.1. Barbs
The predicate ‘P exhibits barb β’, written P ↓β , is defined by:

- P ↓u if P can perform an input action on channel u
- P ↓u if P can perform an output action on channel u

A barb is an input or output channel identifier. Note that the
predicate just defined concerns only visible and immediate possi-
ble action. We now introduce the notion of barbed bisimilarity as
proposed by Milner and Sangiorgi [MS92].

DEFINITION 3.2. Barbed bisimilarity

1. A binary symmetric relation S is a barbed bisimulation if PSQ
implies:

- if P ↓β then Q ↓β for each barb β

- if P
τ−→ P ′ then there exists a Q′ such that Q

τ−→ Q′ and
P ′SQ′

2. Processes P and Q are barbed bisimilar if PSQ for some
barbed bisimulation S.

3. Barbed bisimilarity, written ∼b, is the greatest barbed bisimu-
lation.

Barbed bisimilarity is a much coarser relation than the ones
introduced so far. The following example illustrates the difference
between barbed bisimilarity and those notions of bisimilarity.

EXAMPLE 3.3. Let P = m〈n〉 .m〈n〉 and Q = m〈n〉 . Then, P
and Q are barbed bisimilar since their only barb is m. However, P
and Q are not ground, nor late, nor early nor open bisimilar since

P
m〈n〉−→ m〈n〉 and Q

m〈n〉−→ 0 , which are obviously not bisimilar.

Note that barbed bisimilarity is not a congruence since it is
not preserved by parallel composition, nor by replication, nor by
substitution. Nonetheless, barbed bisimilarity is preserved by the
remaining operators.

PROPOSITION 3.4. The relation ∼b is preserved by prefixing, re-
striction and choice operators.

Closing barbed bisimilarity for parallel composition yields an
equivalence notion.

DEFINITION 3.5. Barbed equivalence
Two processes P and Q are barbed equivalent, written ∼beq , if
P |R ∼b Q |R for every process R.

In order to define barbed congruence we must first introduce the
notion of context. Contexts are processes with a “hole”.

DEFINITION 3.6. Barbed congruence

1. A context is obtained when a ‘hole’ [·] replaces a process in
P ∈ PS .

2. The process obtained by replacing the [·] in C by P , where C
is a context and P a process, is denoted by C[P].

3. Two processes P and Q are barbed congruent, written 'b, if
C[P] ∼b C[Q] for every context C[·].

We now extend the result that establishes an alternative defini-
tion of barbed congruence in the π-calculus, as done by Sangiorgi
and Walker [SW01], to epi.

LEMMA 3.7. P 'b Q if and only if Pσ ∼beq Qσ for any
substitution σ

The notion of barbed congruence was proposed by Milner and
Sangiorgi [MS92], while the less demanding notion of barbed
equivalence was later proposed by Sangiorgi [San92]. Note that
barbed equivalence and barbed congruence do not coincide, as
there are processes barbed equivalent but not barbed congruent
(see Example 3.34 in the long version of this paper [MR07]).

3.2 Four Notions of Bisimilarity
Seeking for a co-inductive characterization of barbed congruence,
we define the usual notions of bisimilarity, and inter-relate them.
The first notion we will consider is that of ground bisimilarity,
where there is no name instantiation.

DEFINITION 3.8. Ground bisimilarity

1. A binary symmetric relation S is a ground bisimulation if PSQ
implies:
if P

α−→ P ′ where bn(α) ∩ fn(P, Q) = ∅ then there is a Q′

such that Q
α−→ Q′ and P ′SQ′.

2. Processes P and Q are ground bisimilar if PSQ for some
ground bisimulation S.

3. Ground bisimilarity, written ∼g , is the largest ground bisimu-
lation.5

The notion of ground bisimilarity is very simple since a process
merely has to imitate the other in its possible transitions and vice
versa without considering name instantiation. Unfortunately, as in
the π-calculus, a consequence of this is that ground bisimilarity is
not preserved by the parallel composition operator, as seen in the
following example.

EXAMPLE 3.9. Let P = (νa)(z(w).a · w〈c〉 | a · y(b)) and Q =
z(w). Then both P and Q are ground bisimilar since after per-
forming the input action they both become inactive. Conversely,

P ′ = P | z〈y〉 τ−→ (νa)(a · y〈c〉 | a · y(b)),

which can also perform an internal action, while Q′ = Q | z〈y〉
can only perform one internal action and then becomes inactive.
We can then conclude that although P and Q are ground bisimilar,
P ′ and Q′ are not ground bisimilar.

Ground bisimilarity is not preserved by replication either. A
counter-example may be found in the long version of this paper.6

5 The existence and uniqueness of a largest bisimulation is a direct conse-
quence of the Knäster-Tarski’s Fixed Point Theorem.
6 Several propositions in the remaining of this section present results with
strict inclusions. The counter-examples may be found in the long version of
this paper.

Nonetheless, ground bisimilarity is preserved, just like in the π-
calculus, by the remaining operators.

LEMMA 3.10. The relation ∼g is preserved by the restriction, the
prefixing and the choice operators.

We now introduce the notions of late and early bisimilarity,
which differ in their treatment of name instantiation for input ac-
tions. The definitions of these notions are standard. In late bisim-
ilarity we require that the derivative of a process simulates the
derivative of the other process (and vice versa) for all possible in-
stantiations of the bound parameter. It is called late because the
choice of the name instantiation is made after the choice of the
derivative.

DEFINITION 3.11. Late bisimilarity
Let u = x1 · ... · xk where k ∈ N.

1. A binary symmetric relation S is a late bisimulation if PSQ
implies:

- if P
α−→ P ′ where α = u〈y〉 , u(y) or τ and bn(α) ∩

fn(P, Q) = ∅ then there is a Q′ such that Q
α−→ Q′ and

P ′SQ′.

- if P
u(y)−→ P ′ where y 6∈ fn(P, Q) then there is a Q′ such

that Q
u(y)−→ Q′ and for each w, P ′{w/y}SQ′{w/y}.

2. Two processes P and Q are late bisimilar if PSQ for some late
bisimulation S.

3. Late bisimilarity, written ∼l, is the largest late bisimulation.

In early bisimilarity we require that under the same possible
name instantiation there is a derivative of each of the processes that
simulates the other and vice versa. It is named early because the
choice of the name instantiation is made before the choice of the
derivative.

DEFINITION 3.12. Early bisimilarity
Let u = x1 · ... · xk where k ∈ N.

1. A binary symmetric relation S is an early bisimulation if PSQ
implies:

- if P
α−→ P ′ where α = u〈y〉 , u(y) or τ and bn(α) ∩

fn(P, Q) = ∅ then there is a Q′ such that Q
α−→ Q′ and

P ′SQ′.

- if P
u(y)−→ P ′ where y 6∈ fn(P, Q) then for each w there is a

Q′ such that Q
u(y)−→ Q′ and P ′{w/y}SQ′{w/y}.

2. Two processes P and Q are early bisimilar if PSQ for some
early bisimulation S.

3. Early bisimilarity, written ∼e, is the largest early bisimulation.

Similarly to what happens in the π-calculus, in the π-calculus
with polyadic synchronization both late and early bisimilarity are
not preserved by input prefixing, but are preserved by all other
operators.

PROPOSITION 3.13. The relations ∼l and ∼e are preserved by all
operators except input prefixing.

Moreover, as in the original π-calculus congruences for late
and early bisimilarity, 'l and 'e, are achieved by closing the
equivalences over all name substitutions [MPW92]. The relation
between the notions of late bisimilarity and late congruence, and of
early bisimilarity and early congruence, are shown in the following
proposition.

PROPOSITION 3.14. 'l ⊂∼l and 'e ⊂∼e.

The notion of open bisimilarity was introduced by Sangiorgi
and proved to be a congruence relation in the π-calculus [San96].
That is also the case here: in epi, open bisimilarity is a congruence.

DEFINITION 3.15. Open bisimilarity

1. A binary symmetric relation S is an open bisimulation if PSQ
implies for every substitution σ:
If Pσ

α−→ P ′ where bn(α) ∩ fn(Pσ, Qσ) = ∅ then there is a
Q′ such that Qσ

α−→ Q′ and P ′SQ′.
2. Two processes P and Q are open bisimilar if PSQ for some

open bisimulation S.
3. Open bisimilarity, written ∼o, is the largest open bisimulation.

As expected, open bisimilarity is a congruence.

PROPOSITION 3.16. The relation∼o is preserved by all operators.

Thus the congruence properties appear to stem directly from
those of the π-calculus. However, ground bisimilarity is a full con-
gruence in the asynchronous π-calculus without match [San00]
(and a similar result holds for late and for early bisimilarity
[HHK95]), but this result does not hold if we consider the asyn-
chronous π-calculus with polyadic synchronization, as seen in Ex-
ample 3.9. Matching does not need to be considered as a primitive
in the π-calculus with polyadic synchronization (synchronous or
asynchronous) since it can be derived. Therefore, ground, late and
early bisimilarities are not congruences in the asynchronous π-
calculus with polyadic synchronisation (without match).

We now analyze the relationships between the bisimilarity re-
lations previously defined and present a general diagram that sum-
marizes these results in Corollary 3.20. The results and proofs are
similar to those presented for the π-calculus [MPW92, Qua99]. The
largest open bisimulation is itself a late bisimulation, and it is also
included in late congruence.

PROPOSITION 3.17. ∼o ⊂∼l and ∼o ⊂'l.

Late bisimilarity is itself an early bisimulation, although the
reverse does not hold. The same result holds if we consider the
notions of late and early congruences instead of late and early
bisimilarity.

PROPOSITION 3.18. ∼l ⊂∼e and 'l ⊂'e.

Our last result shows that if two processes are early bisimilar
then they are also ground bisimilar, although the reverse does not
hold.

PROPOSITION 3.19. ∼e ⊂∼g .

We now summarize the results presented in the following dia-
gram where → stands for strict inclusion ⊂.

COROLLARY 3.20.

∼o → ∼l → ∼e → ∼g

↘ ↑ ↑ ↗
'l → 'e

Sangiorgi obtained an alternative characterization of barbed
equivalence by proving it coincided with early bisimilarity [San92].
We extend that result for the π-calculus with polyadic synchroni-
sation, completing the behavioral theory.

THEOREM 3.21. ∼e=∼beq

COROLLARY 3.22. 'e='b

4. Encoding Cryptographic Primitives
To our knowledge, the first mention of a possible encoding of a
calculus with cryptographic primitives into a calculus with polyadic
synchronization was put forth by Abadi and Gordon [AG97]. The
idea can be summarized in the following way: the sending of a
message m encrypted under a key k over a channel a can be seen
as a · k〈m〉 .P . In order to receive this message, the other party
needs to know the channel where the message is being transmitted
and the key, which could be represented as a · k(m).P .

An encoding of symmetrical key encryption primitives into π-
calculus with polyadic synchronisation is proposed by Carbone and
Maffeis in the introduction of their paper to further illustrate its
expressive power [CM03].

[| encrypt m #k x in P |] def
= (νx)(!x · k〈m〉 | [|P |])

[| decrypt x #k m in P |] def
= x · k(m).[|P |]

However, Carbone and Maffeis do not define the semantics of
the primitives, and thus do not study the properties of the encod-
ing (as moreover, they have not developed the behavioral theory of
epi). Herein we do all that work: we first add to epi two nonde-
terministic, symmetrical, key encryption primitives, encrypt and
decrypt, defining the cryptographic π-calculus with polyadic syn-
chronization (crypto-epi), and extend epi labeled transition system
with rules dealing with these new constructs. Then we show that
the new constructors preserve the bisimilarity relations defined to
epi, and finally, we prove that these cryptographic primitives are
derivable constructs: crypto-epi can be fully abstractly encoded
in epi; thus we prove that the original calculus does not need to
be extended with those primitives, at least from the point of view
of expressiveness. Moreover, since the encoding is fully abstract,
crypto-epi enjoys of all the behavioral theory of epi.

The main achievement here is thus a mobile calculus with
cryptographic primitives enjoying the “standard” behavioral the-
ory. Adapting analysis tools like the Mobility Workbench [Vic94,
VM94] should be straightforward.

4.1 Cryptographic epi

Syntax. Consider two extra productions in the syntax of epi (cf.
Definition 2.1): encrypt m #k x in P and decrypt x #k m in P .
The first construct nondeterministically encrypts the cipher text m
under key k and returns the encrypted message as the fresh name x,
to be used in the scope of P , where it occurs bound. The decryption
of message x through the key k (used to encrypt the message) binds
the name m in the continuation P to the original message. Notice
that one, when encrypting, does not expect free occurrences of m
and k in P ; and when decrypting, does not expect free occurrences
of x and k in P .

Labeled Transition Semantics. The rules of epi in Figure 2
(page 3), together with the rules in Figure 3 inductively define
the transition semantics of crypto-epi.

The behavioral theory of epi extends naturally to this new set-
ting. The notions of bisimilarity, introduced in Section 3, enjoy sim-
ilar properties when consider the new constructs. Notice that the
decrypt primitive behaves like an input prefix, thus it does not pre-
serve ground, early or late bisimilarity, but naturally, it preserves
open bisimilarity. The notion of early congruence in crypto-epi
is obtained in the same manner, and the results in Corollary 3.22
also extend straightforwardly to this new setting. Therefore, the
theory developed can be used to analyze and (equationally) prove
properties of security protocols. To present the examples below
we need to introduce some results. First, notice that syntactical
equality is an early bisimilarity, and that any strong bisimilarity is
strictly included in the corresponding weak version. In particular,
=⊂'e⊂≈e.

(ENC)
P

α−→ P ′

encrypt m #k x in P
α−→ encrypt m #k x in P ′

where α 6= u〈x〉 and if α ∈ {u〈y〉 , u(y), u(y)} then x 6∈ nm(u)

(ENC-OPEN)
P

u〈x〉−→ P ′

encrypt m #k x in P
u(x)−→ !x · k〈m〉 | P ′

where x 6∈ nm(u)

(DEC)
−−

decrypt x #k y in P
x·k(y)−→ P

Figure 3. Late transition rules for the cryptographic constructs.

Second, the usual structural congruence laws of the π-calculus
[MPW92, SW01] also hold in any bisimilarity. Therefore, we use
below instances of the following laws.7

LEMMA 4.1 (Structural Laws).

1. (PS , |,0) is a commutative monoı̈d with respect to 'e.
2. (νx)0 'e 0 and (νx)!x · k〈m〉 'e 0
3. (νx)(P |Q) 'e (P | (νx)Q), if x /∈ fn(P)

LEMMA 4.2.

1. encrypt m #k x in P 'e (νx)(!x · k〈m〉 | P)

2. decrypt x #k m in P 'e x · k(m).P

PROOF. Construct the respective bisimulations containing the pair
in question and, in the two last cases, the identity relation on
processes. 2

4.2 A secure message exchange
Sending a value in a free (i.e. public) channel is insecure, as any
context (i.e. observer) can have access to it. Bound (i.e. private)
channels are, in this framework, consider secure. Since one often
needs to send sensitive data in public channels, we would like to
show two basic properties: (1) decrypting an encrypted value with
the correct key gives back the original value, and no other key
produces it; and (2) sending encrypted values in public channels
is secure, as observers without the right keys cannot decrypt them.

To illustrate the use of these properties (and their correctness),
consider a cryptographic protocol for secure message exchange,
proposed by Carbone and Maffeis [CM03], defined as (νsec)(P |
Q) where P and Q are the following processes.

P
def
= (νk)sec〈k〉 .public(y).decrypt y #k w in R

Q
def
= (νm)sec(z).encrypt m #z x in public〈x〉 .S

Assume that sec does not occur free neither in R nor in S, m does
not occur free in R, and k and z do not occur free in S. We show
the correctness of the protocol (with respect to weak bisimilarity,
to ignore silent moves): an external observer cannot get neither the
key k nor the clear text message m during the execution of the
protocol since the transfer of the knowledge of the key is done on
a secure—since private—channel (sec). Moreover, decrypting the
encrypted value x with the key k (and with it only) gives back the
original value m.

7 Instead of proving each of these laws one may prove the “Harmony
Lemma”, allowing to establish that structural congruence is a bisimulation.

The following equation captures the correctness of the protocol.

(νsec)(P |Q) ≈e (νk, m)(R{m/w} | encrypt m #k x in S)

The analysis below proves the equation. Note that the protocol
is deterministic.

1. Consider the following processes.

P ′ def
= public(y).decrypt y #k w in R, and

Q′ def
= (νm)encrypt m #k x in public〈x〉 .S{k/z}.

The first step is the transmission of the key on channel sec:

(νsec)(P |Q)
τ−→ (νsec, k)(P ′ |Q′).

2. Consider now the following processes.

P ′′ def
= decrypt x #k w in R{x/y}, and

Q′′ def
= (νm)(!x · k〈m〉 | S{k/z}).

The next step is the transmission of the encrypted message:

(νsec, k)(P ′ |Q′)
τ−→ (νsec, k, x)(P ′′ |Q′′).

3. Finally, the encrypted message is decrypted:

(νsec, k, x)(P ′′ |Q′′)
τ−→

(νsec, k, x, m)(R{x/y}{m/w} | (!x · k〈m〉 | S{k/z}))
Since x /∈ fn(R) and k, m /∈ fn(S), then R{x/y} = R and
S{k/z} = S. Moreover, sec /∈ fn(R) ∪ fn(S). Thus, using the
laws presented above, one concludes the proof by transitivity.

(νsec, k, x, m)(R{x/y}{m/w} | (!x · k〈m〉 | S{k/z}))

= (νsec, k, x, m)(R{m/w} | (!x · k〈m〉 | S))

'e (νk, m)(R{m/w} | (νx)(!x · k〈m〉 | S))

'e (νk, m)(R{m/w} | encrypt m #k x in S)

4.3 A Fully Abstract Encoding
In order to prove the soundness and completeness of the encoding
with respect to barbed congruence, which we proved in Corollary
3.22 to coincide with early congruence, we build on successive
auxiliary results.

Note that we will consider as a target language a sub-calculus of
epi without summation (as we just saw cryptographic protocols do
not necessarily make use of this construct). We shall consider this
calculus with and without cryptographic primitives (encoding the
first, crypto-epi, in the second, epi) because the proof is lighter.
Henceforth, whenever we write P we refer to a process of the
cryptographic π-calculus with polyadic synchronization.

LEMMA 4.3. Substitution Lemma
[|Pσ |] = [|P |]σ, for any substitution σ.

The following lemma shows a strong operational correspon-
dence between the actions of a process and the actions of its en-
coding.

LEMMA 4.4. Operational Correspondence

1. If [[P]]
α−→ Q then there is a P ′ such that P

α−→ P ′ and
[|P ′|] = Q.

2. If P
α−→ P ′ then [|P |] α−→ [|P ′|].

The following lemma prepares the ground for proving the
soundness and the completeness of the encoding.

LEMMA 4.5.

1. If [|P |] ∼e [|Q |] then P ∼e Q.
2. If [|P |] ∼beq [|Q |] then P ∼beq Q.

PROOF.

1. We prove that R = {(P, Q) : [|P |] ∼e [|Q |]} is an early
bisimulation (cf. Definition 3.12 in page 5).

Case P
α−→ P ′ (the case Q

α−→ Q′ is similar, and we omit its
analysis).

Then, by Lemma 4.4.2 we have that [[P]]
α−→ [[P ′]]. Since

by hypothesis [|P |] ∼e [|Q |] then there is a Q′ such that
[|Q |] α−→ Q′, and by Lemma 4.4.1 we have that there is a
Q′′ such that Q

α−→ Q′′, where [|Q′′ |] = Q′.
We split the proof according to the possible transitions of [|P |].
Case α ∈ {τ, uy, u(y)}, where bn(α) ∩ fn(P, Q) = ∅.
By definition of ∼e we have that [|P ′ |] ∼e [|Q′′ |] and there-
fore P ′RQ′′.
Case α = u(y) where y 6∈ fn(P, Q). The reasoning is similar
to the one above.
By definition of ∼e we have [|P ′ |]{w/y} ∼e [|Q′′ |]{w/y},
and by application of Lemma 4.3 we know that [|P ′{w/y}|] ∼e

[|Q′′{w/y}|] holds as well. Therefore, we conclude that
P ′{w/y}RQ′′{w/y}.

2. Follows directly from Lemma 4.5.1 and Theorem 3.21, where
it was proved that early bisimulation coincides with barbed
equivalence.

2

We are now in a position to prove a main result: there is a fully
abstract encoding of the cryptographic primitives in epi.

THEOREM 4.6. Soundness
If [|P |] 'b [|Q |] then P 'b Q

PROOF. If [|P |] 'b [|Q |] then for any substitution σ we have
that [|P |]σ ∼beq [|Q |]σ. By Lemma 4.3 we then know that
[|Pσ |] ∼beq [|Qσ |], and by Lemma 4.5.2 we have, as required,
Pσ ∼beq Qσ. 2

LEMMA 4.7.

1. If P ∼e Q then [|P |] ∼e [|Q |].
2. If P ∼beq Q then [|P |] ∼beq [|Q |].

PROOF. Similar to the one of the previous lemma. 2

THEOREM 4.8. Completeness
If P 'b Q then [|P |] 'b [|Q |].

PROOF. If P 'b Q then for any substitution σ we have that
Pσ ∼beq Qσ. By Lemma 4.7.2 then [|Pσ |] ∼beq [|Qσ |] and
by Lemma 4.3 we know that [|Pσ |] = [|P |]σ, thus we conclude
that [|P |]σ ∼beq [|Q |]σ, i.e., [|P |] 'b [|Q |]. 2

5. Conclusions and Future Work
The various variants of π-calculus possess a very rich behavioral
theory, with contextual equivalences characterized by bisimula-
tions, and with axiomatic laws for reasoning about programs. How-
ever, the extra structure for data handling in cryptographic cal-
culi like the Applied π-calculus or Spi, severely complicates equa-
tional reasoning: naı̈ve adaptation of bisimulations are not ade-
quate; new notions developed are “heavy”, and difficult to auto-
mate [AF01, AG97, BAF07, BNP02, BN05].

Our contribution is this: we provide standard behavioral theory
for a mobile calculus with nondeterministic, symmetrical key en-
cryption primitives. This work may be used not only to directly
analyze security protocols (possibly defining other cryptographic
primitives), but also to study the relationship with the other calculi,

comparing the observational equivalences and trying to define en-
codings. Moreover, adapting analysis tools like the Mobility Work-
bench [Vic94, VM94] should be straightforward.

Aim and achievements. One aim of this work is to show that
the π-calculus with polyadic synchronization, epi, is expressive
enough to provide behavioral theory for the study of cryptographic
protocols. In particular, we show that, in epi, explicit encryption
and decryption primitives (handy for specifying protocols, but a
burden when developing behavioral theory) are not needed because
they may be fully abstractly encoded. Thus, they may be simply de-
fined as programming constructs, what simplifies the development
of the behavioral theory and of analysis tools.

To attain this aim, we study in detail the behavioral seman-
tics of epi. We first define a contextual equivalence—barbed
congruence—and look for a co-inductive congruence relation
which characterizes it. To obtain such a result, we define in epi
the usual notions of bisimilarities proposed for the π-calculus,
and comparing them, establishing a lattice of inter-relations (sim-
ilar to that of the π-calculus). We establish that, in epi, barbed
congruence, the “natural” contextual equivalence, coincides with
early bisimilarity. Moreover, we extend epi with nondeterminis-
tic, symmetrical, cryptographic primitives, defining the syntax and
operational semantics of this new calculus. The behavioral the-
ory also extends naturally to this setting. Following Carbone and
Maffeis [CM03] we define an encoding of the new constructs for
encryption and decryption of messages into the original epi. Fur-
thermore, we prove that such an encoding is sound and complete
with respect to barbed congruence. This fully abstract encoding
allows to import to crypto-epi all the behavioral theory of epi. We
therefore conclude that the π-calculus with polyadic synchroniza-
tion (epi) is potentially expressive enough to provide behavioral
theory for, to analyze and to verify, security protocols. To illus-
trate the use of the theory developed, we prove the correctness of
a protocol of secure message exchange. This work strengthens the
hypothesis that a fully abstract encoding of a crypto calculus like
the Spi-calculus into epi is possible. Notice that Baldamus et al.
already proposed an encoding of Spi into the pi-calculus, but only
preserving may testing [BPV04].

Future work. We plan to study if and how epi can express prop-
erties of cryptographic protocols such as authenticity and secrecy.
In particular, we shall address the following issues: (1) adapt the
Mobility Workbench to work with this setting; (2) deal with other
crypto primitives; (3) develop equational (axiomatic) theory; (4)
test with larger examples / known protocols; (5) look for a more
general encoding (the one presented is ad-hoc); and (6) study an
encoding of Spi and/or of Applied Pi into epi.

Acknowledgements
This research has initially been carried out in the context of Joana
Martinho’s Master in Software Systems Engineering at Aalborg
University, supervised by Luca Aceto and António Ravara. Special
thanks to Luca for all the support and guidance on this research.
We also thank Michele Boreale, Marco Carbone, Sergio Maffeis,
and the anonymous referees for useful comments on some of the
matters discussed herein. António Ravara was partially supported
by the EU FEDER and FCT, via the Center for Logic and Compu-
tation, and the EU IST proactive initiative FET-Global Computing
(project Sensoria, IST–2005–16004).

References
[AF01] Martı́n Abadi and Cédric Fournet. Mobile values, new names,

and secure communication. In Proceedings of the 28th
ACM Symposium on Principles of Programming Languages
(POPL’01), pages 104–115. ACM Press, 2001.

[AG97] Martı́n Abadi and Andrew D. Gordon. A calculus for
cryptographic protocols: The spi calculus. In Proceedings
of the 4th ACM Conference on Computer and Communications
Security, pages 36–47. ACM Press, 1997.

[BAF07] Bruno Blanchet, Martı́n Abadi, and Cédric Fournet. Automated
verification of selected equivalences for security protocols.
Journal of Logic and Algebraic Programming, 2007. To
appear.

[BN05] Johannes Borgström and Uwe Nestmann. On bisimulations
for the spi calculus. Mathematical Structures in Computer
Science, 15(3):487–552, 2005.

[BNP02] Michele Boreale, Rocco De Nicola, and Rosario Pugliese.
Proof techniques for cryptographic processes. SIAM Journal
on Computing, 31(3):947–986, 2002.

[BPV04] Michael Baldamus, Joachim Parrow, and Björn Victor. Spi
calculus translated to π-calculus preserving may-testing. In
Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science (LICS ’04), pages 21–31. i3ecsp, 2004.

[CM03] Marco Carbone and Sergio Maffeis. On the expressive power
of polyadic synchronization in π-calculus. Nordic Journal of
Computing, 10(2):70–98, 2003.

[HHK95] Martin Hansen, Hans Hüttel, and Josva Kleist. Bisimulations
for asynchronous mobile processes. In Proceedings of the
Tiblisi Symposium on Language, Logic, and Computation.
Research paper HCRC/RP-72, Human Communication
Research Centre, University of Edinburgh, 1995.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus
of mobile processes, part I/II. Journal of Information and
Computation, 100:1–77, 1992.

[MR07] Joana Martinho and António Ravara. Encoding cryptographic
primitives in a calculus with polyadic synchronisation.
Technical report, Department of Mathematics, Instituto
Superior Técnico, Technical University of Lisbon, Portugal,
2007. URL: www.math.ist.utl.pt/∼amar/papers/cepi-long.pdf.

[MS92] Robin Milner and Davide Sangiorgi. Barbed bisimulation.
In Proceedings of the 19th International Colloquium on
Automata, Languages and Programming (ICALP ’92), volume
623 of Lecture Notes in Computer Science, pages 685–695.
Springer-Verlag, 1992.

[Qua99] Paola Quaglia. The pi-calculus: Notes on labelled semantics.
Bulletin of the European Association for Theoretical Computer
Science (EATCS), 68:104–114, 1999.

[San92] Davide Sangiorgi. Expressing Mobility in Process Algebras:
First-Order and Higher-Order Paradigms. PhD thesis CST–
99–93, Department of Computer Science, University of
Edinburgh, U. K., 1992.

[San96] Davide Sangiorgi. A theory of bisimulation for the π-
calculus. Acta Informatica, 33:69–97, 1996. An extract
appeared in Proceedings of the 4th International Conference
on Concurrency Theory (CONCUR ’93), Lecture Notes in
Computer Science 715, Springer-Verlag.

[San00] Davide Sangiorgi. Lazy functions and mobile processes. In
Gordon Plotkin, Colin Stirling, and Mads Tofte, editors, Proof,
Language and Interaction: Essays in Honour of Robin Milner.
M. I. T. Press, 2000.

[SW01] Davide Sangiorgi and David Walker. The π-calculus: a Theory
of Mobile Processes. Cambridge University Press, 2001.

[Vic94] Björn Victor. A Verification Tool for the Polyadic π-Calculus.
Licentiate thesis, Department of Computer Systems, Uppsala
University, Sweden, 1994. Available as report DoCS 94/50.

[VM94] Björn Victor and Faron Moller. The Mobility Workbench — a
tool for the π-calculus. In Proceedings of the 6th International
Conference on Computer Aided Verification (CAV ’94), volume
818 of Lecture Notes in Computer Science, pages 428–440.
Springer-Verlag, 1994.

