Modular Session Types for Distributed
Object-Oriented Programming

Simon J. Gay!, Vasco T. Vasconcelos?, Anténio Ravara®, Nils Gesbert!, and
Alexandre Z. Caldeira?

! Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
Email: simon@dcs.gla.ac.uk, nils@dcs.gla.ac.uk
2 Departamento de Informética, Faculdade de Ciéncias da Universidade de Lisboa,
1749-016 Lisboa, Portugal. Email: vv@di.fc.ul.pt, zua@di.fc.ul.pt
3 Security and Quantum Information Group, Instituto de Telecomunicacoes, and
Departamento de Matematica, Instituto Superior Técnico, Universidade Técnica de
Lisboa, 1049-001 Lisboa, Portugal. Email: amar@math.ist.utl.pt

Abstract. Session types allow communication protocols to be specified
type-theoretically so that protocol implementations can be verified by
static type-checking. We extend previous work on session types for dis-
tributed object-oriented languages by allowing a session (protocol) imple-
mentation to be modularized: it can be separated into separately-callable
methods. We achieve this by integrating session-typed communication
channels into a type system for non-uniform objects, based on a form of
typestates. We formalize a small distributed class-based object-oriented
language in which static typing guarantees that both sequences of mes-
sages on channels, and sequences of method calls on objects, conform
to type-theoretic specifications. The formalization includes both a type
system and a typechecking algorithm. The language includes expected
features of session types, such as delegation, and expected features of
object-oriented programming, such as inheritance. We also describe a
prototype implementation as an extension of Java.

1 Introduction

Session types [25,42] allow communication protocols to be specified type-theore-
tically so that protocol implementations can be verified by static type-checking.
A session type describes an agent’s view of a communication channel, and de-
fines the permitted sequences and types of messages. For example, the session
type S = ![Int] . ?[Bool] .end specifies that an integer must be sent and then a
boolean must be received, and there is no further communication. More gener-
ally, branching and repetition can be specified.

Session types were originally formulated for languages closely based on pro-
cess calculus. Since then, the idea has been applied to functional languages [20,
21,33, 38, 44], component-based object systems [43], object-oriented languages
[5,12-14, 26, 32], operating system services [15] and more general service-oriented

systems [6]. Session types have also been generalized from two-party to multi-
party systems [3,24], although in the present paper we will only consider the
two-party case.

We propose a new approach to combining session-typed communication chan-
nels and distributed object-oriented programming, which extends previous work
and allows increased programming flexibility. The key idea is to allow a channel
(e.g., of type S above) to be stored in a field of an object, and for separate
methods to implement parts of the session. For example, method m can send
the integer and method n can receive the boolean. Because the session type of
the channel requires that the send occurs first, it follows that m must be called
before n. We need therefore to work with non-uniform objects, in which the
availability of methods depends on the state of the object. In order to develop a
static type system for object-oriented programming with session-typed channels,
we use a form of typestates (a type safe state abstraction, according to [9,17])
that we have previously introduced under the name of dynamic interfaces [45].
In this type system, the availability of a class’s methods (i.e., the possible se-
quences of method calls) is specified in a style that itself resembles a form of
session type, giving a pleasing commonality of notation at both the channel and
class levels.

The result of this combination of ideas is a language that allows a very natural
integration of programming with session-based channels and with non-uniform
objects. In particular, the implementation of a session can be modularized by
dividing it into separate methods that can be called separately. In contrast, pre-
vious work on object-oriented session types, although allowing a session to be
delegated to another method, does not allow separation into separately-callable
blocks of code. Thus, our approach leads to a more flexible programming style
than the other approaches mentioned above. Our formal language provides chan-
nels as disciplined streams, because session types are a high-level abstraction for
structuring communication, and integrates this communication-based construct,
without further restrictions, with the high-level object-oriented abstractions for
structuring computation.

We have formalized a core distributed class-based object-oriented language
with a static type system that combines session-typed channels and a form of
typestates. We have proved that static typing guarantees two runtime safety
properties: first, that the sequence of messages on every channel follows the
specification of its session type; second, that the sequence of method calls on
every non-uniform object follows the specification of its class’s session type. We
have also formalized a typechecking algorithm and implemented a prototype
language as an extension of Java.

There is a substantial literature of related work, which we discuss in detail
in Section 6. Very briefly, the contributions of our paper are the following.

— In contrast to other work on session types for object-oriented languages, we
do not require a channel to be created and completely used (or delegated)
within a single method. Several methods can operate on the same channel.
This is made possible by our integration of channels and non-uniform objects.

— In contrast to other type systems for non-uniform objects, we use a global
specification of method availability, inspired by session types, which consti-
tutes a class type. From it, we calculate pre- and post-conditions of methods
during type-checking. Moreover, we allow the state of an object to depend
on the result of a method call.

The remainder of the paper is structured as follows. In Section 2 we illus-
trate our system by introducing an example and then extending it to include
inheritance. In Section 3 we formalize a core language and state the type safety
results. The core language requires, in addition to the class session type, explicit
pre- and post-conditions for each method. In Section 4 we present a typecheck-
ing algorithm which infers the pre- and post-conditions from the session types.
Section 5 describes our prototype implementation. Section 6 contains a more ex-
tensive discussion of related work, Section 7 outlines future work and Section 8
concludes.

2 Example: Buyer/Seller

To illustrate the features of the formal language and of the type system, we
incrementally present an example.

The Buyer/Seller Protocol. Our example is based on an e-commerce protocol
between a buyer and a seller. The two parties interact on a point-to-point com-
munication channel, each owning one endpoint. The buyer’s protocol is specified
by the session type

S = @&.{ requestQuote : ! [Product] . ?[Price] . 7 [Quote] . S,
acceptQuote : ! [Quote] . | [Payment] . S,
quit : end}

The buyer has a choice between requestQuote, acceptQuote and quit. If she
chooses requestQuote she must send information about the desired product, and
then receive the price and a reference number for the quote. After this, the ses-
sion type is again S, and the buyer can choose another option. When she wants to
buy a product, the buyer can select acceptQuote and then send a quote reference
followed by payment information. It is therefore only possible to buy an item
after a quote has been obtained, although this is not specified explicitly as part
of the type. Selecting quit at any time, instead of acceptQuote or requestQuote,
terminates the protocol.
The seller’s protocol is specified by the dual session type

S = &.{ requestQuote : ?[Product] . ! [Price] . ! [Quote] . S,
acceptQuote : ?[Quote] . ?[Payment] . S,
quit : end}

in which send (!) and receive (?) are exchanged, and the choice constructor (&..)
is replaced by the branch constructor (&.). This means that the seller must be
ready to respond to all of the three choices that the buyer can make.

The goal of a static type system with session types is to be able to verify, by
type-checking, that the implementations of the buyer and the seller follow the
specified protocol.

An API for the Buyer. We work within a model of distributed computing in
which sites, some fixed and well-known (global names, analogous to URLS)
and others dynamically created, execute independent programs. The primitive
service S creates a name n where service providers and clients to services meet
in order to initiate a session, i.e., to run the protocol specified by S. A point-
to-point communication channel is then created by the interaction of operations
n.request() and n.accept() executed at separate sites. Given a channel ¢, syn-
chronous communication occurs through the interaction of c.send and c.receive
operations.

It is very natural to implement an API for buyers, by defining the class
BuyerAPI in Figure 1. A program that needs to act as a buyer — for example,
driven by a GUI application — can create an instance of class BuyerAPI and call
methods on it, instead of working directly with the primitive operations request,
send and receive. This approach has several advantages. The class abstracts from
the details of the protocol, for example the exact order of messages. It also hides
the Quote information by storing it in a data structure indexed by Product. As
we will see in Section 2, it can form the basis for an inheritance hierarchy of
classes that offer more services.

The code in Figure 1 consists of four declarations. Lines 1 and 3 define enu-
merated types Option and Result. Lines 5—7 define the session type S of the chan-
nel protocol. By convention this is defined from the server’s (seller’s) viewpoint;
in the formal language the same type is associated globally with a service name.
Lines 9-42 define the class BuyerAPIl. Because it has a field of type S the class
BuyerAPI is non-uniform. We specify the availability of methods by the session
declaration in lines 10-15. We refer to this as a class session type to distinguish
it from channel session types such as S. An object of class BuyerAPI has abstract
states Init, Shop, Pay and end. The constructor & specifies the available methods
and the abstract states that result when they are called. The type of an instance
of class BuyerAPI is BuyerAPI[Init], BuyerAPI[Shop], BuyerAPI[Pay] or BuyerAPl[end].
The state end is a standard abbreviation for a state without available meth-
ods. Our approach to specifying method availability is similar to other systems
of typestates for object-oriented languages [11,17], except that we collect the
whole specification into the class session type instead of annotating the method
definitions with pre- and post-conditions. Actually our formal system, defined
in Section 3, does use pre- and post-conditions, which are calculated from the
class session type during type-checking.

Another distinctive feature of our language is that the abstract state after
a method call may depend on the return value of the method, if it is of an
enumerated type. This is illustrated on line 13, where the @ constructor specifies
a collection of states indexed by values of type Result. A caller of buy must switch
on the result in order to discover the state and hence the available methods; this
is enforced by the type system.

1 enum Option { requestQuote, acceptQuote, quit }

2

3 enum Result {ok, error}

4

5

6

7

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

typedef S = &{ Option.requestQuote: ?[Product].![Price].![Quote].S,
Option.acceptQuote: ?[Quote].?[Payment].S,
Option.quit: end }

class BuyerAPl {
session Init
where Init = &{ init: Shop }
Shop = &{ price: Shop,
buy: ®{Result.ok: Pay, Result.error: Shop},
stop: end }

Pay &{ pay: Shop }

c; qs; // fields, initially null:Null

void init(<S> n) {
¢ = n.request ();
gs = new QuoteStore(); gs.init();
}
Price price(Product p) {
c.send(Option.requestQuote);

c.send(p);

Price pr = c.receive ();
Quote g = c.receive ();
qs.add(p.q);

return pr;
}
Result buy(Product p) {
Quote q = gs.get(p);
if (¢ = null)
return Result.error;
else {
c.send(Option.acceptQuote);
c.send(q);
return Result.ok;

void pay(Payment p) { c.send(p); }
void stop() { c.send(Option.quit); }

}

Fig. 1. An API for the buyer.

Method init uses n.request() to create a channel. The identifier n is a name
(like a port address), declared as a parameter of init with channel session type S.

b = new BuyerAPI();
b.init();
while(b. price (myProduct) > 100) {}; // Wait until price is right
switch (b.buy(myProduct)) {
case error: print(”"What have | done wrong?”); break;
case ok: b.pay(myPayment); break;

}

b.stop();

Fig. 2. A buyer — code fragment.

Method init also creates and initializes a QuoteStore object, which we assume
allows construction of a mapping between products and quotes, in a similar way
to a Java HashMap. Although our language does not include constructors as a
special category, the session type of BuyerAPI specifies that init must be called
first, so we can regard it the initialization part of a constructor. Likewise, we
assume that after the call to QuoteStore.init (), object gs is in some state Q to
each all other methods in the class lead.

Methods price, buy and pay implement parts of the buyer’s protocol. Defining
these operations as separate methods is the key innovation of our approach.
This is what we mean by modularity of sessions. Other work on object-oriented
session types does not allow this.

There is a consistency requirement between the channel session type S, the
class session type Init, and the definitions of the methods. Consistency is checked
by the type system described in Section 3 and by the type-checking algorithm
described in Section 4. If we take a sequence of method calls allowed by the
class session type, and look at the channel operations in the methods to obtain a
sequence of channel operations, then this must be allowed by the channel session
type S.

In order to support modular type-checking we require only the session type of
a class, not the types of its fields. For example, in order to type-check classes that
are clients of BuyerAPI (class Buyer in Figure 2, for example), we do not need to
know that BuyerAPI contains a channel with a session type; the class session type
of BuyerAPI contains all of the necessary information about the allowed sequences
of method calls. It is therefore possible to associate session types with library
classes containing native methods whose source code cannot be available.

Type safety with non-uniform objects requires unique object references (in
particular, aliasing should be tightly controlled). When the type of an object
changes (by calling a method on it or by analysing an enumeration constant
returned from a method call) there must be a unique reference to it. Since we
are mainly interested in exploring the key idea of modularizing session imple-
mentations by integrating session-typed channels and non-uniform objects, we
have adopted a simple approach to ownership control: a linear type system. This
restrictive approach may be eased by using an off-the-shelf solution to aliasing
control; in Section 6 we present several candidates.

1
2
3
4
5
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

class Seller {
session &{ main: end }

void main(<S> n) { // S defined in BuyerAPI|
while (true)
spawn SellerThread .run(n.accept());
b}

class SellerThread {
session &{ run: end }

void run(S x) {
switch (x.receive()) {
case requestQuote: reqQuote(x);
case acceptQuote: accQuote(x);
case quit: break
b}
void reqQuote (?[Product].![Price].![Quote].S x) {
Product p = x.receive ();
x.send (...); // Calculate price
x.send (...); // Quote reference

run(x)
}
void accQuote (?[Quote].?[Payment].S x) {
Quote q = x.receive ();
Price py = x.receive ();
// Process payment
run(x)
I

Fig. 3. A multi-threaded seller, featuring two “private” methods and mutual recursion.

Interacting with the Buyer API. Figure 2 shows a code fragment that creates
and uses an instance of class BuyerAPl. Figure 3 contains a schematic definition
of a seller. The seller should run independently at some location, so class Seller
defines a main method (and the class session type specifies that main is called
once). The body of main repeatedly executes spawn SellerThread.run(n.accept()).
The semantics of this statement is as follows. The expression n.accept() creates a
channel by interacting with a matching n.request() at another site, and evaluates
to the endpoint ¢t so that we have spawn SellerThread.run(c). According to our
threads mechanism, this creates a new thread with its own heap containing an
instance of SellerThread on which run(c™) is called. This method uses mutual
recursion to implement a loop that repeatedly receives and processes requests,
until quit is selected. The effect is that main accepts a connection and immediately
delegates the new channel endpoint to a new thread. It would also be possible
for main to execute part of the protocol before delegating the channel.

enum NewResult restricts Result {ok}

class NewBuyerAPl extends BuyerAPIl {
@Override
NewResult buy(Product p) {

if (!gs.contains(p)) price(p);
c.send(Option.acceptQuote);

c.send(qgs.get(p));
return NewResult.ok;
Pl

Fig. 4. An extended buyer API — features a self call to a “public” method.

Notice that the methods reqQuote and accQuote of class SellerThread are not in
the session type. Although our language does not include method qualifiers, the
two methods can be regarded as private since the type system ensures that they
cannot be called by any client of class SellerThread. Notice also that the three
mutually recursive methods in SellerThread each implement a part of session
type S. The formal language of the present paper does not include while loops,
but they are defined in our previous work [45].

Seller .main is parameterized on the service name n, so a suitably typed name
must be provided when the seller is launched. We assume an external mechanism
for checking that names are typed consistently across all sites. This could be a
trusted central repository of typed services, or Hu’s [26] system of run-time
type-checks when request and accept interact.

Inheritance and Subtyping. We allow a class C to inherit from (extend) a class D
in the usual way: C may define additional fields and methods, and may override
methods of D. By considering the standard principle of safe substitutability,
namely that an object of class C should be safely usable wherever an object
of class D is expected, we can work out the allowed relationship between the
session types of C and D. In a given state, C must make at least as many methods
available as D; if a given method returns an enumeration, corresponding to a @
session type, then the set of values in C must be a subset of the set in D. When
a method of D is overridden by a method of C, we allow contravariant changes
in the parameter types and covariant changes in the result type.

To support covariant changes in the result type, our language includes the
restricts declaration for enumerated types. An example is shown in Figure 4,
where class NewBuyerAPI overrides method buy in such a way that, if the quote
to the product is not in the quote store, the method issues a price request first.
Notice that method price is both “public” (appears in the session type for the
class) and the recipient of a self-call (unlike method SellerThread .reqQuote, which
is not public). Our language distinguishes these two usages of the same method,
by advancing the session type of the class in the first case but not in the second.

Class dec D == class C {S; f: M} | enum E L
Constant sets L == {li}ier
Method dec M == T m(T z) {e}
Values v == null | Eld | o
Value references r == v | z | o.f
Expressions e == 71 | o.f = e | new C() | r.m(e) | e;e |
switch (e) {case l;: e;}ier | spawn C.m(e)
Non-object types B == Null | E | X | (X)
Types T == B | C[9]
Class session types S = X | puX.S | &{mi: Sitier | ®{E.li: Sitier
Channel session types X = X | uX.X | & AELi: Xi},c; | ®cAELi: Zi}iep |

?[B].Y | 1[B].Z

The only object reference o available to the programmer is this. The keywords send,
receive, request and accept are method names m.

Fig. 5. Programmer’s syntax.

3 A Core Distributed OO Language with Session Types

We now present a formal syntax, operational semantics and type system for a
core language containing the essential features of the examples in Section 2, and
state type safety results. The main simplification is that all objects are treated as
non-uniform and handled linearly by the type system. Incorporating standard
(non-uniform) objects is straightforward, but it complicates and obscures the
formal definitions. Our prototype implementation (Section 5) includes them.
Also, all methods have exactly one parameter. In terms of expressivity this is
not significant, as multiple parameters can be passed within an object, and a
dummy parameter can be added if necessary. Anyway, it is easy to generalize the
definitions, at the expense of slightly more complex notation. The calls request(),
accept() and receive () should be regarded as abbreviations for request(null) etc.
Finally, the examples use void methods, which are not in the formal language
but can easily be added.

In order to simplify the presentation of the type system and the proof of type
safety, the formal language requires every method definition to be annotated with
pre- and post-conditions, expressed as a requirement (req) and a guarantee (ens,
for “ensures”) on the type of the object on which it is called. These annotations
are in the style of the Fugue system [11] but stated in terms of session types.
The typechecking algorithm presented in Section 4 infers the pre- and post-
conditions.

Syntax. We separate the syntax into the programmer’s language (Figure 5) and
the extensions required by the type system and operational semantics (Figure 6).

= ... | e | n

x= req T ens T for T m(T z) {e}

Values

Method dec
Field types
Runtime types C[S;F] | Tlinkr | (Edi: Ti)ier

Field values

=< 8 m < e
ii
N~
atl

Heaps
States
Contexts E =[]

Configurations

|
f=v
w= ¢ | huo=C[V]
h

®
Il

of =& | &e | rm(E) | spawn C.m(E)
| K[| K | (ve) K

=
F
@

Fig. 6. Syntax used only in the type system and semantics.

Class, enum and method declarations, including the forms for inheritance, have
been illustrated by the examples. We write session(C), fields(C), methods(C)
to access the components of a class, and constants(E) for the set of values in
an enum. A class declaration does not declare types for fields because they can
vary at run-time. When an object is created, its fields are initialised to null. We
assume that class and enum identifiers in a sequence of declarations D are all
distinct, and that method names, field names and labels in M, f and {l; };cr are
distinct as well.

There are some restrictions on the syntax of expressions. Field access and
assignment are only available for a field of an object reference, not a field of an
arbitrary expression; moreover, the only object reference available to the pro-
grammer is this. Method call is only available on object references and parame-
ters, not on arbitrary expressions. All fields are private: this. f.g and this. f.g.m()
are not syntactically correct. The examples in Section 2 omit this as the prefix
to all field accesses, but they can easily be inserted by the compiler. The primi-
tive operations involving channels, namely send, receive, request and accept, are
treated as method names in the syntax.

Types are separated into object types and non-object types. The type of an
object is C[S] where C is a class name and S is a class session type. The type
Null has the single value null. Messages on channels must have non-object types,
as can be seen from the presence of B in the definition of channel session types;
we do not send objects as messages. This is not really a fundamental restriction,
but sending an object as a message would also require some form of serialization,
which we have avoided formalizing.

Session types (both class and channel ones) have been discussed in relation to
the example. Session type end abbreviates both &{} and &.{}. In ®{E.l;: S;}ier,
the identifier F is an enum with values {l; };cs. In the session type of a class dec-
laration, the top-level constructor, apart from recursion, must be &. The core
language does not include named session types, nor typedef or the session and
where clauses from the examples; we just work with recursive session type ex-

10

h; new C() — h:: 0 = Clfields(C) = null]; o (R-NEW)

h(o).f =wv
h; o.f — h{o.f — null}; v

h; o.f = v— hio.f — v}; null
(R-FIELD,R-ASSIGN)

(- m(- z) {e}) € methods(h(0).class)
h; o.m(v) — h; e{o/this}{v/x}
h(o).f =0 (- m(_z) {e}) € methods(h(o").class)
h; o.f.m(v) — h; e{o’/this}{v/z}
h; switch (E.l;) {case l;: e;}ier — h; 5 (j € 1) (R-SWITCH)
h; v;e — h; e (R-SEQ)

(R-DIRECTCALL)

(R-INDIRCALL)

Fig. 7. Reduction rules for states.

pressions of the form pX.S, which are required to be contractive, i.e. containing
no subexpression of the form pXj.--- puX,.X;. We adopt the equi-recursive ap-
proach [37, Chapter 21] and regard uX.S and S{(uX.S)/X} as equivalent, using
them interchangeably in any mathematical context.

Figure 6 defines additional syntax needed for the formal system. It is not
available to the programmer. In the values, n is a name on which request and
accept can be called, and ¢ and ¢~ are the two endpoints of a communication
channel, on which send and receive can be called. In the internal types, C[S; F]
is a form of object type that includes field types, and (E.l;: T;);c; is a variant
type, indexed by the values of an enumerated type E. In contrast to variant
types in functional languages, values are not tagged; instead the tag is stored in
a field of type FE link r, where r has variant type. These types are used in the
type system but do not appear in top-level programs.

Field values, heaps, states and configurations are used to define the opera-
tional semantics. A heap is a function and an entry in the heap maps an object
reference o to an object: 0 = C[f = 7], where C is the class and the fields f
have values 7. £ are evaluation contexts in the style of Wright and Felleisen [47].
A configuration is a parallel collection of (heap, expression) pairs, representing
separate locations in a distributed system. In (vc)K, vc binds endpoints ¢ and
¢~ of channel c.

Operational Semantics. We define the operational semantics in two stages. Fig-
ure 7 defines reductions of states h;e consisting of a heap and an expression.
In Figure 8, rule R-THREAD lifts these reductions, in contexts, to basic re-
ductions on configurations; rules R-PAR, R-NEWCHAN and R-STRUCT define
general reductions on configurations. Structural congruence, used in R-STRUCT,
is the smallest congruence (with respect to parallel and v) closed under rules
E-ComM, E-Assoc and E-ScoPE. Rules R-INIT, R-CoM and R-SPAWN define
interactions between components and creation of new components. All of the

11

K| K2 = K2 || Ku Ki || (K2 || K3) = (K1 || K2) || K3 (E-CoMM,E-Assoc)

K1 || (vo)K2 = (ve)(Ki || K2) if ¢, ¢ not free in K, (E-ScopE)
h; e — h'; € K — K’
B El) — i €]y KK — koK (TR
K—K K=K K —K' K'=K"
(ve) K — (ve) K! K — K"
(R-NEWCHAN,R-STRUCT)
r=o.f and / r'=o’.f" and
r=mnor { h(o)ff:n r =nor { h/<o,>ff/:n (c fresh) (R-Intr)
(h; E[r.accept()]) || (b5 E'[r".request()]) — (vc) ((h; Elct]) || (b5 E'e]))

r=cP or {770 and P =P or {T=0f and

{h(o).f—cl" {h (o’).f'=cP (R—COM)

(h; E[r.send(v)]) || (W5 E'[r'.receive()]) — (h; E[null]) || (k5 E'[v])

(h; E[spawn C.m(v)]) — (h; E[null]) || (o = C|fields(C) = null]; 0.m(v)) (o fresh)
(R-SPAWN)

Fig. 8. Structural congruence and reduction rules for configurations.

rules are implicitly parameterized by 5, the list of declarations constituting the
program. When we say an identifier should be fresh, we mean distinct from all
others used in any mathematical context in which that identifier appears.

The operation h:: 0 = C’[f: 7] denotes adding an entry to the heap h, and
it is only defined if o is not in h and all object references in ¢’ are in the domain
of h. If h(o) = C[f =] then h(o).class means C and h(o).f; means v;. If h(o) is
defined (this is an implicit hypothesis) then the notation h{o.f — v} means the
heap obtained by changing the value of field f in object o to v.

R-NEW creates a new object in the heap, with null fields. R-FIELD extracts
the value of a field from an object. Linear control of objects requires that the field
be nullified. R-AsSIGN updates the value of a field. The value of the assignment,
as an expression, is null; linearity means that it cannot be v as in Java.

There are two rules for method call. R-DIRECTCALL is for calls directly on
an object reference, which arise from calls on this and calls on method param-
eters. R-INDIRCALL is for calls on fields of objects. In both cases, appropriate
substitutions are made for this and the formal parameter. R-SWITCH is standard.
R-SEQ discards the result of the first part of a sequential composition.

The rules in Figure 8 are as expected for a distributed language with point-
to-point channels. R-INIT and R-CowMm allow the operations to be called both on
names,/channels and on fields that contain names/channels.

To complete the definition of the semantics we need to define the initial
state. We assume that a class C' and main method m are specified. For a given
class C and main method m, one would expect an initial state of the form
0;new C().m(...). Because we cannot call methods on arbitrary expressions, the

initial state is actually o = C[fields(C) = null]; o.m(...).

12

T<T' T'<: T

T<:T T T (S-Ip,S-TRANS)

. ’ = c ’
enum E restricts E' L € D L C constants(E") (S-Exum)

E< B
T<:T ICJ E<E T,<T{ (Miel)
= : S-L S-V.
Tlink 7 <: T' link 7 (B Tyver <2 (B0, Thyey O LINKS-VARIANT)
class C extends C" {;;;_} € D S <: 8 F < F'
= S-CLass
C[S; F] <: C'[S"; F'] ()
N ’

T<:T W <W (S-METHOD)

T m(Wz) {} < T m(W'z) {_}
T<T U<U V<V W<W
req T ens U for V. -m(Wz) {_} <:req T” ens U’ for V' m(W'z) {_}
(S-ANNOTMETHOD)

Fig. 9. Subtyping rules for types and method signatures

Subtyping. The foundation for inheritance and subtyping is the definition of sub-
typing between class session types. Let S be the set of class session types. Define
unfold(uX.S) = unfold(S{(uX.S)/X}), and unfold(S) = S for non-recursive
session types S; contractivity guarantees that this definition terminates.

Definition 1. A relation R C SxS is a class session type simulation if (S, 5") €
R implies the following conditions.

1. If unfold(S) = &{mi: Si}ier then unfold(S') = &{m;: Si}jes, J C 1 and
vj € J.(S;,5)) € R.

2. If unfold(S) = ®{E.l;: Si}ier then unfold(S") = &{E'.l;: Si}jer,
Vi € I.(S;,S!) € R and constants(E) C constants(E").

The subtyping relation on class session types is defined by S <: S’ if there exists
a class session type simulation R such that (S,S’) € R.

The direction of subtyping is opposite to that defined for channel session
types in [19], because we make a choice by selecting a method from a session
of & type instead of by sending a label on a channel of & type. However, in
both cases, the type allowing a choice to be made has contravariant subtyping
in the set of choices. This reversal of the subtyping relation for session types also
occurs in [6]. Further details, including the proof that subtyping is reflexive and
transitive and an algorithm for checking subtyping, can be adapted from [19].

Figure 9 defines subtyping between types of our language. The relation is as
expected for object types viewed as records of fields, with the addition of sub-
typing between the session types. We could also include subtyping on channel
session types, using the standard definitions [19], and the more refined treat-
ment of subtyping on access types (X) from [21], but we have omitted them for
simplicity.

13

It turns out that both the requires and ensures types behave covariantly. For
ensures this is because the type is really part of the result type of the method,
describing the implicitly returned this. For requires it is because the type is the
true type of the object on which the method is called.

Type System. The type system is defined by the rules in Figures 10, 11 and 12.
The typing judgement for expressions is I'>e:T'<I”. Here I" and I" are the initial
and final type environments when typing e. I may differ from I" either because
identifiers disappear (due to linearity) or because their types change (if they are
channels or non-uniform objects). We regard an environment I" as a function
from object references o to object types C[S; T f] and names to message types.
If I'(0) = C[S;T f] then I'(0).f; means T;. If 7 is a value reference such that
I'(r) is defined (i.e. either r = 0 and o € dom(I") or r = o.f and o € dom(I") and
I'(0) has field f) then the notation I'{r — T} means the environment obtained
by changing the type of o or o.f, as appropriate, to T

First consider Figure 10, which defines typing of expressions. T-CHAN and T-
LINVAR take account of linearity by removing identifiers from the environment.
T-FIELD types field access, nullifying the field because its value has moved into
the expression part of the judgement. T-ASSIGN types field update; the type of
the field changes, and the type of the expression is Null, again because of linearity.
The restriction on variant types is to avoid invalidating link types. T-NEW types
a new object, giving it the initial session type from the class declaration and
giving all the fields type Null.

T-AccepPT and T-REQUEST type the creation of channels with dual session
types. T-SEND, T-RECEIVE, T-SELECT and T-BRANCH type communication
operations according to the session type of the channel. Note that in T-SELECT,
the label F.l; must be a literal value.

T-CALL requires an environment in which method r.m is available. In the
signature of m, the req type must match the type of o.f, the ens type gives the
final type of o.f, and the result type gives the type of the expression as usual.
The rule covers two cases, depending on whether the method returns an object
or an enumerated value. In the latter case, which corresponds to a variant type
in the ens of the method, the expression acquires the type T” link r, indicating
that r has a variant type that will be resolved by a switch on the result of the
method. The same mechanism is used by T-BRANCH. The other rule for method
call, T-SELFCALL, does not check the req annotation; self-calls do not change
the session type of the object.

T-SWITCH types a switch on o.f, whose type must have a link to a field with
a variant type. All branches must have the same final environment I'”, so that
it is a consistent final environment for the switch expression.

Now consider Figure 11. The most interesting rules are T-METH and T-
METHVAR, which check that a method body has the effect specified by the req
and ens declarations. There are two rules because the typing of a method has
different forms depending on whether or not the class session type is ®. If it is,
then the method must produce a variant type for this.

14

T is not a variant type
Lo:Tro: Tl

I'bnull: Nulla I (T-NuLL, T-REF)

T is not a variant type l € constants(E)
T- T-
Tor:To: Tl ToElEal (T-Cran, T-CONsT)
T = Null or E or (X) T=Cl.]or X
T-V. T-L
Nx:Tox:T<lx:T Iz:Tox:Tal (AR, INVAR)
I'm:Ten:Tal)n:T (T-NAME)
jel

Tro: Clo{EL: Sher Fio By B nk 09T (Bl OfSs Flhey (1)

I'(o).f =T T is not a variant type I'se:T<I" I'(o).f is not a variant type

I'vo.f:T<I'{o.f — Null} I'vo.f=e:Null<aI"{o.f — T}
(T-F1ELD, T-ASSIGN)

I'bnew C() : C[session(C); NallﬁeldS(C)] «r (T-NEw)
I'(r) =(X)

I'>raccept(): X<l (T-AccepT)
I'(r)=(X)

= (T-REQUEST)
I'vr.request(): X< I”

I've:T<I T m(Tzx){}<:M M € methods(I"(0).class)
I'vom(e): T <I"
Ty =Cl...] reqTiensT: forT' m(T z) {-} <: M M € methods(C)
thi I'se:-T<I" I -T T — E/Iink rif T’:E link this
r # Is € (T) 1 T otherwise (T-CALL)
I'vrm(e):T"aI"{r — Tr}
I'se:T<I" I'(r)=![T].% Ir'(ry=7[1.%
I'>r.send(e) : Null< I"{r — X} I'>rreceive() : T < I'{r — X}
(T-SEND,T-RECEIVE)

(T-SELFCALL)

I(r)=@c{Bli: i}, jEI
T T_
I'>r.send(E.lL;) : Nulla T'{r — X;} (T-SELECT)
i - i { et (T-BRANCH)
I'brreceive() : E link r <« L{r — (E.l;: Xi)ier}
I'se:Elinkr<l” I'(r)=(E.l: T;)ier
'] / : - "
Vi € I.(l; € constants(E) I'{r— Ti}pe;:Tal") (T-Swrrcr)

I'> switch (e) {case l;: e;}icr : T I
I've:T<I'" I'>ée:T'«I" T#Elinkr I'se:T<I T<U
I'>ee :T'al” I'be: U<l
(T-SEQ, T-SUB)
(req T ens _for - m(T z) {-}) € methods(C) T is not an object type
T = Clsession(C); Null fields(C)] I'se:T<al"
I'>spawn Com(e) : Null < I

(T-SPAWN)

Fig. 10. Typing rules for expressions

15

x: T, this: C[Sk; F]>e: T < I, this: C[Sk; F']
Sk#@{} kel I'= 0 if T is linear

x:T otherwise _
Freq C[&{m;: Si}ticr; F) ens C[Sk; F'] for T my (T z) {e} (T-Merr)

Sk=®{BL: Sj)yes kel I'={olnlm
x: T,this: C[Sk; F]>e: E link thisa I, this: (E.l;: C[S}; Fil)jes
Freq Cl&{m;: Si}tier; | ens (E.l;: C[S}; Fyl)jes for E mi(T x) {e}
(T-METHVAR)

Vi.b M; S <: session(C)
VM’ € methods(C'), M € M.(M <: M’ A name(M) = name(M"))

— (T-EXTENDS)
F class C extends C’ {S; f; M}

M Fenum E L E < E. : FD; H(VZ)
Fclass - {; M} F enum E restricts B/ _ D

(T-Crass, T-ENUM, T-RESTRICTS, T-PROG)

Fig. 11. Typing rules for programs

Io:Tkh I'th I'oo:Tal’ fields(C)=f
I'h F’,o:C[S’;fﬂl—h::ozC[fzﬁ]
(T-HEMPTY, T-HWEAK, T-HADD)

I'th I'(r)=Elinko h(+y=o0 +D I'bh I'be:Tal’

00

I'{r— Elinkr'}Fh I'vh; e:TaIl”
(T-HLINK, T-STATE)
Fo:Tothuo=C[f=0,..] To.f=T1 I,0:Tivh;e:Tal" o :T
T — E link o.f if T=FE link o/
— T otherwise
Io:Tovh:o=C[f=0,...]; e:T' <" 0: To{f — T>}
(T-EXPRSTATE)
I'vh;e:_«_ I'rK I'K Ict:X,¢:YFK
I't (h; e) I'+I"r K| K’ I' (ve) K

(T-THREAD, T-PAR, T-NEWCHAN)

I' + I' is defined if and only if the only identifiers I" and I'" have in common are
names n and those names have the same type in both environments. In that case,
r+r=rur.

Fig. 12. Typing rules for heaps, states and configurations.

Figure 12 defines rules for typing heaps, states and configurations. The typing

of a heap, I' - h, means that I" gives types to the usable objects in h. Because
of linearity, I" only contains types for top-level objects, i.e. those that are not

stored in fields of other objects. Weakening of the heap typing (T-HWEAK) is

needed in order to prove type preservation, because assignment can discard an

16

object. T-EXPRSTATE and T-LINKSTATE are not used for top-level programs,
but are needed in the proof of type preservation to type the state resulting from
reduction of a method call.

The typing of a top-level system, to which our type safety results apply, has
the form I+ K || ... || K, where I" gives global typings for service names.

Results. We have a type preservation theorem of the usual kind; the change
from I' to I'' reflects changes in (class or channel) session types. The proof is by
induction on the derivation of the reduction.

Theorem 1. If '+ K and K — K' then there exists I’ such that I'" - K'.

To obtain a type safety theorem we define traces and call traces, enabling us
to extract more information from the type preservation proof.

Definition 2 (Traces). A trace on a channel endpoint cP is a sequence ajas . ..
where each a; is either vl or vyl and v; is either a primitive value or an enumer-
ation label. A call trace on an object o is a sequence miaimsQs ... where each
m; is a method name and each «; is either an enumeration label or nothing.

The operational semantics defines a trace for every channel endpoint and a
call trace for every object. Self-calls are excluded from call traces.

A channel session type defines a set of traces, in which items v;] come from
send and select types and items v;| come from receive and branch types. A class
session type defines a set of call traces.

Theorem 2 (Type Safety). When executing a typed program, the trace of
every channel endpoint is one of the traces of its initial channel session type and
the call trace of every object is one of the traces of its initial class session type.

Given a mapping from channel endpoints and objects to traces and call traces,
the safety property is an invariant of reduction, and type safety becomes a corol-
lary of type preservation.

4 Typechecking Algorithm

Figure 13 defines a typechecking algorithm. It is used in two steps. First, for each
class C with declared session type S, P (S, D) is called. This returns annotations
for the methods of C, in the form req C[&{m;: S;}ic1] ens C[S;] for T m;(){e}
with j € I. Algorithm P is very simple, and just translates the session type of a
class into explicit pre- and post-conditions for its methods. A particular method
can receive several different annotations, giving a useful form of overloading [45].
In this case, the req type should be used to disambiguate method calls.

The second step is to call Ac(F, .S, D) for each class C', where S is the declared
session type of C' and F' is the initial field typing (with all fields having type
Null) of C. Algorithm A has two purposes. (1) It calls algorithm B to typecheck
the method bodies of C, in the order corresponding to S. While typechecking,

17

Algorithm P
Po(&{mz Si}ie], A) = { req &{mz Si}ie] ens C[Sz] for T mz() {6} |

T mi(){e} € methods(C),i € I} UU;c; Pc(S),cA)
'Pc(@{Ell : Si}ie[, A) = UieI PC(SZ', A)
Pe(puX.S,A) =if uX.S € A then @ else Pc(unfold(S), AU {uX.S})
Algorithm A

.Ac(&{mz Si}iehF, A) = Ujel{{req C[&{ml Si}iej;F] ens C[Sj;Fj] for Tj mj() {ej}}U
Ac(S;j, Fj, A) | T; m;() {e;} € methods(C), (F},T;) = ng (e, F, @),J €1}

AC(EB{E~li3 Si}ieI,F7 A) = Ujg[-AC(SJ" F, A)

Ac(pX.S, F,A) = if uX.S € dom(A) then A(uX.S) else Ac(unfold(S), F, AU {uX.S — F})

Algorithm B

Bc(null,F _) = (F,Null)

BZ(E.l,F,) = ((E.l: C[S; F]), E)
BZ.(new C(), F,.) = (F, C[session(C)])
BZ(this.f, F,_) = (F + f : Null, F(f))
BZ(this.f = e, F,A) = (F' +this.f : T, Null) where (F',T) = BZ (e, F, A)
B2 (this.f.m;(), F,) = (F + f : Null, T") where F(f) = C'[&{m;: Si}ic1] and j € I and

req C[&{m;: S tier] ens _for T m;() {-} € methods(Pc(session(C’),0)) and
T =if S; = ®{...} then T link this else T'
BZ(this.m(), F, A) = if m € dom(A) then (A(m),T) else BZ(e, F, AU {m — F})
where T' m(){e} € methods(C)
BZ (switch (this.f) {case I;: e;}ier, F, A) = ({ Fi, T)
where (F”, E link this) = B2 (e, F, A) and (F;, T) = B& (e, F, A) and I; € constants(E)

BZ((e;€)), F,A) = B2(e/, F', A) where (F',.) = BZ(e, F, A)
Bg(serwce E F,)= (X2, F)
BZ (this. f.request(), F,) = (F,) where F(f) = (¥)
BZ(this. f.accept(), F,) = (F, %) where F(f) = (¥)
B2 (this.f.send(e), F, A) = (F' + f : ,Null) where (F',T) = B&(e, F, A) and F'(f) =![T].2
BE (this.f.send(E.L;), F,) = (F + f : X;,Null) where F(f) = @ {E.l; : Xi},.,; and j € I
BZ (this. f.receive(), F,) = (F + f : £,T) where F(f) =?[T].%
BE (this. f.receive(), F,) = (F + f : (E.lit £)icr, E link f) where F(f) = & {E.li : i},

Combining partial variants

TWT =T if T is not a variant typing
<E.li: T7;>7;€1 (] (E.mj: TJ{>]’€J = <Elk T;é/>k€[UJ
where Vi € I.(T}' =T;), Vj € J(T} = T}), and whenever l; = m; we have T; = T}

Fig. 13. Algorithm

the annotations calculated by algorithm P are used to check the effect of method
calls. (2) It calculates a more comprehensive set of annotations for the methods

18

of C, in the form req C[&{m;: S;}icr; F] ens C[S;; F;] for T 'm;() {e}. These are
used in the proof of type safety, to show that a typable program in the top-level
language yields a typable program in the runtime language.

The definition of B follows the typing rules (Figure 10) except for one point:
T-INJ means that the rules are not syntax-directed. To compensate, clause E.l
of B produces a partial variant field typing with an incomplete set of labels,
and clause switch uses the W operator to combine partial variants and check for
consistency. The various “where” and “if” clauses should be interpreted as con-
ditions for the functions to be defined; cases in which the functions are undefined
should be interpreted as typing errors.

For example, applying algorithm P to class BuyerAPIl in Figure 1 produces
the following annotated methods.

req BuyerAPI[Init] ens BuyerAPI[Shop] for Null init(<S> n);

req BuyerAPI[Shop] ens BuyerAPI[Shop] for Price price(Product p);
req BuyerAPI[Shop] ens BuyerAPI[Shop] for Result buy(Product p);
req BuyerAPI|[Shop] ens BuyerAPI[Shop] for Null pay(Payement p);
req BuyerAPI[Shop] ens BuyerAPl[end] for Null stop ();

These are the “public” annotations, and are used when algorithm A is applied
to class Buyer in Figure 2. For “internal” type checking we need the types of the
fields as well. The more comprehensive annotations include information about
the fields in BuyerAPI, but no information about the types of the fields within
QuoteStore, for which we do not have the source code.

req BuyerAPI[Init; Null ¢, Null gs]
ens BuyerAPI[Shop; S c; QuoteStore[Q] gs] for Null init(<S> n);
req BuyerAPI[Shop; S ¢, QuoteStore[Q] gs]
ens BuyerAPI[Shop; S c; QuoteStore[Q] gs] for Price price(Product p);

req BuyerAPI[Shop; S ¢, QuoteStore[Q] qs]
ens BuyerAPI[Shop; End c; QuoteStore[Q] gqs] for Null stop();

We conclude this section with the main results of the algorithm. They are:
1) it always terminates; and 2) it produces only well-typed class declarations.

Theorem 3. Let D be a program, i.e. a sequence of declarations.

1. For every class C {S; f: M} or class C extends C’ {S; fs M} in D, Po(S,0),
the call Ac(NUllf, S, 0) terminates.

2. For every class C' {S; f: M} or class C extends C’ {S;f; M} in D, replace
M by Ac(Nullf, S, 0), and let D’ be the resulting declarations. Then - D'.

The session type of a class has two interpretations. The first is as a limit
on the allowed sequences of method calls, a kind of safety property, and this is
always guaranteed by our type safety result. The second interpretation is that
every sequence of method calls in the session type should be realizable in a
typable program. Given a class definition C' in the internal syntax, with explicit
req and ens annotations, construct an expression ec as follows:

19

The session type of C is a (possibly infinite) tree, branching at & and @.
Make it into a finite tree by replacing some & nodes by end.

For each & node, remove all but one of the branches; obtain tree T

ec constructs an object of class C' and contains a sequence of method calls
and switch statements corresponding to the structure of T'.

=N

Typability of C in the internal system does not guarantee that ec is typable,
because it is possible for the req and ens clauses to contain spurious constraints
such that the ens of one method does not match the req of the next method in
the session type. But the typechecking algorithm, applied to a program in the
programmer’s syntax, produces definitions such that every ec is typable.

5 Implementation

We have used the Polyglot [35] system to implement the ideas of this paper as a
prototype extension to Java 5, which we call Bica. This includes type-checking
method calls against the class session types of non-uniform objects, and type-
checking communication operations on streams against their channel session
types. The implementation also includes standard classes without session types,
which are not linearly controlled. The definitions of class session types, and the
restricts declaration of enumerated types, are implemented as Java annotations
@session and @restricts rather than syntactic extensions. The semantics of the
language is standard Java.

The implementation of Bica follows the Polyglot framework and is struc-
tured as a number of visitors which process session type declarations and im-
plement the type-checking algorithms defined in Section 4. It is available from
http://gloss.di.fc.ul.pt/bica/.

6 Related Work

Previous work on session types for object-oriented languages. Several
recent papers by Dezani-Ciancaglini, Yoshida et al. [5,12-14, 26, 32] have com-
bined session types, as specifications of protocols on communication channels,
with the object-oriented paradigm. A characteristic of all of this work is that a
channel is always created and used within a single method call. It is possible for
a method to delegate a channel by passing it to another method, but it is not
possible to modularize session implementations as we do, by storing a channel
in a field of an object and allowing several methods to use it. The most recent
work in this line [5] unifies sessions and methods, and continues the idea that
a session is a complete entity. Mostrous and Yoshida [32] add sessions to Abadi
and Cardelli’s object calculus.

Non-uniform concurrent objects / active objects. Another related line
of research was started by Nierstrasz [34], aimed at describing the behaviour of
non-uniform active objects in concurrent systems, whose behaviour (including
the set of available methods) may change dynamically. He defined subtyping for

20

active objects, but did not formally define a language semantics or a type sys-
tem. The topic has been continued by several authors [4,9, 39-41].The last two
are the most relevant. Damiani et al. [9] define a concurrent Java-like language
incorporating inheritance and subtyping and equipped with a type-and-effect
system, in which method availability is made dependent on the state of objects.
Caires [4] uses an approach based on spatial logic to give very fine-grained con-
trol of resources, and Militdo [31] has implemented a prototype based on this
idea. The distinctive feature of our approach to non-uniform objects, in compar-
ison with all of the above work, is that we allow an object’s abstract state to
depend on the result of a method call. This gives a very nice integration with
the branching structure of channel session types.

Cyclone, Vault, CQual, Fugue, Sing#. Cyclone [22],Vault [10,16], and
CQual [18] are systems based on the C programming language that allow proto-
cols to be statically enforced by a compiler. Cyclone adds many benefits to C,
but its support for protocols is limited to enforcing locking of resources. Between
acquiring and releasing a lock, there are no restrictions on how a thread may use
a resource. In contrast, our system uses types both to enforce locking of objects
(via linearity) and to enforce the correct sequence of method calls.

Vault is much closer to our system, allowing abstract states to be defined
for resources, with pre- and post-conditions for each operation, and checking
statically that operations occur in the correct sequence. It uses linear types to
control aliasing, and uses the adoption and focus mechanism [16] to re-introduce
aliasing in limited situations. Fugue [11,17] extends similar ideas to an object-
oriented language, and uses explicit pre- and post-conditions that are somewhat
similar to our req/ens annotations. CQual expects users to annotate programs
with type qualifiers; its type system, simpler and less expressive than the above,
provides for type inference.

Sing# [15] is an extension of C# which has been used to implement Sin-
gularity, an operating system based on message-passing. It incorporates session
types to specify protocols for communication channels, and introduces contracts
which are analogous to our req and ens clauses. The published paper [15] does
not discuss the relationship between channel contracts and non-uniform objects
or typestates, and does not define a formal language.

The main novelties of our work are the integration of session-typed channels,
the use of the session type of a class as a global specification, the dependency
between the result of a method and the subsequent abstract state of the ob-
ject, and the characterization of the subtyping relation. A technical point is that
Sing# uses a single construct switch receive to combine receiving an enumera-
tion value and doing a case-analysis, whereas our system allows a switch on an
enumeration value to be separated from the method call that produces it.

Unique ownership of objects. In order to demonstrate the key idea of modu-
larizing session implementations by integrating session-typed channels and non-
uniform objects, we have taken the simplest possible approach to ownership
control: strict linearity of non-uniform objects. This idea goes back at least to
the work of Baker [2] and has been applied many times. However, linearity causes

21

problems of its own: linear objects cannot be stored in shared data structures,
and this tends to restrict expressivity. There is a large literature on less extreme
techniques for static control of aliasing: Hogg’s Islands [23], Almeida’s balloon
types [1], Clarke et al.’s ownership types [8], Fahndrich and Deline’s adoption
and focus [16], Ostlund et al.’s Joes [36] among others. In future work we intend
to use an off-the-shelf technique for more sophisticated alias analysis. The prop-
erty we need is that when changing the type of an object (by calling a method
on it or by performing a switch or a while on an enumeration constant returned
from a method call) there must be a unique reference to it.
Resource usage analysis. Igarashi and Kobayashi [28] define a general re-
source usage analysis problem for an extended A-calculus, including a type infer-
ence system, that statically checks the order of resource usage. Although quite
expressive, their system only analyzes the sequence of method calls and does
not consider branching on method results as we do.
Analysis of concurrent systems using pi-calculus. Some work on static
analysis of concurrent systems expressed in pi-calculus is also relevant, in the
sense that it addresses the question (among others) of whether attempted uses of
a resource are consistent with its state. Kobayashi et al. have developed a generic
framework [27] including a verification tool [29] in which to define type systems
for analyzing various behavioural properties including sequences of resource uses
[30]. In some of this work, types are themselves abstract processes, and therefore
in some situations resemble our session types. Chaki et al. [7] use CCS to describe
properties of pi-calculus programs, and verify the validity of temporal formulae
via a combination of type-checking and model-checking techniques, thereby going
beyond static analysis.

All of this pi-calculus-based work follows the approach of modelling systems
in a relatively low-level language which is then analyzed. In contrast, we work
directly with the high-level abstractions of session types and objects.

7 Future Work

Shared classes. In the present formal language, all classes are linear. It is
straightforward to add shared classes, whose objects do not have to be uniquely
referenced; indeed, the implementation includes them. The behaviour of shared
objects is largely orthogonal to that of linear objects, except for the condition
that a shared object’s fields cannot contain linear objects.

More flexible control of aliasing. The mechanism for controlling aliasing
should be orthogonal to the theory of how operations affect uniquely-referenced
objects. We intend to adapt existing work to relax our strictly linear control and
obtain a more flexible language.

Complete use of sessions. Some systems based on session types guarantee that
sessions are completely used, finishing in state end. To achieve this property we
only need to change the rules for assignment so that an incompletely-used object
cannot be discarded, and adapt the type-checking algorithm to check that when

22

an object has session type End all of its fields have session type End. This can be
specified independently for each class.

Java-style interfaces. If class C' implements interface I then we should have
session(C) <: session(I), interpreting the interface as a specification of mini-
mum method availability.

Specifications involving several objects. Multi-party session types [3,24]
specify protocols with more than two participants. It would be interesting to
adapt that theory into a type system for more complex patterns of object usage.

8 Conclusions

We have extended existing work on session types for object-oriented languages by
allowing the implementation of a session to be divided between several methods
which can be called independently. This supports a modular approach which is
absent from previous work. Technically, it is achieved by integrating session types
for communication channels and a static type system for non-uniform objects.
A session-typed channel is one kind of non-uniform object, but objects whose
fields are non-uniform are also, in general, non-uniform. Typing guarantees that
the sequence of messages on every channel, and the sequence of method calls on
every non-uniform object, satisfy specifications expressed as session types.

We have formalized the syntax, operational semantics and static type system
of a core distributed class-based object-oriented language incorporating these
ideas. Correctness of the type system is expressed by a type safety theorem. The
type system includes a form of typestates and uses simple linear type theory
to guarantee unique ownership of non-uniform objects. Somewhat unusually, it
allows the state of an object after a method call to depend on the result of the
call, if this is of an enumerated type.

We have illustrated our ideas with an example based on e-commerce, and
described a prototype implementation. By incorporating further standard ideas
from the related literature, it should be straightforward to extend the implemen-
tation to a larger and more practical language.

Acknowledgements. Caldeira, Ravara, and Vasconcelos were partially sup-
ported by the EU IST proactive initiative FET-Global Computing (project Sen-
soria, IST-2005-16004), and by the Portuguese FCT (via SFRH/BSAB/757/2007,
and project Space-Time-Types, POSC/EIA /55582/2004). Ravara was also par-
tially supported by the UK EPSRC (EP/F037368/1 “Behavioural Types for
Object-Oriented Languages”). Gay was partially supported by the Security and
Quantum Information Group, Instituto de Telecomunicagoes, Portugal, and by
the UK EPSRC (EP/E065708/1 “Engineering Foundations of Web Services” and
EP/F037368/1). He thanks the University of Glasgow for the sabbatical leave
during which part of this research was done. Gesbert was supported by the UK
EPSRC (EP/E065708/1).

23

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

P. S. Almeida. Balloon types: Controlling sharing of state in data types. ECOOP,
Springer LNCS, 1241:32-59, 1997.

H. G. Baker. ‘Use-once’ variables and linear objects — storage management, re-
flection and multi-threading. ACM SIGPLAN Notices, 30(1):45-52, 1995.

E. Bonelli and A. Compagnoni. Multipoint session types for a distributed calculus.
TGC, Springer LNCS, 4912:240-256, 2007.

L. Caires. Spatial-behavioral types for concurrency and resource control in dis-
tributed systems. Theoretical Computer Science, 402(2-3):120-141, 2008.

S. Capecchi, M. Coppo, M. Dezani-Ciancaglini, S. Drossopoulou, and E. Giachino.
Amalgamating sessions and methods in object-oriented languages with generics.
Theoretical Computer Science, 2008. To appear.

. M. Carbone, K. Honda, and N. Yoshida. Structured global programming for com-

munication behaviour. ESOP, Springer LNCS, 4421:2-17, 2007.

S. Chaki, S. K. Rajamani, and J. Rehof. Types as models: model checking message-
passing programs. POPL, ACM SIGPLAN Notices, 37(1):45-57, 2002.

D. G. Clarke, J. M. Potter, and J. Noble. Ownership types for flexible alias pro-
tection. OOPSLA, ACM SIGPLAN Notices, 33(10):48-64, 1998.

F. Damiani, E. Giachino, P. Giannini, and S. Drossopoulou. A type safe state
abstraction for coordination in Java-like languages. Acta Informatica, 45(7-8):479—
536, 2008.

R. DeLine and M. Fahndrich. Enforcing high-level protocols in low-level software.
PLDI, ACM SIGPLAN Notices, 36(5):59-69, 2001.

R. DeLine and M. Fahndrich. The Fugue protocol checker: is your software
Baroque? Technical Report MSR-TR-2004-07, Microsoft Research, 2004.

M. Dezani-Ciancaglini, S. Drossopoulou, E. Giachino, and N. Yoshida. Bounded
session types for object-oriented languages. FMCO, LNCS, 4709:207-245, 2007.
M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopolou. Session types
for object-oriented languages. ECOOP, Springer LNCS, 4067:328—-352, 2006.

M. Dezani-Ciancaglini, N. Yoshida, A. Ahern, and S. Drossopolou. A distributed
object-oriented language with session types. TGC, LNCS, 3705:299-318, 2005.
M. Fahndrich, M. Aiken, C. Hawblitzel, O. Hodson, G. Hunt, J. R. Larus, and
S. Levi. Language support for fast and reliable message-based communication in
Singularity OS. In FuroSys. ACM, 2006.

M. Fahndrich and R. DeLine. Adoption and focus: practical linear types for im-
perative programming. PLDI, ACM SIGPLAN Notices, 37(5):13-24, 2002.

M. Féahndrich and R. DeLine. Typestates for objects. ESOP, Springer LNCS,
3086:465-490, 2004.

J. S. Foster, T. Terauchi, and A. Aiken. Flow-sensitive type qualifiers. PLDI, ACM
SIGPLAN Notices, 37(5):1-12, 2002.

S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2/3):191-225, 2005.

S. J. Gay, A. Ravara, and V. T. Vasconcelos. Session types for inter-process com-
munication. Technical Report TR-2003-133, Comp. Sci., Univ. Glasgow, 2003.

S. J. Gay and V. T. Vasconcelos. Linear type theory for asynchronous session types.
www.dcs.gla.ac.uk/"simon/publications/Lin-Async.pdf. Submitted, 2008.

D. Grossman, G. Morrisett, T. Jim, M. Hicks, Y. Wang, and J. Cheney.
Region-based memory management in Cyclone. PLDI, ACM SIGPLAN Notices,
37(5):282-293, 2002.

24

23

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.
38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

J. Hogg. Islands: aliasing protection in object-oriented languages. OOPSLA, ACM
SIGPLAN Notices, 26(11):271-285, 1991.

K. Honda, N. Yoshida, and M. Carbone. Multiparty asynchronous session types.
POPL, ACM SIGPLAN Notices, 43(1):273-284, 2008.

K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type disci-
pline for structured communication-based programming. ESOP, Springer LNCS,
1381:122-138, 1998.

R. Hu, N. Yoshida, and K. Honda. Session-based distributed programming in Java.
ECOOP, Springer LNCS, 5142:516-541, 2008.

A. Tgarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1-3):121-163, 2004.

A. Tgarashi and N. Kobayashi. Resource usage analysis. ACM Trans. on Program-
ming Languages and Systems, 27(2):264-313, 2005.

N. Kobayashi. Type-based information flow analysis for the pi-calculus. Acta
Informatica, 42(4-5):291-347, 2005.

N. Kobayashi, K. Suenaga, and L. Wischik. Resource usage analysis for the 7-
calculus. Logical Methods in Computer Science, 2(3:4):1-42, 2006.

F. Militao. Yak programming language. ctp.di.fct.unl.pt/yak, 2008.

D. Mostrous and N. Yoshida. A session object calculus for structured
communication-based programming. www.doc.ic.ac.uk/ mostrous/sesobj.pdf.
Submitted, 2008.

M. Neubauer and P. Thiemann. An implementation of session types. PADL,
Springer LNCS, 3057:56-70, 2004.

O. Nierstrasz. Regular types for active objects. In Object-Oriented Software Com-
position, pages 99-121. Prentice Hall, 1995.

N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: an extensible compiler
framework for Java. CC, Springer LNCS, 2622, 2003.

J. Ostlund, T. Wrigstad, D. Clarke, and B. Akerblom. Ownership, uniqueness and
immutability. In IWACO (ECOOP workshop), 2007.

B. C. Pierce. Types and Programming Languages. MIT Press, 2002.

R. Pucella and J. A. Tov. Haskell session types with (almost) no class. In Proceed-
ings, 1st ACM SIGPLAN symposium on Haskell, pages 25-36. ACM, 2008.

F. Puntigam. State inference for dynamically changing interfaces. Computer Lan-
guages, 27:163-202, 2002.

F. Puntigam and C. Peter. Types for active objects with static deadlock prevention.
Fundamenta Informaticae, 49:1-27, 2001.

A. Ravara and V. T. Vasconcelos. Typing non-uniform concurrent objects. CON-
CUR, Springer LNCS, 1877:474—488, 2000.

K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. PARLE, Springer LNCS, 817, 1994.

A. Vallecillo, V. T. Vasconcelos, and A. Ravara. Typing the behavior of software
components using session types. Fundamenta Informaticae, 73(4):583-598, 2006.
V. T. Vasconcelos, S. J. Gay, and A. Ravara. Typechecking a multithreaded func-
tional language with session types. Theoret. Comp. Sci., 368(1-2):64-87, 2006.
V. T. Vasconcelos, S. J. Gay, A. Ravara, and N. Gesbert. Dynamic interfaces.
www.dcs.gla.ac.uk/"simon/publications/Dyn-Int.pdf. FOOL, 2009.

V. T. Vasconcelos, A. Ravara, and S. J. Gay. Session types for functional multi-
threading. CONCUR, Springer LNCS, 3170:497-511, 2004.

A. K. Wright and M. Felleisen. A syntactic approach to type soundness. Informa-
tion and Computation, 115(1):38-94, 1994.

25

