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Abstract

Static analysis techniques based on session types discern concurrent programs that ensure
the fidelity of protocol sessions – for each input (output) end point of a session there is exactly
an output (input) end point available – while maintaining a good expressiveness that allows
to represent the standard π-calculus and several typing disciplines. More advanced type
systems, enforcing stronger properties as deadlock-freedom or even progress, sensibly reduce
the set of typed processes, thus mining the expressiveness of the analysis. Herein, we propose
a first step towards a compromise solution to this problem: we develop a session based type
checking algorithm that releases some deadlocks (when co-actions on the same channel occur
in sequence in a thread). This procedure may help the software development process: the
typing algorithm detects a deadlock, but instead of rejecting the code, fixes it by looking into
the session types and producing new safe code that obeys the protocols and is deadlock-free.

1 Introduction

Background and related work. Session types allow a concise description of protocols by
detailing the sequence of messages involved in each particular run of the protocol [19, 20, 28].
Introduced for a dialect of the π-calculus of Milner et al. [25], the concept has been transferred
to different realms, including functional [15, 26, 27, 29, 30] and object-oriented programming [6,
10, 11, 13, 21], and even to operating systems [12].1 The most interesting property is type-safety,
which ensures that well-typed processes cannot go wrong in the sense that they do not reach
neither the usual data errors, as those produced in this case by the use of base values as channels,
nor communication errors, as those generated by two parallel processes waiting in input on a same
session channel, or sending in output on the same session channel. An important feature is session
delegation, and consists in the capacity to pass on the processing of a session. This is relevant for
many purposes, e.g. it permits to design a FTP server that requires the presence of a daemon and
of a pool of threads that will serve the client’s request picked by the daemon [20].

While many session typing systems require a means to distinguish the two ends of a session
channel in order to preserve type soundness [10, 14, 33], recently the first author and Vasconcelos
have developed a session typing system [17, 18] that works on top of the standard π-calculus. The
main benefit is expressiveness: session delegation is described by the π-calculus communication
mechanism; type-disciplines based on session [14, 20] and linear [23] types can be embedded in
the framework.

A drawback of most of these systems is accepting processes that exhibit various forms of
deadlocks — although they guarantee type safety, they do not guarantee deadlock-freedom. For
that aim, several proposals appeared recently, guaranteeing progress by inspecting causality de-
pendencies in the processes [3, 4, 5, 7, 31]. Not surprisingly, these systems reduce the set of
typed processes, namely rejecting (as usual in static analysis, which is not complete) deadlock-free
processes.

∗Extended version of the submitted paper — the proofs of the main results are in the appendix.
1The interested reader may have look at a recent overview [9].



Aim of this work. Distributed programming is known to be very hard and one makes mistakes
by not taking into consideration all possible executions of the code. Therefore, to assist in the
software developing process, instead of simply rejecting a process that may contain a resource
self-holding deadlock (RSHDF , i.e., input and output on the same channel occur in sequence in
a given thread, an istance of Wait For deadlocks [8, 22]), we devise an algorithm that produces a
“fix” for this kind of deadlocked processes. This situation is easy to spot in a simple process, but
it is not so obvious when the two co-actions (input and output) occur far away from each other
in the code. Assisting the programmer in finding and solving these errors may lead to spare time
when debugging. The synthetised code can be submitted to the programmer that decides if the
”fix makes sense”.

Working with the standard π-calculus equipped with the Giunti and Vasconcelos type system,
we propose a compromise solution to the identified drawback: rather than require stronger condi-
tions for the analysis and type less processes, we devise a procedure that detects synchronisation
errors leading to RSHDF processes, while automatically generating type-safe, deadlock-free, code
that mimics the process behaviour, as described by session types. The mechanism crucially relies
on the help of types to infer this kind of sequentialisation errors made by the programmer in coding
sessions. More specifically, our typing algorithm takes in input a type environment Γ and process
P , decides whenever P behaves as prescribed by Γ, and if P is well-typed, although (resource
self-holding) deadlocked, then it generates a new, error-free, process, obtained by “disentangling”
P , i.e., inputs and outputs on the same channel are no longer in the same thread, and thus, the
deadlock is released.

In short, following the behaviour of a process as specified by a session type environment,
the algorithm uses a process transformation function that puts in parallel threaded sequences
of input/output in the same channels. The resulting process faithfully represents the intended
protocol of the original one (according to the session types), is type safe, and does not present the
referred deadlocks on those channels.

This idea may be applied in session based systems developed to high-level languages, providing
further support to the software development process. We tested our method, implementing the
algorithm (in Standard ML), and analysing several (complex) examples [1].

Plan of the paper. In Section 2, we introduce a typed pi calculus where sessions obey to a
linear discipline, and review the soundness and safety properties of the typing system. Then,
in Section 3, we define the class of resource-holding and of deadlock-free processes, showing the
latter class closed under reduction. In Section 4, we present an untyped pi calculus with decorated
channels: as decorations are based on types, we do not rely on typing contexts and systems in
order to identify safe processes. In Section 5, we devise a split-free type checking algorithm that
projects typed processes into decorated processes. The aim is two-fold: (i) assess the typability
of a typed process given a context; and (ii) generate untyped, resource-deadlock free code. We
conclude the paper presenting the main results concerning the algorithm: soundness — if the
algorithm accepts a process, then the process is typed by the split-based system of Section 2; and
any process generated by the algorithm: (i) does not reach errors during the computation; (ii) is
resource-holding deadlock-free.

2 The source language: π-calculus with session types

We present first the syntax and the (static and dynamic) semantics of the monadic, choice-free,
synchronous π-calculus, equipped with session types, our source language. Then we show a type
checking derivation, and conclude stating the main properties ensured by the type system.

Syntax of processes and types. Let P,Q range over the set of processes P, T range over
types T and R,S over session types, and Γ range over typing contexts (or environments) G, which
are maps from variables x, y, z to types; values, which are variables and the boolean constants true
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Syntax of typed processes

T ::= Types P,Q ::= Processes

(S, S) session x〈v〉.P output

bool boolean x(y).P input

S ::= End point (νy : T )P restriction

?T.S input if v thenP elseQ conditional

!T.S output (P | Q) composition

end termination !P replication

v ::= Values 0 inaction

true, false constant

x, y variable

Operator for type progression

next(?T.S) = S next(!T.S) = S next(end) = end next((S1, S2)) = (next(S1), next(S2))

Duality and balance of session types

?T.S =!T.S !T.S =?T.S end = end bal((S, S))

Rules for structural congruence

(P | Q) ≡ (Q | P ) ((P1 | P2) | P3) ≡ (P1 | (P2 | P3)) (P | 0) ≡ P !P ≡ (P |!P )

((νy : T )P | Q) ≡ (νy : T )(P | Q), if y /∈ fv(Q) (νy : (end, end))0 ≡ 0

(νy1 : T1)(νy2 : T2)P ≡ (νy2 : T2)(νy1 : T1)P P ≡ Q, if P =α Q

Rules for reduction

(x〈v〉.P | x(y).Q)
x
−→ (P | Q[v/y]) [R-Com]

P
y
−→ P ′ next(T ) = T ′

(νy : T )P
τ
−→ (νy : T ′)P ′

P
µ
−→ P ′ µ 6= y

(νy : T )P
µ
−→ (νy : T )P ′

[R-ResB],[R-Res]

if true thenP elseQ
τ
−→ P if false thenP elseQ

τ
−→ Q [R-IfT],[R-IfF]

P
µ
−→ P ′

(P | Q)
µ
−→ (P ′ | Q)

P ≡ Q Q
µ
−→ Q′ Q′ ≡ P ′

P
µ
−→ P ′

[R-Par],[R-Struct]

Figure 1: Typed π-calculus

and false, are ranged by v, w. We consider types T composed by channel types of the form (R,S),
where R and S are session types, each describing an end point of a session, and the boolean type.
An end point of a session S finishes with the type end. A type of the form !T.S describes a channel
that is used exactly once to send a value of type T , and then is used as prescribed by S, following
a linear discipline. Similarly, ?T.S describes a channel that is used exactly once to receive a value
of type T , and then is used as imposed by S. The type end describes an end point of a session on
which no further interaction is possible.

The syntax of processes is standard (cf. [25]), but for restriction for which we use type anno-
tation. The formal definition of the language is in Figure 1. Considering the usual notions of free
and bound variables, α-conversion, as well as of substitution, cf. [24], we use fv(P ) and bv(P )
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to indicate respectively the set of free and bound variables of P , which we assume disjoint by
following Barendregt’s variable convention [2], and let var(P ) be the union of fv(P ) and bv(P ). A
process P is closed whenever var(P ) = bv(P ).

The processes of our language are thus synchronous output and input processes, in the forms
x〈v〉.P and x(y).P : the former sends a value v over channel x to P , the latter waits on x for a
value v that will substitute the bound occurence of y in P , noted P [v/y]. Notice that substitution
is not a total function; it is not defined, e.g., for (y〈false〉)[true/y]. When writing P [v/y] we assume
that the substitution operation involved is defined. The restricted process (νy : T )P provides for
create a variable y decorated with the type T ; the occurrences of y in P are bound. Boolean values
can be contrasted by means of if-then-else. The remaining processes are parallel composition,
replication, and inaction. We ignore trailing 0’s and write (νx̃ : T̃ )P as a shortcut for the process
(νx̃1 : T1) · · · (νx̃n : Tn)P , for n ≥ 0.

Dynamic semantics: reduction. Following standard lines, we describe the operational seman-
tics of processes through a reduction relation, and allow to rearrange processes with structural
congruence. The congruence rules are standard. The first rule in the second line permit to open
the scope of a restriction: due to variable convention, y bound in (νy : T )P , cannot be free in Q.
The second rule in the second line allows to remove a restriction, provided that the session type
has been consumed. The rule in the third line allows to exchange the order of bindings.

The reduction rules are also standard. The only variation is that we record, as a label of the
reduction arrow, the variable where the (free) synchronisation takes place (similarly to [14, 23]);
this is convenient, and has no semantic impact, allowing to represent the progression of type
decorations in restricted processes. Let µ range over variables x, y and the symbol τ , which we
assume reserved (not occurring in the syntax of processes). Moreover, let ⇒ indicate the reflexive

and transitive closure of
µ
−→ , whenever the labels are irrelevant.

Static semantics: type system. To represent type progression, we consider a next operator
over types to unfold sessions, and extend the function to typing contexts by letting next(Γ, τ) = Γ,
and next(Γ, x) = Γ1, x : next(T ) whenever Γ = Γ1, x : T . We make use of predicates on types and
contexts, balanced and terminated (noted respectively bal and term). Balanced contexts are those
of our interest, as they preserve subject-reduction: processes must send and receive values of the
same type on both end points of a same channel. Balancing relies on the standard duality notion
of session types; we let S be the dual of S. Note that booleans are not balanced, as we do not
consider open processes of the form if y thenP elseQ, or closed processes of the form (νx : bool)P .
Termination holds for boolean and end types. A context Γ is balanced whenever bal(T ) for all
Γ(x) = T ; Γ is terminated whenever term(T ) for all Γ(x) = T .

Figure 2 contains a typing system with judgements of the form Γ ` P , where we assume that
fv(P ) ⊆ dom(Γ) and bv(P )∩dom(Γ) = ∅. The type system uses a notion of type and context split
(cf. Walker’s chapter in Pierce’s book [32]), noted ◦. Formally, split is a three-argument relation.
We write Γ1 ◦ Γ2 to refer to a type environment Γ such that Γ = Γ1 ◦ Γ2. We extend the operator
to type environments having identical domain. We use infix notation and write S ◦ R, T1 ◦ T2,
and Γ1 ◦Γ2 to indicate respectively the composition of the end points S,R, of types T1, T2, and of
environments Γ1,Γ2, whenever defined.

The typing rules are inspired by the system of Giunti and Vasconcelos [17], and represent a
subsystem of its recent re-formulation [18]. Rule [T-Var] is for typing values and requires the
environment pruned from the typed entry to be terminated, so to enforce that linear assumptions
are used. Rule [T-Bool] is for typing boolean constants. We have left and right rules for typing
input and output processes, corresponding to the cases whether the type for the prefix is on the
left or on the right. Rule [T-In-l] types an input channel x by using the end point type ?T.S on
the left of a type (?T.S,R). If x is typed with ?T.S, we know that the bound variable y is of
type T , and we type P under the extra assumption y : T . Equally important is the fact that the
continuation uses channel x at continuation type (S,R), that is, process x(y).P uses channel x
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Type split rules

S = S ◦ end S = end ◦ S
R = R1 ◦R2 S = S1 ◦ S2

(R,S) = (R1, S1) ◦ (R2, S2)
bool = bool ◦ bool

Context split rules

∅ = ∅ ◦ ∅ Γ = Γ1 ◦ Γ2 T = T1 ◦ T2
Γ, x : T = (Γ1, x : T1) ◦ (Γ2, x : T2)

Termination of session types and contexts

term(bool) term((end, end))

term(∅) term(Γ, x : T ) : − term(Γ), term(T )

Typing rules for values

term(Γ)

Γ ` true, false : bool

term(Γ)

Γ, x : T ` x : T
[T-Bool],[T-Var]

Typing rules for processes

Γ, x : (S,R), y : T ` P
Γ, x : (?T.S,R) ` x(y).P

Γ, x : (R,S), y : T ` P
Γ, x : (R, ?T.S) ` x(y).P

[T-In-l],[T-In-r]

Γ1 ` v : T Γ2, x : (S,R) ` P
Γ1 ◦ (Γ2, x : (!T.S,R)) ` x〈v〉.P

Γ1 ` v : T Γ2, x : (R,S) ` P
Γ1 ◦ (Γ2, x : (R, !T.S)) ` x〈v〉.P

[T-Out-l],[T-Out-r]

Γ1 ` v : bool term(Γ2) Γ2 ` P Γ2 ` Q
Γ1 ◦ Γ2 ` if v thenP elseQ

[T-If]

Γ, x : T ` P bal(T )

Γ ` (νx : T )P

Γ ` P term(Γ)

Γ `!P
[T-Res],[T-Repl]

Γ1 ` P1 Γ2 ` P2

Γ1 ◦ Γ2 ` P1 | P2

term(Γ)

Γ ` 0
[T-Par],[T-Inact]

Figure 2: Type system

of type (?T.S,R) whereas P must use the same channel this time of type (S,R). Rule [T-In-r]
types an input x described by a session type (S, ?T.R) by following the same mechanism. In the
typing rules for output we account for sending a variable that can have a channel or a session
type; in the latter case we have delegation of one or both ends of the session. To illustrate the
delegation mechanism we describe the rule for typing an output with the left end point of a channel
type, [T-Out-l]; the remaining rules follow a similar schema. Rule [T-Out-l] allows using an
environment Γ = Γ1◦(Γ2, x : (!T.S,R)) to send a value v of type T on x and to continue as P , given
that Γ1 ` v : T , and Γ2, x : (S,R) ` P . For instance if T = (?T ′.S, end) and Γ(v) = (?T ′.S, !T ′.R)
then v is both sent at type T and used of type (end, !T ′.R) in the continuation P . Rule [T-Out-r]
describes the same mechanism for an output channel typed with the right end point. Rule [T-If]
types an if-then-else by requiring that the contrasted value has a boolean type. The environment
that types the two branches of the if-then-else must be terminated, to simplify the algorithm’s
task of finding the sequential prefix to be disentangled; we will further discuss this issue in the
conclusions. Rule [T-Res] is used to type a restriction, what is possible only if the decoration type
is balanced. To type a replication with rule [T-Repl] we require the context to be terminated,
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to rule out multiple uses of a linear type. The last two rules, [T-Par] and [T-Inact], permit to
type respectively parallel composition and inaction.

Type checking derivation by example. Take a process whose behaviour consists in printing
“ok” after two exchanges, and then continue as P1.

P
def
= x(y).if y thenx〈ok〉 | x〈true〉.x(z).printf〈z〉.P1 (1)

This process is typed by assigning to x a type like T
def
= (?bool.!string.end, !bool.?string.end),

where type string is represented by (end, end), a type that conveys no i/o capabilities. To build

a type derivaton for P , we split T into SL
def
= (?bool.!string.end, end) (on the left) and SR

def
=

(end, !bool.?string.end) (on the right). A (simplified) formal derivation for the left thread follows,

where S′L
def
= !string.end and ΓL

def
= Γ′, x : (SL, end) are respectively the left continuation type of x

and the type environment for the left thread of P . We also assume that Γ′(ok) = string, that Γ′

does not contain session types in its range, and use a simplified version of the rule for if-then-else
([T-If]) that avoids using split.

([T-Var])
Γ′, x : (end, end), y : bool ` ok : string

([T-Inact])
Γ′, x : (end, end), y : bool ` 0

([T-Out-l])
Γ′, x : (S′L, end), y : bool ` x〈ok〉

([T-If])
Γ′, x : (S′L, end), y : bool ` if y thenx〈ok〉

([T-In-l])
ΓL ` x(y).if y thenx〈ok〉

By letting ΓR
def
= Γ′′, x : (end, SR) be the type environment for the right thread of P , we have

a similar derivation: ΓR ` x〈true〉.x(z).printf〈z〉.P1. We conclude by finding Γ such that both
Γ(x) = T and Γ = ΓL ◦ ΓR: this let us apply the rule for parallel composition and obtain Γ ` P .

Results. The type system guarantees the usual type preservation and safety properties — basic
values are not used as channels (for synchronisation) and channels are always used linearly —
when considering balanced contexts, i.e., contexts mapping variables to balanced types (processes
must send and receive values of the same type on both end points of a same channel). The proof
of these results can be found in a recent work of Giunti [16].

Theorem 2.1 (Subject reduction). Let Γ be balanced. If Γ ` P and P ⇒ P ′ then there is Γ′

balanced such that Γ′ ` P ′.

We now define erroneous processes. As explained above, our system filters processes of the form
ifx thenP elseQ that do not occur under an input prefix on x, or errors arising from problems in
synchronisation, as in the process x〈true〉.P | x(y).y(z).P , where true can be send through [R-Com]
but the substitution is not defined. Other errors are due to non-linear use of channels, as in the
parallel compositions x〈v〉.P1 | x〈w〉.P2 and x(y).P1 | x(y).P2.

Definition 2.2 (Error Process). A process R is a error, if it is of the form R ≡ (νz̃ : T̃ )(P | Q),
for some x, v and w, where:

1. P = x〈v〉.P1 | x〈w〉.P2, or

2. P = x(y).P1 | x(z).P2.

Lemma 2.3. If Γ ` P then P is not an error.

Theorem 2.4 (Type Safety). If Γ ` P with Γ balanced, and P ⇒ Q, then Q is not an error.

In short, although session type systems accept processes with non-deterministic behaviour
(due to the behaviour of parallel composition), the behaviour of each session is deterministic, as
communication channels (used for synchronisation) must be used linearly. In particular, a session
type system rules out a process like a(x).0 | a〈v〉.a(x).0 | a〈u〉, since the communication order
cannot be guaranteed, but accepts deadlocks like a〈v〉.a(x).0, a(x).a〈x〉, or even like a(x).b〈u〉 |
b(x).a〈v〉.
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3 Resource-Holding Deadlocks

The aim now is to introduce a syntactic (untyped) characterisation of processes that do not
contain deadlocks due to the self-holding of resources; this is a simplified variant of Hold and Wait
or Resource-Holding deadlocks. Our formulation of the property is such that it is preserved by
reduction, and it has a simple, decidable, proof technique to verify if the property holds for a
given process. In Section 6 we discuss how we envision to tackle the general deadlock resolution
problem for the π-calculus. We motivate first the formal definition through examples. Then
present it rigourously and develop the proof technique.

Resource self-holding deadlocks: motivation. In the following we analyse balanced, typable,
self-hold and wait deadlocks while leaving type decorations implicit. Deadlocked processes like
(νa)(νb)(a(x).b〈true〉 | b(y).a〈false〉) are not resource self-holding deadlocks, and are (still) not
addressed by our analysis technique. Intuitively, a process exhibits a resource self-holding deadlock
if both ends of a (private) channel appear in sequence — communication on that channel is not
possible. The basic examples are the processes (νa) a〈true〉.a(y) and (νa) a(y).a〈true〉, which
contain a resource self-holding deadlock, since no communication on a can occur, as the co-actions
appear in sequence, instead of in parallel. The obvious ”fix” is the process (νa) (a(y) | a〈true〉).

More intricate resource self-holding deadlocks Consider the following process.

b〈false〉.(a(x).b(y) | a〈true〉)

This process is deadlocked, since it is typed by a balanced context that requires both end points
of each communication to be used linearly, thus disallowing any further use of the channels to
parallel threads.2 When such a context is given to our algorithm (together with the process), the
result is, simplifying now to help the presentation, the process below.

(b〈false〉.(a(x) | a〈true〉) | b(y)

Our algorithm solves this type of deadlocks, but does not deal for now with delicate situations
involving binders. Consider the tyable process

a(x).b(y).a〈y〉.(x() | x〈〉) | b〈c〉.

We cannot simply put the output on a in parallel, as the variable y would escape its scope. Thus,
we prevent the resolution function to be launched, and thus the algorithm accepts the process
without modifying it.

Resource self-holding deadlocks: formally. Consider the following auxiliary notions.

• a construct α of the form x〈v〉 or x(y) is an x-prefix ; a process of the form α.Q, where α is
an x-prefix, is an x-process.

• As usual, contexts, ranged by C, are processes containing a hole, noted ‘·’.3 We write C[P ]
for the process obtained by replacing the occurrence of the hole in C[·] with the process P ,
and call contexts to both processes C[·] and type environments Γ.

• The subject variables of P , noted subjv(P ), is the multiset with the occurrences of x ∈ var(P )
such that P = C[Q], for some x, Q, and C, with Q being an x-process. Likewise, the object
variables of P , noted objv(P ), is the multiset with the occurrences of y ∈ var(P ) such that
P = C[x〈y〉.Q], for some x, Q, and C.

Let e be multiset intersection, d multiset union, b multiset inclusion, and \ multiset difference.

2While most of the examples do not require the use of restriction, we limit the scope of channels to help the
comprehension of the reader.

3To define the syntax of contexts, simply add to the production of processes the case of the hole.
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Definition 3.1 (Parallel and Sequential Variables).

1. The parallel variables of a process P , noted pv(P ), is the following submultiset of subjv(P ).

{x ∈ subjv(P ) : ∃C,Q1, Q2 .P ≡ C[Q1 | Q2] and x ∈ subjv(Q1) e subjv(Q2)}

2. The sequential variables of a process P , noted sv(P ), is sv(P )
def
= subjv(P )\ pv(P ).

Parallel variables are those that occur as subjects in different threads. A process does not
contain resource-holding deadlocks if every channel has a matching pair in another thread, giving
it a chance to interact. The definition below formalises this intuition, where we let {x, x, . . . } be
a countably infinite multiset of x.

Definition 3.2 (Resource Self-Holding Deadlock Freedom). A process P is Resource Self-Holding
Deadlock-Free (RSHDF), if subjv(P ) = pv(P ).

Lemma 3.3. P is RSHDF if, and only if, sv(P ) = ∅.

Example 3.4. Consider the composition Q of the process P on page 6 (process 1) with a process
Stdout; let {x, printf} e subjv(P1) = ∅ and {x, printf} e subjv(Stdout) = ∅

Q
def
= x(y).if y thenx〈ok〉 | x〈true〉.x(z).printf〈z〉.P1 | printf(z).Stdout

If sv(P1 | Stdout) = ∅, then Q is RSHDF since

subjv(Q) = {x, x, x, x, printf, printf} d subjv(P1) d subjv(Stdout)

pv(Q) = {x, x, x, x, printf, printf} d pv(P1 | Stdout) .

Whenever sv(P1 | Stdout) = ∅, then P is RSHDF .

To show that a process P is not RSHDF it suffices to find a channel x such that there is no
way of presenting P as C[Q1 | Q2] with x in both subjv(Q1) and subjv(Q2). To illustrate, assume
x 6∈ subjv(Stdout) and take

P ′
def
= x(y).x〈true〉.if y thenx〈ok〉.x(z).printf〈z〉.P1 | printf(z).Stdout (2)

Since there is no such C[·], then P ′ is not RSHDF ; it is however typable by a balanced context.

The algorithm, informally. To provide an intuition to our methodology, we illustrate the
approach on process P ′ (above).

Because of the concurrent nature of types of the form (R,S) (where each type represents the
communication behaviour of one end point of a given channel), the same environment Γ considered
to type process 1 (in page 6) also accepts the process P ′.

Our split-free type checking algorithm (presented in Section 5), based on functional patterns,
detects that there is an anomaly, since the inner call for the sub-process

x〈true〉.if y thenx〈ok〉.x(z).printf〈z〉.P1 ,

which receives in input the type (S′L, SR) for x (cf. Page 6), returns in output the type (end, end);
this means that both end points of x have been consumed: that is, x is not left available at type
(end, SR) to the next thread (as in the call for type checking the continuation if y thenx〈ok〉 of P ).
We fix this by generating new code for P ′ that mimics the behaviour described by its session type,
which is, in principle, the desired behaviour of P .

The basic idea is the following: if while analysing a prefixed process (input or output), we
find in a subprocess the corresponding end point (output or input), when there are no bindings
involved we take it out and put it in parallel. Since we ”chopped” a sequential process into a
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parallel one, we need a ”forwarder” to link the pieces. Thus, the type-assisted translation [[·]] maps
a typed sequential process into a parallel process, using a forwarder (r):4

[[P ′]]
def
= (νr)(x(u).r〈u〉 | r(y).if y then [[x〈ok〉.x(z).printf〈z〉.P1]] | x〈true〉)

Notice this works because the output on x carries a value (and it would also work with a free
variable), but obviously the transformation cannot be applied so simply when the output carries
bound channels, like in x(y).z(w).x〈w〉.

After some confluent reduction steps, the boolean value sent over the occurrence of x described
by the right type of T (that is SR) is assigned to the bound variable in the occurrence of x described
by the left type of T (that is SL):

[[P ′]]⇒ if true then [[x〈ok〉.x(z).printf〈z〉.P1]]

The last (confluent) steps assign to the bound variable in the occurrence of x described by its right
continuation type the string sent in the occurrence of x described by its left continuation type:

[[x〈ok〉.x(z).printf〈z〉.P1]]⇒ P1[ok/z]

Results. The main result of this section is that the RSHDF property is closed under reduction
(cf. Theorem 3.7). It is useful to analyse the shape of types appearing in the derivations of our
interest. The invariant we rely on is that if a session type provides for sending/receiving a variable,
then the type of the payload is balanced (i.e., when a process outputs a channel with an ”active”
session, it delegates both end points).

We have seen that balanced types guarantee subject reduction and type safety. Still, a balanced
type permits to type a input process that waits for an unbalanced variable, what is useless since
the process cannot receive such variable from a balanced process. To refine our analysis on type
derivation trees, we identify the class of semi-balanced types T , noted sbal(T ), of the form (S, end),
(end, S), and (S, S), where whenever S =?T.R or S =!T.R type T must be balanced or equal to
bool, and types (R, end), (end, R) and (R,R) must be semi-balanced.

We first define the semi-balanced predicate over types. Semi-balanced contexts are those
mapping variables to semi-balanced types; as we show later, a derivation starting with a semi-
balanced context contains only semi-balanced types.

Definition 3.5. A type T is semi-balanced, noted sbal(T ), if

sbal(bool).

sbal(T ) :- bal(T ).

sbal(end, end).

sbal((?T.S, end)) :- sbal(T ), sbal((S, end)).

sbal((?T.S, !T.R)) :- R = S, sbal(T ), sbal((S,R)).

sbal((!T.S, end)) :- sbal(T ), sbal((S, end)).

sbal((!T.S, ?T.R)) :- R = S, sbal(T ), sbal((S,R)).

sbal((end, !T.S)) :- sbal(T ), sbal((end, S)).

With small modifications we inherit the following result from Theorem 2.1, and use it in the
proof of Theorem 3.7 below, which guarantees the of closure of RSHDF under reduction.

Corollary 3.6. If Γ ` P , Γ is semi-balanced, and P ⇒ P ′, then there is a semi-balanced Γ′ such
that Γ′ ` P ′.

Notice that semi-balanced contexts force a process to delegate both end points of a channel,
when sending it on another channel.

Theorem 3.7 (RSHDF preservation). If Γ ` P with Γ semi-balanced, P is RSHDF, and P ⇒ P ′,
then P ′ is RSHDF.

4The translation (Figure 7) is slightly more complicated, using semaphores to impose, in the source and in the
translated processes, the same order of communication.
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4 The target language: decorated π-calculus

We use this new language in the type-checking and deadlock resolution algorithm. We take a
constructive approach: the algorithm takes a typing context and a process and while building the
type derivation creates a new process in the target language, decorating the channels with the
types used up until that point. In fact, it transforms linearly used session channels into linear
channels that synchronise in the same order, guaranteing absence of races, as one session channel
is mapped into a tuple of linear channels.

When during type checking the algorithm detects a (possible) deadlock, it launches the dead-
lock release function on the decorated version of the original process. Since we deal with sequential
threads locally, transfering information from the global typing context to the channels occuring in
that thread, the algorithm is compositional and linear in the size of the input process.

Syntax and semantics of the decorated π-calculus. In this section we introduce a variant
of the polyadic π-calculus [24] where channels are decorated with session types.

The algorithm projects typed processes into decorated processes, as we explain ahead. Let F
be the set of decorated variables. The set of decorated processes H, ranged by H,K, is defined in
Figure 3 by adorning processes of Section 2. The decoration types that we consider, ranged by σ, ρ,
are bool, the end point types S of Section 2, and type >, which can be seen as a representation
of type (end, end); in fact, we will never use end to decore channels, and rely on > to decorate
channels carrying void capabilities, as we will explain below. Termination on types σ is defined
in the expected way, considering > terminated, and tuples xσ1

, . . . , xσn
(with n ≥ 1) of distinct

decorations for the same variable (i.e., i 6= j implies σi 6= σj , for all i, j ∈ 1, . . . , n).
Let the substitution of a prefix φ with a value ω of arity one in P be noted as P [ω/φ]. Whenever

ω = xσ1 , . . . xσn and φ̃ = φ1, . . . , φn, we write P [ω/φ̃] to indicate the process P [xσ1/φ1, . . . , xσn/φn].
It is convenient to define free and bound variables of a process, noted respectively fv(H) and
bv(H), in terms of multisets of prefixes. We overload the notation and use “,” to separate the
entries of a multiset, and “\” to remove all occurrences of an entry in a multiset. We assume a
function occurs that given a prefix ϕ and a multiset φ, . . . , ψ returns the number of occurrences

of the prefix in the multiset. Let var(H)
def
= fv(H) d bv(H), if fv(H) e bv(H) = ∅ (var(H) is

the disjoint union of fv(H) and bv(H)). We abuse the notation and write φ ∈ var(H) whenever
occurs(φ, var(H)) > 0, and φ 6∈ var(H) otherwise. We often avoid the trailing ’0’ and use (νζ̃)H as
a short of (νyσ1

, . . . , yσn
) · · · (νzρ1 , . . . , zρm)H, whenever the identity of the bound tuples is irrel-

evant. The main change to the π-calculus semantics [24] is the communication rule, [R-DCom]:

two processes exchange a value only if the two end points of the channel are decorated with dual
types; this is akin to the polarity-based communication [14], and can be easily implemented by
pattern matching of decorations. As in Figure 1, we record the prefix φ on the arrow, which is of
help for practical purposes and has no semantic impact. We use η to range over φ and τ actions,
and write H → K when the label is irrelevant. We have two rules for processes reducing under
restricted channels; in the left rule [R-DResL] the decorated variable xS which labels the free
reduction appears with an index i in the sequence of bindings under restriction, while its dual
appears in position j > i; in the right rule (which we omit) the two indexes are exchanged. The
remaining reduction rules are almost standard.

Sound decorations. Instead of relying on a type system to ensure safety, we exploit the decora-
tion of variables to characterise processes that do not reach errors during the computation (hence-
forth called sound processes). This characterisation leads to a static, syntax-directed checking
system. As we will show later, our algorithm converts well-typed processes into sound processes,
as one would expect, so we do not need a static type system for decorated processes.

First, we formalise trough function tp the projection of a π-calculus variable having balanced
type T , or type bool, into a tuple of decorated variables.
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Syntax of decorated processes

σ, ρ ::= Decoration Types H,K ::= Processes

bool boolean φ〈ω〉.H output

S end point φ(yσ1 , . . . , yσn).H input

> top (νyσ1 , . . . , yσn)H restriction

φ, ϕ ::= Prefixes ifω thenH elseK conditional

xσ decoration (H | K) composition

ω, ψ ::= Values !H replication

xσ1 , . . . , xσn tuple 0 inaction

true, false constant

Free and bound variables (cases omitted are homomorphic)

fv(0) = ∅ fv(φ〈ω〉.H) = {φ} d fv(H) , if ω = true, false

fv(φ〈yσ1 , . . . , yσn〉.H) = {φ} d (di=1,...,n{yσi}) d fv(H)

fv(φ(yσ1 , . . . , yσn).H) = {φ} d fv(H)\{yσ1 , . . . , yσn} fv((νyσ1 , . . . , yσn)H) = fv(H)\{yσ1 , . . . , yσn}

bv(φ(yσ1 , . . . , yσn).H) = bv((νyσ1 , . . . , yσn)H) = {yσ1 , . . . , yσn} d ({yσ1 , . . . , yσn} e fv(H)) d bv(H)

Rules for structural congruence

(H | K) ≡ (K | H) ((H1 | H2) | H3) ≡ (H1 | (H2 | H3)) (H | 0) ≡ H !H ≡ (H |!H)

((νyσ1
, . . . , yσn

)H | K) ≡ (νyσ1
, . . . , yσn

)(H | K), if {yσ1
, . . . , yσn

} e fv(K) = ∅
(νy>)0 ≡ 0 (νyσ1

, . . . , yσn
)(νzρ1 , . . . , zρm)H ≡ (νzρ1 , . . . , zρm)(νyσ1

, . . . , yσn
)H

H ≡ K, if H =α K, assuming that alpha-conversion preserves decorations:

φ(yσ1
, . . . , yσn

).H =α φ(zσ1
, . . . , zσn

).H[zσ1
/yσ1

, . . . , zσn
/yσn

], and

(νyσ1
, . . . , yσn

)H =α (νzσ1
, . . . , zσn

)H[zσ1
/yσ1

, . . . , zσn
/yσn

]

Rules for reduction

S1 = S2 φ̃ = yσ1
, . . . , yσn

|ω| = |φ̃|

(xS1
〈ω〉.H | xS2

(φ̃).K)
xS1

−−−→ (H | K[ω/φ̃])
[R-DCom]

1 ≤ i < j ≤ n σi = S σj = S H
yS
−−→ H ′

(νyσ1 , . . . , yσn)H
τ
−→ (νyσ1 , . . . , yσi−1 , yσi+1 , . . . , yσj−1 , yσj+1 , . . . yσn)H ′

[R-DResL]

H
η
−→ H ′ η 6∈ {yσ1 , . . . , yσn}

(νyσ1 , . . . , yσn)H
η
−→ (νyσ1 , . . . , yσn)H ′

[R-DRes]

if true thenH elseK
τ
−→ H if false thenH elseK

τ
−→ K [R-DIfT],[R-DIfF]

H
η
−→ H ′

(H | K)
η
−→ (H ′ | K)

H ≡ K K
η
−→ K ′ K ′ ≡ H ′

H
η
−→ H ′

[R-DPar],[R-DStruct]

Figure 3: Target language

Definition 4.1.

tp(y, bool) = ybool tp(y, (?T.S, !T.S)) = y?T.S , y!T.S , tp(y, (S, S))

tp(y, (!T.S, ?T.S)) = y!T.S , y?T.S , tp(y, (S, S)) tp(y, (end, end)) = y>
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The example illustrates the construction of decorations.

Example 4.2. Take the π-calculus process x(y) with x having end point type ?T.S and y hav-
ing type T = (!bool.end, ?bool.end). Its representation in decorated π is obtained by project-
ing y trough the call tp(y, T ), obtaining x?T.S(y!bool.end, y?bool.end, y>). Note that the decoration
with > permits to represent type (end, end), while preserving the unicity of decorations in tu-
ples of the form yσ1

, . . . , yσn
. Similarly, a process x〈y〉 with x having type !T.S and y hav-

ing type T , where T = (!bool.?bool.end, ?bool.!bool.end), is represented as x!T.S〈tp(y, T )〉, where
tp(y, T ) = y!bool.?bool.end, y?bool.!bool.end, y?bool.end, , y!bool.end, y>.

It is interesting to note that decorations allow a more precise characterisation of what is an
error: a process containing two processes prefixed with the same variable that do not synchronise.

Definition 4.3. A process of the form J ≡ (νς̃)(H | K) is an error, where

1. H = xS〈ω〉.H1 | xR〈ψ〉.H2, for some xS , xR, ω and ψ; or

2. H = xS(φ̃).H1 | xR(φ̃).H2, for some xS and xR; or

3. H = xS〈ω〉.H1 | xR(φ̃).H2, for some xS , xR, ω such that R 6= S.

Note that xS1
〈ω〉.H1 | xS2

〈ψ〉.H2 | xS2
(φ̃).H3 is an error, because of the first condition.

Sound processes H such that zend 6∈ var(H), for any z, are determined through five syntactic
conditions. First, we are interested only in process having valid decorations for the same variable,
i.e., types must form a chain (enforcing the sequential behaviour prescribed by the session types).

Definition 4.4 (Validity). A multiset of prefixes I is valid, noted valid(I), whenever it satisfies
the predicate below.

valid(I d {x?T.end}) :- xbool 6∈ I.
valid(I d {x?T.S} d {xS}) :- xbool 6∈ I.
valid(I d {x!T.end}) :- xbool 6∈ I.
valid(I d {x!T.S} d {xS}) :- xbool 6∈ I.

We say that a process H is valid whenever valid(var(H)).

Notice that, for example, process H = x!bool.!bool.end〈true〉 is not valid because x!bool.end 6∈
var(H), while H ′ = x!bool.end〈true〉 | ifxbool then 0 is not valid because {x!bool.end, xbool} b var(H ′);
in contrast, x?bool.end(ybool) is valid.

Based on decorations, we mimic the type system in Figure 1 and enforce send and receive of
values of the expected types by using a coherence inference system, noted `,5 that does not rely
on type contexts. This system not only checks the consistency between subject and object types,
but also guarantees balanced payload types. However, it is not equivalent to the type system,
as it does only part of its job. In particular, it does not enforce neither linearity nor sequential
behaviour. Those conditions are checked separately, in the Definitions 4.6 and 4.7 below.

The rules in Figure 4 inductively define the coherence inference system `.

Definition 4.5 (Coherence). We say that a process H is coherent, if ` H.

Linearity is a fundamental aspect of the session type-discipline. We can identify this property
by counting the occurrences of free and bound prefixes, and of their duals. Free session channels
must be used linearly and bound ones occur exactly twice: once in the binder and once in the
process underneath the binder.

5The symbol ` here denotes a unary predicate on decorated processes.
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T = (S, S) or T = bool ` H
` x?T.R(tp(y, T )).H

T = (S, S) or T = bool ` H
` x!T.R〈tp(y, T )〉.H

b = true, false ` H
` x!bool.S〈b〉.H

` H ` K
` ifxbool thenH elseK

b = true, false ` H ` K
` if b thenH elseK

T = (S, S) ` H
` (ν tp(x, T ))H

` H
`!H

` H ` K
` H | K

` 0

Figure 4: Coherence Inference System

Definition 4.6 (Linearity). A process H is linear if

1. occurs(xS , fv(H)) = 1 implies occurs(xS , fv(H)) = 1;

2. occurs(xσ, fv(H)) > 1 implies σ = bool or σ = >;

3. occurs(xS ,bv(H)) = 2 implies occurs(xS ,bv(H)) = 2;

4. occurs(xσ,bv(H)) > 0, 6= 2 implies σ = bool or σ = >.

An example of a linear process is xS〈zR, zR〉 | xS(yR, yR).(yR〈true〉 | yR(wbool)), whereas pro-
cesses (i) x!bool.end〈true〉 | x?(end,end).end(z>) and (ii) (νyR)0 are not linear because (i) x occurs twice
but its decoration types are not dual, and (ii) variable yR must be used (remind that we do not
consider decorations of type end).

Next, we take into consideration the preservation of the order of the exchanges prescribed by
the decorations. Let the size of an end point type S be equal to the number of prefix-end point
types contained in S. Let D range over contexts of H, which are processes H containing a hole,
and let D[H] be the process obtained by substituting the occurrence of the hole in D with H.

Definition 4.7 (Preservation of order). A process H is order-preserving if

1. H ≡ D[xS〈ω〉.K1 | K2] and K1 ≡ D1[xR〈ψ〉.K ′ | K ′′] or K1 ≡ D1[xR(φ̃).K ′ | K ′′] with
xR 6∈ bv(D1) imply size(S) ≥ size(R);

2. H ≡ D[xS(φ̃).K1 | K2] and K1 ≡ D1[xR〈ω〉.K ′ | K ′′] or K1 ≡ D1[xR(φ̃).K ′ | K ′′] with
xR 6∈ bv(D1) implies size(S) ≥ size(R).

The process H1
def
= xS〈〉.x!T.S〈〉 | xS().yσ〈〉 (where we omitted the sent values and bound

prefixes and left the decoration implicit) is not order-preserving, as H1

xS

−−→ x!T.S〈〉 | yσ〈〉 and
size(!T.S) > size(S), whereas the process below, is order-preserving and the order is preserved by
reduction.

x!T.S〈〉 | x!T.S().zR〈〉 | zR().xS〈〉 | xS().yσ〈〉

The last syntactic property requires some prefixes at the same level to be compatible, i.e., able
of synchronising. Requiring the compatibility of all prefixes is a too strong condition: it detects
circular deadlocks like yσ().xS〈〉 | xS().yσ〈〉, but also detects “good” behaviours like the process

H2
def
= xS().yσ() | xS〈〉 | yσ〈〉. A notion sensitive to particular versions of deadlocks (like resource

self-holding ones) needs to be parametric on a set of selected prefixes F .

Definition 4.8 (Parametric mismatch-freedom). A process H is F -mismatch-free if for all xS ∈
F ⊆ F there is a D such that H ≡ D[xS〈ω〉.H1 | xS(φ̃).H2], with D[·] 6≡ (νζ̃)(· | xR〈ψ〉.K1 | K2)

and D[·] 6≡ (νζ̃)(· | xR(φ̃).K1 | K2).
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Our notion of soundness is thus parametric with respect to a given set of subjects of a process
H (noted subjv(H)), i.e., a set of prefixes φ occuring in H.

Definition 4.9 (Sound process). A process H such that zend 6∈ var(H), for any z, is F -sound,
F ⊆ subjv(H), if it is valid, coherent, linear, order-preserving and F -mismatch-free.

Theorem 4.10. If H is a sound process and H ⇒ K, then K is not an error.

In the decorated setting, the notion of resource self-holding deadlock freedom, introduced in
Section 2, is quite intuitive: prefixes with dual decorations must run in parallel (as in H2 above).

Definition 4.11. A sound process H is Resource Self-Holding Deadlock-Free (or RSHDF ), if
xS ∈ var(H) implies that H ≡ D[K1 | K2] for some D,K1 and K2, such that xS ∈ fv(K1) and
xS ∈ fv(K2).

Theorem 4.12. If H is RSHDF and H → K then K is RSHDF .

5 Deadlock resolution algorithm

We finally present the type checking and disentangling algorithm that releases deadlocks from
typed processes through a process transformation. This algorithm is implemented using an induc-
tive function that projects couples in G×P of Section 2 into decorated processes in H of Section 4.
For clarity, the implementation of this function is presented by means of pattern analysis rules:
we note that the algorithmic rules do not rely on type and context split, which is inherently
non-deterministic.

Our procedure resolves multiple, nested deadlocks, possibly on the same channel. It works
in one linear pass (when analysing a sequential process) and it is compositional (with respect to
parallel threads). We stress again that the class the class of deadlocks we disentangle is restricted to
the sequential use of both end points of a channel in a given thread. Moreover, we consider herein
only finite sessions (actually, we enforce total consumption of a session type when type-checking).

The top-level call of the algorithm has the form Γ A P . H, meaning that given in input an
environment Γ in G such that Γ is semi-balanced (cf. sbal predicate in Section 2), and a process P
in P, a (disentangled) process H in H is returned in output; this implies that Γ ` P (cf. Figure 2),
as we will show. In the rest of the presentation, let the . symbol be the separator between the
input (on the left) and the output (on the right) of the function. The top level call A makes use
of the the function `A, which is the core of the type-checking and disentangling mechanism.

The formal definitions of functions A and `A are in Figures 5 and 6, where the rules are
assumed to be executed in the given order. In these figures we introduce the left rules for `A; the
right rules follow the same schema. Function `A : G×D×P → G×D×H, where the set D contains

projections ∆ mapping variables to types A def
= T ∪ {(S, start), (start, S), (start, start)}, implements

the function A : G × P → H. Intuitively, in `A patterns: (i) start is a flag type that signals that
a session end point has not been used; (ii) the return environment is obtained by setting to end

the end point types that are used within the call (so that parallel threads cannot re-use sessions);
(iii) and the return projection permits to infer whether two end points of a channel are used in
parallel or in sequence — in the latter case, we invoke disentangling in order to generate a new
process where the two end points run in parallel, and return it as third argument. We use A to
range over A, and use ⊥ to indicate the type (start, start).

The procedure `A does two things: (1) checks for the typability of process received in input
(with respect to a given type context); and (2) transforms resource self-holding deadlocked pro-
cesses in P into disentangled processes in H; this last step is preceded by decorating the input
process with the expected types.

Before introducing the patterns for `A, it is convenient to analyse the top-level call A in
the first line of Figure 5. After verifying that the predicate sbal(Γ) holds, we add the projection
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Top-level call

sbal(Γ) Γ; (Γ�) `A P . Γ1; ∆1;H term(Γ1) term(∆1)

Γ A P . H

Patterns for values

Γ `A true, false : bool . Γ
T = bool

Γ, x : T `A x : T . Γ, x : T
[A-Constant],[A-Bool]

T = (S1, S2)

Γ, x : T `A x : T . Γ, x : >
T = (S1, S2)

Γ, x : T `A x : > . Γ, x : T
[A-Session],[A-Top]

Patterns for processes

Γ `A y : T . Γ1 Γ1, x : (S, end); ∆1, x : (start, !T.S) `A P . Γ2, x : >; ∆2, x : (start, R);H (∗)
Γ, x : (!T.S, !T.S); ∆1, x : ⊥ `A x〈y〉.P . Γ2, x : (end, R); ∆2, x : ⊥;K

[A-OutInit-l]

Γ `A y : T . Γ1 Γ1, x : (S, end); ∆1, x : (start, R) `A P . Γ2; ∆2;H (∗∗)
Γ, x : (!T.S, end); ∆1, x : (start, R) `A x〈y〉.P . Γ2; ∆2;K

[A-OutEnv-l]

Γ `A y : T . Γ1 Γ1, x : (end, R); ∆1, x : (S, start) `A P . Γ2; ∆2;H (∗ ∗ ∗)
Γ, x : (end, R); ∆1, x : (!T.S, start) `A x〈y〉.P . Γ2; ∆2;K

[A-OutProj-l]

b = true, false Γ1, x : (S, end); ∆1, x : (start, !bool.S) `A P . Γ2, x : >; ∆2, x : (start, R);H (%)

Γ1, x : (!bool.S, !bool.S); ∆1, x : ⊥ `A x〈b〉.P . Γ2, x : (end, R); ∆2, x : ⊥;K
[A-OutInitB-l]

b = true, false Γ1, x : (S, end); ∆1, x : (start, R) `A P . Γ2; ∆2;H (%%)

Γ1, x : (!bool.S, end); ∆1, x : (start, R) `A x〈b〉.P . Γ2; ∆2;K
[A-OutEnvB-l]

b = true, false Γ1, x : (end, R); ∆1, x : (S, start) `A P . Γ2; ∆2;H (%%%)

Γ1, x : (end, R); ∆1, x : (!bool.S, start) `A x〈b〉.P . Γ2; ∆2;K
[A-OutProjB-l]

(∗) if R = !T.S then K := x!T.S〈tp(y, T )〉.H else if R = end then K := [[x!T.S〈tp(y, T )〉.H]]false else raise fail

(∗∗) if ∆2(x) = (start, R) then K := x!T.S〈tp(y, T )〉.H else K := [[x!T.S〈tp(y, T )〉.H]]false

(∗ ∗ ∗) if Γ2(x) = (end, R) then K := x!T.S〈tp(y, T )〉.H else K := [[x!T.S〈tp(y, T )〉.H]]false

(%) if R = !T.S then K := x!T.S〈b〉.H else if R = end then K := [[x!T.S〈b〉.H]]false else raise fail

(%%) if ∆2(x) = (start, R) then K := x!T.S〈b〉.H else K := [[x!T.S〈b〉.H]]false

(%%%) if Γ2(x) = (end, R) then K := x!T.S〈b〉.H else K := [[x!T.S〈b〉.H]]false

Figure 5: Type checking function (part 1)

parameter (Γ�), which is obtained by casting all types in the range of Γ to ⊥, and launch the inner
call `A. If the sub-call generates an exception (which is due to the violation of the linearity of
sessions), type-checking fails, otherwise a triple (Γ1,∆1, H) is returned. To enforce the consump-
tion of all sessions, function A successfully returns process H when both the context Γ1 and the
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Patterns for processes

Γ1, x : (S, end), y : T ; ∆1, x : (start, R), y : ⊥ `A P . Γ2, x : >, y : >; ∆2, x : (start, R), y : A;H term(A) (])

Γ1, x : (?T.S,R); ∆1, x : ⊥ `A x(y).P . Γ2, x : (end, R); ∆2, x : ⊥;K
[A-InInit-l]

Γ1, x : (S, end), y : T ; ∆1, x : (start, R), y : ⊥ `A P . Γ2, y : >; ∆2, y : A;H term(A) (]])

Γ1, x : (?T.S, end); ∆1, x : (start, R) `A x(y).P . Γ2; ∆2;K
[A-InEnv-l]

Γ1, x : (end, R), y : T ; ∆1, x : (S, start), y : ⊥ `A P . Γ2, y : >; ∆2, y : A;H term(A) (]]])

Γ1, x : (end, R); ∆1, x : (?T.S, start) `A x(y).P . Γ2; ∆2;K
[A-InProj-l]

Γ1; ∆1 `A P . Γ2; ∆2;H Γ2; ∆2 `A Q . Γ3; ∆3;K

Γ1; ∆1 `A P | Q . Γ3; ∆3;H | K
[A-Par]

sbal(T ) Γ1, x : T ; ∆1, x : ⊥ `A P . Γ2, x : ⊥; ∆2, x : A;H term(A)

Γ1; ∆1 `A (νx : T )P . Γ2; ∆2; (νtp(x, T ))H
[A-Res]

Γ1; ∆1 `A y : bool . Γ2; ∆2 Γ2; ∆2 `A P . Γ2; ∆2;H Γ2; ∆2 `A Q . Γ2; ∆2;K

Γ1; ∆1 `A if y thenP elseQ . Γ2; ∆2; if ybool thenH elseK
[A-If]

Γ1; ∆1 `A P . Γ2; ∆2;H Γ1; ∆1 `A Q . Γ2; ∆2;K b = true, false

Γ1; ∆1 `A if b thenP elseQ . Γ2; ∆2; if b thenH elseK
[A-IfB]

Γ; ∆ `A P . Γ; ∆;H

Γ; ∆ `A!P . Γ; ∆; !H
[A-Repl]

Γ; ∆ `A 0 . Γ; ∆; 0 [A-Inact]

(]) if R = ?T.S then K := x?T.S(tp(y, T )).H else if R = end then SNIPPET else raise fail

(]]) if ∆2(x) = (start, R) then K := x?T.S(tp(y, T )).H else SNIPPET

(]]]) if Γ2(x) = (end, R) then K := x?T.S(tp(y, T )).H else SNIPPET

SNIPPET if e = findValue(x!T.S , (Γ1, x : >), H) && e 6= 0 then K := [[x?T.S(tp(y, T )).H]]e

else K := x?T.S(tp(y, T )).H

Figure 6: Type checking function (part 2)

projection ∆1 are terminated (assuming term(start, start)).
We can now analyse the patterns of function `A. The patterns for variables have the form

Γ1 `A x : T . Γ2 where Γ1, x and T are respectively a context, a variable and a type received in
input, and Γ2 is a context returned in output. The patterns for processes Γ1; ∆1 `A P1.Γ2; ∆2;H2

follow in the same figure. For each input and output there are six rules: three matching the end
point type on the left and three matching the end point type on the right. Consider one of
the (six) rules for output, rule [A-OutInit-l]. The rule describes the pattern matched by the
identified first, second and third parameter6; the body invokes type-checking of variable y at
the expected type by passing context Γ taken from the first parameter, and obtains as result
Γ1; a recursive call on the continuation is then invoked by “split” the continuation type of x in

6Rules are deterministic for semi-balanced contexts.
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the context — (S, !T.S) — between the context and the projection. To enforce termination of
sessions, we check that the type of x in the return environment is >. To see if x is deadlocked
in P , we check the type (start, R) of x in the return projection: if R is different from !T.S,
then it has been used, and we invoke the disentangling function [[·]] (cf. Figure 7) passing as
arguments the decorated process x!T.S〈tp(y, T )〉.H, where H is the return process, and the boolean
constant false, which, in this case, is ignored: this second parameter will be used in the clauses for
input. We can now read the side condition (∗) and understand the result forwarded in output:

K := x!T.S〈tp(y, T )〉.H when R = !T.S, and K := [[x!T.S〈tp(y, T )〉.H]]false when R = end. Note
the failure when R 6= !T.S, 6= end, meaning that !T.S is partially consumed.

Pattern [A-OutEnv-l] is matched when the environment assigns to the output channel x a
type of the form (!T.S, end). The right end point type is equal to end since the channel has been
used before (in input or output): in fact the type of x in the projection is (start, R), which is
different from ⊥. We type check the variable and launch the call for the continuation by passing
the entry x : (!T.S, end) for the environment and by forwarding the same projection received in
input. Condition (**) is similarly to condition (∗) of [A-OutInit-l] and permit to check the shape
of the return projection ∆ in order to launch the code for disentangling: if ∆(x) is unchanged
then we return the decorated process x!T.S〈tp(y, T )〉.H, otherwise we invoke disentangling on
x!T.S〈tp(y, T )〉.H.

Pattern [A-OutProj-l] is matched when the type of the output channel x in the projec-
tion is of the form (!T.S, start). In this case we invoke type checking for the continuation (after
contrasting the variable) by passing the same environment received in input and by passing the
entry x : (S, start) for the projection. Dually to [A-OutEnv-l], in (∗ ∗ ∗) we control the re-
turn environment Γ in order to launch disentangling: if Γ(x) is unchanged then we forward in

output x!T.S〈tp(y, T )〉.H, otherwise we return [[x!T.S〈tp(y, T )〉.H]]false. The remaining rules for
output, [A-OutInitB-l],[A-OutEnvB-l],[A-OutProjB-l], do apply when the sent value is a
boolean constant, and respectively follow the same mechanism of [A-OutInit-l],[A-OutEnv-l]
and [A-OutProj-l].

Consider now the rule for parallel composition, [A-Par], in Figure 6. The first call on the
left returns a triple (Γ2,∆2, H), where Γ2 and ∆2 are obtained by setting to end the session end
points used in P , and H is obtained by disentangling (the decoration of) P , through function [[·]].
The second call on the right uses the return context Γ2 and the projection ∆2 to generate the
triple (Γ3,∆3,K), where K is obtained by disentangling Q, using the same schema. Note that
the deadlocks of P and Q are fixed compositionally: we detect whether P is deadlocked before
analysing Q, and return the triple (Γ3,∆3, H | K).

The rules for input, [A-InInit-l], [A-InEnv-l] and [A-InProj-l], follow in Figure 6 and are
analogous respectively to [A-OutInit-l], [A-OutEnv-l] and [A-OutProj-l] in Figure 5. The
main differences are:

(a) there is no variable to type-check;

(b) in the call for the continuation the variable y bound by the input is added to the context
at the payload type of the channel, and to the projection at type ⊥; the type of y must be
terminated in both the return context and environment (cf. condition term(A)), to enforce
a linear discipline for y whenever its type is different from bool and >;

(c) when necessary, disentangling is invoked through a snippet that first finds the actual (free)
value (through function findValue defined below) sent over the sequential output correspond-
ing to the input prefix: when the value is a bound variable the procedure returns 0, a special
flag different from ω, and disentangling is discarded; otherwise the value is some ω and we
invoke the disentangling function [[·]] in Figure 7 by passing as arguments x?T.S(tp(y, T )).H
and ω.

The definition of the function findValue : F × G × H → V ∪ {0}, which it is used to find the
(tuple of) value(s) to be sent, is below; we use the special symbol 0 to signal when the sent values
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Type disentangling encoding [[·]] : H× V → H
(R =!T.S, IT =?T.end, OT =!T.end, I> =?>.end, O> =!>end, yT and zT defined accordingly)

[[xR〈ω〉.H]]ψ
def
= (νrOT , rIT , r>) (∗)

(xR〈ω〉.〈〈H〉〉
xR
rIT
| xR(yT ).rOT 〈yT 〉)

[[xR(yU ).H]]ψ
def
= (νrOT , rIT , r>)(νmO> ,mI> ,m>) (∗∗)

((xR(zT ).rOT 〈zT 〉 | rIT (yU ).〈〈H〉〉xR
m

O>
| xR〈ψ〉.mI>()))

(∗) {rOT , rIT , r>, yT } ∩ fv(H) = ∅ (∗∗) {rOT , rIT , r>,mO> ,mI> ,m>, zT } ∩ fv(H) = ∅

Auxiliary function for processes, 〈〈·〉〉 : H×F ×F → H

〈〈xR(yU ).H〉〉xR
ϕ = ϕ(yU ).H

〈〈φ(yU ).H〉〉ψϕ = φ(yU ).〈〈H〉〉ψϕ φ 6= ψ

〈〈xR〈ω〉.H〉〉xR
ϕ = ϕ〈〉.H

〈〈φ〈ω〉.H〉〉ψϕ = φ〈ω〉.〈〈H〉〉ψϕ φ 6= ψ

The remaining cases are homomorphic

Figure 7: Transformation of decorated processes

are a tuple zσ1
, . . . , zσn

such that z 6∈ dom(Γ), i.e. the tuple is bound, and disentangling is not
possible; we use e to range over V ∪{0}. In the definition, we assume that K = D[yσ〈ω〉.K1 | K2],
for some context D such that yσ 6∈ bv(D[0]).

findValue(yσ,Γ,K) =


ω , if ω = zσ1

, . . . , zσn
&& z ∈ dom(Γ) && occurs(yσ, fv(K)) = 1;

ω , if ω = true, false && occurs(yσ, fv(K)) = 1;

0 , otherwise.

Note that in rules [A-InEnv-l],[A-InProj-l], and rules [A-OutEnv-l],[A-OutProj-l], we
may use backtracking when the types for the channel respectively in the context and in the projec-
tion have the same shape. For instance, in contrasting an input channel x w.r.t. an environment
Γ and projection ∆ such that Γ(x) = (?T1.S1, end) and ∆(x) = (start, ?T2.S2), we first try to
type-check x w.r.t. (?T1.S1, end), and then, if an exception is raised, we try to type-check x w.r.t.
(start, ?T2.S2).

The encoding [[·]] in Figure 7 maps decorated input and output processes in H into decorated
processes in H, given a parameter in V. The partial operation [[·]] is called only with prefixed
arguments: when invoked, it disentangles the first prefix encountered. To this aim, it uses the
auxiliary total function 〈〈 · 〉〉 which takes a decorated process and two prefixes and returns a process.
In the output first case of [[·]] (first line) we rely on a fresh (triple of) forwarder(s) r to carry the
result to be received by the input prefix of x, now put in parallel; the deadlocked input occurrence
of x is renamed to r by 〈〈 · 〉〉 . Note that we ignore the ψ parameter; it is useful only in the
case below. The input first case of [[·]] (second line) follows a similar idea but is more elaborate,
because of variable binding; in this case we need both a (triple of) forwarder(s) r and a (triple of)
semaphore(s) m, to preserve the order of exchanges: the call 〈〈 · 〉〉 renames the deadlocked output
occurrence of x in H with m, while the output on x is put in parallel by instantiating the tuples
of values to be sent with the actual parameter of [[·]], that is ψ. As introduced, this parameter is
found (before invoking [[·]]) trough function findValue: the function searches for the occurrence of
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an output prefix in a decorated process and returns the values sent in output, when these are a
boolean constant or a tuple of free prefixes.

The translation [[·]] works on untyped decorated processes: during type checking we decorate
each variable with its type, and identify the pair of prefixes to be put in parallel by inspecting
decorations. The main result is that processes generated by [[·]] are both (resource self-holding)
deadlock-free and error-free. The last property is shown by relying on light-weight verification of
the format of decorations, thus avoiding the use of type contexts and systems.

Results. The type-checking and resource self-holding deadlock resolution algorithm has three
crucial properties that guarantee the correctness of our approach:

1. it is sound with respect to the type system (Theorem 5.1);

2. returns error-free RSHDF processes (Theorem 5.3).

The first result guarantees that the algorithm succeeds only when type-checking succeeds. To
establish the soundness of the algorithm, we project the algorithmic pattern rules in Figure 5
and 6 into the split-based typing rules in Figure 2. Note that A enforces the context received in
input to be semi-balanced in order to launch the inner call `A. The construction of the proof of
the theorem is similar to the one in [16], as the process returned in output by A is ignored.

Theorem 5.1 (Type soundness). If Γ A P . H then Γ ` P .

To identify the deadlocked prefixes of the source process, we let the algorithm return both the
source and the target decorated process: in Γ �A P .HP ;H,7 let HP be the decoration of P and
H be obtained by disentangling HP with [[·]].

We use a function erase : H ⇒ P to remove decorations and transform object tuples into single
variables, transforming a polyadic into a monadic process; the non-homomorphic instances of the
function are below.

Definition 5.2.

erase((ν tp(y, T ))H = (νy : T )erase(H) erase(xS(tp(y, T )).H = x(y).erase(H)

erase(xS〈tp(y, T )〉.H = x〈y〉.erase(H) erase(xS〈b〉.H) = x〈b〉.erase(H) b = true, false

We expect a strong operational correspondence between typed processes of the source language
and their decorated versions (obtained during the execution of the algorithm): the reduction steps
of the source process and of the decorated one should coincide exactly.

Let Γ �A P . HP ;H.

1. If P
x
−→ P ′ then HP

xR

−−→ H ′ where Γ(x) = (S, S), R = S or R = S, and erase(H ′) = P ′;

2. If P
τ
−→ P ′ then HP

τ
−→ H ′ and erase(H ′) = P ′;

3. If HP

xR

−−→ H ′ then P
x
−→ P ′ where Γ(x) = (S, S), R = S or R = S, and erase(H ′) = P ′;

4. If HP

τ
−→ H ′ then P

τ
−→ P ′ and erase(H ′) = P ′.

The result below is the main one of the paper: it ensures that the process returned by the
algorithm is sound with respect to the sequential variables of the source process (cf. Definition 4.9)
and resource self-holding deadlock-free (cf. Definition 4.11).

Theorem 5.3. If Γ �A P . HP ;H then H is sv(HP )-sound and RSHDF .

7System �A is a straightforward modification of system A.
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It is worth noting that, for simplicity sake, we deliberately build our construction on top of a
standard π-calculus with booleans and described by the usual reduction semantics. In this setting,
a behavioural correspondence among the original, deadlocked process and the new, deadlock-free
one (translated to the source language using the erase function), is not straightforward to achieve —
an operational correspondence or a simulation relation is not meaningful, as the original process
does not reduce. Actually, the situation is even more delicate, as a well typed process with a
balanced context is behavioural equivalent to inaction, as all its free channels are linearly used
in the process (which ”consumes” both end points), so no interaction with a process context is
possible.

Therefore, a relationship between the processes can be established by abstracting the behaviour
of the deadlocked process by means of its session types: one may infer the substitutions from
variables to values, as prescribed by the session protocol for the deadlocked process, and show
that any reduction on the deadlock-free process faithfully preserves these substitutions. We leave
this to future work.

6 Conclusions

We propose a new approach to tackle an old dilemma: can we do something to assist the pro-
grammer instead of simply reject code that does not type check? Founding on the π-calculus [25]
and on a recent formulation of session types [17, 18], we devised a type-checking algorithm that,
when finds a particular form of deadlocks, which we refer to as resource self-holding deadlocks,
automatically generates new type safe deadlock free code that mimics the original process intended
behaviour as described by session types.

Our construction is as follows: the type checking and disentangling algorithm, based on func-
tional patterns, given in input a type environment and a process, outputs a process, when type
checking is successful. We prove the algorithm type sound by showing that accepted process are
typed by a sub-system of [18], which satisfies subject reduction and type-safety. We analyse the
behaviour of the output and show that the algorithm generates resource self-holding deadlock free
processes that cannot go wrong, and that obey to the session protocol as prescribed by the type
environment.

For what concerns the limitations of our approach, the first immediate point to note is that our
notion of deadlock seems to be a specific instance of resource holding or Hold and Wait deadlocks [8,
22], which is identified by considering resources (interpreted as π-calculus channels) blocked by
the same thread; this notion is thus insensitive to the presence of cycles in waiting/releasing a
resource.

Specifically, there are four unmanaged classes of processes that we want to deal with: (1)
we do not tackle processes of the form a(x).x〈true〉.b(z) | a〈b〉 (which reduces in one step to the

basic example b〈true〉.b(z)), because the shape of the type of a is T
def
= (?T ′.S, !T ′.S) with

T ′
def
= (end, R) or T ′

def
= (R, end), i.e. sbal(T ) does not hold; (2) we do not tackle processes like

a(x).c(z).a〈z〉.(x〈true〉 | x(y)) | c〈b〉, because the actual object of the output on a is bound; (3) we
do not tackle branching processes of the form a(x).ifx then a〈true〉 else a〈false〉, i.e. they do not type
check, because we cannot resolve the non-determinism caused by the test; (4) we do not tackle
processes with circular deadlocks like a(x).b〈true〉 | b(y).a〈false〉. We are already working on an
extension that should solve both (1) and (2). The idea is to perform a linear scan of the structure
of (decorated) processes before executing the algorithm, to collect a series of constraints of the
form x = v, meaning that the (bound) variable x should be instantiated with v; this is reminding
of type-inference techniques. We then call (a variant of) the type checking and disentangling
algorithm by passing as further parameter the constraints, e.g. (1) x = b, and (2) z = b; after
applying the constraints to the process, in case (1) we disentangle process a(x).b〈true〉.b(z) | a〈b〉
while in case (2) we disentangle process a(x).c(z).a〈b〉.(x〈true〉 | x(y)) | c〈o〉, where o is a dummy
variable 8. Issue (3) could be solved by considering the π-calculus with a non-deterministic choice

8Note that z cannot be used in the continuation of c(z) because type-checking enforces its delegation in a〈z〉.
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operator, or by devising a communication protocol that implements a similar behaviour (cf. [?]),
to transform the blocked processes by putting in parallel the choice a〈true〉 + a〈false〉. The issue
(4) seems orthogonal to our approach, and would require techniques to detect dependencies and
circularities in message passing, similarly to many recent works (e.g. [3]). We leave this for future
work, as well as a behavioural theory to relate the source and the resulting process of our tool.

We believe that our technique is interesting because it permits to unblock processes described
by session types of the form (S, S); since such types subsume several systems, e.g. [20, 14, 23], our
algorithm can be used to release deadlocks in these systems as well. Preliminary tests done in a
ML implementation of the algorithm are encouraging [1].

Moreover, we ensure deadlock freedom for well-typed processes not by restricting the set of
typable processes, but by “fixing” those that exhibit the problem. If adapted to session based type
systems of high-level languages, it may be a useful tool to assist the programmer in the software
developing process, by (automatically) releasing deadlocked programs.

Our long-term goal is deadlock resolution for untyped processes, leaving the session type con-
struction as a blackbox: the programmer writes the code; the algorithm infers the types, resolves
the deadlocks, and provides error-free code.
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A Proofs for Section 3

We first show that the substitution of a variable having a balanced type does not introduce
resource-self-holding deadlocks.

Lemma A.1. Let Γ1, x : T ` P with T = bool, or T = (R,S) such that bal(T ), and assume that
x 6∈ sv(P ). Let Γ2 ` v : T with Γ1 ◦ Γ2 defined. Then Γ1 ◦ Γ2 ` P [v/x] and sv(P [v/x]) = sv(P ).

Sketch. The typability part is inherited from the substitution lemma (cf. [18]). The hypotheses T
balanced or T = bool, and x 6∈ sv(P ) are crucial to close the remaining part. Assume Γ1◦Γ2 defined.
We distinguish among the case T = bool and T a session. When T = bool we have Γ1(v) = bool

and thus {x, v} ∩ subjv(P ) = ∅, because of [T-In-l],[T-In-r],[T-Out-l],[T-Out-r]. Otherwise
let T = (S1, S2); the hypothesis T balanced tell us that S1 = S2. There two cases corrsponding
to (a) S = end and (b) S 6= end. In case (a) x ∈ fv(P ) implies x ∈ objv(P ), again because of
[T-In-l],[T-In-r],[T-Out-l],[T-Out-r]. Thus subjv(P [v/x]) = subjv(P ), and the result follows.
In case (b) we have Γ(v) = (end, end), and in turn v 6∈ subjv(P ), by [T-In-l],[T-In-r],[T-Out-l],[T-Out-r].
The result follows from x 6∈ sv(P ) and v 6∈ subjv(P ), which imply v 6∈ sv(P [v/x]).

We also need the following result, which could be proved by induction on the length of the
typing judgement.

Lemma A.2. If ∆ ` Q is a judgement appearing in a derivation of Γ ` P with Γ semi-balanced,
then ∆ is semi-balanced.

The next result says that types that are not balanced must be consumed as prefixes, in the
following sense.

Lemma A.3. Let Γ, x : (R,S) ` P with Γ, x : (R,S) semi-balanced. If R 6= S then x ∈ subjv(P ).

Sketch. We show that the hypothesis R 6= S and x 6∈ subjv(P ) leads to a contradiction. Take
a tree i in the forest for the derivation Γ, x : (R,S) ` P ; then the root of the tree has the form
∆i, x : (end, end) ` 0, for some ∆i such that dom(Γ, x : (R,S)) ⊆ dom(∆i) and term(∆i), because
of [T-Inact]. This means that (R,S) has been consumed in one or more tree of the forest. Now
if we assume that x 6∈ subjv(P ), then there must be at least one tree i containing a node of the
form Ωi ` y〈x〉.Q with Ω(y) = (!T.U1, U2) or Ω(y) = (U1, !T.U2). This leads to a contradiction
since ¬bal(T ) and all judgements in the tree Γ, x : (R,S) ` P are semi-balanced, by applying
Lemma A.2. Therefore x ∈ subjv(P ), as requested.

We need a lemma in order to analyse the behaviour of parallel processes; the proof is straight-
forward.

Lemma A.4. If Γ1 ` P1, Γ2 ` P2, and Γ1 ◦ Γ2 semi-balanced, then sv(P1 | P2) = sv(P1) ∪
sv(P2)\ subjv(P1) ∩ subjv(P2).

An useful notion to show that a process is RSHDF is the one below (cf. Theorem 3.7).
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Definition A.5. A process P is Weakly Resource-Self-Holding Deadlock-Free (WRSHDF), if
x ∈ bv(P ) implies {x, x, . . . } e subjv(P ) ⊆ pv(P ).

Lemma A.6. If P is RSHDF then P is WRSHDF.

We prove below the lemma that is the wedge of the proof of closure of RSHDF under reduction.

Lemma A.7. Let Γ ` P with Γ semi-balanced and P WRSHDF, and assume that P
µ
−→ P ′.

Then next(Γ, µ) ` P ′ and sv(P ) = sv(P ′)

Proof. Typability of the redex is inherited by subject reduction. We close the remaining part by

proceeding by induction on P
µ
−→ P ′. We draw a couple of examples.

In case [R-Com] the hypothesis is that P = x〈v〉.Q1 | x(z).Q2 and P
x
−→ Q where Q

def
=

Q1 | Q2{v/z}, and Γ ` P with Γ = Γ1 ◦ Γ2, Γ1 ` x〈v〉.Q1 and Γ2 ` x(z).Q2. By subject

reduction (Theorem 2.1) we infer ∆ ` Q where ∆
def
= next(Γ, x). To show that Q has the

same sequential variables of P we analyze the occurrences of x and v in Q; the remaining free and
bound variables are invariant. Consider x: whenever x 6∈ subjv(Q) we are done, otherwise we have
x ∈ subjv(Q) because (a) x ∈ subjv(Q1) or (b) x ∈ subjv(Q2{v/z}). In case (a) we know that
Γ1 ` x〈v〉.Q1 has been inferred from (i) Γ1 = Γ′ ◦Γ′′, x : (!T.S,R) Γ′ ` v : T , and Γ′′, x : (S,R) ` Q,
or (ii) Γ1 = Γ′ ◦ Γ′′, x : (R, !T.S) Γ′ ` v : T , and Γ′′, x : (R,S) ` Q. In both cases we infer that
R = end and Γ2(x) = (end, ?T.S) in case (i), or Γ2(x) = (?T.S, end) in case (ii). Is then easy to
apply Lemma A.3 to these results and obtain that x ∈ subjv(Q2{v/z}), as desired. Case (b) is
analogous. Consider now v: we show that v ∈ sv(Q) iff v ∈ sv(P ). We know that Γ2 ` x(z).Q2 has
been inferred from Γ2 = Γ′′, x : (?T.S,R) and Γ′′, x : (S,R), z : T ` Q2, or Γ2 = Γ′′, x : (R, ?T.S)
and Γ′′, x : (R,S), z : T ` Q2. In both cases the assumption Γ semi-balanced let us infer that
T is balanced. From P WRSHDF we know that z 6∈ sv(Q2); we apply Lemma A.4 and obtain
z 6∈ sv(Q1 | Q2). From this we can easily conclude by applying substitution (Lemma A.1) and
obtain sv(Q) = sv(P ).

Cases [R-IfT] and [R-IfF] follow directly from the I.H.
As further example, take [T-Par]: Γ1 · Γ2 ` P | Q inferred from Γ1 ` P and Γ2 ` Q, and

P | Q
µ
−→ P ′ | Q inferred from P

µ
−→ P ′. Subject reduction tell us that both next(Γ1, µ) ` P ′

and next(Γ1 · Γ2, µ) ` P ′ | Q. By I.H. we have that sv(P ) = sv(P ′). The result then follows by
applying Lemma A.4.

Case [R-Struct] follows from the I.H. and from the fact that the structural congruence pre-
serves sequential variables: note indeed that the definition of subject, object, parallel and sequen-
tial variables are insensitive to parallel rearrangement and scope extrusion.

Proof of Theorem 3.7. We proceed by induction on the number of reductions and show that

sv(P ) = ∅ and P
µ1

−−→ · · ·
µn−1

−−−−→ Q
µn

−−→ P ′ imply sv(P ′) = ∅, where n ≥ 0. The base of the

induction arises when n = 0, that is P ′ = P . Otherwise assume P
µ1

−−→ · · ·
µn−1

−−−−→ Q
µ
−→ P ′. We

use a variant of Theorem 2.1: if Γ ` P with Γ semi balanced and P =⇒ Q then Γ1 ` Q for some
Γ1 semi balanced (cf. [16]). The induction hypothesis is that Q is RSHDF ; thus sv(Q) = ∅. By
Lemma A.6 we have that Q is WRSHDF ; we apply Lemma A.7 and infer that sv(P ′) = sv(Q),
that is sv(P ′) = ∅. Thus P ′ is RSHDF , as required.

Corollary A.8 (Shape of process end). Let P be a typed closed RSHDF process and assume
that P ⇒ P ′ with P ′ having no reductions. If P ′ ≡ (νx̃ : T̃ )(Q1 | Q2) with Q1 an x-process and
x 6∈ fv(Q2), then x 6∈ x̃.

Corollary A.9. Typed closed WRSHDF processes reduce to WRSDHF processes.

Proof. Let P be a typed closed WRSHDF . Since fv(P ) = ∅, P is RSHDF as well. Therefore
if P =⇒ P ′ then P ′ is RSHDF , by applying Theorem 3.7 above. The result then follows from
Lemma A.6.
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B Proofs for Section 4

In this section we prove that sound decorated π-calculus processes cannot reach errors during the
computation (cf. Theorem 4.10). The following lemma establishes that sound processes are safe.

Lemma B.1. If a decorated process is sound, then is not an error.

Proof. Take H ≡ (νφ̃)(K1 | K2), and assume H sound w.r.t. a set of prefixes F ⊆ F . Assume (a)
K1 = φ(ỹσ).K ′ | ϕ(z̃ρ).K

′′ or (b) K1 = φ〈ψ〉.K ′ | ϕ〈ω〉.K ′′. If there is x such that φ = xS and
ϕ = xR, for some S,R, then {φ, ϕ} ∩ F = ∅, since mismatch-freedom rules out the possibilities
that two input/output on a same decorated variable run in parallel. Otherwise, assume (c) K1 =
xS〈ω〉.K ′ | xR(ψ).K ′′. If {xS , xR} ∩ F 6= ∅, then because of mismatch-freedom we have R = S
and K2 6≡ (νζ̃)[xU 〈θ〉.K ′′′ | K3], K2 6≡ (νζ̃)[xV (φ).K ′′′′ | K4].

The next lemma says that soundness is preserved by reduction; this a key property in order to
prove the main result of this section.

Theorem B.2. If H is a sound process and H → K, then K is sound.

Proof. By induction on H → K. We use a function =Sess which return true whenever the
multisets received in input do contain the same number of entries xS , for all x and S, and returns
false otherwise; we will use often infix notation. We note that whenever fv(H1) =Sess fv(H2) or
bv(H1) =Sess bv(H2), the two multisetes differ only in the number of entries of the form xbool and

x>: that is, they contain the same sessions. The proof relies on the following result (∗): H
η
−→ K

with H sound implies:

A (η = xS) fv(K) =Sess fv(H)\{xS , xS} and ∃y . bv(K) =Sess bv(H)\tp(y, T ) where S =!T.S′,
for some S′;

B (η = τ) fv(K) =Sess fv(H) and (1) bv(H) =Sess bv(K) or (2) ∃y, S, z . bv(K) =Sess bv(H)\({yS , yS}∪
tp(z, T )) where S =!T.S′, for some S′.

We assume H sound and proceed by induction on H
η
−→ K and show simultaneously both (∗)

and K sound. Take case [R-DCom] and let I
def
= xS〈ω〉.H | xS(tp(y, T )).K, I

xS

−−→ J
def
=

H | K[ω/tp(y, T )]. To see that A holds, assume xσ ∈ fv(K). By the hypothesis I sound we
infer I linear, and in turn σ = bool or σ = >. Moreover, we know that T is balanced. Sup-
pose T = (R,R) with R = c1T1 . . . cnTn.end, c ∈ {!, ?}, n ≥ 1; the case T = bool or T = end

is trivial. Thus there is z such that ω = tp(z, T ), because of coherence. Then by linearity
occurs(yR, fv(K)) = 1,occurs(yR, fv(K)) = 1, . . . , occurs(ycnTn

, fv(K)) = 1, occurs(ycnTn
, fv(K)) =

1. We infer occurs(zR, fv(K[tp(z, T )/tp(y, T )])) = 1,occurs(xR, fv(K[tp(z, T )/tp(y, T )])) = 1, . . . ,
occurs(xcnTn

, fv(K[tp(z, T )/tp(y, T )])) = 1,occurs(xcnTn
, fv(K[tp(z, T )/tp(y, T )])) = 1. That is:

fv(J) =Sess fv(I)\{xS , xS}, as requested. The fact tp(y, T ) 6∈ bv(K[tp(z, T )/tp(y, T )])) let us
easily infer bv(I)\tp(y, T ) =Sess bv(J), and in turn the proof of A.

Next, we prove that J is sound. To show that J is valid we need to show that S cannot
“be contained” in any type R such that xR ∈ fv(J), and that S cannot “be contained” in any
type R such that xR ∈ fv(J); the fact xbool 6∈ fv(J) is deduced from I valid. We exploit the
preservation of order of I and infer that xR ∈ fv(I) imply size(S) ≥ R, as required. Next, we
need to show that ` J . From ` I we know that S =?T.R and (i) ω = tp(z, T ), for some z,
or (ii) T = bool and ω = true, false. In both cases we use a substitution lemma that let us infer
` K[ω/tp(y, T )]. From this and the hypothesis ` H we obtain ` J by applying the parallel rule.
Next, we infer the linearity of J . From I sound we know that I is a linear: it satisfy all conditions
Def. 4.6(1)–(4). Take condition (1): from (A) we have fv(j) =Sess fv(I)\{xS , xS}, and in turn we
infer that J satisfies (1); similarly, we obtain that I satisfying (3) implies J satisfying (3). Take
condition (2): (B(1)) is straightforward, while in case (B(2)) we have that there exist y, S, z such
that bv(K) =Sess bv(H)\({yS , yS} ∪ tp(z, T )). The type T is the payload of the first end point
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in S: note that T is balanced. In particular, this means that T = bool, T = >, or T = (R,R), for
some R. In the last case, we let R = c1U1 . . . cnUn.end, where ci ∈ {?, !}, and infer the shape of
tp(z, T ): since all decorations in a canonical tuple that are distinct from > are in bv(I) and not in
bv(J), we infer that I satisfying Def. 4.6(2) implies J satisfying (2), as desired. Condition (4) is
verified analogously. Therefore J satisfies Def. 4.6(1)–(4), that is: J is linear. The fifth soundness
condition is satisfied since J is order-preserving by hypothesis, since I is order-preserving. Lastly,
if I is F -mismatch-free, for some F ⊆ F , then by definitio J is F ′-mismatch-free, where F ′ = F
when {xS , xS} ∩ F = ∅, and F ′ = F\{xS , xS} otherwise. Thus J is sound, as desired.

The remaining cases mostly follow by the induction hypothesis, whether to close [R-DRes] we
exploit the fact that the reduction does occur on some xS bound by restriction such that S is the
greater decoration type in the bound tuple xS1

, . . . , xSn
, because of order preservation.

Corollary B.3. If H is a sound process and H ⇒ K, then K is sound.

Proof of Theorem 4.10. Apply Corollary B.3 and Theorem B.1.

C Proofs for Section 5

We build towards the main result of this section (cf. Theorem 5.3): the decorated π-calculus
processes generated by the algorithm are (1) sound and (2) resource self-holding deadlock free.

The next lemma ensures that the translation preserves soundness.

Lemma C.1. If K is F -sound, where F ⊆ F , and (a) K = xR〈ω〉.H, or (b) K = xR(tp(y, T )).H,
then [[K]] is F d {xR}-sound.

Sketch. By case analysis of [[·]]. To see item (a), note that the hypothesis ` K implies that R =!T.S
or R =!T , for some T and S. We know that occurs(xR, fv(H)) = 1, because of K linear; moreover,
we claim that xR ∈ subjv(H) . To see this, note that the hypothesis ` K and the coherence rules
for output require that when the object of an output is a tuple of variables, this must be of the
form tp(z, T ) with bal(T ) or T = bool. Since occurs(xR,K) = 1, this excludes the possibility that
xR is an object. We find a context D such that H = D[xR(tp(z, T )).H1]; note that xR 6∈ var(D),
by the Barendregt convention and because of linearity. By definition9 we have:

[[xR〈ω〉.H]] = (νr!T.end, r?T.end, r>)(xR〈ω〉.D[r?T (tp(z, T )).H1] | xR(tp(y, T )).r!T end〈tp(y, T )〉)

with the condition that the new tuple is fresh. We then check that the conditions for soundness hold
for [[K]]. Validity follows from validity of K, and from the fact that r!T.end, r?T.end, r> are a chain.
Coherence is inferred from ` K, and from the fact that r!T.end and r?T.end are used to send and
receive a tuple of values decorated with the expected types. Linearity follows from linearity of K,
and from occurs(r!T.end, var([[K]])) = 2, occurs(r?T.end, var([[K]])) = 2, occurs(r>, var([[K]])) = 1. To
see order preservation, assume xS ∈ fv(D). From K order preserving we infer size(R) ≥ size(S).
Thus xR cannot be prefixed by xS , because of size(R) = size(R): that is, xS occurs in the
free variables of a parallel composition. Thus [[K]] does preserve the order as well. Last, that
[[K]] is F -mismatch-free follows from K F -mismatch-free. We add the new couple of matching
prefixes introduced by the translation, xR, xR, and obtain the desired result, that is [[K]] F d{xR}-
mismatch-free, which in turn together with the previous results implies that [[K]] is Fd{xR}-sound.

Consider item (b). We proceed similarly to above and infer that (]) xR appears exactly once
as subject of an output, and find a context D such that H = D[xR〈ω〉.H1] and xR 6∈ varD, i.e. ω
is the parameter to be passed to the encoding [[·]]. Note that this is possible since K is sound by
hypothesis; in the algorithm we must use function findValue in order to recover ω, when possible.
From ` K we infer ω = tp(w, T ), for some w, or ω = true, false, and T = bool. Next, from (]) and
the definition of 〈〈·〉〉 we infer 〈〈H〉〉xR

m!>.end
= D[m!>.end〈〉.H1]. This let us infer

[[xR(tp(y, U)).H]]ω =(νr!T.end, r?T.end, r>)(νm!>.end,m?>.end,m>)

((xR(tp(z, T )).r!T.end〈tp(z, T )〉 | r?T.end(tp(y, T )).D[m!>.end〈〉.H1] | xR〈ω〉.m?>.end()))

9We ignore the encoding’s parameter since it is irrelevant for the output first case of [[·]]
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We check that the soundness conditions holds for [[xR(tp(y, U)).H]]ω; we omit the details, which are
analogous to the construction above. To conclude, we obtain that [[K]] is F -mismatch-free because
K is F -mismatch-free; we add the matching pair introduced by the translation, that is {xR, xR},
and obtain that [[K]] is F d {xR, xR}-mismatch-free, and in turn that [[K]] is F d {xR, xR}-sound,
as desired.

The next lemma ensures that the translation maps sound processes into RSHDF processes.

Lemma C.2. If K is sound, (a) K = xR〈ω〉.H, or (b) K = xR(tp(y, T )).H, and H is RSHDF,
then [[K]] is RSHDF.

Sketch. Take item (a). We know that there is D such that H = D[xR(tp(z, T )).H1] and xR 6∈
var(D) (see the proof of Lemma C.1). By definition of [[·]] we have:

[[xR〈ω〉.H]] = (νr!T.end, r?T.end, r>)(xR〈ω〉.D[r?T.end(tp(z, T )).H1] | xR(tp(y, T )).r!T.end〈tp(y, T )〉)

with the condition that the new tuple is fresh. If we show that D[r?T.end(tp(z, T )).H1] is RSHDF ,
we clearly obtain that [[K]] is RSHDF as well, as desired. Thus we need to show that if D[·] ≡
(νζ̃)(H ′ | ·) with xS ∈ fv(H ′), then S 6= R. Because ofK linear, we know that occurs(xR, var(K)) =
1; this implies the desired result, and we are done. Item (b) is analogous, whether we retrieve the
value ω to be passed to the encoding [[·]] by exploiting the soundness hypothesis, as in Lemma C.1.

The next lemma says that the decoration made by a successful run of the algorithm is as
expected. Note that mismatch-freedom is not guarantee; this will be enforced by [[·]]. We remind
that�A is a modified version of the algorithm that returns a pair inH×H formed by the decoration
of the process received in input (on the left), and the disentangled version of the decorated process
(on the right).

Lemma C.3. If Γ �A P . HP ;H, then HP is valid, coherent, linear and order-preserving.

Sketch. We devise a variant of the typing system in Figure 2 containing judgements of the form
Γ � P .HP , where HP is a decorated π calculus process forwarded in output that is obtained by
(i) storing which end point type (i.e., left of right) has been chosen in the derivation in order to
type the subject, (ii) storing the type chosen for the object, (iii) storing that the test variable in
if-then-else has been typed with bool. We then show a stronger soundness result (cf. Theorem 5.1):
Γ �A P . HP ;H implies Γ � P . HP . The conditions above can then be easily established by
reasoning on the typing system in Figure 2, by a case analysis of both the context split rules and
the typing rules.

To show the main result of this section, that is Theorem 5.3, we enlarge the syntax of processes
H so to include process variables X, and let K[H/X] be defined as the process obtained by
substituting all occurences of X in K with H.

Definition C.4. We say that a process H is a E/I-variant of process K if there are G,E, I such
that K = G[E/X] and H = G[I/X].

The next lemma identifies the shape of the processes returned by the (variant of the) algorithm.
In the following, we use α to range over prefixes of the form φ〈ω〉 and φ(ψ).

Lemma C.5. Let Γ �A P . H0;H. If H0 6= H, then there is n > 0 and H1, . . . ,Hn−1 and
α1.K1, . . . , αn−1.Kn−1, αn.Kn such that H = Hn and Hi is a αi.Ki/[[αi.Ki]]-variant of Hi−1, for
all i ∈ 1, . . . , n.

Proof of Theorem 5.3. We rely on Lemmas C.1, C.2, C.3, C.5. Let Γ �A P .H0;Hn. When n = 0,
we show that sv(P ) = ∅; we then apply Lemma C.3 and show that H0 is sound and RSHDF .
The proof relies on the following result: if Γ; ∆ `A P | Q . Γ1; ∆1;H | K;H | K with Γ and ∆
compatible, and term(Γ′) and term(∆′), where Γ′, ∆′ are obtained respectively by restricting the
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domain of Γ1 and ∆1 to fv(P ) and fv(Q), then pv(P | Q) = subjv(P | Q). Γ and ∆ are compatible
whenever Γ(x) = (S1, S2) and ∆(x) = (R1, R2) implies ¬(Si 6= end ∧ Ri 6= start). Now let n > 0.
By Lemma C.5, for all i ∈ 1, . . . , n, Hi is a αi.Ki/[[αi.Ki]]-variant of Hi−1, for some αi.Ki. We
prove the following result: each αi.Ki/[[αi.Ki]]-variant of Hi−1 is subjv(αi), . . . , subjv(α1)∩sv(H0)-
sound and subjv(αi), . . . , subjv(α1) ∩ sv(H0)-RSHDF ; this last notion is obtained as expected.
The base case is i = 1 and is obtained by H1 = G[[[α1.K1]]/X], H0 = G[α1.K1/X], and by applying
Lemmas C.1, C.2. Take i > 1; the induction hypothesis is thatHi−1 is subjv(αi−1), . . . , subjv(α1)∩
sv(H0)-sound. We have Hi = G[[[αi.Ki]]/X], Hi−1 = G[αi.Ki/X]. We apply Lemmas C.1, C.2
and infer the desired result.
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