Behavioural Types for a Calculus of
Concurrent Objects®

Anténio Ravara Vasco T. Vasconcelos
amar@math.ist.utl.pt vv@di.fc.ul.pt
Departamento de Matematica Departamento de Informatica
Instituto Superior Técnico Faculdade de Ciéncias
Universidade Técnica de Lisboa Universidade de Lisboa

November 97

Abstract

We present a new type system for TyCO, a name-passing calculus of concurrent
objects. The system captures dynamic aspects of the behaviour of objects, namely
non-uniform service availability. The notion of processes without errors is loosened,
demanding only weak fairness in the treatment of messages.

1 Motivation

The role of name-passing process algebras in the study of the foundations of concurrent
programming had been stressed by several authors (¢f. [KY95, PT95]). The advantages
of the object-oriented paradigm are also well know, and there are several proposals of
name-passing calculus with such characteristics, as for example [Pie95]. In all of them one
can find a static type system enjoying the subject-reduction property (invariance of a type
under reduction) and having as corollary the absence of run-time errors for well-typed
processes.

Types in object-oriented languages are “partial specifications of object’s behaviour”,
and give information about the object’s interface; in name-passing process algebras types
are used as a discipline for communication, and are assigned to names; in an object-
oriented name-passing calculus names are possible locations of objects and the type of a
name captures aspects of the object’s semantics.

In a setting where (active) concurrent objects are characterised by non-uniform service
availability [Nie95], a static “types-as-interfaces” approach is not suitable to capture dy-
namic aspects of objects’ behaviours, namely the dependency of the objects’ interface from
its internal state. We propose types as graphs (representing objects as state-transition sys-
tems), and demand weak fairness in the treatment of messages, in the sense that a request
may be respond not immediately but sometime in the future. The paper presents a type
system that is able to type objects with a non-uniform service availability, while preserving
the subject-reduction property.

*An extended and revised version of a paper presented at Euro-Par’97.

A typical process not typable by “traditional” type systems [VH93, V193, KY95,
LW95] is a one-place buffer that only allows read operations when it is full, and write
operations when it is empty.

Empty(b) = b0 [write: (u)Full(bu)]
Full(bu) = b [read:(r)r < val:[u]| Empty(b)]

The type systems mentioned above assign interface-like types to names. Therefore,
name b should have a single interface, containing both methods’ labels write and read,
and thus the example presented can not be typed. Nevertheless, the behaviour of the
process (alternating between write and read operations) is very clear. Furthermore, a
process containing the redex Empty(b) | b < read:[r] should not be considered an error,
for the presence of a message b < write : [u] makes the reception of the read message
possible.

The development of a type system able to type processes like the one above is the main
motivation of this work.

2 The calculus of objects

TyCO (TYped Concurrent Objects) [VT93, Vas94] is an object-oriented name-passing
calculus with asynchronous communication between concurrent objects via labelled mes-
sages carrying names. The calculus is developed along the trends of well-known models of
concurrency, such as the w-calculus [Mil91, MPW92], the v-calculus [HT91], and the actor
model of computation [HBS73, Agh&6].

2.1 Syntax

Consider names u,v,z,y€ N, labels a,b,c € L, and processes P,Q) € P. Let v stand for a
sequence of names, and # for a sequence of pairwise distinct names.

Definition 2.1 The set P of processes is given by the following grammar.

P = zoM | z<m | P|Q | wvzP | lzp>M | O

where M &' Y oier @it (Z;) Py for I a finite index set, and m P [7].

The basic processes are objects z > M, located at some name z and composed of a
finite collection M of labelled methods (with pairwise distinct labels), and asynchronous
labelled messages < a:[?], targeted at some object’s location z and selecting the method a
with actual parameters . Fach method a:(Z) P is labelled by a distinct label a, has for-
mal parameters & and body P. The other constructors are the concurrent composition of
processes, the restriction of the scope of a name to a process, the replication of objects,
and the terminated process.

For typing purposes, we impose one important restriction on processes: the formal
parameters & in a method a:(Z) P are not allowed to be locations of objects in the body P.
Such a restriction is present in most object-oriented languages, where the creation of a
new name and a new object are tightly coupled.

Notation 2.2 We abbreviate a method a: ()0 to a, and a process vz, - - vz, P to vi P.

Definition 2.3 An occurrence of a name z in a process P is bound if it is in a part of P
with the form a:(wzg)Q or va (); otherwise the occurrence of z is free. The set fn(P)
of free names in a process P is defined accordingly, and so is alpha-conversion, denoted
by =,. The process P[9/Z] denotes the simultaneous substitution of the free occurrences
of £ in P by ¥, defined only when & and © have the same length.

2.2 Operational semantics

Definition 2.4 Structural congruence is the smallest congruence relation over processes
generated by the following rules.

P=q@Q if P=,0Q
Plo=pr P|Q=Q|P (P[Q)|R=P[(Q]R)
vay P = vyx P vr0=0 ve Pl Q=va(P|Q) ifz ¢ fn(Q)

Definition 2.5 The result M e m of applying a communication m to a collection of meth-
ods M is the process P[9/Z] if m is of the form a:[?] and a:(Z)P is a method in M and
the substitution is defined.

Definition 2.6 One-step reduction — is the smallest relation over processes generated
by the following rules.

Com az>M|z<dm— Mem Rep 'z M|z<dm—la> M|Mem
PaR P|R—Q|R if P—=Q REs vaP—ve@ i P—(Q

Stk P —Q ifP=P, P—Q, Q=0

Reduction —> is the relation = U —*, where —1 denotes the transitive closure of —.

2.3 Error-processes

In order to deal with objects’ non-uniform service availability we need to loosen the notion
of process with error. The new concept of error requires two further notions.

Definition 2.7 A context C is the concurrent composition of messages and a constant]

(called the hole).
Filling the hole of a context C with a process P results in the process C[P].

Definition 2.8 1. A process P has a simple (respectively replicated) z-redex if
P=vi(z> M|z <<m|Q) (respectively P=va(lz> M|z <m|Q)).

2. A process P has a bad z-redex if P has an z-redex (simple or replicated) and M e m
is not defined.

Definition 2.9 A process P is an error, notation P € ERR, if

1. 3¢ C[P] — @, and @ has a bad z-redex, for some z occurring in C only has target
of a message, and in a message that does not participate in the bad z-redex, then

2. Ve C'[Q] — R, and R has a bad z-redex, for some 2 occurring in C only has target
of a message, and in a message that does not participate in the bad z-redex.

Errors are processes with bad z-redexes that persist throughout reduction. A occa-
sional bad z-redex is not enough to make the process an error. So, we give messages a
chance to find their target, and therefore, we say that this calculus have weak fairness in
the treatment of messages.

Example 2.10 FError and non-error processes

1. g% Empty(z) |2 < read:[u] ¢ ERR since, although the process S is a bad z-redex,

we have C[S] — Full(z v) |2 < read:[u], for C L'y write: [v] | [], containing no
bad z-redexes;

2. P Ly [b:a < a]|lz > [c] € ERR, since C[P] — 'z > [c]|z < a with
cd y < b|[], and no context can undo the bad z-redex;
3.0 . [e:(y)y < a]|lwp [I:tur [c]] ¢ ERR, although we have C[Q)] — R

with B < 1y > [c]|lu< afor C L2 4 e:[u]|[]|w < I, and R is a persistent bad

redex; however notice that u is in C not has target of a message, what violates the
condition in the definition, meaning that the environment is the generator of the
error.

3 The type system

Processes are implicitly typed: although no type information is present in processes, it
can be inferred by a type system that assigns type to names and sets of name-type pairs
(called typings) to processes.

3.1 Types

A type is a graph whose nodes (states) can be interpreted as an object’s interface and the
arcs (transitions) as the invoked methods. The type of an object represents its possible
life-cycles.

Definition 3.1 The set 7 of types is inductively defined as follows.

1. D C 7T, for D an initial algebra of some fixed data types;

2. (V,I,A) C 7, where V is a non-empty set of nodes, I C V is a non-empty set of
initial nodes, and A C V X (L x7*)xV is a set of arcs labelled by £ x 7*. Graphs
are directed and contain no isolated nodes. We further require that a graph with
more than one initial node is the disjoint union of connected components, one for
each initial node.

Notation 3.2 We use «, 3,7 to denote types. For a given graph «, V, denotes its set of
nodes, I, denotes its set of initial nodes, and A, denotes its set of arcs; the label of an
arc is denoted by t. Graphs are consider equal up to isomorphism on nodes.

We need also a notion of terminal nodes of a graph to define complete paths. A node
is terminal if there are no arcs starting from it or otherwise the arcs end at an initial node.

Definition 3.3 The set T, of terminal nodes of a graph « is the set
{weVo\Iy | uev, (v, t,u) € Ag,u # v} U{v € Vo \ I | Juer, (v, t,u) € Ay}

The union of graphs is a sum of behaviours. A graph that is the disjoint union of
connected components represents a set of possible behaviours of an object, each behaviour
represented by a connected subgraph.

Definition 3.4 The union oW 3 of types « and § is the type v such that
1. if o, are graphs, then

d_ef (VQUV@,IQUI@,AQUA@), ifVaﬂV@:(Z)
| (VaUu Ve, I\ (Va\I)UIs\ (Vo \ 1), Ay U Ap), otherwise;

2. ifa,f €D and a = 3, then’yd:efa;

3. the union is undefined otherwise.

A graph that is the product of two graphs represents the joint behaviour (parallel
composition or interleaving) of two objects located at a same name.

Definition 3.5 The interleaving o || 8 of graphs a and 3 is the graph v such that

LV, ¥V, 5 Vs, and I, €1, x I, and

def
2. A, = {(uv, t,u'v) | Viuuea, Joev, J U {(uo, t,uv’) | Vi 1 oyea, Jueve -

Types abstract from objects’ concrete behaviour: two different objects with equivalent
behaviours have the same type. The equivalence relation is a pair of binary relations over
types, one over the nodes of the graph and the other over the types labelling the graph’s
arcs.

Definition 3.6 Bisimilarity on types.

1. A symmetric binary relation R C V, X Vj is a bisimulation on graphs (over a bi-
nary relation C on types) if V,ev, Vyev, such that uRwv, if (u,a: a,u') € A, then
iy wporyea, With w'Ro’ and acp'.

2. Two nodes u € V,, v € V5 are bisimilar over C, denoted by u ~¢ v, if there is a
bisimulation R over C such that uRuwv.

Compatibility of types.

1. A symmetric binary relation C C 7 x 7 is a type compatibility, if aCf implies
Vuer, Jver, 4 ~c v* when a, 3 are graphs, or o = 3 otherwise.

2. Two types a and (3 are compatible, denoted by o ~ 3, if there exists a type compat-
ibility relation C such that aCpj.

def
et ay - axCBhi - Bx = a1CB1 A -+ A arCBx.
2This condition is enough to guaranty the bisimilarity of the graphs, since graphs do not have unreach-
able nodes.

The compatibility relation ~ is the largest type compatibility; thus, two graph types
are compatible if all their nodes are bisimilar over the compatibility relation.

One can easily observe that 7/ ~ specifies a class of process behaviours. Moreover, ~
is a congruence with respect to || and .

Lemma 3.7 Suppose «, § and v are graphs, and a ~ §; then (a ||) ~ (8 || v) and
(@)~ (BW7y).

Proof 1. It is trivial to show the conditions of the definition, since the type constructor
is simply a disjoint union.

2. The proof is standard; let S = {((a || v),(#|| 7)) | @ ~ B}; using the definition of ||
it is straightforward to show that & is a bisimulation on graphs. n

Paths in graphs play an important role in our system. We compare types to know if a
message can be accepted by an object.

Definition 3.8 On paths of a graph.

1. A path p, in a graph a is a chain of arcs in « of the form (ug, ti, w1), .., (Un_1, tn, Up)
with n > 1. We write u% to denote the path starting at node v and ending at node v.

2. A path p®" is complete if uel,,and ve€T, or vel, if Jyer, (w,t,v)€ A,.

[a4

3. For a path p,, a sequence of some of its arcs preserving the original ordering is called
a projection of p,.

To characterise how graphs evolve with the reduction of processes we need the notion
of subgraphs. This notion captures a transition relation on graphs.

Definition 3.9 A graph a is a subgraph of a graph 3, denoted by o < g, if a = 8 or
Juer, (u, t,v) € Ag with v € I, and each path of 3 starting in v is also a path of a.

The transitive closure of < is denoted by <*.

Lemma 3.10 If a, 3,7 are graphs and a <* 3, then (a || v) <t (5 || 7).

Proof Let u € I gy, (u,t,v) € Aggy), and suppose ¢t € Ag; then, by hypothesis, v € I,
and each path of 3 starting in v is also a path of a; since t € Ay then v € I, and by
definition of ||, v € Iy, and the condition on the paths follows. [

Notice that we do not have o <* 3 = (a W) <t (¥ v), since no path starting in
some element of I, is a path of 7. But it is easy to show that a <t § = a <t (W 7).

Types for replicated objects are obtained from a finite graph by means of a fix point
operation.

Prop/Definition 3.11 Replication of a graph.

1. ag def (Va\ Ty, 1s, Ay), where

Aa, d:ef{(u, t,v)| (u, t,w) € Ay, and v = w if w ¢ T, or v = u otherwise }.

2. Flao) = Woev, \1., @000 W ag, and Flaip1) = Weey, \v., @00, U o with i > 1,
where, for each v € V., \ V,,_,,

d_ef{ Ly = {0}

o, 1s the substitution

"] Vo \I,— {w]|for each u € V, \ I, w is fresh}.
3. The replication repl(«) of a finite graph o is the graph fiz(F(ay)).
4. One can easily see that F is a continuous function since it is increasing by definition,
and it is monotonous since if oy C fy then F(ag) C trjvevao\jau agoy, W fo C F (o)
and, similarly, F(o;) C F(f;) for some 7 > 1.

3.2 Typings

The name-usage-type triple a*:a, with * € {1, |, 1}, is a formula denoting the assignment
of type a to name z, location of an object (]), location of a replicated object (!), or
destination of a message ().

Definition 3.12 A typing T is a finite set of name-usage-type triples that has at most
two occurrences of the same name, one as an object (replicated or not) and a second as a
message.

Example 3.13 Typing assingment
1. The message = <1 a: @ has a typing {z' : ({ug,us}, {uo}, {(uo,a: &, ui)}), @: a}.

®
Graphically {z': s @:a}, where © denotes an initial node.
[]
®
2. The object z > [a] has a typing {z! : o }. The input-name z! has the type
[]

©

® a
ap= \\b inz>[a+ bl,andazs = e inz>[a:z>][b]]
[] []

g

©
3. The input-name z! has the type 8 =) i inz>[a:a>[b+c]]; the type
./ \.
a @ a
v = o/ \o inz>[a:if y thenz > [b]elsex > [c]]?, and the type
g be
[] []
a @ a
6= o/ \o ,in z > [a: if g thena > [b] else z > [b]].
by Vo
[] []

®if y then P else @ d:efl/z (y < val:z z0 [true: P + false: Q])

Notice that we have 3 « v, but a; ~ §, as expected.

© O
4. The input-name z! has the type | |a in y > [a:2 > [¢]+ bz > [d]]; the
[] []

graph is the union of two connected components, each one representing a possible
behaviour of the name z.

5. Until now we have only dealt with messages and objects. The parallel composition
of processes poses new problems.

©

The input-name z! has the type o e inz > [a]lz > [b], and the

-
N AL

©

a b

type o \o inz>Ja:a> [b] + b:a > [a]]. The first graph re-

by Ve

[] []
sults from the interleaving of the graphs of the two objects. Intuitively, each path
represents a possible sequence of actions. The types are bisimilar.

6. Replication has the consequence that graph types are no longer acyclic nor finite.
The rule uses the greatest fix point of a function that, in each terminal node of a
graph “hangs” that graph; for example, in 'z > [a : & > [b]], the input-name z'

©
)
o)e

have the type

Notation 3.14 Let dom(I') be the set of the name-usage pairs in each triple of I'; then
I' - 2* : @ denotes the union of I' and {z* : a}, provided z* ¢ dom(I'). For 2*: a0 € T let

I'(z*) def a; let T'\ z* denote the typing I' without the occurrences of formulae with a*.

Let T'| P denote the restriction of I' to the free names in P, and let T'[z/z] denote the
result of replacing in I' occurrences of « by the fresh name z.

If the parallel composition of two processes can lead to a persistent bad z-redex then
the processes should not be composed. In this case we say that their respective typings
are not compatible. But if the graphs of all output-names in a typing have some complete
path that match with a projection of some path of the respective replicated input-name
in the other typing, then there will be no persistent bad z-redexes and the typings are
compatible.

Definition 3.15 Two typings I' and A are compatible, denoted by I' < A, if I'(z') has a
projection equal to some complete path of A(z"), and vice-versa.

We now extended the notions of union and interleaving of types to typings.

Definition 3.16 The union I' W A of two typings is the typing:
1. TUA,if dom(T)N dom(A) = 0;

2. (I 259) 0 (A\a), i D(a%) = o, As") = 5, andvdzef{ o, ifang

a3, otherwise;
3. {2%:a,2T: 81U (T 2%) 0 (A 21)), if I(2*) = @, Aal) = §, and « € {1, |}

4. {zta} U ((T\2Hw (A\ 2h)),if I(2") = a, A(z!) = 3, and a = repl(y), for some v
such that v ~ g;

5. {z'ra,zb: BTU((T\ 2w (A\ zl)), if [(2') = a and A(z!) = 8.
Definition 3.17 The interleaving I' || A of two typings is the typing:
1. TUA,if dom(T)N dom(A) = 0;

. e if a ~
2. (T 2*:9) | (A\a*), if T(2") = @, A(x") = §, and 7 d:f{ i P
3. {2t BYU (D a%) | (A \), if D(a") = a, Alal) = 5, and + € {1, |}

4. {zt:a} U ((T\ 2 || (A\al)),if T(2') = a, A(zt) = 3, and a = repl(v), for some
such that v ~ g;

5. {a'ra,ab:BFU((T\ ") || (AN 2l)), if T(2') = @ and A(z!) = 6.

In the two definitions above, the rules should always be tried in the order presented.
Definition 3.18 repl(T) ©" {2* 1 repl(T(2*)) | Ve cdomqry: @and * € {1, 13}

The notion of subgraph naturally extends to typings.

Definition 3.19 Let A <T'if dom(A) C dom(I') and V A(z*) < T'(z*).

exedom(andom(r)

Lemma 3.20 If A <T and I' < A, then (A || A) <(T'[| A).

Proof Follows from the definitions of || and < for typings, using lemma 3.11.]

3.3 Typing assignment system

We finally present the static typing assignment system. It has an axiom or a rule for
each constructor of the calculus, plus a weak rule allowing to add a new output-name to

a typing.

Definition 3.21 A typing assignment is a formula I' b P, for any process P and typing
I'. If such a formula is provable using the axiom and rules presented below we say that P
is well-typed under typing T

Definition 3.22 (Behavioural type system) The typing assignment system is induc-
tively defined by the following axioms and rules.

NiL QFO

Msa {@* :a, 2z :({vo, v1 b {vo}, {(vo,a: a,v))} Fa <a:[a] (vy# vp)
I, -&l:a,F P

OBJ 1
@(Fi\xl)w{xl:a}l— xDZai:(ii)Pi L
iel i€l
FFap> M rep
Rep repl(T) Fla > M (2) Res Mz kFve P
re=p
'EP AFRQ WEAK ——5———
Par TTAF PO (I' < A) I'z':ak P

(1) a is such that I, def {u} for u a fresh node, and

Ay = Uer{(u, a;:6;,w) | 2* ¢ dom(I';) and w is fresh} U
Usert(u, a;: a5, v) | 2* € dom(I';) and for each v € Ip(pe)} U
Uier Ari(es)

for x € {1,] }.
(2) (=ier (T \ 2h)) < {a': repl(T(z'))}, where I is the index set of M.
In the following we give a short description of the rules in the behavioural type system.

NiL: the terminated process has an empty typing;

Msa: the graph of a message has a single arc labelled with the message’s label to the
target, and to the carried names are assign arbitrary types;

OBJ: the graph of an object has as many arcs starting from the initial node as the
number of initial nodes of its type in each of its methods. Each arc is labelled with
the methods’s label. In the ending node of each of those arcs we hang the graph of
that object as it occurs in the corresponding method;

REP: the type of a replicated object is the greatest fix-point of the graph of the object;

PaRr: the parallel composition of two processes has a typing resulting from the interleaving
of the components’ typings;

REs: bounded names are removed from the typing;

WEAK: one can add to the typing of a process a type assignment formula with an
output-name that does not occur in the typing.

10

3.4 Some properties of the type system

The main theorem is subject-reduction, with the corollary that guarantees absence of run-
time errors in well-typed processes. Another important result is the uniqueness of the
type assignment to each free name in a well-typed process.

In order to show that this properties, we need some auxiliary results.

Lemma 3.23 (Typing Lemma) If ' - P, then
1. fn(P) C dom(T),
2. if & ¢ fn(P) then I'\ 2* F P,
3.T[PF P,

Proof By induction on the length of the deduction of I' - P. [

Lemma 3.24 (Typability of Subterms) If T' - P and @ is a subterm of P, then
dAAFRQ.

Proof By induction on the structure of P. [

Lemma 3.25 (Substitution Lemma) If I' - P and I'(2*) ~ I'(*) then I'\ &* I P[Z/Z].

Proof By substitution of z for # in the deduction. The substitution results in a new

instance of each axiom or rule, and the side conditions in the OBJ-rule and PARr-rule are
preserved: if ' < A then T'[2/Z] < A[Z/Z].]

Lemma 3.26 (Congruence Lemma) If ' - P and P = @, then I' + Q.

Proof By a simple case analysis on the rules defining =. [

Theorem 3.27 (Subject-reduction) If ' P and P — @, then 3. AF Q and A <T.

Proof By induction on —». If the reduction ends with the STR-rule or P = @) then use
the congruence lemma. The non-trivial cases are when reduction ends with the PAr-rule
and the CoM-axiom (REP is similar to CoMm).

If reduction ends with the REs-rule let P = va P’ and) = v Q'; by typability of
subterms . IV = P’ and by hypothesis of the REs-rule P — @’; then by the induction
hypothesis 3o A’ F Q' and A’ < IY; by lemma 3.22.2 we have I' \ 2* - P; if 2 € fn(P)
then I" = T' - z* else IV = T', and A’ is defined similarly; since A’ <T” then A <T.

If reduction ends with the Par-rule let P = P'| R and @ = Q'| R; by typability of
subterms 3/ y IV F P and A F R with I’ = I || A, and by induction hypothesis 3o A"+ @)’
and A’ < TY. The result follows by lemma 3.20.

If reduction ends with the Com-axiom let P = 2 > M |2 < m. By the Par-rule and
by typability of subterms I' = T || A’ with 2! : @« € " and 2! : 8 € A’; if M e m is
undefined then A = T else by the induction hypothesis and by the substitution lemma we
have 3, A+ M em (A =T;- #![#/Z] F M e m, being # the sequence of names in m), and
by the OBi-tule if #! € dom(A) then A(z!) < a, and if 2! € dom(A) then A(a) < 3; it
follows that A < T. n

11

Corollary 3.28 If P is well-typed then P ¢ ERrr.

Proof Suppose P is well-typed and P € Err. By definition of Err, P has 'z > M
and z <1 m as subterms, both typable by typability of subterms, with compatible types.
Therefore, M e m is defined, and then it is not a persistent bad z-redex; we have reached
an absurd, since, by hypothesis, P € ERR. [

The system enjoys the property of uniqueness of the types assigned to the free names
in a process.

Proposition 3.29 If 'F Pand AF Pthen ' | P=A | P.

Proof By a case analysis of the rules defining the type system, noting that, with the
exception of the wrAK-rule, each rule defines one and only one typing for a process, up
to renaming of nodes. [

4 Conclusions and discussion

This paper presents a new type system for TYped Concurrent Objects. The type system
captures dynamic aspects of objects’” behaviour, namely non-uniform service availability.
Types are graphs, and the type compatibility relation is a bisimulation. We propose a new
notion of error-process: the persistence of bad z-redexes. Thus, processes without errors
have weak fairness in the treatment of messages. The type system enjoys the subject-
reduction property.

The presented type system types all processes the previous system [VT93] does, ex-
cept for those that do not conform to the restriction in section 2. The buffer-cell in
section 1 constitutes an example of a process this system types while the does previ-
ous not. Nevertheless some “basic” mistakes (like typing puhs instead of push in the
process z > [push : (w) P]|x < puhs : [v]), are no longer detected as error-processes.

The starting point for this work are the ideas of Nierstrasz on regular types for active
objects. Puntigam also starts from Nierstrasz work, and uses terms of a process algebra
(without name-passing) as types [Pun95, Pun96]. His work is centred on subtyping, and
not on type assignment systems. There is now a lot of work on types for mobile processes
but, up to our knowledge, the only work in the context of mobile processes where types
are graph seems to be Yoshida’s [Yos96]. Her graphs give information about the deter-
ministic behaviour of a process; our graphs are inspired on Milner’s derivation trees [Mil89].

This work is still in a preliminary stage; a lot of work has yet to be done. The points
requiring further study include:

1. the proof of the conjecture that the typing assignment is decidable and the typing
inference is computable.

2. an algebraic version of the notion of types, more tractable since types will be syn-
tactic. A labelled transition system for processes can easily be defined, leading to a
behavioural equivalence on processes.

12

3. the application of this type system to some object-oriented programming language.

4. the interpretation of types with a temporal logic and the definition of a type-theory.

Acknowledgments

Special thanks are due to A. Sernadas, for his long-term support, to J. -L. Fiadeiro, for his
contributions and encouragement, and to K. Honda and N. Yoshida, as well as P. Resende
and C. Caleiro, for very stimulating discussions. Comments of the anonymous referees
were most valuable.

This work was partially supported by JNICT PRAXIS XXI projects 2/2.1/MAT /46/94
Escola, 2/2.1/MAT/262/94 SitCalc and 2/2.1/TIT/1658/95 LogComp, and by the ES-
PRIT Working Groups 22704 ASPIRE and 23531 FIREworks.

References

[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
M.I.T. Press, 1986.

[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal, modular actor formalism
for artificial intelligence. In 3rd International Joint Conference on Artificial
Intelligence, pages 235-245, 1973.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communication.
In 5th Furopean Conference on QObject-Oriented Programming, volume LNCS
512, pages 141-162. Springer-Verlag, 1991.

[KY95] N. Kobayashi and A. Yonezawa. Towards foundations of concurrent object-
oriented programming — types and language design. Theory and Practice of
Object Systems, 1(4), 1995.

[LW95] X. Liu and D. Walker. A polymorphic type system for the polyadic 7-calculus.
In 6th International Conference on Concurrency Theory, volume LNCS 962,
pages 103-116. Springer-Verlag, 1995.

[Mil89] R. Milner. Communication and Concurrency. C. A. R. Hoare Series Editor —
Prentice-Hall Int., 1989.

[Mil91] R. Milner. The polyadic w-calculus: a tutorial. Technical report ECS-LFCS
91-180, University of Edinburgh, U. K., 1991.

[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, parts T and
II. Information and Computation, 100:1-77, 1992. Also available as Technical
Report ECS-LFCS 89-85/86, University of Edinburgh.

[Nie95] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software Composition, pages 99-121.
Prentice Hall, 1995.

13

[Pie95]

[PT95]

[Pun95]

[Pun96]

[Vas94]

(V93]

[VT93]

[Yos96]

B. Pierce. Programming in the w-calculus: an experiment in concurrent lan-
guage design. Tutorial notes for PicT version 3.6k, Computer Laboratory,
University of Cambridge, U. K., 1995.

B. Pierce and D. Turner. Concurrent objects in a process calculus. In T. Ito and
A. Yonezawa, editors, Theory and Practice in Parallel Programming, volume
LNCS 907, pages 187-215. Springer-Verlag, 1995.

F. Puntigam. Flexible types for a concurrent model. In Ist Workshop on
Object-Oriented Programming and Models of Concurrency, 1995.

F. Puntigam. Types for active objects based on trace semantics. In 1st IFIP
Workshop on Formal Methods for Open Object-based Distributed Systems, 1996.

V. Vasconcelos. A Process-Calculus Approach to Typed Concurrent Objects.
PhD thesis, Department of Computer Science, Keio University, Japan, 1994.

V. Vasconcelos and K. Honda. Principal typing schemes in a polyadic w-
calculus. 1In 4th International Conference on Concurrency Theory, volume
LNCS 715, pages 524-538. Springer-Verlag, 1993.

V. Vasconcelos and M. Tokoro. A typing system for a calculus of objects. In
1st International Symposium on Object Technologies for Advanced Software,
volume LNCS 742, pages 460-474. Springer-Verlag, 1993.

N. Yoshida. Graph types for monadic mobile processes. In 16th FST/TCS,
volume LNCS 1180, pages 371-386. Springer-Verlag, 1996.

14

