
From Atomic Variables to Data-Centric Concurrency
Control∗

Hervé Paulino Daniel Parreira Nuno Delgado António Ravara
NOVA Laboratory for Computer Science and Informatics

Departamento de Informática, Faculdade de Ciências e Tecnologia
Universidade NOVA de Lisboa, Portugal

Ana Almeida Matos
SQIG – Instituto de
Telecomunicações

Universidade de Lisboa

ABSTRACT
The mainstream use of concurrent programming is bound
to the provision of constructs that abstract details intrinsic
to concurrency, while ensuring safety and liveness proper-
ties. Several control-centric approaches meet these require-
ments but decentralise concurrency management, hindering
reasoning. The alternative data-centric approach promotes
local rather than distributed reasoning, however it is a fairly
new approach embraced only by Atomic Sets [4,8], a rather
complex model that does not guarantee progress in all sce-
narios. In this paper we propose a simple data-centric con-
currency control model that builds only on the notion of
atomic variable. We informally present the model and its
properties, as well as a prototype implementation that we
used to compare our approach against the aforementioned
Atomic Sets and control-centred approaches in general.

CCS Concepts
•Software and its engineering → Concurrency con-
trol; Concurrent programming languages;

Keywords
Concurrency control, Data-centric, Java Language

1. INTRODUCTION
Parallel processing hardware is currently present in nearly all
computational systems, from the nodes that compose cloud
infrastructures to small hand-held devices. Concurrent pro-
gramming thus plays a fundamental role in software devel-
opment. However, concurrent code is considered difficult to
write and its correctness complex to assess, being hence the
source of many execution errors [11]. .

∗This work was partially funded by FCT-MEC in the frame-
work of UID/CEC/04516/2013 strategic project

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
SAC 2016,April 04-08, 2016, Pisa, Italy
Copyright 2016 ACM 978-1-4503-3739-7/16/04. . . $15.00
http://dx.doi.org/10.1145/2851613.2851734

Classically, expressing concurrency constraints on accesses
to shared memory objects requires delimiting explicitly the
sequences of instructions that must operate atomically upon
such objects, what we refer to as control-centric concurrency
control. The main drawback of control centrality is that it
is prone to the dispersal of concurrency related bugs, which
hampers reasoning about correctness as the code scales: a
single missing lock/unlock operation (or atomic keyword)
may adulterate an application’s behaviour. Relevant work
has addressed correctness in this context, with focus on
progress and isolation [1, 6, 7, 10, 13] and, on atomicity and
protocol compliance [3,5]. Despite these efforts, a study [11]
identifies that 97% of the non-deadlock errors stem from ei-
ther atomicity or protocol violation.

Data-centric concurrency control is a recent approach that
promotes local rather than distributed reasoning, by cen-
tralising all concurrency control management on data dec-
laration. We are aware of only one approach to data-centric
concurrency [4,8], which builds on the notion of atomic set,
a set of memory objects that share consistency properties.
The model is complex and does not guarantee progress and
atomicity in all scenarios. We share the data-centric view-
point of concurrency control, but envision a rather distinct
approach to the problem. To that extent we introduce the
Resource-Centred Concurrency Control (RC3) model that
builds only upon the individual annotation of the data items
(the resources) that must be atomically manipulated, to pro-
vide a simpler model for data-centric concurrency control.

The contributions of this paper are: 1. an informal presen-
tation of the RC3 model and of its properties (in §3); 2. an
overall description of how the model may be implemented in
the Java language (in §4), and; 3. an evaluation of RC3 from
a productivity and performance perspective, comparing it
against Java’s native synchronisation mechanisms, Atomic
Sets and a well-known Java STM (in §5).

2. BACKGROUND
Data-centric concurrency control is a rather recent research
area that has been lead by Atomic sets [4,8]. In such model,
the programmer does not have to reason about the synchro-
nisation of execution flows, but rather about which memory
locations share consistency properties. Accordingly, vari-
ables may be marked as belonging to a given set. For that
purpose, the programmer must first create an atomic set
(through the atomicset construct) and next bind the vari-

able to such set, by prefixing its declaration with atomic(s),
where s denotes the set identifier. Associated to groups are
units of work, code fragments that maintain the consistency
properties of the associated sets. In order to express which
memory objects must be acquired by a unit of work, the
unitfor annotation enables the union of the atomic sets of
such unit with the ones derived from the method’s parame-
ters. Similarly, alias annotations (b=this.a) allow the union
of atomic sets from distinct classes at object creation.

We argue that most of the concerns associated to these anno-
tations should be subsumed either by design or at compile-
time. The considerable number of annotations of Atomic
Sets, with distinct semantics and applications, hinders rea-
soning and is error-prone, e.g. unitfor and aliasing annota-
tions are easily forgotten. As a result, the benefits of data-
centrality are overshadowed by the complexity of the specifi-
cation. Moreover, Atomic Sets do not guarantee progress in
all scenarios. Deadlocks may arise when in the presence of
transitive circular dependencies between sets. Recent work
has addressed the problem [2], but the programmer is called
to intervene when the analysis cannot infer a partial order
between sets – a new ordering annotation allows for the ex-
plicit definition of such order.

Given the complexity of Atomic Sets, there has been some
work on their automatic inference. AJ-lite [12] is a lighter
version of AJ that assumes a single atomic set per Java class.
The number of annotations are reduced to three - the ones
needed to express the relation between a class’ atomic set
and the ones of its fields. Nonetheless, the programmer must
still reason about behaviours such as: “a particular class field
only stores values that share consistency properties with its
hosting class” or “it stores a value that shares consistency
properties with other classes”, or even “I do not know if it
shares consistency properties with other classes”. Although
the authors claim that the number of annotations needed
to express data-centric concurrency control in a collection
of classes is considerably reduced, potential for error is still
there. Furthermore, the current solution is only applicable
to libraries and not entire programs.

In [9], the authors propose an initial step for automating the
inference of atomic sets. The approach is to process execu-
tion traces and from them identify patterns in the access to
class fields (currently only fields are supported). These pat-
terns are then used to automatically form the atomic sets.
The reported experimental results attest that the automatic
solution inferred most of the manually placed annotations,
having however also generated more annotations than nec-
essary. Also to be noted is the fact that the final result
is sensitive to the quality of the input traces. Lastly, the
compilation time increased from seconds to several minutes.

3. THE RC3 MODEL
In this section we informally define the syntax and the se-
mantics of the RC3 model. A couple of simple, yet expres-
sive examples illustrate the main ideas and intended prop-
erties. We assume a Java-like language and add only an
extra keyword – @Atomic – which is a type declaration, and
a mechanism for automatically generating locks (ensuring
deadlock-freedom). This simple annotation says which data

items must be accessed atomically in a method’s execution,
i.e., allow to declare atomic variables. This annotation may
be applied to all variable declarations (class fields, local vari-
ables, and parameters) and to the return type of methods.

3.1 Semantics
An atomic resource (or briefly resource) is a data item that
can be attained from an atomic variable in the scope of a
method. Our main goal is to ensure that concurrent accesses
to atomic resources happen in mutual exclusion.

We assume a multi-threaded Java where methods are the
“unit of execution”. Therefore, if two methods may concur-
rently access a resource and at least one of them writes in
the resource; the methods must execute in mutual exclusion.
Assuming that no thread abruptly terminates during the
execution of a method, and that all exceptions raised dur-
ing the execution are adequately handled, then all resource
modifications applied by that method are perceived as one
instantaneous operation to the remainder of the system.

Running examples: To illustrate the expressiveness and
properties of the model we present two running examples.
The first is the paradigmatic scenario of concurrent money
transfers between bank accounts. Naturally, these opera-
tions must be executed atomically, in order to ensure the
consistency of the accounts’ balances. The solution pre-
sented in Listing 1 uses the simple assignment of accounts
to atomic variables (i.e. their declaration as atomic re-
sources) to guarantee the atomicity property. Consequently,
transfer operations that operate upon the same must ac-
counts execute in mutual exclusion. Figure 1 showcases the
execution of five transfer operations distributed over six ac-
counts. As desired, synchronisation is performed at account
level – operations over distinct pairs of accounts do not re-
quire coordination. For example, transfer(acc1,acc2) and
transfer(acc3,acc4) may execute in parallel, while
transfer(acc1,acc2) and transfer(acc1,acc3) may not, be-
cause they share (and modify) acc1. The same happens for
transfer(acc3, acc4) and transfer(acc1, acc3) with re-
gard to account acc3.

1 c l a s s Bank{
2 Map <Integer , @Atomic Account > accounts;
3
4 void transfer(i n t src , i n t dst , f l o a t amount) throws OverdraftException {
5 @Atomic Account destAccount = accounts.get(dst);
6 @Atomic Account srcAccount = accounts.get(src);
7 srcAccount.withdraw(amount);
8 destAccount.deposit(amount);
9 }

10 f l o a t balance(i n t accountNumber) {
11 @Atomic Account acc = accounts.get(accountNumber);
12 return acc.getBalance ();
13 }
14 }
15
16 c l a s s Account {
17 f l o a t balance;
18 void deposit(f l o a t amount) { ... }
19 void withdraw(f l o a t amount) throws OverdraftException { ... }
20 f l o a t getBalance () { ... }
21 }

Listing 1: Bank transfer.

The second example is the integer linked-list implementa-
tion presented in Listing 2, of which we highlight only the
implementation of method add, being the other two similar.
To cope with concurrent invocations, the implementation
of add (and remove) must ensure that the modification of
a node’s configuration is atomic. Once again, this require-
ment is simply expressed by assigning the nodes to atomic

transfer(acc1, acc2)

transfer(acc3, acc4)

W = {acc1, acc2} W = {}

W = {acc3, acc4} W = {}

W = {acc1, acc3} W = {}
transfer(acc1, acc3)

W = {acc2, acc5} W = {}
transfer(acc2, acc5)

W = {acc1, acc6} W = {}
transfer(acc1, acc6)

Mutual exclusive execution
Waiting for resource

Regular execution

Figure 1: Six concurrent bank transfers

add(5)

add(2)

R = {head, n1}
W = {}

R = {},
W = {}

R = {head}
W = {}

R = {head, n1, n3}
W = {}

R = {head, n1, n3},
W = {n4}

R = {head},
W = {n1}

R = {},
W = {}

R = {head}
W = {}

R = {n3},
W = {n4}

Figure 2: Two concurrent insertions in list: 1 :: 3 :: 4

variables. Both methods modify a single atomic resource,
being thus mutual exclusion confined to that one operation.
Figure 2 illustrates the execution of two concurrent execu-
tions of add upon a list containing elements: 1 :: 3 :: 4.
Although operating upon distinct nodes, in the presented
schedule, execution add(2) may only alter the node storing
value 1, denoted by n1, after execution add(5) has released
that same resource and its predecessor (head). This release
operation can only be performed from the moment execu-
tion add(2) has acquired all the resources it needs and will
no longer access n1 and head. From then on, both executions
may execute in parallel with mutual exclusive access to the
resources they require to apply the programmed behaviour.

1 c l a s s LinkedList {
2 @Atomic Node head;
3
4 boolean add(i n t value) {
5 i n t v;
6 @Atomic Node prev = head;
7 @Atomic Node next = head.getNext ();
8 whi le ((next != nu l l) || (v = next.getValue ()) < value)) {
9 prev = next;

10 next = prev.getNext ();
11 }
12 boolean result = (v != value);
13 @Atomic Node newNode = new Node(value ,next);
14 i f (result) prev.setNext(newNode);
15 return result;
16 }
17 ...
18 }

Listing 2: Integer linked list.

3.2 Properties
The model guarantees safety properties, such as strong atom-
icity, absence of data races, and serialisability, and liveness
properties, such as progress (deadlock absence). We are cur-
rently formalising and proving the properties. All these are
ensured statically but at different stages of the compilation
process. More particularly, strong atomicity and the absence
of data races are ensured by the type system, whist serialis-
ability and deadlock absence is ensured by the encoding of
the annotated source code into pure Java (or Java bytecode)
+ locks. In other words, the generated code features a set of
operations over locks that ensure that the concurrent sched-
ules of method executions produce the same results as their
serial execution, and guarantee that resources are never ac-
quired in such an order that may drive to deadlocked states.

3.3 Type System
We want the @Atomic annotation of a variable to have an im-
pact on the latter’s type and, consequently, on the type of

the values that are assigned to it. The goal is to ensure that
well-typed programs do not feature data-races that fall out
of the control of RC3’s runtime system. To achieve such goal,
we must ensure that mutable memory objects that have been
assigned to atomic variables may not be assigned to regular
(non-atomic) variables, and vice-versa. To that end, we in-
troduce the notion of atomic type: the atomic counterpart
of a regular type, either primitive to the language or defined
programmatically.

For each type declared in the program, there is an implicit
atomic equivalent that abides to the following rules: 1) the
class’ supertype is also converted into its atomic counterpart,
to ensure that atomic and non-atomic types have different
roots, and 2) the methods that return instances of the class
itself have their return type C replaced by the class’ atomic
counterpart, denoted by C@. This approach implicitly pro-
vides an atomic duplicate of the type of the original class,
removing this burden from the programmer.

Strong Atomicity: The clear separation between regular
and atomic types provides the framework for the centrality
of concurrency control in RC3. The omission of an annota-
tion on what should be an atomic variable results in a typing
error. Consider the wrongful implementation of the exam-
ple depicted in Listing 3. The missing @Atomic annotation
at lines 6 and 7 results in a compile-time error, because the
type of the left and right-side values of the assignments in
either of those statements have different types. For instance,
at line 6, the type of head is Atomic Node, while the type
pref is simply Node. The placement of the @Atomic annota-
tion in line 6 will trigger a compilation error at line 10. The
program will only compile when all values deemed atomic
are only assigned to atomic variables and values deemed
not-atomic are only assigned to regular variables.

1 c l a s s LinkedList {
2 @Atomic Node head;
3
4 boolean add(i n t value) {
5 i n t v;
6 Node prev = head; // Compilation error
7 Node next = head.getNext (); // Compilation error
8 whi le ((next != nu l l) || (v = next.getValue ()) < value)) { ... }
9 boolean result = (v != value);

10 Node newNode = new Node(value , next);
11 ...
12 }
13 }

Listing 3: Integer linked list with compilation errors.

1 c l a s s Bank{
2 Map <Integer , Account > accounts;
3
4 void transfer(i n t src , i n t dst , f l o a t amount) throws OverdraftException {
5 Account destAccount = accounts.get(dst);
6 Account srcAccount = accounts.get(src);
7 srcAccount.withdraw(amount);
8 destAccount.deposit(amount); // Warning - High -Level Data Race
9 }

10 }
11
12 c l a s s Account {
13 @Atomic f l o a t balance;
14 void deposit(f l o a t amount) { ... }
15 void withdraw(f l o a t amount) throws OverdraftException { ... }
16 }

Listing 4: Bank transfer with possible HLDR.

Absence of Data Races: The semantics of the model
ensures the absence of data race between two concurrent
method executions. However, High-Level Data Races (HLDR)
may occur. Our approach is to detect them statically via the
type system, which will detect that a method execution is
accessing two resources in two distinct atomic scopes. Given

Identify
Critical Sections

Represent
Atomic Resources

Coalesce Resource
Acquisitions

Compute Group
Dependency Chains

GroupResource
Acquisitions

Eliminate
Deadlocks

Generate
Code

Source Java code

Java + locks
code

Figure 3: Main stages of the encoding process

that such kind of scenario may lead to a high-level data race,
the system will automatically generate an atomic scope that
encompasses all accesses and inform the programmer of the
decision. The approach is conservative, in the sense that it
compromises performance in favour of correctness.

Listing 4 illustrates an version of the Bank example that
leads to an HLDR. The @Atomic annotation is placed only
in the balance field of class Account, and thus the balances
of the accounts are evaluated in distinct atomic scopes.

4. ENCODING INTO JAVA
The proposed model is a high-level abstraction that must
be encoded into lower-level concurrency control primitives.
This encoding must preserve the semantics of the original
model, and ensure additional properties, such as progress
and serializabilty. We favour a pessimistic concurrency con-
trol approach and hence will resort to a simple lock-based
system. The data-centric nature of RC3 already imprints,
in the code, which data items must be subjected to concur-
rency constraints in the execution of a method. We use this
information as a starting point, associating one lock to each
atomic resource, and forcing the acquisition of this lock be-
fore the first access to the associated resource in a method
execution. There is however a considerable semantic gap be-
tween our data-centric model and these low-level lock-based
primitives, as the latter: a) are code-centric and hence re-
quire the delimitation of the code regions that have mutual
exclusion requirements – the critical sections – and; b) are
prone to deadlock situations, which compromises progress.
Figure 3 depicts the main steps of the encoding process,
which we briefly describe below.

Identify Critical Sections: This step is quite straight-
forward, as there is a one-to-one correspondence between
critical sections and methods that operate upon atomic vari-
ables. Section boundaries are narrowed down to the list of
statements that mediate between the first and the last ac-
cess to an atomic variable in the correspondent method’s
body. Multiple exit points are allowed, from both return
statements and the raising of exceptions. All methods de-
tailed in Listings 1 and 2 embed an atomic section, as they
all operate upon atomic variables.

Static Representation of Atomic Resources: Being
limited by the reach of static analysis, we have to approx-
imate the set of resources that will be accessed during the
execution of a program. To that end, we extract information
from the source code, namely the declaration and manipu-
lation of atomic variables. Currently, the runtime resources
that cannot be unequivocally identified at compile-time are
approximated by their type. Additionally, to adequately im-
plement the semantics of the model, resource accesses must
be differentiated between read and write accesses. For ex-
ample, variable prev in the linked-list example will hold a

resource of type Node that is accessed in read-write mode.

Group Atomic Resource Acquisitions: In a computa-
tion, if all locks detained by all threads at any given instant
have been acquired according to a pre-established total or-
der, then, that same computation is deadlock-free. This
strategy is, however, only applicable to the cases where the
set of locks to grab in a critical region is known in advance,
before entering the region - what we call a static scenario.
Otherwise the ordering premise cannot be guaranteed. De-
spite this limitation, we want to leverage this property and,
whenever possible, atomically acquire multiple resources at
once. Thus, we group all resource acquisitions that do not
have data dependencies between them. For that purpose we
introduce the notion of resource group - a set of resources
that can be atomically and synchronously acquired, follow-
ing an all-or-nothing semantics that respects a predefined
total ordering relation. Looking back to the transfer oper-
ation of Listing 1, both accounts are known beforehand and
can thus be seized at the entry of the atomic section (line 7)
and released when they are no longer needed (after line 8).

Compute Resource Group Dependency Chains: To
be able to detect deadlocks, we compute the control depen-
dencies between all resource acquisitions performed within
the scope of a given atomic section, including the ones car-
ried out in the scope of nested method calls.

Coalesce Resource Acquisitions: This step eliminates
all redundant resource acquisitions by coalescing them into
others. It impacts on the efficiency of the deadlock detection
algorithm because it reduces the number of dependencies to
be considered, and it improves the application’s execution
time by reducing the number of lock/unlock operations.

Deadlock Elimination: Deadlocks in our approach arise
from the fact that the all-or-nothing semantics of singular
group acquisition is not preserved across distinct acquisi-
tions. Works such as [6,7,10] prevent deadlocks by generat-
ing course-grain locks to serialize the execution of deadlock-
prone code. Our approach follows a similar philosophy. We
partition the resource group space in such a way that inter-
dependent groups, that may lead to deadlocked computa-
tions, are placed in the same partition. Then, we force the
acquisition of such groups to first obtain exclusive access
to the partition they are associated to. This automatically
breaks the circular-wait deadlock precondition, given that
interdependent group acquisitions are protected by coarser-
grain locks that can be grabbed in a deadlock-free manner.

Code Generation: The encoding process produces Java
code with calls to a library that supports the acquisition of
resource groups. The library offers operations for the cre-
ation of a chain of group acquisitions, and for the actual
acquisition and release of groups. With such API the en-
coding is rather simple: for each atomic section we create a
chain of group acquisitions and process it sequentially, from
its beginning, generating a resource group acquisition before
the first access to an element of each group. Serializability
of the concurrent schedules of method executions is ensured
by applying a two-phase locking approach to resource acqui-
sition. Hence, there are two non-overlapping phases for re-
source group acquisition and release. To boost concurrency,
in the latter phase, resources may be released individually.

DeuceSTM RC3

Total Primary Derived Total

TSP 15 9 0 9
Elevator 9 4 0 4

Bank 3 1 5 6
IntHashSet 3 5 0 5
LinkedList 3 1 13 14

RBTree 3 3 15 18

Table 1: Number of annotations in DeuceSTM and RC3.

5. EVALUATION
In this section we evaluate the RC3model and our proto-
type implementation. The model is compared against both
AJ and atomic blocks according to their productivity and
their properties. In turn, the prototype is compared from
a performance perspective against a known Java Software
Transactional Memory system, DeuceSTM, and Java syn-
chronized blocks. This evaluation will give us an assessment
of RC3’s competitiveness against leading technologies.

5.1 Productivity vs control-centric approaches
The advantages of data-centric concurrency control over its
code-centric counterpart have been widely discussed in [4].
Nonetheless, we highlight two properties of RC3: the cen-
trality of the concurrency management and the strong atom-
icity. In RC3the programmer only has to annotate the vari-
ables that should be atomically evaluated throughout the
program. Any concurrency anomaly is bound to be linked
to the data declaration. Moreover, in RC3, the annotation
of a single variable with @Atomic is sufficient to disseminate
its concurrency requirements throughout the program. The
compiler will refuse to compile until all these are fulfilled.

Table 1 details the number of constructs required by RC3

and atomic sections for 6 case-studies taken from the AJ and
DeuceSTM documentation. As can be observed, RC3 re-
quires less annotations in the TSP and Elevator case-studies,
but requires more in the remaining. This difference is, in
great part, due to the scale of these benchmarks. The evalu-
ated data-structures comprise only three atomic operations,
regardless of their internal complexity. In RC3, these struc-
tures require a greater number of annotations, in great part,
due to the passing of resources by argument and the use of
local atomic variables that have to be annotated. However,
lets consider two distinct types of annotations. The primary
annotations are the ones that, when applied, will force the
programmer to apply the remaining annotations in order for
the program to compile. The remaining derived annotations
can be easily inferred from compiler errors and, as such, can
be delegated to an IDE. In this scenario, if we only consider
the primary annotations, RC3 requires a lower number of
annotations. The exception here is the IntHashSet bench-
mark, where we need to annotate 5 class fields, despite the
fact that only 3 methods use them.

5.2 Productivity vs Atomic Sets
The advantages of RC3 against Atomic Sets are twofold:
programming simplicity and the guaranteed absence of dead-
locks. The Atomic Sets model burdens the programmer with
several constructs with distinct semantic meanings. The cor-
rect and efficient use of these constructs may not be triv-
ial and is prone to both mutual exclusion violations if the
unitfor is not carefully used, and to deadlock situations [4].

AJ RC3

atomicset atomic owned unitfor alias (/*this.L=L*/) Total @Atomic

TSP 2 9 0 0 0 11 9
Elevator 1 4 0 8 8 21 4
Weblech 2 4 0 0 0 6 4
Jcursez1 5 15 0 16 29 65 25
Cewolf 4 5 0 0 1 10 5

Collections 5 53 0 40 330 428 146

Table 2: Number of annotations required in AJ and RC3.

The authors recognize that the use of unitfor may require
some code refactoring. Conversely, in RC3, the simple anno-
tation of which variables hold values that must be evaluated
atomically is enough to express concurrency restrictions in
a safe manner. The simplicity regarding the number of con-
structs and respective semantic meanings provided by RC3;
one annotation, against the six used by AJ marks a clear
advantage for RC3.

AJ is more generic than RC3 in a single aspect: the program-
mer may subdivide groups so that these may be partially
acquired. The feature may, eventually, lead to a more fine
grained management of group level concurrency. However,
none of the case-studies studied by us and made available
by the authors of AJ benefit from this feature.

Table 2 depicts the number of constructs required by RC3

and AJ to express concurrency control for 6 case-studies
taken from the AJ literature. As can be observed, RC3

consistently requires a lower number of annotations - the
total sums both primary and derived annotations. In fact,
a source code analysis evidenced that almost all uses of our
@Atomic annotations coincide with uses of AJ’s atomic (per-
ceptible in the table by comparing the columns associated
to both). Therefore, our static analysis is able to subsume
most of the remainder annotations. We also bring attention
to the fact that AJ’s atomic annotation may be applied to
classes, as a mean to express that all of its fields are atomic.
This decreases the number of annotations required in some
case studies and can also be trivially implemented in RC3.

5.3 Performance
Setup: node with four 16-core AMD Opteron™ processors
and 64 GBytes of RAM. Benchmarks compiled and ran with
OpenJDK 8 Build b94 x86 64.

Benchmarks: AJ’s compiler is not publicly available. No-
netheless, the code generated for some examples is available
from site https://www.cs.purdue.edu/sss/projects/aj/. Of
those, only TSP is a benchmark. The performance results
delivered by RC3 for that one example are close to the Java
synchronized block-based implementation, surpassing AJ’s
performance in more than 200x for 64 cores. To have a
more rigorous assessment of our prototype’s performance,
we adapted 4 micro-benchmarks of the DeuceSTM frame-
work to RC3, and to a näıve implementation using Java
synchronized blocks. We have then run these benchmarks
in scenarios of low (10% writes), medium (25% writes), and
high contention (50% writes).

Bank (Figure 4a): RC3 yields better performance than
DeuceSTM. This is in great part due to the static nature
of the transactions between two accounts, where an ordered
locking of both accounts is sufficient to assure atomicity.
The naive approach of the synchronized block-based imple-
mentation achieved worse performance than both systems.

2 4 8 16 32 64 128
0

200

400

Number of threads

T
h
o
u
s
a
n
d
s

o
f

o
p
e
r
a
t
io

n
s

p
e
r

s
e
c
o
n
d Low contention

2 4 8 16 32 64 128
0

100

200

Number of threads

Medium contention

2 4 8 16 32 64 128
0

20

40

60

80

100

Number of threads

High contention

(a) Bank

2 4 8 16 32 64 128
0

500

1,000

1,500

2,000

Number of threads

T
h
o
u
s
a
n
d
s

o
f

o
p
e
r
a
t
io

n
s

p
e
r

s
e
c
o
n
d

2 4 8 16 32 64 128
0

500

1,000

1,500

Number of threads

2 4 8 16 32 64 128
0

500

1,000

Number of threads

(b) Hash set

2 4 8 16 32 64 128
0

500

1,000

1,500

2,000

Number of threads

T
h
o
u
s
a
n
d
s

o
f

o
p
e
r
a
t
io

n
s

p
e
r

s
e
c
o
n
d

2 4 8 16 32 64 128
0

200

400

600

800

Number of threads

2 4 8 16 32 64 128
0

200

400

Number of threads

(c) Linked list

2 4 8 16 32 64 128
0

1,000

2,000

3,000

Number of threads

T
h
o
u
s
a
n
d
s

o
f

o
p
e
r
a
t
io

n
s

p
e
r

s
e
c
o
n
d

2 4 8 16 32 64 128
0

1,000

2,000

Number of threads

2 4 8 16 32 64 128
0

500

1,000

1,500

Number of threads

(d) Red-black tree

RC3 DeuceSTM Sync

Figure 4: Performance Benchmarks.

Naturally, a more in-depth study of the code may lead to
more performable solutions.

Hash set (Figure 4b): RC3outperforms DeuceSTM, spe-
cially at medium and high contention. The hash table relies
on a single array, and most operations require access to a
single position of the array. Due to disjoint data accesses
patterns, DeuceSTM thrives under low contention, as ex-
pected. The increase in the conflict ratio is exacerbated as
contention increases.

Linked list (Figure 4c): RC3, along with synchronized
blocks, performed worse then DeuceSTM. This data struc-
ture is very suitable for optimistic approaches, hence the
STM’s high throughput. Furthermore, in RC3, a potential
deadlock scenario is identified. This a false positive1 that
results from the inability to statically differentiate the mul-
tiples nodes of the list. As a result, a coarse-grain lock is
generated and all operations that alter a list’s configuration
are serialized against each other.

Red-black tree (Figure 4d): In this benchmark, similarly
to the linked list, coarse-grain locks are generated to avoid
potential deadlocks in node acquisitions. DeuceSTM pro-
vides better performance at lower contentions, due to the
sparsity of data access, but looses to RC3 when contention
rises. The synchronized blocks implementation performed

1From the multiple case studies we implemented, this is the
only one for which the static analysis outputs a false positive.

worse then RC3, which, at a glance, is peculiar, since both
systems basically serialize all operations. In fact, this worse
performance is attributed to the forced re-acquisition of locks
in the synchronized blocks, in nested method invocations. In
our prototype, the lock coalescing step removes these locks,
boosting performance.

6. CONCLUSIONS AND FUTURE WORK
We have presented RC3, a concurrency control mechanism
that conjoins the advantages of data-centric concurrency
management with the ones of a simple programming frame-
work, with a simple semantics, upon which is easy to reason
about. RC3 requires less annotations that Atomic Sets in
all the examples that we have implemented. Although its
simplicity, RC3 grants important safety and progress proper-
ties, while still providing a competitive performance against
coarse-grained synchronised blocks and a known Java STM.

Herein we present informally the model and its intended
properties. Ongoing work is addressing the formal defini-
tion of the model, of a type system, and of encoding the
annotations into locks, so that the model’s properties can
be formally proven. Future work intends to leverage recent
shape analysis techniques to improve the static approxima-
tions of the resources to be acquired at runtime, and, with
that, further minimise the gap between our system and the
manual, fined-tuned, application of low-level synchronisa-
tion primitives.

7. REFERENCES
[1] B. M. et al. Autolocker: Synchronization inference for

atomic sections. In POPL, pages 346–358. ACM, 2006.

[2] D. M. et al. Detecting deadlock in programs with
data-centric synchronization. In ICSE, pages 322–331.
IEEE, 2013.

[3] F. T. S. et al. Dynamic optimization for efficient
strong atomicity. In OOPSLA’08, pages 181–194.
ACM, 2008.

[4] J. D. et al. A data-centric approach to
synchronization. TOPLAS, 34(1):4:1–4:48, 2012.

[5] M. A. et al. Semantics of transactional memory and
automatic mutual exclusion. TOPLAS, 33(1):2, 2011.

[6] M. E. et al. Lock allocation. In POPL, pages 291–296.
ACM, 2007.

[7] M. H. et al. Lock inference for atomic sections. In
TRANSACT. ACM, 2006.

[8] M. V. et al. Associating synchronization constraints
with data in an object-oriented language. In POPL,
pages 334–345. ACM, 2006.

[9] P. D. et al. Automated inference of atomic sets for
safe concurrent execution. In ASTE, pages 1–8, 2013.

[10] S. C. et al. Inferring locks for atomic sections. In
PLDI, pages 304–315. ACM, 2008.

[11] S. L. et al. Learning from mistakes: a comprehensive
study on real world concurrency bug characteristics.
In ASPLOS, pages 329–339. ACM, 2008.

[12] W. Huang and A. Milanova. Inferring aj types for
concurrent libraries. In FOOL, 2012.

[13] N. Shavit and D. Touitou. Software transactional
memory. In APODC, pages 204–213. ACM, 1995.

