
Revisiting Concurrent Separation Logic
and Operational Semantics

Pedro Soares

LIACC

Universidade do Porto

Porto, PT

ptcsoares@fc.up.pt

António Ravara

CITI & DI-FCT

Universidade NOVA de Lisboa

Lisboa, PT

aravara@fct.unl.pt

Simão Melo de Sousa

LIACC & DI-FE

Universidade da Beira Interior

Covilhã, PT

desousa@di.ubi.pt

Abstract—We present a new soundness proof of Concurrent
Separation Logic (CSL) based on a structural operational seman-
tics (SOS). We build on two previous proofs and develop new
auxiliary notions to achieve the goal. One uses a denotational
semantics (based on traces). The other is based on SOS, but was
obtained only for a fragment of the logic — the Disjoint CSL —
which disallows modifying shared variables between concurrent
threads. In this work, we lift such restriction, proving the
soundness of full CSL with respect to a SOS. Thus contributing
to the development of tools able of ensuring the correctness of
realistic concurrent programs. Moreover, given that we used SOS,
such tools can be well-integrated in programming environments
and even incorporated in compilers.

Keywords-operational semantics; concurrency; soundness

I. INTRODUCTION

The aim of this work is to present a new soundness proof for

Concurrent Separation Logic [5], with respect to a structural

operational semantics [9]. This work adapts and extends the

results presented by Brookes [3] and by Vafeiadis [13].
The axiomatic verification of programs goes back to Hoare

Logic [4]. This seminal work introduces two key ideas, i)

the specification of programs by means of what is known

by a Hoare triple: {P}C{Q}, where P and Q are first

order formulae, called the precondition and postcondition

respectively, and C is an imperative program; ii) a deductive

proof system to ensure the partial correctness of programs. A

program is partially correct, if every execution of C from a

state respecting the precondition does not abort and when it

terminates the postcondition holds for its final state. The state

for this logic is formed only by the store, i.e. a function that

records the value of each variable. Hoare’s work gave rise to

numerous deductive systems, for instance the Owicki-Gries

method ([7], [8]) and Separation Logic ([6], [11]).
The Owicki-Gries method is one of the first attempts to

give a resource sensitive proof system for concurrent pro-

grams. To do this, Owicki and Gries augmented the pro-

gramming language with i) parallel composition, C ‖ C; ii)

local resources, resource r in C; and iii) a critical region,

with r when B do C, where r denotes a resource. Each re-

source has a mutual exclusion lock, an invariant condition,

and a set of protected variables.
The execution of parallel composition non-deterministically

chooses one of the commands to execute. As usual, the

execution is assumed to be weakly fair, i.e. if a command

is continually available, then it will be eventually selected for

execution. The resource command declares a local variable

r to be used during the execution of C. The critical region

command waits for the availability of the resource r, and when

B holds, it acquires r and starts the execution of C, after the

execution of C terminates the resource r is made available.

The programs derivable by the Owicki-Gries method have to

preserve the resource invariants when the resource is available,

and respect the protection of variables by resources, i.e. a

program needs to acquire all resources protecting a variable,

before the program can change that variable. The parallel rule

proposed by Owicki [7] requires that every variable occurring

in the derivation proof of one command is not be changed by

another command, except for variables protected by a resource

such that the variable only appear inside the critical region’s

proof. Thus, the Owicki-Gries method is not compositional.

Separation Logic (SL) supports reasoning about imperative

programs with shared mutable data and consequently about

dynamical data structures, such as lists and trees. In order to

do this, the assertion and program languages used by Hoare

had to be augmented. The assertions are extended with the

constructs emp, the empty memory; e �→ e′, a single memory

cell e with the value e′; and P ∗ Q, two disjoint memory’s

parts such that one satisfies P and the other satisfies Q. In this

settings, the memory is represented by the heap — a partial

function from the set of locations to the set of values. The

store and the heap together define the state of a program.

The programing language is augmented with commands

for memory manipulation. Naturally, the proof system is also

extended with a rule for each new command and with a frame

rule, used to enlarge the portion of memory considered in the

conditions of a specification. This rule is crucial to achieve

local reasoning: program specifications only need to consider

the relevant memory for their execution. Therefore, this local

reasoning mechanism can be used to establish the partial

correctness of disjoint concurrent programs, i.e. concurrent

programs which do not change shared variables.

In order to prove the soundness of the frame rule, and thus

of local reasoning, it is sufficient to ensure the validity of

two key properties: safety monotonicity and frame property.

Safety monotonicity states that if a program does not abort for

2015 23rd Euromicro International Conference on Parallel, Distributed, and Network-Based Processing

1066-6192/15 $31.00 © 2015 IEEE

DOI 10.1109/PDP.2015.85

484

a given memory portion, then the program does not abort for

any memory portion that contains the initial one. The frame

property says that if a program does not abort for a given

memory portion, then every execution on a larger memory

corresponds to an execution on the initial memory.
Since the introducing of SL, different authors adapted it to

the verification of concurrent programs. Vafeiadis and Parkin-

son introduced RGSep, combining SL with Rely/Guarantee

reasoning [14]. Reddy and Reynolds introduced a syntactic

control of interference in SL [10], borrowing ideas from works

on fractional permissions [1]. O’Hearn proposed Concurrent

Separation Logic (CSL), combining SL with the Owicki-Gries

method [5]. Brookes formalized CSL, extending the traditional

Hoare triples with a resource context Γ and a rely-set A,

what leads to specifications of the form Γ |=A {P}C{Q}.
A resource context records the invariant and the protected

variables of each resource. A rely-set consists of all variables

relevant for its derivation tree. This set ensures that CSL is

a compositional proof method, proved sound with respect to

a denotational semantics based on traces, where a program

state is represented by a store, a heap and sets of resources,

expressing resource ownership [3]. Actually, the rely-set was

introduced after Wehrman and Berdine discovered a counter-

example to the initial version of CSL [2], and it is analogous

to the set of variables used by Owicki and Gries to check

non-interference in their parallel rule.
Alternatively, Vafeiadis proposed a structural operational

semantics (SOS) for concurrent programs synchronizing via

resources, and proved the soundness of a part of CSL, the

Disjoint CSL (DCSL) [13]. DCSL differs from CSL in the

side condition of the parallel rule. The side condition in DCSL

forbids the modification of variables that appears in other

specifications, however the side condition in CSL, only, forbids

the modification of variables in the other rely-sets.
Our motivation for this work was to remove the disjointness

condition and obtain a soundness proof using a SOS for the

full CSL (Section VI). The goal is relevant because CSL has

been adopted as the basis for most modern program logic, and

it is a step in the development of more expressive provers well

integrated in software development environments and compil-

ers. Not only it allows proving correct concurrent programs

handling shared resources, but also provides techniques to

equip compilers with mechanisms of detecting data-races.
Concretely, the contributions of this work are the following:

1) A novel notion of environment transition that simulates

actions made by other threads. We define it taking

into account the rely-set, available resources and their

invariants (Section V-A). This relation is crucial to study

the soundness of the parallel rule.

2) The resource configuration that expresses ownership.

It is defined by three sets: owned resources, locked

resources, and available resources (Section IV-A). In our

work, a program state is formed by a store, a heap and

a resource configuration.

3) An illustrative example that we prove correct in CSL,

showing the proof system’s expressiveness (Section II).

II. MOTIVATING EXAMPLE

To clarify that DCSL is not as expressive as CSL, we present

below an example of parallel operations over a stack that

cannot be proved correct in former but can be in the latter.
Let us specify the operation of push and pop in a stack. The

stack is represented by the resource st in the following way

st({z, y}) : stack(z),
where {z, y} is the protected variables, and stack(z) is

(z = null ∧ emp) ∨ (∃a,bz �→ a, b ∗ stack(b)).
The operations pop and push over a stack are defined below.

pop() := with st when ¬(z = null) do (y:=z;
x1:=y;
z:=[y+1];
disp(y+1))

push(x) := with st do (y:=cons(x,z) ; z:=y)

The operation pop picks the first node of a non-empty stack

and passes it to the variable x1. In the following specification,

the program performs a pop over a shared stack and it disposes

the memory space retrieved by the stack.

st(z, y) : stack(z) 	 {emp}pop() ; disp(x1){emp}. (1)

To prove this result in DCSL, we use the rules of SL and the

critical region rule, that is presented in the next section for CSL

by omitting the rely-set. Consider the following derivation, that

proves the validity of the program inside the critical region.
	 {emp ∗ ∃a,b z �→ a, b ∗ stack(b)}

y:=z;
{emp ∗ ∃a,b y �→ a, b ∗ stack(b)}
x1:=y;
{emp ∗ ∃a,b x1 �→ a ∗ y+1 �→ b ∗ stack(b))}
z:=[y+1];
{emp ∗ ∃a x1 �→ a ∗ y+1 �→ z ∗ stack(z))}
disp(y+1)
{(∃a x1 �→ a) ∗ (stack(z))}.

Applying critical region rule, we obtain,
st(z, y) : stack(z) 	 {emp}pop(){ ∃a x1 �→ a}.

By the SL’s rules, sequential and deallocation, we have (1).
Now, we turn our attention to the push operator over a stack,

showing that the following specification is valid in the context

of DCSL. Let push insert an element x2 in the top of a stack.

st(z, y) : stack(z) 	 {emp}push(x2){emp}.
As before, from SL inference rules, we obtain the speci-

fication below. Then we can apply the critical region rule to

obtain the specification above.
	 {emp ∗ stack(z)}

y:=cons(x2,z)
{y �→ x2, z ∗ stack(z)}
{emp ∗ ∃a,b y �→ a, b ∗ stack(b)}
z:=y
{emp ∗ ∃a,b z �→ a, b ∗ stack(b)}

485

e := x | n | e1 + e2 | e1 − e2 | e1 × e2

B := true | false | e1 = e2 | e1 < e2 | B1 ∧B2 | ¬B
P := B | ¬P | P1 ∧ P2 | ∀xP | emp | e �→ e′ | P1 ∗ P2

Fig. 1. Syntax of the Assertion Language

Until now we shown that each specification is derivable in

DCSL; now we want to study their parallel composition. To

apply the parallel rule we need that the variables modified by

one program cannot occur free in the other specification.

mod(pop() ; disp(x1)) = {x1, y},mod(push(x2)) = {x2, z}.
The variables z and y are used in both specifications. Hence

it is not possible to apply the DCSL parallel rule and obtain

a specification for the parallel execution of pop and push.

In order to express the specification above in the context of

CSL it is necessary to define the rely-set for the operation of

pop and push, that are {x1} and {x2}, respectively.

It is straightforward, using the derivations above, to infer,

in CSL, the following specifications:

st(z, y) : stack(z) 	{x1} {emp}pop() ; disp(x1){emp}
st(z, y) : stack(z) 	{x2} {emp}push(x2){emp}.

To apply the CSL parallel rule, we need to check

that there is no interference between rely-sets and mod-

ified variables. Since mod(push(x2)) ∩ {x1} = ∅ and

mod(pop() ; disp(x1)) ∩ {x2} = ∅, by parallel rule we infer:

st(z, y) : stack(z) 	{x1,x2}
{emp}(pop() ; disp(x1)) ‖ push(x2){emp}.

As this example shows we can prove correctness of more

programs using CSL than DCSL. In the next section, we

shall overview CSL and present some of its inference rules

(a complete presentation is in the work of Brookes [3]).

III. CONCURRENT SEPARATION LOGIC

We revisit Concurrent Separation Logic (CSL), as presented

by Brookes [3]. First, we define the assertion language, then

the syntax of commands for concurrent programs, and finally

the inference rules for CSL.

A. Assertion Language

Consider a set Var of variables, ranged over by x, y, . . ., and

a set Val of values, that includes the integers and the value

null. These meta-variables may be indexed or primed.

The grammar in Fig. 1 defines the syntax of the assertion

language. We assume the usual definitions of free variables

of an assertion (FV), and of (partial) substitution of a (free)

variable in an assertion.

We use the definition of SL for the validity of an assertion

with respect to the pair (s, h), where s and h are denoted by

storage and heap, respectively, and given by the functions:

s : Var → Val, h : Loc ⇀ Val,

where Loc ⊂ N is the set of current locations. For an assertion

P , we write s, h |= P if the assertion is valid for the pair

(s, h), and we write |= P if s, h |= P for every pair (s, h).
For a given heap and storage, the precise assertions uniquely

determine the subheap that verifies it.

Definition 1. We say that an assertion P is precise if for
every pair (s, h) there is at most one subheap h′ of h such
that s, h′ |= P .

The resource context Γ is used to represent a shared state.

The resource context Γ has the form

r1(X1) : R1, r2(X2) : R2, . . . , rn(Xn) : Rn, (2)

where ri are distinct resources names, Ri are assertions and

Xi ⊆ Var such that FV (Ri) ⊆ Xi, for each i = 1, 2, . . . , n.

The set of variables is called protected variables and each

assertion represents a resource invariant. As usual, every

assertion used in a resource context must be precise. The re-

striction is necessary as showed by Reynolds in an illuminating

example [5, Section 11], because CSL has the conjunction rule.

Let Res(Γ) denote the set of resources names appearing

in Γ, ranged over by ri. Furthermore, let PV (Γ) denote the

set of all variables protected by resources in Γ, and PV (ri)
denote the set of variables protected by ri.

B. Programming Language

The language includes the basic commands to manipulate

storage and heap:

c := x:=e | x:=[e] | [e]:=e’ | x:=cons(e) | disp(e).

The basic commands use the notation of SL. The bracket

parenthesis denotes an accesses to a heap location. There are

also commands to allocate new locations of memory and to

free a location, respectively, x:=cons(e) and disp(e).
The following grammar defines the syntax of the program-

ming language. In the introduction, we gave a brief explanation

for the last three commands.

C := skip | c | C1 ; C2 | if B then C1 else C2

while B do C | resource r in C

with r when B do C | C1 ‖ C2.
The set of variables modified by a program C, mod(C),

consists of all variables x such that the program C has one of

the following commands: x:=e, x:=[e] or x:=cons(e).

C. Inference rules

In this section, we present the most relevant inference rules

for CSL as stated by Brookes [3]. First, we define what is a

well-formed specification in CSL.

Definition 2. Let Γ be a resource context, A a set of variables,
P,Q assertions and C a command. The specification of a

program has the form

Γ 	A {P}C{Q}.
Moreover we say that the specification of the program is

well-formed, if FV (P,Q) ⊆ A and FV (C) ⊆ A ∪ PV (Γ).

486

Γ 	A {P}skip{P} (SKP)
mod(c) ∩ PV (Γ) = ∅ 	SL {P}c{Q}

Γ 	A {P}c{Q} (BC)
Γ 	A1 {P1}C1{P2} Γ 	A2 {P2}C2{P3}

Γ 	A1∪A2 {P1}C1 ; C2{P3} (SEQ)

Γ 	A {P}C{Q} mod(C) ∩ FV (R) = ∅
Γ 	A∪FV (R) {P ∗R}C{Q ∗R}

(FRA)
Γ 	A1

{P1}C1{Q1} Γ 	A2
{P2}C2{Q2} (∗)

Γ 	A1∪A2
{P1 ∗ P2}C1 ‖ C2{Q1 ∗Q2} (PAR)

Γ 	A∪X {(P ∧B) ∗R}C{Q ∗R}
Γ, r(X) : R 	A {P}with r when B do C{Q} (CR)

Γ, r(X) : R 	A {P}C{Q}
Γ 	A∪X {P ∗R}resource r in C{Q ∗R} (RES)

Fig. 2. Rules of the Inference System

In Fig. 2, we present some inference rules of CSL. The

inference rules are only applied for well-formed specifications.

The specifications derivable by SL are denoted by 	SL.

The rule for basic commands are inherited from SL by

adding the rely-set and imposing that protected variables are

not modified. The sequential and frame rules are very similar

to the respective rules of SL, but the rely-set needs to take

into account the rely-set of both program or the variables of

the framed assertion.

In the critical region rule, if the command inside the critical

region preserves the invariant, when B is initial respected, then

the resource context can be expanded by r. Note that the rely-

set does not need to include all protected variables, however

the well-formedness of the specification must be preserved.

In the local resource rule, we are able to take out a resource

from the assumption’s resource context to the conclusion’s

local condition. The parallel rule has the side condition below

that restricts the interference between programs.

mod(C1) ∩A2 = mod(C2) ∩A1 = ∅. (*)

In order to obtain the inference rules of DCSL we erase

the rely-set from the CSL inference rules and change the side

condition in the parallel rule to the following condition:

mod(C1) ∩ FV (C2, P2, Q2) = mod(C2) ∩ FV (C1, P1, Q1) = ∅.
Note that it is obvious that every valid specification in DCSL

is also valid in CSL, by taking Ai = FV (Pi, Ci, Qi), i = 1, 2.

IV. OPERATIONAL SEMANTICS

In this section, we describe a structural operational seman-

tics (SOS) that we use to prove the soundness of CSL. We

mostly follow the approach of Vafeiadis [13].

A. Program transition

We start by extending the programming language with a

command for executions inside a critical region. We denote

this command by within r do C, where r is an acquired

resource and C is the command in execution. In the extended

programming language, we can associate to each command a

set of locked resources, Locked(C). This set is composed by

all resource r such that there is a subcommand within r do C
which is not a subcommand of resource r in C.

Let O,L,D be disjoint pairwise subsets of resources names,

we say that ρ = (O,L,D) is a resource configuration. The set

O represents the resources owned by the running program, the

set L represents the resources locked by others programs and

the set D represents the resources available. We write r ∈ ρ
(r /∈ ρ) if r ∈ (O ∪ L ∪D) (r /∈ (O ∪ L ∪D), respectively).

Usually the state of a machine in SL consists of a storage,

s, and a heap, h. However, we define a program’s state by a

triple (s, h, ρ). The program transitions, that define the SOS,

are represented by the relation →p defined from the tuple

(C, (s, h, ρ)) to (C ′, (s′, h′, ρ′)) or the abort state (abort),
where C,C ′ are commands and (s, h, ρ), (s′, h′, ρ′) are states.

For a basic command c we denote by [c](s, h) the result of

executing c for the pair (s, h), in the context of SL. The result

of execution c to a pair (s, h) can be a pair (s′, h′) or abort.
An excerpt of the program transitions are in Fig. 3. The full

set of rules for SOS is in the technical report [12].

Since most of the program transition are standard, we only

emphasize how we manage the resource configuration. First

note that it is not changed by any transition of basic commands

(BCT). The acquisition of a resource by the transition (W0)
requires that the resource is available and transfers it to the

set of owned resources; the release of a resource made by

(W2) returns the resource to the set of available resources.

The local resource command does not add the resource to the

resource configuration, since that would break locality, i.e.,

the local resource should only be visible to who created it.

For the local resource we use the set of Locked resources,

Locked(C), to determine if a resource should be in the set of

owned or available resources. In the next section, we prove

that Locked(C) is equal to the set of owned resources along

an execution starting in a non-extended command.

In Fig. 4, we include transitions that abort. As in SL, a mem-

ory fault cause the program to abort. The parallel command

goes to abort if one of its commands aborts. The local resource

command leads to a abort situation if the command tries to

create a pre-existing resource. The critical region command

goes to abort if it tries to acquire an undeclared resource, if

the execution inside the critical region aborts, or if an acquired

resource is not in the set of owned resources.

B. Properties of program transitions

We state now the main properties of the program transitions

(the proofs can be found in the technical report [12]). We start

with the safety monotonicity and the frame properties that are

essential to show the soundness of the frame rule, as well as

487

[c](s, h) = (s′h′)
c, (s, h, ρ)→p skip, (s′, h′, ρ)

(BCT)
skip;C2, (s, h, ρ)→p C2, (s, h, ρ)

(S1)

C1, (s, h, ρ)→p C ′
1, (s

′, h′, ρ′)
C1 ; C2, (s, h, ρ)→p C ′

1 ; C2, (s′, h′, ρ′)
(S2)

C1, (s, h, ρ)→p C ′
1, (s

′, h′, ρ′)
C1 ‖ C2, (s, h, ρ)→p C ′

1 ‖ C2, (s′, h′, ρ′)
(P1)

C2, (s, h, ρ)→p C ′
2, (s

′, h′, ρ′)
C1 ‖ C2, (s, h, ρ)→p C1 ‖ C ′

2, (s
′, h′, ρ′)

(P2)
skip‖skip, (s, h, ρ)→p skip, (s, h, ρ)

(P3)

C, (s, h, (O ∪ {r}, L,D))→p C ′, (s′, h′, ρ′) r /∈ ρ = (O,L,D) r ∈ Locked(C)

resource r in C, (s, h, ρ)→p resource r in C ′, (s′, h′, ρ′ \ {r}) (R1)

C, (s, h, (O,L,D ∪ {r}))→p C ′, (s′, h′, ρ′) r /∈ ρ = (O,L,D) r /∈ Locked(C)

resource r in C, (s, h, ρ)→p resource r in C ′, (s′, h′, ρ′ \ {r}) (R2)

r /∈ ρ

resource r in skip, (s, h, ρ)→p skip, (s, h, ρ)
(R0)

ρ = (O ∪ {r}, L,D) ρ′ = (O,L,D ∪ {r})
within r do skip, (s, h, ρ)→p skip, (s, h, ρ′)

(W2)

r ∈ O C, (s, h, (O \ {r}, L,D))→p C ′, (s′, h′, (O′, L′, D′))
within r do C, (s, h, (O,L,D))→p within r do C ′, (s′, h′, (O′ ∪ {r}, L′, D′)

(W1)

ρ = (O,L,D ∪ {r}) ρ′ = (O ∪ {r}, L,D) s(B) = true

with r when B do C, (s, h, ρ)→p within r do C, (s, h, ρ′)
(W0)

Fig. 3. Program Transitions

[c](s, h) = abort
c, (s, h, ρ)→p abort

(BCA)
C1, (s, h, ρ)→p abort

C1 ‖ C2, (s, h, ρ)→p abort
(PA1)

C2, (s, h, ρ)→p abort
C1 ‖ C2, (s, h, ρ)→p abort

(PA2)

r ∈ ρ

resource r in C, (s, h, ρ)→p abort
(RA)

r /∈ ρ

with r when B do C, (s, h, ρ)→p abort
(WA)

r /∈ O
within r do C, (s, h, (O,L,D))→p abort

(WA2)
C, (s, h, ρ \ {r})→p abort

within r do C, (s, h, ρ)→p abort
(WA1)

Fig. 4. Abort Transitions

of the parallel rule.

Let h, g be heaps. If they have disjoint domains we write

h⊥g, and we denote by h � g the union of disjoint heaps.

Proposition 1. Let C be a command and let (s, h, ρ) be a
state. Suppose hF is a heap such that h⊥hF .

If C, (s, h, ρ) �→p abort then C, (s, h � hF , ρ) �→p abort.

Proposition 2. Let (s, h, ρ), (s′, h′, ρ′) be states and let C,C ′

be commands. Suppose hF is a heap such that h⊥hF . If
C, (s, h, ρ′) �→p abort and C, (s, h�hF , ρ)→p C ′, (s′, h′, ρ′),
then hF is a subheap of h′ and

C, (s, h, ρ)→p C ′, (s′, h′ \ hF , ρ
′).

By safety monotonicity and frame property we know that

the execution of parallel commands only affects his own heap.

We state dual properties for the resource configuration.

Proposition 3. Let C be a command, (s, h) be a SL’s state and
(O1 ∪O2, L,D), (O1, L∪O2, D) be resource configurations.
If C, (s, h, (O1, L ∪O2, D)) �→p abort, then

C, (s, h, (O1 ∪O2, L,D)) �→p abort.

Proposition 4. Let C,C ′ be commands, let (s, h), (s′, h′) be
SL’s states and let ρ1, ρ2, ρ′ be resource configurations.

Suppose that ρ′ = (O′, L,D′), ρ1 = (O1 ∪ O2, L,D)
and ρ2 = (O1, L ∪ O2, D). If C, (s, h, ρ2) �→p abort and
C, (s, h, ρ1)→p C ′, (s′, h′, ρ′), then O2 ⊆ O′ and

C, (s, h, ρ2)→p C ′, (s′, h′, (O′ \O2, L ∪O2, D
′)).

The previous propositions allow us to make a correspon-

dence between the transitions in a parallel execution to tran-

sitions of its commands executed independently.

We say that a command C is reachable from a CSL’s

command C ′ if there are (s, h, ρ), (s′, h′, ρ′) and k such that

C ′, (s, h, ρ′)→k
p C, (s′, h′, ρ′)

and C ′, (s, h, ρ′) �→j
p abort for every j ≤ k, where →i

p de-

notes the composition of i transitions. In the next proposition,

we see that owned resources are equal to locked resources,

along an execution starting from a non-extended command.

Proposition 5. Let C, C ′ be commands, let Γ be a resource
context, let (s, h, (∅, ∅, Res(Γ)), (s′, h′, ρ′) be states and let
k ≥ 0 such that C ′ is reachable from C.

488

If C, (s, h, (∅, ∅, Res(Γ))→k
p C ′, (s′, h′, ρ′), then

ρ′ = (Locked(C ′), ∅, Res(Γ) \ Locked(C ′)).

The proposition above reinforces the idea that the transitions

(R1) and (R2) are well defined. Furthermore, it completely

describes the resource configuration along an execution.

V. VALIDITY

In this section, we start by defining the validity of specifi-

cations in the SOS presented before.

Let Γ be a resource context with the form (2). For any

D = {ri1 , ri2 , . . . , rik} ⊆ Res(Γ), we define

�
r∈D

Γ(r) = Ri1 ∗Ri2 ∗ . . . ∗Rik ,

inv(Γ) = �
r∈Res(Γ)

Γ(r).

Definition 3. We write Γ |= {P}C{Q}, if for every state
(s, h) such that s, h |= P ∗ inv(Γ), we have that

• C, (s, h, (∅, ∅, res(Γ)) �→k
p abort, for every k ≥ 0. And

• If there exist a state (s′, h′) and k ≥ 0 such that

C, (s, h, (∅, ∅, res(Γ)))→k
p skip, (s′, h′, (∅, ∅, res(Γ))),

then s′, h′ |= Q ∗ inv(Γ).
We were not able to inductively prove the soundness of

CSL using this notion, because we could not emulate the

modification of parallel execution in all parts. The next sub-

sections are devoted to how we overcome this difficulty. Thus

we introduce the environment transition, that will be essential

to spread changes made in the state by one program to other

parallel programs. And we give a refined notion of validity for

the SOS extended with the environment transition, which we

call safety. We finish this section by seeing that safety implies

validity.

A. Environment transition

In order to define the environment transition, we define

the environment transformation respecting a set of variables.

This transformation modifies the storage and the resource

configuration, afterwards the environment transition combines

this transformations with modification in the shared heap.

Definition 4. Let (s, h, (O,L,D)), (s′, h′, (O′, L′, D′)) be
states and A ⊆ Var. We say that (s, h, (O,L,D)) is trans-
formed by the environment to (s′, h, (O,L′, D′)) respecting
A and we write (s, h, (O,L,D))

A� (s′, h, (O,L′, D′)) if
s(x) = s′(x), for every x ∈ A, and L′ ∪D′ = L ∪D.

Note that the environment transformation preserves the

local heap and the owned resources, since other programs

cannot change them. Furthermore, the relation defined by the

environment transformation,
A�, is an equivalence relation

and it is order reversing with respect to A. In the next

proposition, we state this properties.

Proposition 6. Let A′, A ⊆ Var. The relation A� is an
equivalence relation. If A′ ⊆ A and (s, h, ρ)

A� (s′, h′, ρ′),
then (s, h, ρ)

A′
� (s′, h′, ρ′).

We denote the environment transition by
A,Γ−−→e, it is a

relation between (C, (s, h � hG, ρ)) and (C, (s′, h � h′
G, ρ

′)),
where C is a command and (s, h � hG, ρ), (s

′, h � h′
G, ρ

′)
are states, and it is defined by the rule below. Consider the

set A′ = A ∪⋃
r∈Locked(C) PV (r). If (s, h, ρ)

A′
� (s′, h, ρ′),

s, hG |= �
r∈D

Γ(r) and s′, h′
G |= �

r∈D′
Γ(r), then

C, (s, h � hG, ρ)
A,Γ−−→e C, (s

′, h � h′
G, ρ

′)
(E)

.

As noted before the environment transition is used to

simulate modification done by other program. The environ-

ment transition can be used to: change the storage, except

for variables in the rely-set A or variables protected by an

acquired resources; interchange locked resources and available

resource; and modify the available shared heap.

We extend the transitions on the SOS with the environment

transition, and we define the relation
A,Γ−−→ from (C, (s, h, ρ))

to (C ′, (s′, h′, ρ′)) or to abort, where C,C ′ are commands

and (s, h, ρ), (s′, h′, ρ′) are states. This relation is given by

A,Γ−−→ = →p ∪ A,Γ−−→e .

B. Safety

For a command C, we associate the set of variables passive

to be changed by C in the next transition, and we denote it

by chng(C). This set consists of all variables x such that C
can perform a transition using x:=e; x:=[e] or x:=cons(e).

The next definition expresses the safety of program with

respect to a state in the extended operational semantics, for

the next n transitions. We include some additional properties

that will be useful to prove the soundness of CSL.

Definition 5. Let C be a command, let (s, h, ρ) be a state,
let Γ be a resource context, let Q be an assertion and A ⊆
Var. We say that Safe0(C, s, h, ρ,Γ, Q,A) is always valid, and
Safen+1(C, s, h, ρ,Γ, Q,A) is valid if:

(i) If C = skip, then s, h |= Q;
(ii) C, (s, h, ρ) �→p abort;

(iii) chng(C) ∩⋃
r∈L∪D PV (r) = ∅;

(iv) For every hG such that h⊥hG, s, hG |= �
r∈D

Γ(r) and

C, (s, h � hG, ρ)
A,Γ−−→ C ′, (s′, ĥ, ρ′),

then there exist h′ and h′
G such that ĥ = h′ � h′

G,
Safen(C

′, s′, h′, ρ′,Γ, Q,A) is valid and

s′, h′
G |= �

r∈D′
Γ(r).

The property (i) states that if the execution terminates, then

Q is respected. In the property (ii), we ensure that the next

transition of C does not abort for the state (s, h, ρ). The

property (iii) guarantees that the next transition of C does

not change variables protected by resources not owned. In

489

the final condition (iv), we require that the available shared

state is preserved after every transition and that the posterior

transitions respects this conditions.

In the next theorem, we see that if a program is safe for

every number of transitions and for every state that respects

the pre-condition, then the correspondent specification is valid

with respect to the SOS. The theorem is proved by induction

on the number of program’s transitions.

Theorem 1. Let C be a command, let P,Q be assertions,
let Γ be a resource context and A ⊆ Var. If for every
state (s, h) and n ≥ 0 such that s, h |= P , we have that
Safen(C, s, h, (∅, ∅, Res(Γ)),Γ, Q,A) is valid, then

Γ |= {P}C{Q}.
In order to prove the soundness of CSL, by the theorem

above, is sufficient to show that every derivable specification

on CSL implies safety, a result we prove in the next section.

VI. SOUNDNESS

We sketch here the soundness of CSL with respect to

the SOS. First, we state the main result of this work, the

soundness of CSL. Next we present an intermediate theorem

that, together with the Theorem 1, proves the main result. The

intermediate theorem says that every derivable specification in

CSL is safety in the extended operational semantics.

Theorem 2. If Γ 	A {P}C{Q}, then Γ |= {P}C{Q}.
Theorem 2 is an immediate consequence of the next theorem

and Theorem 1.

Theorem 3. Let C be a command, let P,Q be assertions, let
Γ be a resource context and A ⊆ Var. If Γ 	A {P}C{Q},
then for every state (s, h) and n ≥ 0 such that s, h |= P ,
we have that Safen(C, s, h, (∅, L,D),Γ, Q,A) is valid, where
L ∪D = Res(Γ).

In the next lines, we carry out an informal proof of this

theorem by studying the inference rules of CSL. The proof

is carried by induction on the inference rules and we give an

auxiliary result for some of the inference rules. The skip rule

(SKP) has the following auxiliary proposition.

Proposition 7. Let (s, h, ρ) be a state, let Γ be a resource
context, let Q be an assertion and A ⊆ Var such that
FV (Q) ⊆ A. If s, h |= Q, then Safen(skip, s, h, ρ,Γ, Q,A)
is valid for every n ≥ 0.

We prove this result by induction on n. The first properties

of safety are immediate, because the state respects Q, the

command skip does not abort and it does not modify protected

variables. For the last property, we note that the execution of

skip is composed only by environment transition. And the

environment transition does not modify the variables in the

rely-set neither the local heap. Therefore Q remains valid after

every transition and we can apply the induction hypothesis.

In order to check the safety of basic commands rules (BC),
we argue mostly as in the context of SL. For any state

that respects the precondition, the execution does not abort

and after the program transition (BCT) the post condition

is established. We remark that (BCT) does not change the

validity of shared properties, because it does not change

protected variables neither the shared heap. The environment

transition respects the local state, because every free variable

in the conditions are in the rely-set, and it respects the shared

state, by definition. Moreover if an environment transition is

done before (BCT), then the precondition is preserved. If the

environment transition is done after (BCT) the post condition

is preserved, by the Proposition 7. In the technical report [12],

we formalize this argument for each basic commands.

The soundness of the frame rule (FRA) is supported by

the following proposition.

Proposition 8. Let C be a reachable command, let Γ be
a resource context, let (s, h � hR, ρ) be a state, let Q,R
be assertions and A ⊆ Var such that s, hR |= R. If
Safen(C, s, h, ρ,Γ, Q,A) is valid and mod(C)∩FV (R) = ∅,
then Safen(C, s, h � hR, ρ,Γ, Q ∗R,A ∪ FV (R)) is valid.

The proposition follows from the safety monotonicity and

frame property (Propositions 1 and 2). We note that R is valid

after every transition, because FV (R) is not modified by the

command and the rely-set includes it.

Next we study the parallel rule (PAR).

Proposition 9. Let s be a storage, let C1 ‖ C2 be a reachable
command, let h, h1, h2 be heaps, let ρ, ρ1, ρ2 be resource
contexts, let Q1, Q2 be assertions and A1, A2 ⊆ Var such
that h = h1�h2, ρ = (O1∪O2, L,D), ρ1 = (O1, L∪O2, D),
ρ2 = (O2, L ∪O1, D) and FV (Qi) ⊆ Ai, for i = 1, 2.

Suppose that A1 ∩mod(C2) = A2 ∩mod(C1) = ∅.
If Safen(Ci, s, hi, ρi,Γ, Qi, Ai) is valid for i = 1, 2, then

Safen(C1 ‖ C2, s, h, ρ,Γ, Q1 ∗Q2, A1 ∪A2) is valid.

As before we prove this result by induction on n. The firsts

three properties of safety are immediate from the safety of C1
and C2, and Propositions 1 and 3.

In order to apply the induction step we use the environment

transition. If the parallel execution transits by a program tran-

sition, then there are three cases. First case, a transition is done

by C1. We perform the same transition on C1 (by Propositions

2 and 4) and an environment transition on C2, that replicates

the changes performed by the program transition. This envi-

ronment transition exists because the variables modified by

the program C1 are different from the rely set A2. In the

second case, a transition is done by C2, and we do analogous

transitions. The third case is the joint of parallel commands. In

this case, we do a reflexive environment transition on C1 and

C2. If the program transits by an environment transition, then

we perform the same environment transition on C1 and C2.

This environment transition can be used because the rely-set of

C1 ‖ C2 includes the rely-set of each command. Therefore we

can apply the inductive hypothesis and obtain the proposition.

The safety of the critical region rule follows from the

safety inside the critical region. Because any environment

transition performed before the critical region does not break

490

the precondition’s validity and when a program enters a critical

region its invariant is valid and B is respected. Therefore the

next result establishes safety for the critical region rule.

Proposition 10. Let C be a reachable command, let (s, h, ρ)
be a state, let Γ be a resource context, let Q be an assertion
and A ⊆ Var. Suppose that Γ′ = Γ, r(X) : R is a resource
context, ρ = (O,L,D), r ∈ O and FV (Q) ⊆ A.

If Safen(C, s, h, ρ \ {r},Γ, Q ∗ R,A ∪ X) is valid, then
Safen(within r do C, s, h, ρ,Γ′, Q,A) is valid.

The safety inside the critical region is a consequence of the

safety of C with the rely-set extended by X and without the

resource r, because their execution are equivalents. Note that

when the execution inside the critical region terminates the

resource invariant is valid. Hence the shared state respects the

global properties, when the resource is made available.

In the proposition below, we give properties for the local

resource when the resource is available or locked. In the

work of Vafeiadis [13], there is a similar proposition in the

context of DCSL. Using its second property, we can prove the

soundness of the local resource rule.

Proposition 11. Let C be a reachable command, let (s, h, ρ)
be a state, let Γ be a resource context, let Q be an assertion
and A ⊆ Var. Suppose that Γ′ = Γ, r(X) : R is a resource
context, ρ = (O,L,D), r /∈ ρ and FV (Q) ⊆ A. We have the
following statements:

• Suppose that r ∈ Locked(C).
If Safen(C, s, h, (O ∪ {r}, L,D),Γ′, Q,A) is valid, then
Safen(resource r in C, s, h, ρ,Γ, Q∗R,A∪X) is valid.

• Assume that exists hR such that hR⊥h and s, hR |= R.
Suppose that r /∈ Locked(C).
If Safen(C, s, h, (O,L,D ∪ {r}),Γ′, Q,A) is valid, then
Safen(resource r in C, s, h� hR, ρ,Γ, Q ∗R,A∪X) is
valid.

This proposition is proved by induction on both properties

in the following way: first we prove that both properties are

true when n = 0; then we assume that both properties are true

for n ≥ 0 and prove that each property is true for n+ 1.

The program transitions inside the local resource have an

equivalent program transition for the command C, except

for the transition (R0). In those cases we apply one of the

inductive step depending on resource’s ownership. For the case

(R0), we note that the execution inside the local resource

had terminated and the invariant R is respected. If the local

resource transits by an environment transition, then there is an

equivalent environment transition in C.

In the technical report [12], we formalize the arguments

presented before and we prove the soundness of all CSL [3].

VII. CONCLUSION

This work presents a proof of correctness of CSL based

on SOS, the first we are aware of. We build on two previous

proofs, one for the full logic, using a denotational semantics

based on traces, and another for a fragment of CSL, the DCSL.

The formalization of the results presented in a theorem prover

is a naturally extension to the present work.

A proof based on SOS is important, as this form of seman-

tics closer mimics the execution of an imperative program.

Therefore, it paves the way to the development of more

expressive proving tools that are able to deal with truly

concurrent programs manipulating shared resources. Our work

may also provide insight on how to develop provably correct

compilers able of detecting data-races.

Our aim was lifting the (severe) restriction of forcing

concurrent threads to manipulate only disjoint sets of variables,

since it does not allow proving correct many interesting and

useful programs. To attain this goal, we re-used the notion of

“rely-set” , a notion crucial to obtain the soundness result of

CSL with respect to the denotational semantics. The adaptation

was not trivial and required developing several auxiliary

notions, but established a proof technique that may now be

used in other contexts.

ACKNOWLEDGMENT

This work was partially funded by Fundação para

a Ciência e Tecnologia through AVIACC project, grant

PTDC/EIA-CCO/117590, and CITI/FCT/UNL, grant Pest-

OE/EEI/UI0527/2014.

REFERENCES

[1] J. Boyland (2003): Checking Interference with Fractional Permissions.
In: SAS, Lecture Notes in Computer Science 2694, Springer, pp. 55–72.

[2] S. Brookes (2007): A semantics for concurrent separation logic. Theo-
retical Computer Science 375(1-3), pp. 227–270.

[3] S. Brookes (2011): A Revisionist History of Concurrent Separation
Logic. ENTCS 276, pp. 5–28.

[4] C. A. R. Hoare (1969): An Axiomatic Basis for Computer Programming.
Communications of the ACM 12(10), pp. 576–580.

[5] P. W. O’Hearn (2007): Resources, concurrency, and local reasoning.
Theoretical Computer Science 375(1-3), pp. 271–307.

[6] P. W. O’Hearn, J. C. Reynolds & H. Yang (2001): Local Reasoning
about Programs that Alter Data Structures. In: CSL, Lecture Notes in
Computer Science 2142, Springer, pp. 1–19.

[7] S. S. Owicki (1976): A Consistent and Complete Deductive System for
the Verification of Parallel Programs. In: STOC, ACM, pp. 73–86.

[8] S. S. Owicki & D. Gries (1976): Verifying Properties of Parallel
Programs: An Axiomatic Approach. Communications of the ACM 19(5),
pp. 279–285.

[9] G. D. Plotkin (2004): A structural approach to operational semantics.
Journal of Logic and Algebraic Programming 60–61, pp. 17–139.

[10] U. S. Reddy & J. C. Reynolds (2012): Syntactic control of interference
for separation logic. In: POPL, ACM, pp. 323–336.

[11] J. C. Reynolds (2002): Separation Logic: A Logic for Shared Mutable
Data Structures. In: LICS, IEEE Computer Society, pp. 55–74.

[12] P. Soares, A. Ravara & S. Melo de Sousa (2014): An Operational
Semantics for Concurrent Separation Logic. Technical Report RR-
DCC-2014-11, Department of Computer Science, Faculty of Science,
University of Porto. Available at http://www.dcc.fc.up.pt/dcc/Pubs/
TReports/TR14/dcc-2014-11.pdf.

[13] V. Vafeiadis (2011): Concurrent Separation Logic and Operational
Semantics. ENTCS 276, pp. 335–351.

[14] V. Vafeiadis & M. J. Parkinson (2007): A Marriage of Rely/Guarantee
and Separation Logic. In: CONCUR, Lecture Notes in Computer Science
4703, Springer, pp. 256–271.

491

