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Foreword

Mohammad Reza Mousavi
Department of Computer Science, Eindhoven University chfielogy,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands
Antonio Ravara

Department of Informatics
Faculty of Sciences and Technology, New University of Lisho

Welcome to the proceedings of FOCLASA 2011, the 10th Intesnal Workshop on the Founda-
tions of Coordination Languages and Software ArchitesturEOCLASA 2011 was held in Aachen,
Germany on September 10th, 2011 as a satellite event of CONZIA1, the 22nd International Con-
ference on Concurrency Theory.

The workshop provides a venue where researchers and jpraet# could meet, exchange ideas,
identify common problems, determine some of the key anddorehtal issues related to coordination
languages and software architectures, and explore tagatldedisseminate solutions. Indeed, a number
of hot research topics are currently sharing the commonlgmolof combining concurrent, distributed,
mobile and heterogeneous components, trying to harnedattivsic complexity of the resulting sys-
tems. These include coordination, peer-to-peer systernascgmputing, web services, multi-agent sys-
tems, and component-based systems. Coordination largaagesoftware architectures are recognized
as fundamental approaches to tackle these issues, imgrseftware productivity, enhancing maintain-
ability, advocating modularity, promoting reusabilitypdaleading to systems more tractable and more
amenable to verification and global analysis.

This year, we received ten submissions involving 33 autlran® 12 different countries. Papers
underwent a rigorous review process, and all accepted papeeived 4 review reports. After the re-
view process, the international Program Committee of FOSRAA010 decided to select five papers
for presentation during the workshop and inclusion in th@eeeedings. These papers tackle different
issues that are currently central to our community, spetiio and reasoning frameworks parallel and
concurrent systems, systems with linked data, resounssti@aned and timed systems and data-flow co-
ordination models. The workshop features an invited spbgcloe Armstrong from Ericsson, Sweden.
The best papers of the workshop will be invited for a spesglié¢ in Science of Computer Programming
(Elsevier). We would like to thank all the members of the pamg committee for their great work during
the review process, the external reviewers for providirsigintful review reports, the authors for submit-
ting papers to the workshop, and the participants for aitenithe workshop in Aachen. All these people
contribute to the success of the 2011 edition of FOCLASA.

Mohammad Reza Mousavi
Antonio Ravara
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How Erlang viewsthe world and what we have learned in the
last 25 year s of programming distributed systems,

Joe Armstrong
Ericsson Telecom AB, Stockholm, Sweden

Erlang views the world as a large collection of isolated camitating processes. These processes
have no shared memory. During normal operation processesaaicate by exchanging messages. Ab-
normal situations are handled through the exchange ofIsigB&nals and messages are fundamentally
different. Erlang was originally designed for building tifatolerant systems that run forever” which is
the main reason for our insistence on process isolatiorangrivas invented long before the advent of
cheap massive distributed systems and long before thecmnatchip emerged. The first Erlang applica-
tions were in their nature distributed and built to run orstdus. Multicores are essentially “clusters on
a chip” so what we learned from programming clusters carnéarally over to the world of multicores.
This talk is about the lessons and pitfalls of building digtred systems in Erlang. What works and what
doesn’t work and the possible reasons for this.

Biography Joe Armstrong is the principle inventor of the Erlang progmsing Language and coined
the term "Concurrency Oriented Programming”. He works foic&on where he developed Erlang
and was chief architect of the Erlang/OTP system. Joe ha®arPbomputer science from the Royal
Institute of Technology in Stockholm (KTH), Sweden and iapert in the construction of fault tolerant
systems. He is the author of several books on Erlang.

© J. Armstrong
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.
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Modelling and Simulation of Asynchronous Real-Time
Systems using Timed Rebeca

! Anna Ingolfsdottir!

1

Luca Aceto! Matteo Cimini
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Arni Hermann Reynisson Steinar Hugi Sigurdarson

Marjan Sirjani'2

IReykjavik University, Iceland ~ 2University of Tehran, Iran

In this paper we propose an extension of the Rebeca language that can be used to model
distributed and asynchronous systems with timing constraints. We provide the formal
semantics of the language using Structural Operational Semantics, and show its expressive-
ness by means of examples. We developed a tool for automated translation from timed
Rebeca to the Erlang language, which provides a first implementation of timed Rebeca.
We can use the tool to set the parameters of timed Rebeca models, which represent the
environment and component variables, and use McErlang to run multiple simulations for
different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based
paradigm, where the structure of the model represents the service oriented architecture,
while the computational model matches the network infrastructure. Simulation is shown
to be an effective analysis support, specially where model checking faces almost immediate
state explosion in an asynchronous setting.

1 Introduction

This paper presents an extension of the actor-based Rebeca language [22] that can be used to
model distributed and asynchronous systems with timing constraints. This extension of Rebeca
is motivated by the ubiquitous presence of real-time computing systems, whose behaviour
depends crucially on timing as well as functional requirements.

A well-established paradigm for modelling the functional behaviour of distributed and
asynchronous systems is the actor model. This model was originally introduced by Hewitt [8]
as an agent-based language, and is a mathematical model of concurrent computation that treats
actors as the universal primitives of concurrent computation [1]. In response to a message that
it receives, an actor can make local decisions, create more actors, send more messages, and
determine how to respond to the next message it receives. Actors have encapsulated states
and behaviour, and are capable of redirecting communication links through the exchange of
actor identities. Different interpretations, dialects and extensions of actor models have been
proposed in several domains and are claimed to be the most suitable model of computation for
the dominating applications, such as multi-core programming and web services [9].

Reactive Objects Language, Rebeca [22], is an operational interpretation of the actor model
with formal semantics and model-checking tools. Rebeca is designed to bridge the gap between
formal methods and software engineers. The formal semantics of Rebeca is a solid basis
for its formal verification. Compositional and modular verification, abstraction, symmetry
and partial-order reduction have been investigated for verifying Rebeca models. The theory

M.R. Mousavi and A. Ravara: FOCLASA 2011
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2 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

underlying these verification methods is already established and is embodied in verification
tools [14, 21, 22]. With its simple, message-driven and object-based computational model, Java-
like syntax, and a set of verification tools, Rebeca is an interesting and easy-to-learn model for
practitioners.

Motivation and Contribution. Although actors are attracting more and more attention both
in academia and industry, little has been done on timed actors and even less on analyzing timed
actor-based models. In this work we present

timed Rebeca by extending Rebeca with time constraints,

the formal semantics of timed Rebeca using Structural Operational Semantics (SOS) [19],

a tool for mapping timed Rebeca models to Erlang, and
e experimental results from the simulation of timed Rebeca models using McErlang [7].

The contribution of this work is offering a pure asynchronous actor-based modelling lan-
guage with timing primitives and analysis support. Timed Rebeca can be used in a model-driven
methodology in which the designer builds an abstract model where each component is a reac-
tive object communicating through non-blocking asynchronous messages. The structure of the
model can very well represent service oriented architectures, while the computational model
matches the network infrastructure. Hence the model captures faithfully the behaviour of the
system in a distributed and asynchronous world.

Comparison with other timed models. Comparing with the well-established timed mod-
els, like timed automata [2], TCCS [25], and real-time Maude [18], timed Rebeca offers an
actor-based syntax and a built-in actor-based computational model, which restricts the style
of modelling to an event-based concurrent object-based paradigm. Modelling time-related
features in computational models has been studied for a long time [3, 2]; while we have no
claims of improving the expressiveness of timed models, we believe that our model is highly
usable due to its actor-based nature and Java-like syntax. The usability is due to the one to one
correspondence between the entities of the real world and the objects in the model, and the
events and actions of the real world and the computational model. Moreover, the syntax of the
language is familiar for software engineers and practitioners.

Comparison with other timed actor models. We know of a few other timed actor-based
modelling languages [20, 16, 4] that we will explain in more detail in the related work section. In
[20] a central synchronizer acts like a coordinator and enforces the real-time and synchronization
constraints (called interaction constraints). The language for the coordinated actors is briefly
proposed in [16]; however, the main focus is having reusable real-time actors without hardwired
interaction constraints. The constraints declared within the central synchronizer in this line of
work can be seen as the required global properties of a timed Rebeca model. We capture the
architecture and configuration of a system via a timed Rebeca model and then we can check
whether the global constraints are satisfied. The language primitives that we use to extend
Rebeca are consistent with the proposal in [16]. The primitives proposed in [4] are different
from ours; they introduced an await primitive where we keep the asynchronous nature of the
model.
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Analysis support. In order to analyze timed Rebeca models, we developed a tool to facilitate
their simulation. In a parallel project [11], a mapping from timed Rebeca to timed automata is
developed and UPPAAL [24] is used for model checking. The asynchronous nature of Rebeca
models causes state explosion while model checking even for small models. One solution is
using a modular approach like in [12]. Here, we selected an alternative solution as a comple-
mentary tool for analysis. Using our tool we can translate a timed Rebeca model to Erlang [6],
set the parameters which represent the environment and component variables, and run McEr-
lang [7] to simulate the model. The tool allows us to change the settings of different timing
parameters and rerun the simulation in order to investigate different scenarios, find potential
bugs and problems, and optimize the model by manipulating the settings. The parameters can
be timing constraints on the local computations (e.g., deadlines for accomplishing a requested
service), computation time for providing a service, and frequency of a periodic event. Param-
eters can also represent network configurations and delays. In our experiments we could find
timing problems that caused missing a deadline, or an unstable state in the system.

The formal semantics presented in this paper is the basis for the correct mapping from
timed Rebeca to Erlang. The detailed mapping, and the tool together with some examples can
be found at [10].

Our choice to use the actor-based programming language Erlang is also based on the idea
of covering the whole life cycle of the system in future, and of providing a refinement step for
implementing the code from our timed Rebeca model.

2 Related Work

Different approaches are used in designing formal modelling languages for real-time systems.
The model of timed automata, introduced by Alur and Dill [2], has established itself as a
classic formalism for modelling real-time systems. The theory of timed automata is a timed
extension of automata theory, using clock constraints on both locations and transitions. In many
other cases the proposed modelling languages for real-time systems are extensions of existing
languages with real-time concepts—see, for example, TCCS [25] and Real-time Maude [18].

A real-time actor model, RT-synchronizer, is proposed in [20], where a centralized syn-
chronizer is responsible for enforcing real-time relations between events. Actors are extended
with timing assumptions, and the functional behaviours of actors and the timing constraints
on patterns of actor invocation are separated. The semantics for the timed actor-based lan-
guage is given in [16]. Two positive real-valued constants, called release time and deadline, are
added to the send statement and are considered as the earliest and latest time when the message
can be invoked relative to the time that the method executing the send is invoked. In Timed
Rebeca, we have the constructs after and deadline, which are representing the same concepts,
respectively, except that they are relative to the time that the message (itself) is sent. So, it more
directly reflects the computation architecture including the network delays. In our language,
it is also possible to consider a time delay in the execution of a computation where in [16] it is
possible to specify an upper bound on the execution time of a method. While RT-synchronizer
is an abstraction mechanism for the declarative specification of timing constraints over groups
of actors, our model allows us to work at a lower level of abstraction. Using timed Rebeca,
a modeller can easily capture the functional features of a system, together with the timing
constraints for both computation and network latencies, and analyze the model from various
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points of view.

There is also some work on schedulability analysis of actors [17], but this is not applied on
a real-time actor language. Time constraints are considered separately. Recently, there have
been some studies on schedulability analysis for Rebeca models [13]. This work is based on
mapping Rebeca models to timed automata and using UPPAAL to check the schedulability of
the resulting models. Deadlines are defined for accomplishing a service and each task spends a
certain amount of time for execution. In the above-mentioned papers, modelling of time is not
incorporated in the Rebeca language.

Creol is a concurrent object-oriented language with an operational semantics written in an
actor-based style, and supported by a language interpreter in the Maude system. In [5], Creol is
extended by adding best-case and worst-case execution time for each statement, and a deadline
for each method call. In addition, an object is assigned a scheduling strategy to resolve the
nondeterminism in selecting from the enabled processes. This work is along the same lines as
the one presented in [13] and the focus is on schedulability analysis, which is carried out in a
modular way in two steps: first one models an individual object and its behavioural interface
as timed automata, and then one uses UPPAAL to check the schedulability considering the
specified execution times and the deadlines. In this work, network delays are not considered,
and the execution time is weaved together with the statements in a fine-grained way.

In [4] a timed version of Creol is presented in which the only additional syntax is read-
only access to the global clock, plus adding a data-type Time together with its accompanying
operators to the language. Timed behaviour is modelled by manipulating the Time variables
and via the aqwait statement in the language.

3 Timed Rebeca

A Rebeca model consists of a set of reactive classes and the main program in which we declare
reactive objects, or rebecs, as instances of reactive classes. A reactive class has an argument of type
integer, which denotes the length of its message queue. The body of the reactive class includes
the declaration for its known rebecs, variables, and methods (also called message servers). Each
method body consists of the declaration of local variables and a sequence of statements, which
can be assignments, if statements, rebec creation (using the keyword new), and method calls.
Method calls are sending asynchronous messages to other rebecs (or to self) to invoke the
corresponding message server (method). Message passing is fair, and messages addressed to a
rebec are stored in its message queue. The computation takes place by taking the message from
the front of the message queue and executing the corresponding message server [22].

Timing features in an asynchronous and distributed setting. To decide on the timing prim-
itives to be added to the Rebeca syntax, we first considered the different timing features that
a modeller might need to address in a message-based, asynchronous and distributed setting.
These features (like the computation time, or periodic events) can be common in any setting.

1. Computation time: the time needed for a computation to take place.

2. Message delivery time: the time needed for a message to travel between two objects, that
depends on the network delay (and possibly other parameters).
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3. Message expiration: the time within which a message is still valid. The message can be
a request or a reply to a request (a request being served).

4. Periods of occurrences of events: the time periods for periodic events.

We introduce an extension of Rebeca with real-time primitives to be able to address the
above-mentioned timing features. In timed Rebeca model, each rebec has its own local clock,
which can be considered as synchronized distributed clocks!. Methods are still executed
atomically, but we can model passing of time while executing a method. Instead of a message
queue for each rebec, we have a bag containing the messages that are sent. The timing primitives
that are added to the syntax of Rebeca are delay, now, deadline and after. Figure 1 shows the
grammar for Timed Rebeca. The delay statement models the passing of time for a rebec during
execution of a method (computation time), and now returns the local time of the rebec. The
keywords after and deadline can only be used in conjunction with a method call. Each rebec
knows about its local time and can put deadline on the messages that are sent declaring that
the message will not be valid after the deadline (modelling the message expiration). The after
primitive, attached to a message, can be used to declare a constraint on the earliest time at
which the message can be served (taken from the message bag by the receiver rebec). The
modeller may use these constraints for various purposes, such as modelling the network delay
or modelling a periodic event.

The messages that are sent are put in the message bag together with their time tag and
deadline tag. The scheduler decides which message is to be executed next based on the time
tags of the messages. The time tag of a message is the value of now when the message was sent,
with the value of the argument of the after added to it when the message is augmented with an
after. The intuition is that a message cannot be taken (served) before the time that the time tag
determines.

The progress of time is modeled locally by the delay statement. Each delay statement within
a method body increases the value of the local time (variable now) of the respective rebec by
the amount of its argument. When we reach a call statement (sending a message), we put that
message in the message bag augmented with a time tag. The local time of a rebec can also be
increased when we take a message from the bag to execute the corresponding method.

The scheduler takes a message from the message bag, executes the corresponding message
server atomically, and then takes another message. Every time the scheduler takes a message for
execution, it chooses a message with the least time tag. Before the execution of the corresponding
method starts, the local time (now) of the receiver rebec is set to the maximum value between its
current time and the time tag of the message. The current local time of each rebec is the value
of now. This value is frozen when the method execution ends until the next method of the same
rebec is taken for execution.

The arguments of after and delay are relative values, but when the corresponding messages
are put in the message bag their tags are absolute values, which are computed by adding the
relative values of the arguments to the value of the variable now of the sender rebec (where
the messages are sent). To summarize, Timed Rebeca extends Rebeca with the following four
constructs.

e Delay: delay(t), where t is a positive natural number, will increase the value of the local
clock of the respective rebec by the amount £.

n this paper we do not address the problem of distributed clock synchronization; several options and protocols
for establishing clock synchronization in a distributed system are discussed in the literature, including [23].
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Model == EnvVar* Class™ Main EnvVar :=env T (v)";

Main := main { InstanceDcl* } InstanceDcl == C r({r)*) : c)*);

Class = reactiveclass C { KnownRebecs Vars MsgSrv* }

KnownRebecs := knownrebecs { VarDcl* } Vars = statevars { VarDcl* } VarDcl =T {(v)*;
MsgSrv = msgsrv M((T v)*) { Stmt" }
Stmt :=v =¢; | r =new C({e)*); | Call; | if (e) MSt [else MSt] | delay(t); | now();
Call == r.M({e)") [after(t)] [deadline()]

MSt z:={ Stmt” } | Stmt

Figure 1: Abstract syntax of Timed Rebeca. Angle brackets (...) are used as meta parenthesis,
superscript + for repetition more than once, superscript * for repetition zero or more times,
whereas using (...) with repetition denotes a comma separated list. Brackets [...] show being
optional. Identifiers C, T, M, v, ¢, and r denote class, type, method, variable, constant, and rebec
names, respectively; and e denotes an (arithmetic, boolean or nondetermistic choice) expression.

e Now: now() returns the time of the local clock of the rebec from which it is called.

e Deadline: r.m() deadline(t), where r denotes a rebec name, m denotes a method name of r
and ¢ is a natural number, means that the message m is sent to the rebec r and is put in the
message bag. After t units of time the message is not valid any more and is purged from
the bag. Deadlines are used to model message expirations (timeouts).

o After: r.m() after(t), where r denotes a rebec name, m denotes a method name of r and
t is a natural number, means that the message m is sent to the rebec r and is put in the
message bag. The message cannot be taken from the bag before t time units have passed.
After statements can be used to model network delays in delivering a message to the
destination, and also periodic events.

Ticket Service Example We use a ticket service as a running example throughout the article.
Listing 1 shows this example written in Timed Rebeca. The ticket service model consists
of two reactive classes: Agent and TicketService. Two rebecs, ts1 and ts2, are instantiated
from the reactive class TicketService, and one rebec a is instantiated from the reactive class
Agent. The agent a is initialized by sending a message findTicket to itself in which a message
requestTicket is sent to the ticket service ts1 or ts2 based on the parameter passed to findTicket.
The deadline for the message requestTicket to be served is requestDeadline time units. Then,
after checklssuedPeriod time units the agent will check if it has received a reply to its request by
sending a checkTicket message to itself, modelling a periodic event. There is no receive statement
in Rebeca, and all the computation is modeled via asynchronous message passing, so, we need
a periodic check. The attemptCount variable helps the agent to keep track of the ticket service
rebec that the request is sent to. The token variable allows the agent to keep track of which
incoming ticketIssued message is a reply to a valid request. When any of the ticket service rebecs
receives the requestTicket message, it will issue the ticket after serviceTimel or serviceTime2 time
units, which is modelled by sending ticketIssued to the agent with the foken as parameter. The
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expression ?(serviceTimel,serviceTime2) denotes a nondeterministic choice between serviceTimel
and serviceTime2 in the assignment statement. Depending on the chosen value, the ticket service
may or may not be on time for its reply.

env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTimel,
serviceTime2;

reactiveclass Agent {

knownrebecs { TicketService tsl; TicketService ts2; }

statevars { int attemptCount; boolean ticketIssued; int token; }

msgsrv initial() { self.findTicket(tsl); } // initialize system, check 1st ticket service

msgsrv findTicket(TicketService ts) {
attemptCount += 1; token += 1;
ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService
self.checkTicket() after(checkIssuedPeriod); // check if the request is replied

}

msgsrv ticketIssued(int tok) { if (token == tok) { ticketIssued = true; } }

msgsrv checkTicket() {

if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,
self. findTicket(ts2); // try the second TicketService
} else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
self.retry() after(retryRequestPeriod); // restart from the first TicketService
} else if (ticketIssued) { // the second TicketService replied,
ticketIssued = false;
self.retry() after(newRequestPeriod); // new request by a customer
}
}
msgsrv retry() {
attemptCount = 0; self.findTicket(tsl); // restart from the first TicketService
}

}

reactiveclass TicketService {
knownrebecs { Agent a; }
msgsrv initial() { }
msgsrv requestTicket(int token) {

int wait = ?(serviceTimel,serviceTime2); // the ticket service sends the reply
delay(wait); // after a non-determinstic delay of
a.ticketIssued(token); // either serviceTimel or serviceTime2
}
}
main {
Agent a(tsl, ts2):Q); // instantiate agent, with two known rebecs
TicketService tsl(a):(); // instantiate 1st and 2nd ticket services, with
TicketService ts2(a):Q); // the agent as their known rebecs
}

Listing 1: A Timed Rebeca model of the ticket service example

3.1 Structural Operational Semantics for Timed Rebeca

In this section we provide an SOS semantics for Timed Rebeca in the style of Plotkin [19]. The
behaviour of Timed Rebeca programs is described by means of the transition relation — that
describes the evolution of the system.

The states of the system are pairs (Env, B), where Env is a finite set of environments and B
is a bag of messages. For each rebec A of the program there is an environment 04 contained
in Env, that is a function that maps variables to their values. The environment o4 represents
the private store of the rebec A. Besides the user-defined variables, environments also contain
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the value for the special variables self, the name of the rebec, now, the current time, and sender,
which keeps track of the rebec that invoked the method that is currently being executed. The
environment o4 also maps every method name of A to its body.

The bag contains an unordered collection of messages. Each message is a tuple of the
form (A;,m(v),A;, TT,DL). Intuitively, such a tuple says that at time TT the sender A; sent the
message to the rebec A; asking it to execute its method m with actual parameters v. Moreover
this message expires at time DL.

The system transition relation — is defined by the rule scheduler:

(04;(m),04;[now = max(TT,04,(now)), [arg =], sender = A;], Env, B) 5 (0., Env’,B’)
(scheduler) ’ C
(foa;} YEno,{(A;,m(v),A;, TT,DL)} UB) — ({01’4[} UEnv’, B’)

where the condition Cis defined as follows: 04, isnot contained in Env, and (A;, m(v),A;, TT,DL) ¢
B, and o4,(now) < DL, and TT < min(B). The scheduler rule allows the system to progress by
picking up messages from the bag and executing the corresponding methods. The third side
condition of the rule, namely o4,(now) < DL, checks whether the selected message carries an
expired deadline, in which case the condition is not satisfied and the message cannot be picked.
The last side condition is the predicate TT < min(B), which shows that the time tag TT of the
selected message has been the smallest time tag of all the messages for all the rebecs A; in the

bag B. The premise executes the method m, as described by the transition relation l>, which
will be defined below. The method body is looked up in the environment of A; and is executed
in the environment of A; modified as follows: (1) The variable sender is set to the sender of
the message. (2) In executing the method m, the formal parameters arg are set to the values of
the actual parameters v. Methods of arity n are supposed to have argy,arg,...,arg, as formal
parameters. This is without loss of generality since such a change of variable names can be
performed in a pre-processing step for any program. (3) The variable now is set to the maximum
between the current time of the rebec and the time tag of the selected message.

The execution of the methods of rebec A; may change the private store of the rebec A;, the
bag B by adding messages to it and the list of environments by creating new rebecs through new
statements. Once a method is executed to completion, the resulting bag and list of environments
are used to continue the progress of the whole system.

The transition relation — describes the execution of methods in the style of natural seman-
tics [15]. (See Figure 2 for selected rules. The full set of rules may be found in Appendix A.)
Since in this kind of semantics the whole computation of a method is performed in a single
step, this choice perfectly reflects the atomic execution of methods underlying the semantics of
the Rebeca language. The general form of this type of transition is (S,0, Env, B) 5 (0’,End’,B’).
A single step of — consumes all the code S and provides the value resulting from its execution.
Carrying the bag B is important because new messages may be added to it during the execution
of a statement S. Also Env is required because new statements create new rebecs and may
therefore add new environments to it. In the semantics, the local environment ¢ is separated
from the environment list Env for the sake of clarity. The result of the execution of the method
thus amounts to the modified private store ¢’, the new list of environments Env” and the new
bag B’.

The rules for assignment, conditional statement and sequential composition are standard.
The rules for the timing primitives deserve some explanation.
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(msg) (varname.m() after(d) deadline(DL), s, Env, B)
5 (0,Env, {(o(varname), m(eval(v, 0)), o (sel ), o(now) +d, o(now) + DL)} U B)
(delay) (delay(d), 0, Env, B) = (o[now = a(now) +dl, Env, B)
(create) (varname = new O(v),0,Env, B)

5 (o[varname = A), {o a[now = o(now), self = Al} U Env,{(A,initial(eval(v,0)), o(sel f), o (now), +o0)} U B)

Figure 2: Selected Method-Execution Transition Rules. In rule create, the rebec name A should
not appear in the range of the environment . The function eval evaluates expressions in a given
environment in the expected way. In each rule, we assume that ¢ is not contained in Env.

e Rule msg describes the effect of method invocation statements. For the sake of brevity,
we limit ourselves to presenting the rule for method invocation statements that involve
both the after and deadline keywords. The semantics of instances of that statement without
those keywords can be handled as special cases of that rule by setting the argument of
after to zero and that of deadline to +co0, meaning that the message never expires. Method
invocation statements put a new message in the bag, taking care of properly setting its
fields. In particular the time tag for the message is the current local time, which is the
value of the variable now, plus the number d that is the parameter of the after keyword.

e Delay statements change the private variable now for the considered rebec.

Finally, the creation of new rebecs is handled by the rule create. A fresh name A is used to
identify the newly created rebec and is assigned to varname. A new environment o4 is added to
the list of environments. At creation time, 04 is set to have its method names associated to their
code. A message is put in the bag in order to execute the initial method of the newly created
rebec.

4 Mapping from Timed Rebeca to Erlang

In this section, we present a translation from the fragment of Timed Rebeca without rebec
creation to Erlang (for an extended explanation and a more formal description see [10]). The
motivation for translating Timed Rebeca models to Erlang code is to be able to use McErlang [7]
to run experiments on the models. This translation also yields a first implementation of Timed
Rebeca.

McErlang is a model-checking tool written in Erlang to verify distributed programs written
in Erlang. It supports Erlang datatypes, process communication, fault detection and fault
tolerance and the Open Telecom Platform (OTP) library, which is used by most Erlang programs.
The verification methods range from complete state-based exploration to simulation, with
specifications written as LTL formulae or hand-coded runtime monitors. This paper focuses
on simulation since model checking with real-time semantics is not yet offered by McErlang.
Note, however, that our translation opens the possibility of model checking (untimed) Rebeca
models using McErlang, which is not the subject of this paper.
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receive
Patternl when Guardl -> Exprl;
Pattern2 when Guard2 -> Expr2;

after
Time -> Expr
end

Listing 2: Syntax of a receive with timeout.

Erlang Primer Erlangis a dynamically-typed general-purpose programming language, which
was designed for the implementation of distributed, real-time and fault-tolerant applications.
Originally, Erlang was mostly used for telephony applications such as switches. Its concurrency
model is based on the actor model.

Erlang has few concurrency and timing primitives:

e Pid = spawn(Fun) creates a new process that evaluates the given function Fun in parallel
with the process that invoked spawn.

e Pid !Msg sends the given message Msg to the process with the identifier pid.

e receive ... endreceives a message that has been sent to a process; message discrimination
is based on pattern matching.

e after is used in conjunction with a receive and is followed by a timeout block as shown in
Listing 2, after the specified time (deadline for receiving the required pattern) the process
executes the timeout block

e erlang:now() returns the current time of the process

When a process reaches a receive expression it looks in the queue and takes a message that
matches the pattern if the corresponding guard is true. A guard is a boolean expression, which
can include the variables of the same process. The process looks in the queue each time a
message arrives until the timeout occurs.

Mapping Theabstractsyntax for a fragment of Erlang thatis required to present the translation
is shown in Figure 3. Table 1 offers an overview of how a construct in one language relates to
one in the other. We discuss the general principles behind our translation in more detail below.

Reactive classes are translated into three functions, each representing a possible behaviour
of an Erlang process: 1) the process waits to get references to known rebecs, 2) the process
reads the initial message from the queue and executes it, 3) the process reads messages from
the queue and executes them. Once processes reach the last function they enter a loop. Erlang
pseudocode for the reactive class TicketService in the Rebeca model in Listing 1 is shown in
Listing 3.

A message server is translated into a match expression (see Figure 3), which is used inside
receive ... end. In Listing 3, requestTicket is the pattern that is matched on, and the body of the
message server is mapped to the corresponding expression.

Message send is implemented depending on whether after is used. If there is no after,
the message is sent like a regular message using the ! operator, as shown on line 4 in Listing
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Program = Function® Function := v(Pattern*) — e
Expr:=ejop.ex|e({e)’) | e1 ! ex|e1,ex | Pattern = e| case e of Match end | receive Match end
| receive Match after Time — e end| if (Match)*end | BasicValue | v | {{e)*} | [{e)]
Match = Pattern when Guard — e
Pattern == v | BasicValue | {{Pattern)*} | [(Pattern)*] Time == int
Value = BasicValue | {{Value)*} | [(Value)'] BasicValue = atom | number | pid | fid
Guard == g1 opg &2 | BasicValue | v | g({¢)") | {{&)"} | [{&)"]

Figure 3: Abstract syntax of a relevant subset of Erlang. Angle brackets (...) are used as meta
parenthesis, superscript + for repetition more than once, superscript * for repetition zero or
more times, whereas using (...) with repetition denotes a comma separated list. Identifiers v, p
and g denote variable names, patterns and guards, respectively, and e denotes an expression.

Note that {} and [] are parts of the syntax of Erlang representing tuples and lists, respectively.

Timed Rebeca

Erlang

Model

Reactive classes
Known rebecs

State variables
Message server

Local variables
Message send
Message send w/after

Message send w/deadline
Delay statement

Now expression
Assignment

If statement
Nondeterministic selection

A

il il

A set of processes

A process whose behaviour consists of three functions
Record of variables

Record of variables

A match in a receive expression

Record of variables

Message send expression

Message send expression in the timeout block of a receive
with an empty pattern, the timeout block is always executed,
sending the message after the specified time

Message send expression with the deadline as parameter
Empty receive with a timeout

System time

Record update

If expression

Random selection in Erlang

Table 1: Structure of the mapping from Timed Rebeca to Erlang.
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ticketService() ->

receive
% wait for a message with a set of known rebecs
{Agent} >

% proceed to the next behaviour
ticketService(#ticketService_knownrebecs{agent=Agent})
end.
ticketService(KnownRebecs) ->
receive
% wait for the ’initial’ message
initial >
% process message ’'initial’ and proceed to the next behaviour
ticketService(KnownRebecs, #ticketService_statevars{})
end.
ticketService(KnownRebecs, StateVars) ->
receive
% wait for each message servers
requestTicket ->
% process message ’'requestTicket’ and loop
ticketService(KnownRebecs, StateVars)
end.

Listing 3: Pseudo Erlang code capturing the behaviour of the ticketService process.

Sender = self(),
spawn(fun() ->
receive after 15 ->
TicketService ! {{Sender, now(), inf}, requestTicket}
end
end)

Listing 4: Example of a message send after 15 time units in Erlang.

4. However, if the keyword after is present a new process is spawned which sleeps for the
specified amount of time before sending the message as described before. Setting a deadline
for the delivery of a message is possible by changing the value inf, which denotes no deadline
(as shown on line 3 in Listing 4), to an absolute point in time. Messages are tagged with the
time at which they were sent. For the simulation we use the system clock to find out the current
time by calling the Erlang function now().

Moreover, since message servers can reply to the sender of the message, we need to take
care of setting the sender as part of the message as seen on line 4 in Listing 4.

As there is no pattern to match with, the delay statement is implemented as a receive
consisting of just a timeout that makes the process wait for a certain amount of time. For
example, delay(10) is translated to receive after 10 ->ok end.

The deadline of each message is checked right before the body of the message server is
executed. The current time is compared with the deadline of the message to see if the deadline
has expired and, if so, the message is purged.
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Request Check issued Retry request New request Service Service Result
deadline period period period time 1 time 2

2 1 1 1 3,4 7 Not issued

2 2 1 1 4 7 Not issued

2 2 1 1 3 7 Ticket issued

Table 2: Experimental simulation results for ticket service.

5 Simulation of Timed Rebeca Using McErlang

In this section, we present experimental results for two case studies. The first case study is the
ticket service model displayed in Listing 1 and the second is a model of a sensor network. In
each case we run a simulation for ten times, and for each case for 30 minutes or until a runtime
monitor fails, which means that an erroneous state has been reached. The simulations are run
in a setting in which a time unit is 1000 ms. The experiment platform is Macbook 2.0GHz Intel
Core 2 Duo - Aluminum 4GB memory Mac OS X, 10.6.6, and Erlang R13B04.

Ticket Service The ticket service model is described in Section 3. For each simulation, we
change one of the following parameters: the amount of time that is allowed to pass before a
request is processed, the time that passes before agent checks if he has been issued a ticket,
the amount of time that passes before agent tries the next ticket service if he did not receive a
ticket, the amount of time that passes before agent restarts the ticket requests in case neither
ticket service issued a ticket and two different service times, which are non-deterministically
chosen as delay time in a ticket service and model the processing time for a request. Table 5
shows different settings of those parameters for which the ticket services never issue a ticket
to the agent because of tight deadlines, as well as settings for which a ticket is issued during a
simulation of the model.

Sensor Network We model a simple sensor network using Timed Rebeca. (See Listing 5 in
Appendix B for the complete description of the model.) A distributed sensor network is set
up to monitor levels of toxic gasses. The sensor rebecs (sensor® and sensor1), announce the
measured value to the admin node (admin rebec) in the network. If the admin node receives
reports of dangerous gas levels, it immediately notifies the scientist (scientist rebec) on the
scene about it. If the scientist does not acknowledge the notification within a given time frame,
the admin node sends a request to the rescue team (rescue rebec) to look for the scientist. The
rescue team has a limited amount of time units to reach the scientist and save him.

The rebecs sensor® and sensor1 will periodically read the gas-level measurement, modelled
as a non-deterministic selection between GAS_LOW and GAS_HIGH, and send their values to admin.
The admin continually checks, and acts upon, the sensor values it has received. When the admin
node receives a report of a reading that is life threatening for the scientist (GAS_HIGH), it
notifies him and waits for a limited amount of time units for an acknowledgement. The rescue
rebec represents a rescue team that is sent off, should the scientist not acknowledge the
message from the admin in time. We model the response speed of the rescue team with a
non-deterministic delay of 0 or 1 time units. The admin keeps track of the deadlines for the
scientist and the rescue team as follows:
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Network Admin Sensor 0 Sensor 1 Scientist Rescue Result
delay period period period deadline deadline
1 4 2 3 2 3 Mission failed
1 4 2 3 2 4 Mission success
2 1 1 1 4 5,6,7 Mission failed
2 4 1 1 4 7 Mission success

Table 3: Experimental simulation results for sensor network.

e the scientist mustacknowledge that he is aware of a dangerous gas-level reading before
scientistDeadline time units have passed;

e the rescue team must have reached the scientist within rescueDeadline time units.

Otherwise we consider the mission failed.

The model can be parameterized over the values of network delay, admin sensor-read
period, sensor® read period, sensorl read period, scientist reply deadline and rescue-team
reply deadline, as shown in Table 5. In that table, we can see two different cases in which we
go from mission failure to mission success between simulations. In the first scenario, we go
from mission failure to success as we increase the rescue deadline, as expected. In the second
scenario, we changed the parameters to model a faster sensor update and we observed mission
failure. In this scenario, increasing the rescue deadline further (from 5 to 7) is insufficient. Upon
closer inspection, we observe that our model fails to cope with the rapid sensor updates and
admin responses because it enters an unstable state. The admin node initiates a new rescue
mission while another is still ongoing, eventually resulting in mission failure. This reflects a
design flaw in the model for frequent updates that can be solved by keeping track of an ongoing
rescue mission in the model. Alternatively, increasing the value of admin sensor-read period
above half the rescue deadline eliminates the flaw and the simulation is successful again.

6 Future Work

The work reported in this paper paves the way to several interesting avenues for future work.
In particular, we have already started modelling larger real-world case studies and analyzing
them using our tool. We plan to explore different approaches for model checking Timed Rebeca
models. It is worth noting that the translation from Timed Rebeca to Erlang immediately
opens the possibility of model checking untimed Rebeca models using McErlang. This adds
yet another component to the verification toolbox for Rebeca, whose applicability needs to be
analyzed via a series of benchmark examples. As mentioned in the paper, McErlang supports
the notion of time only for simulation and not in model checking, and therefore cannot be used
as is for model checking Timed Rebeca models. We plan to explore different ways in which
McErlang can be used for model checking Timed Rebeca. One possible solution is to store the
local time of each process and write a custom-made scheduler in McErlang that simulates the
way the Timed Rebeca scheduler operates. The formal semantics for Timed Rebeca presented
in this paper is also used in another parallel line of work [11]. The aim of that study is to map
Timed Rebeca to timed automata [2] in order to use UPPAAL [24] for model checking Timed
Rebeca models. The translation from Timed Rebeca to timed automata will be integrated in our
tool suite. We are also working on a translation of Timed Rebeca into (Real-time) Maude. This
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alternative translation would allow designers to use the analysis tools supported by Maude
in the verification and validation of Timed Rebeca models. Our long-term goal is to have a
tool suite for modelling, executing, simulating, and model checking asynchronous object-based
systems using Timed Rebeca.
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A Method-Execution Transition Rules

(ﬂ’ng) (varname.m(v) after(d) deadline(DL), 0, Env, B)

5 (0, Env, {(0(varname), m(eval(v, 0)), o(self),o(now) +d,o(now) + DL)} U B)
(delay) (delay(d), o, Em),B)l> (o[now = o(now) +d], Env, B)
(llSSigi’l) (x= e,a,Env,B)—ﬁ (o[x = eval(e,0)], Env, B)

(CVEEltE) (varname = new O(v), 0, Env, B)

5 (o[varname = A, {o [now = o(now), self = Al}U Env,{(A, initial(eval(v,0)),0(self)), o(now), +o0)} U B)

eval(e,0) = true (Sl,o,Env,B)—T> (o’,Env’,B’)

(condy)
(if (e) then Sy else S»,0,Env,B) (¢’ Env’,B’)

eval(e,0) = false (Sz,o,Env,B)—T>(0’,Env’,B’)

(condy)

(if (e) then Sy else Sy, U,EI/IZ),B)—T)(G',EHU',B')

(S],(T,ETZ’U,B)l)(U',ETlZ)',B’), (52,0’,Env',B’)L(G”,Env",B”)

(seq)

(S1;S2,0,Env,B) 5 (¢”,Env” ,B")

Figure 4: The Method-Execution Transitions Rules. In rule create, the rebec name A should not
appear in the range of the environment . The function eval evaluates expressions in a given
environment in the expected way. In each rule, we assume that ¢ is not contained in Env.

B Rebeca Model for the Sensor Network

env int netDelay;

env int adminCheckDelay;
env int sensor®Operiod;
env int sensorlperiod;

env int scientistDeadline;
env int rescueDeadline;

reactiveclass Sensor {
knownrebecs {
Admin admin;
}

statevars {
int period;

}
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msgsrv initial(int myPeriod) {
period = myPeriod;
self.doReport();

}

msgsrv doReport() {
int value;
value = 7(2, 4); // 2=safe gas levels, 4=danger gas levels
admin.report(value) after(netDelay);
self.doReport() after(period);

}

reactiveclass Scientist {
knownrebecs {
Admin admin;
}

msgsrv initial(Q) {}

msgsrv abortPlan() {
admin.ack() after(netDelay);
}
}

reactiveclass Rescue {
knownrebecs {
Admin admin;
}

msgsrv initial(Q) {}

msgsrv go() {
int msgDeadline = now() + (rescueDeadline-netDelay);
int excessiveDelay = ?(0, 1); // unexpected obstacle might occur during rescue
delay(excessiveDelay);
admin.rescueReach() after(netDelay) deadline(msgDeadline);

3

reactiveclass Admin {
knownrebecs {
Sensor sensor®;
Sensor sensorl;
Scientist scientist;
Rescue rescue;

}

statevars {
boolean reported®;
boolean reportedl;
int sensorValue®;
int sensorValuel;
boolean sensorFailure;
boolean scientistAck;
boolean scientistReached;
boolean scientistDead;

}
msgsrv initial() {
self.checkSensors();

3

msgsrv report(int value) {
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81 if (sender == sensor®) {

82 reported® = true;

83 sensorValue® = value;

84 } else {

85 reportedl = true;

86 sensorValuel = value;

87 }

88 }

89

90 msgsrv rescueReach() {

91 scientistReached = true;

92 }

93

94 msgsrv checkSensors() {

95 if (reported®) reported® = false;

96 else sensorFailure = true;

97

98 if (reportedl) reportedl = false;

99 else sensorFailure = true;

100

101 boolean danger = false;

102 if (sensorValue® > 3) danger = true;

103 if (sensorValuel > 3) danger = true;

104

105 if (danger) {

106 scientist.abortPlan() after(netDelay);
107 self.checkScientistAck() after(scientistDeadline); // deadline for the scientist to answer
108 }

109

110 self.checkSensors() after(adminCheckDelay);
111 }

112

113 msgsrv checkRescue() {

114 if (!scientistReached) {

115 scientistDead = true; // scientist is dead
116 } else {

117 scientistReached = false;

118 }

119 }

120

121 msgsrv ack() {

122 scientistAck = true;

123 }

124

125 msgsrv checkScientistAck() {

126 if (!scientistAck) {

127 rescue.go() after(netDelay);

128 self.checkRescue() after(rescueDeadline);
129 }

130 scientistAck = false;

131 }

132 |}

133

134 |main {

135 Sensor sensor®(admin): (sensor®period);

136 Sensor sensorl(admin): (sensorlperiod);

137 Scientist scientist(admin):(Q);

138 Rescue rescue(admin):();

139 Admin admin(sensor®, sensorl, scientist, rescue):();
140 |}

Listing 5: A Timed Rebeca model of the sensor network example
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A foundation is investigated for the application of loosstyuctured data on the Web. This area is
often referred to as Linked Data, due to the use of URIs in haéstablish links. This work focuses
on emerging W3C standards which specify query languagekifikeed Data. The approach is to
provide an abstract syntax to capture Linked Data strustame queries, which are then internalised
in a process calculus. An operational semantics for theutadcspecifies how queries, data and
processes interact. A labelled transition system is shoviretsound with respect to the operational
semantics. Bisimulation over the labelled transitioneysts used to verify an algebra over queries.
The derived algebra is a contribution to the application diom For instance, the algebra may be
used to rewrite a query to optimise its distribution acroskiater of servers. The framework used to
provide the operational semantics is powerful enough toehedated calculi for the Web.

1 Introduction

The application of interest is a powerful emerging idea camiy referred to as the Web of Data [6].
The Web of Data marks a shift from publishing documents tdighing data. The Web is based on
documents which contain links to other documents. The Webaté is concerned with resources more
general than documents. Data on the Web contains links ¢airess described in multiple data sources.
In both the case of the Web and the Web of Data the links betdeemments and resources, respectively,
are established by a standardised global naming systehe-tURI. On the Web, URIs allow documents
in distributed locations with distinct ownership to refergach other. Similarly, in a Web of Data, URIs
allow data in distributed locations with distinct ownersko refer to common resources.

Suppose that the URIs are not used as a standard naming systéns case, each data source uses
its own naming system. Typically, in this case each dataceois disjoint, hence traditional database
techniques may be applied. This is referred to as closediveydtem, since the boundaries of the data
source are known. For instance, classical negation canduttagsietermine whether some data does not
appear in a data source, and schemata can constrain thieistrotdata.

In contrast, the presence of URIs as a global naming systeables an open world system. In an
open world system a variety of protocols can be used to obtatia from multiple sources based on the
URIs which appear. For instance, a request may be sent to aodUfkectly obtain some data about that
URI. Alternatively, services may be used to find data refe¥a a URI. In this open world setting, there is
no guarantee that mechanisms find all relevant data. Thayeatways be data not known locally which
refers to a resource; hence in general optimal query resaitaot be obtained and classical negation
cannot be applied. Another restriction in an open worldesysis that schemata which constrain data
cannot be enforced globally.

A light semi-structured data format must be agreed for thé Wfdata. The W3C recommends the
Resource Description Framework (RDF) as a general formmgirgsenting data [16]. RDF is based on
triples which consist of a subject, predicate and objece Jubject, predicate and object are all named by
URIs. Each URI in a triple may represent resources in diffelecations, hence a triple links locations.

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. 20--33, doi:10.42BRTCS.58.2



R. Horne& V. Sassone 21

Other semi-structured data formats contain URIs, such edsfe RDF is intended as a minimal data
format to which other formats can be lifted.

Assuming that Linked Data can be gathered, observationst &iiiked Data can be made. The W3C
recommendation is to use SPARQL Queries to make such oliesrwv§24]. In this work, to model this
scenario, both RDF Data and SPARQL Queries are internalisadrocess calculus. The operational
semantics of the process calculus specifies how queriedatadnteract, to realise the W3C recommen-
dations. The operational semantics are realistic singe tiseno guarantee of maximal responses, only
that responses are correct.

Two SPARQL Queries may be indistinguishable with respe¢héir operational behaviour. Such
operationally equivalent queries are bisimilar. In thigkydisimulation is used to derive an algebra over
SPARQL Queries. The algebra agrees with expected equogdesnalogous to those uncovered by re-
lational algebra and exposes some new equivalences. Tiediaigebra can be used to rewrite a query
to a normal form. Normal forms are useful for optimisationgmses. A query can be optimised before
being distributed over multiple data sources. Distributad queries is a key challenge for enabling a
Web of Data [11].

Section 2 presents a syntax and semantics for RDF tripleSR®®. queries and processes which
internalise both triples and queries. Section 3 provideglternative operational semantics using a
labelled transition system. The labelled transition gyste proven to be sound with respect to the
reduction system. Section 4 introduces two notions of exjeice over the calculus, which correspond
to the two operational semantics. Bisimulation for the ltoktransition system is proven to be complete
with respect to contextual equivalence for the reductiastiesy. An algebra for queries is verified using
bisimulation.

2 A syntax and semanticsfor the syndication calculus

The concrete syntax for both RDF and SPARQL Query are spéddifi W3C recommendations [16, 24].
Here an abstract syntax is presented to model the core ésatifithe concrete syntax. This abstract
syntax is easier to define than the concrete syntax, whishgared to make programming easier.

The operational semantics of the calculus is specified a&slaction system. The syntax and rules
of the reduction system borrow from a fragment of Linear lcpgxtended with a continuation. Related
work has investigated other approaches to using Lineard_fogi both query languages and process
calculi [17, 13, 3].

Note that the description of the syntax and reduction syssdwmef. A similar syntax and reduction
system are extensively discussed in the thesis of the fithkba[14]. The main contribution of this paper
is the bisimulation results for queries.

2.1 A syntax for RDF triples

An abstract syntax for triples conveys the RDF data formdie &atoms of the syntax are names and
literals. Names represent occurrences of URIs, which amesented by identifiers in italics, such as
John or knows. Literals are basic data values, such as the striRgal’ or ‘77-3426’. The definition of
literals in the XML Schema Datatypes specification [4] isamed. Variableg,b... andx,y... represent
place holders for names and literals respectively.

A triple consists of three components: the subject, theipagel and the object, which is written
(subject predicate object). The subject is related by the predicate to the object, aityito simple sen-
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U:= C asked triple
o= | true | ¢ filter y :
| O false | UsU choice P _I |J3_5> P nothlr;?
| oV or | UsU tensor | AaP  blank ngde
| ¢A¢ and | VVaU select name U query
| —¢ not | VxU select literal | C stored triple
| etc. | =U iteration =
| U;P then

Figure 1: The syntax of constraints)( queries ) and processe$}, over triples C).

tences in English of form subject-verb-object, where URId bterals are used instead of words. The
syntax ensures that literals can only appear as the objextrile. The example below presents two
RDF triples.

(bs home starr.uk) (b4 give_name ‘Ringo’)

Predicates are names suchhase. For instance, the first triple above means that a sultjgés
related by predicathome to objectstarr.uk. The second triple above indicates that subjmds related
by predicategiven_name to the literal ‘Ringo’.

2.2 A syntax for SPARQL queries

In this section an abstract syntax for queries, Fig. 1, sspres the core features of SPARQL Query [24].
SPARQL Queries are used to read from RDF triples. Synchatiois constructs allow substantial
queries to be expressed. The syntax of processes, also.id,Figmonstrates how both queries and
content can be internalised in a process calculus, whichesig a high level language for Linked Data,
which uses query results. In this model, persistently gttriples are used to answer queries. A stored
triple is indicated by an underscore.

Ask queries and multiplicative operators. The simplest ‘ask’ query provides a triple to be matched.
There are three multiplicative operators: a tensor progigictor synchronously joining queries, a par
operator §) for composing processes in parallel and the operator thdor(Quarding a process with a
query. The difference between tensor and par is that quesieposed using tensor must happen simul-
taneously (in the same atomic step), whereas processesosethjn parallel may be used in different
atomic steps. Tensor is the implicit join of queries usedRABRQL. Then and par are part of a higher
level language, where query results are immediately ushdsd operators are multiplicative since they
control the sharing of resources.

The additive operators and select queries. There are three additive operators: choasg gelect {/)
and the blank node quantifiep\(. The choose operator presents a choice between two gueeiese
models the SPARQL keywordNION. The select operator is a quantifier which binds a variaBkdect

is used to mode$ELECT queries in SPARQL, which discover names and literals. Timeassand literals
discovered can also be bound in a continuation processeheahge passing is modelled at a high level.
Blank node quantifiers provide a model for blank nodes in HD&. A blank node is a local name



R. Horne& V. Sassone 23

Po1=P P2Q=Q®P P2(Q92R=(P9Q=®R

/\a.J_EJ_ /\a./\b.Ps/\b./\aP AaP?QE /\a(P? Q) ag¢fn(P)

Figure 2: The structural congruence over processes.

where the scope of the blank node is indicated by the scogeeajuantifier. Blank nodes allow further
data structures to be represented in RDF, including XML.

Constraints and optional queries. A constraint may be used in a query. Constraints form a Boolea
algebra of basic predicates, such as inequalities andaregupressions. The specification of constraints
can be found under the keywoFdLTER in the recommendation [24]. A choice between a query and true
models an optional query in SPARQL, so the keywOPAIONAL is defined as followsOPTIONALU =
Ual.

Repeated queries and iteration. A common requirement of a query language is that more than one
result can be obtained. Bounded multiple copies of queaesbe synchronously posed, using queries
with natural number exponents and finite sums. Exponerdssams are just abbreviations defined as
follows.
0 1a 0 s k+lyn a vk k+1
ul=  umtaueu" =2 U"2] EIUTA3E UNe U

A natural number exponent repeatedly applies the tensor product, so the query mushéwened
exactlyn times. The sum with bound allows the query to be answered between 0 atiches. Sums
model the keyword.IMIT, such thatU LIMITk £ XK_ U".

Unbounded iteration of queries is indicated by an explipgrator ¢), which allows zero or more
copies of a query to be answered. Note that iteration differa replication in common process calculi.
All copies of an iterated query must be answered simultasigausing disjoint resources.

2.3 A reduction system for the calculus

The reduction system presents a concise operational seséortthe calculus. The reduction system is
defined by a structural congruence and a relation over pegsecalled the commitment relation. A fur-
ther preorder over triples formalises key features of RDireBta (RDFS [7]). RDFS is a light extension
to RDF, which improves interoperability by resolving abasetween URIs.

The structural congruences (n Fig. 2) is defined such thaP(®, L) forms a commutative monoid.
Alpha conversion can also be applied to blank node quargifieurthermore, blank node quantifiers can
be eliminated in the presence of nothing, commute and lig&iover par. All reductions are considered
up to structural congruence --- as standard in processlcalcu

The commitment relation~(in Fig. 3) specifies atomic operational steps. The procagbe left of
the commitment relation, becomes the process on the rightrmitment is performed atomically.

Working with aliases for URIs is a key problem in Linked Dag]. [ Aliases arise since different
data sources use different URIs for similar purposes. Fsiairce, in the context of a song, predicate
lyricist may be more specific than predicateator (see subPropertyOf in RDFS [7]). Similarisong,
andsong; may be URIs for the same song (see sameAs in OWL [2]). Hencalidsedyricist C creator
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cchD E¢ P2UrQ PoVerQ PoUrP QoVe>Q
CoDrC o> L PeUaV)>Q PeUaV)>Q PeQreUsV)>P o Q

PoU>Q P (xU®xU)>Q P%’U{b/a}DQ Ps U{Y%}>Q

*U> L Py «U>Q PexU>Q Po\VaUrQ Pe\VxU>Q
P?UDQ P> P P)?QDP/?QI ,
P2U;R>Q®R P2Q>P®Q P®AaQ-P 3 AaQ agfn( P.P.5)

Figure 3: Commitment rules: ask, filter, choose left, cleoonght, tensor, weakening, dereliction, con-
traction, select name, select literal, guard, context,ldadk node (fn indicates the free names).

andsong C song; may be assumed. The application specific set of alias agsumps referred to a5.
The transitive reflexive closure gfgives rise to a preordec] over URIs.

The ask axiom, guard rule and alias assumptions. The following example demonstrates the interac-
tion of an ask query with a continuation and a stored triplee &xiom ‘ask’ allows a query triple and
a stored triple to interact. The stored triple remains alwd after the commitment. The axiom ‘guard’
makes the continuation process available after the comanitm

(songg lyricist by) & ((song; creator by); P)>(songg lyricist by) P

Above, the conditions for a match are relaxed by the preaodler triples €). The preorder over
triples is the point-wise extension of the preorder over #JiRtroduced above.

The tensor and select rules. The following example demonstrates two synchronised geein the
presence of two stored triples. The first query poses arnpatbematch, while the second query selects a
name with respect to a pattern.

((by role singer) ® \/b.((b role guitarist) ; P)) . (bz role singer)
(bo role singer) 2 (b3 role guitarist) (bs role guitarist) p{ba/b}

In the above example, the ‘tensor’ rule divides the storigdiels between the two parts of the query. On
the left the ‘select’ rule is applied. The ‘select’ rule stitoges a suitable URI for the quantified name.
The result is that a URI is passed to the continuation.

The choose rule. The following example demonstrates a choice between auefibe ‘choose left’
rule is used in this case.

\/a.(((a knows by) ; P) @ ((bz knows a) ; Q)) '® (by knows b) & (b knows by) ' P{°/a)

The query result determines the continuation triggered.
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Constraintsin queries. The example query below selects a literal. The data litgypkars in a triple
and a constraint. The rules ensure that both a suitable &gbears and the constraint imposed holds.

\/x((X < 5)@ (b name x); P) ' (by name “ John’) > (by name “ John’) > P{ 2"/}

The satisfaction relation for evaluating constraiatss left to the W3C recommendation [24]. Satisfac-
tion is assumed to define a Boolean algebra of constraints.

The rules for iteration of queries. The example below demonstrates iteration used to answer two
copies of the same query. Two iterated queries are answesird aereliction’, which are combined
using the conventional tensor rule. The ‘contraction’ rillen reduces the combined queries to a single

query.
#\/c.((cishbusy); P) 2 (bz is busy) '» (bs is busy) > (b2 is busy) '» (bs is busy) ® P{*2/c} 5 P{**/c}

A continuation for each result is triggered. Note the ‘wedkg’ rule could be used to allow the query
to be answered zero times.

Blank nodes as quantifiers. The example below demonstrates a query which discoversné hlade.
The ‘blank node’ rule uses a temporary name to representidimé hode. The result is that the scope of
the blank node quantifier is extended to include the coation, which receives the blank node.

\/c.((c creator by);U) e U{®.) e
Aa.((aauthor by) % (a status open)) /\ ( (aauthor by) s (a status open) )

The aliasauthor C creator is assumed above. The temporary name must not appear indba@ssump-
tions (3). The unused stored triple is idled.

Rules for an additive disjunction, tensor product, exiséémuantification, universal quantification
and iteration, are borrowed from Linear Logic [9]. The setwlculus is extended to indicate a contin-
uation process, constraints extend the basic units withadeaa algebra, and a preorder accommodates
aliases over names.

3 A labdled transition system for the operational semantics

The operational semantics can be expressed as a labelsditia system. This provides an alternative
operational semantics to the reduction system. This atimesemantics allows the behaviour of queries
and data to be evaluated separately and then composed. L2merdies that the labelled transition
system and reduction system describe the same behaviour.

3.1 Thepurpose of labels

A labelled transition consists of two processes and a labbe first process is the process before the
transition. The label is a constraint on the context in whactransition can take place. The second
process is the resulting process after the transition.

The labels are formed from a commutative monoid over trifies, ). A label indicates the inputs
and outputs of a process. An input indicates that a procesprogeed if it can receive the triples on the
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ccD UEsQ UEsP V0 U-Epp VEsQ
DE»1  UPEQwP UsVERPSQ UesvEEP UevESQ

ro PR Q uyEQ UEsP  +UesUEsp

p>»1 VaUESQ VYxUESBQ U1 «wUEsP UEpp

Figure 4: Labelled transitions for queries: input triplegger guard, tensor, choose left, choose right,
filter, select name, select literal, weakening, deraittand contraction.

label from its context. An output indicates that a procegsputs the triple on the label to its context. For
instance, the query below inputs a triple; while the storgaet below outputs a triple.

(bs knows bg) ; p (ba knows ba)y, p (bs knows bg) LKW by knows bg)

A relevant interpretation is that the first transition abdg an action from the perspective of a client
which resolves a query; whereas the second is an action fierpdrspective of a server that provides a
triple. Two processes composed in parallel with matchipgiis and outputs may interact. For instance,
the above processes can be composed, resulting in the fiofjdavansition. The unit label indicates an
operational step without side effects.

(bs knows bg) ; P72 (bs knows bs) - P2 (bs knows bs)

Output labels can also indicate extruded names. For instdine example below extrudes the name
a. The extruded names represent blank nodes where the scdpe bfank node quantifier may be
extended. This is similar to extrusion of new names invtfaalculus [22].

/\a(a has paper) g (b, has stone) 2@ "SP4 has paper) g (b, has stone)

The commutative monoid rules can always be applied to redadels.

3.2 Labeled transitionsfor queries

The input transitions allow the behaviour of a query to be efled independently. The rules for queries
are presented in Fig. 4. The rules accumulate RDF tripleshaonpaut label, which represents contexts in
which a query may be answered.

The ‘input triple’ rule poses the triple as an input on theelabThe triple on the label may be
strengthened by the preorder over triples. The ‘triggerdjualle allows a continuation process to be
triggered exposing the continuation. The following exaembdmonstrates a query consisting of a single
triple and a continuation process, where the preocddeague C knows is assumed.

(b knows bg) ; p s cdlleague by), o

Select quantifiers are resolved by anticipating the nantigeoal to input. For instance, the following
labelled transition indicates that the query can be anshigra context where a name is chosen. The
same name is passed to the continuation process.

\/a((b4 knows a) ; P) {ba knows bs), p{ba /a}
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Figure 5: Process rules: output triple, open, blank nodéestnpar context, parallel outputs and close.
The symmetric versions of the par context and close rulelacesssumed.

Choices are resolved by anticipating the left or right bhan€or instance, the following transition
indicates the label and continuation which results fromosig the left branch.

((b4 knows bz) ; P) ® ((b4 knows b3) : Q) (bs knows by) P

Tensor synchronises two queries, by composing their régpeabels and continuations. For in-
stance, the following query simultaneously inputs twolésp The continuations of both queries are
triggered in parallel, with the appropriate substitutions

\Va(((bs knows a) ; P)® (\/x.(a name x) ; Q)) (2« knows b2)3(b; name *John’), P{bz/a} o Q{bz"“hn’/a,x}

A constraint is disposed when it is satisfied. For instamcehe following query the length of a
selected literal is constrained, but satisfied by the $uitisin.

\/x.((bz name X) ® (|X| < 5) ; P) bz name *John’) p{‘John’/X}

Iteration anticipates the number of copies of a query to psseg weakening, dereliction and con-
traction. For instance, two copies of the following querg posed using contraction and dereliction.
The label indicates the two separate triples which are tob&ered simultaneously. Both continuations
are composed in parallel.

*\/a.((b4 knOWS a) : P) (b4 knows b2)®(b4 knows bg)k P{bz/a} ? P{b3/a}

The rules of the labelled transition system are sufficiermhbdel queries.

3.3 Labdled transitionsfor an RDF store

The behaviour of stored RDF triples can be modelled usingutuabels. The rules of output labels are
presented in Fig. 5. The names extruded on the label areatedidyw, where+ indicates disjoint union
of names. The abbreviatioffe.P is used to indicate the quantification of all namesin

Stored triples can output the triple on the label. The sampéetappears in the continuation un-
changed. The preorder over names may be used to weaken the tigle. Names are extruded on
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the label using the ‘open scope’ rule. For instance, theahg triple outputs a triple and extrudes the
blank node, using the assumpticolleague C knows.

/\ba.(bs colleague bs) 2B+ 0% D9y, (1, colleague bs)

Output labels composed in parallel can be combined. Extrndenes on both labels must be disjoint
to preserve the scope of blank nodes. For instance, thevioliptransition simultaneously outputs two
triples and extrudes three names.

Aba.(A\bz.(bs knows bp) 5 Abs. (b4 knows bs))
by, bs,bal(bs knows by)®(bs knows bg)

» (bs knows by) 7@ (bs knows bg)

Two parallel processes may interact using the close ruleseCallows complementary inputs and
outputs to be matched. Names extruded on the output labéftaneluced as quantifiers in the contin-
uation. Any inputs not answered remain on the resultingllabeébe answered later. For instance, the
following iterated query is answered twice. One copy is ared by the available process and the other
copy must be answered by the context for the transition tarodn the continuation, the scope of the
blank node is extended.

«\a((bs knows a) ; P) 9 /\bs.(bs knows bg) L0022y Ay, (pfbz/ oo pibs/ k5 (b knows bs))

The context rule for parallel composition allows a procebgtvdoes not contribute to an interaction
to idle. Similarly, the context rule for blank node quarmi allows a blank node to be ignored in a
transition if it does not appear on the label.

3.4 Comparison of the two operational semantics

To justify the labelled transition system, the labellechsiions are compared to the reductions of the
reduction system. If a unit labelled transition can be datithen the corresponding reduction can also
be derived. The significance is that, given the indepengenspectives of the query and the store in
terms of labelled transitions, their combination satisfige global perspective specified by the reduction
system.

Scope extrusion presents technical difficulties. Theofelhg technical lemma reduces these diffi-
culties, by eliminating scope extrusion. The proof demm@tes that combinations of opening nhames and
closing names can be eliminated from a proof tree which usext@uded name.

Lemma 1 (Elimination of extrusion) Suppose that a labelled transition proof uses name extrusion, but
not in the conclusion. The same labelled transition, up to structural congruence, holds without any name
extrusion.

Note that full proofs for all theorems are provided in thesibef the first author [14].
Every completed labelled transition can also be expressededuction, Lemma 2. The proof works
by transforming proof trees so that labels used in intevastare eliminated.

Lemma 2 (Elimination of labels) PLly Qifandonlyif P> Q.

Thus the local perspective of the labelled transition systaed the global perspective of the reduction
system specify the same operational capabilities.
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4 An algebrafor the syndication calculus

In this section bisimulation is introduced as the naturaiamoof equivalence over the labelled transition
system. Bisimulation is demonstrated to be sound with @speequivalence in the reduction system.
Thus every pair of bisimilar processes are equivalent vatpect to the natural notion of equivalence
over the reduction system. Bisimulation is then used tdywear algebra over queries and processes.

4.1 Bisimulation

Processes which are capable of the same observable behasiobe regarded as equivalent. The
observable behaviour of a process is given by the labelsedbtbelled transition system. Observational
equivalence of processes is established using the te@hpigistrong) bisimulation, as follows.
Definition 1 (Bisimulation) Bisimulation, written ~, is the greatest symmetric relation such that the
following holds, for any label I. If P~ Q and P —» P’ then there exists some Q' such that Q » Q’ and
PP~Q.

The following verifies that bisimulation is a congruencea-elation which holds in any context. It
is necessary that bisimulation is a congruence for it to leel @s an algebra. A context is a process with
a place holder for some syntax.

Lemma 3 (Bisimulation is a congruence)f P ~ Q and C is a context, then CP ~ CQ.

An alternative notion of equivalence is defined using ttaution system. Contextual equivalence
is used in related work to justify notions of bisimulation thie 7-calculus and ambient calculus [15, 21].

Definition 2 (Contextual equivalence)Contextual equivalence, written ~, is the greatest symmetric,
reduction closed, context closed relation. A relation R is reduction closed iff PR Q and P> P’ then
there exists some Q' such that Q> Q" and P’ R Q’. Arelation R is context closed iff PR Q yields that
CP R CQ, for all contexts C.

Bisimulation is sound with respect to contextual equivaéenSoundness is essential to justify the
chosen notion of bisimulation.

Theorem 1 (Bisimulation is a contextual equivalencdf P ~ Q then P~ Q.
Proof. Reduction closure follows from Lemma 2 and context closobews from Lemma 3. O

Soundness of bisimulation ensures that algebraic pregegptioven using bisimulation also hold for
contextual equivalence. Bisimulation simplifies proafstihe following section. Note that complete-
ness (contextual equivalence is a bisimulation) is notireduor this work. Completeness can only be
achieved in an extended version of the calculus.

4.2 Algebraic propertiesof queries

Using bisimulation as an equivalence, key properties ofigaere established. This section amounts
to a soundness proof of the algebraic properties establisidus if any two process are equivalent
according to the algebraic properties then they are biainind furthermore, by Theorem 1, they are
contextually equivalent.

For the labelled transition system, structural congrugsc®t assumed, hence verified here. The
proof for the distributivity of blank node quantifiers ovesr requires extensive case analysis. The case
of associativity of par follows from distributivity of bld&nnode quantifiers. Proofs are similar to the
analogous bisimulations in thecalculus [22].
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Proposition 2. The structural congruence (Fig.2) isa bisimulation. So, (P,”, L) forms a commutative
monoid. Blank node quantifiers annihilate with 1, commute, and distribute over 9.

Bisimulation reveals some canonical algebraic propedfegueries. Firstly, queries form an idem-
potent semiring. Semirings are ubiquitous in computemagie A notable feature of semirings is that the
ideals of a semiring form a semiring.

Proposition 3. (U,®,9,1,0) is a commutative idempotent semiring. That is, (U,®,1) is a commutative
monoid, (U,®,0) isidempotent commutative monoid. ® distributes over @ and 0 annihilates with ®.

Idempotent semirings have a natural preorder, giveuhyV iff UaV ~ V. Hence queries have
this natural preorder. An immediate consequence is thatehs a colimit, i.e. least upper bound, of
two queries.

Proposition 4. Choiceisa colimit of its branches. Thatis,V <Wand U < W, ifandonly if VeU <W.

The preorder over queries can be used to optimise queriagjuiéry offers a choice between a query
and a weaker query, with respect to the preorder, the strdirgach may be eliminated. For instance,
in related work [23], is is claimed th&l OPTIONAL (V OPTIONAL W) is not the same asJ(OPTIONAL
V) OPTIONAL W. Under the interpretation GfPTIONAL in the calculus it holds thdl ® (Ve (Wea ) &

) <Ug((Vel)o(Weal)), by distributivity, commutativity and idempotency. So ffirst is a stronger
query.

A single rule is sufficient to capture the algebra of the setpiantifier. From this algebra common
equalities can be derived. The derived rules are suitabl¢hfo optimisation technique of flattening
nested selects used in relational algebra [8]. The proobofroutativity of quantifiers requires capture
avoiding substitution to be assumed. The presence of tteoteén the rule is required to prove that
VaugV < Va(UeV), whenag¢ fn(V).

Proposition 5. Selects are colimits of substitutions. So, U{®/a}®V <Wfor all b, if and only if VaUgV <
W. Immediate consequences are that, select commutes, distributes over choice, is annihilated by true
and distributes over tensor. Furthermore, alpha conversion of bound variables is verified.

The following rules of regular algebra hold. The first of thies is sufficient to demonstrate that
«*V®U is a fixed point of the (monotone) mag— U & (VeW). The second rule demonstrates thd
U is the least such fixed point. Historically, Redko demamistl that no finite collection of equations
could axiomatise iteration [25]. The formulation below,sy@oven to be complete by Kozen [19].

Proposition 6. Aniterated query expands asfollows «U ~ | & (U ®=U). Furthermore, if U (VW) <W
then x\VoU <W.

A classic consequence of the above is that queries withtedtssan always be denested to a single
iteration [20]. However, select breaks denesting sincatiten and select do not commute. For instance
the following query requires two iterations. The resulthattfor each of the first continuation triggered,
zero or more instances of the second continuation are tedgeThis query can be expressed using
sub-queries in the current SPARQL Query working draft [10].

+\/a\/n((anamen); P)o+\/e((aemail ¢); Q)

Iteration can be expressed as a colimit of repeated querl@s.is a strictly more general property
than Proposition 6 [18]. Since all constructs are colimitsol distribute over tensor, the ideals gen-
erated by queries form a (commutative) quantale, as erpldiy Montanari, Hoare and others [5, 12].
Quantales are related to spectral theory, which is relaigdformation retrieval techniques used by
search engines. Clarification of this connection is futuoek.
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Proposition 7. Iteration is a colimit of powers of queries. So, U"®V < W for all n, if and only if
*UV <W.

Kozen demonstrates that Boolean algebras can be embedddédeine algebras [20]. The ‘tests’
of Kozen correspond to ‘constraints’ in SPARQL. Bisimubativerifies that the Boolean algebra of
constraints embeds in the Kleene algebra, in the same manitiesimilar consequences.

Proposition 8. The Boolean algebra of constraints embeds in queries. Using standard classical impli-
cation, ¢ = y if and only if ¢ <. Or ischoice, and istensor, exists is select and an iterated constraint
isalwaystrue.

As with classical implication, the preorder over triplesid@e embedded in the partial order over
processes. However, since alias assumptions are only edpred C ~ D then it holds thaC C D and
D C C, which is weaker than equality. Maintaining distinctionr@mes is important for applications
whereg is not fixed over time.

Proposition 9. CC D ifand only if C < D.

The multiplicatives then, par and times and the units aigedlin the following manner. Combined
with the previous rules the properties of then are estaddisiThe second rule shows that ‘then’ can be
replaced by the unit delay (as in [1]).

Proposition 10. An empty continuation can be removed, a continuation can be decomposed into the
guard and a unit delayed process, and two continuations can be combined in a single par continuation,
as follows.

i1 ~1 Ue(;P)~U;P  (U;P);Q~U;(P®Q)

The algebra can be applied to optimise queries for distohutin the example below the first query
is rewritten as the tensor product of two queries.

x\/a.(((a knows by) ; P)® ((a knows bs) ; Q)) ~ «\Va.((a knows by) ; P)® =\/a.((a knows b3) ; Q)

The second query above is better for distribution. The tepsaduct allows two smaller queries to be
immediately evaluated in parallel. The tighter scope ofstflect quantifiers reduces the branching when
potential values to select are considered. The distribuifajueries across clusters of servers is a major
problem for processing Linked Data [11].

5 Conclusion

The calculus introduced provides the first operational amtins for SPARQL Query -- a W3C recom-
mendation for querying Linked Data. The calculus has a @erlogical semantics defined by a reduction
system. The power of the calculus lies in the synchronisgtiimitives for queries. The synchronisa-
tion primitives are required to match the expressivenegh®fcore of SPARQL Query. Queries are
internalised in a high-level process calculus, where quesylts determine continuation processes.

An alternative labelled transition system is shown to makehexpressive power of the reduction
system. Furthermore, the notion of bisimulation in the la&lgetransition system is sound with respect
to equivalence in the reduction system. Bisimulation isduseverify an algebra over queries, which
extends existing notions of an algebra for SPARQL Query. l§atara of queries is useful when tackling
problems associated with Linked Data, such as distributesygplanning.
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The operational semantics combines several formalisnexescted for a real language. The queries
form a semiring, which provides a natural partial order.sTartial order is used to characterise choice,
selects and iteration as colimits. Also, iteration is thasteiixed point of a monotonic map over queries,
hence queries form a Kleene algebra. A preorder over URdsvalsmall permissible mismatches be-
tween content and queries to be resolved, capturing keyre=aof the RDFS standard. Also, a Boolean
algebra of constraints is naturally embedded in queriegrdwide further control. The calculus demon-
strates that key features of SPARQL and related standardsriked Data can be tightly integrated in
one framework.
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This paper proposes a way to effectively compare the patesftprocesses to causenflict In discrete
event systems theory, two concurrent systems are said todmilict if they can get trapped in a situ-
ation where they are both waiting or running endlessly,er@&inable to complete their common task.
Theconflict preorderis a process-algebraic pre-congruence that compares twesses based on their
possible conflicts in combination with other processes.s faper improves on previous theoretical
descriptions of the conflict preorder by introduciegs conflicting pairas a concrete state-based char-
acterisation. Based on this characterisation, an effeaigorithm is presented to determine whether
two processes are related according to the conflict preorder

1 Introduction

A key question in process algebra is how processes can beoseth@nd compared [4, 6]. An under-
standing of what makes processes equivalent is importargefgeral applications, ranging from com-
parison and minimisation in model checking to program awoiesibn using abstraction and refinement.
Several equivalence relations have been studied, mosbipathservation equivalencfl?], failures
equivalencq7], andtrace equivalenc¢7]. Each equivalence has its own properties, making ittt
for particular applications and verification tasks [6].

This paper focuses otonflict equivalencewhich compares processes based on which other pro-
cesses they can come into conflict [3, 14] with. Two processesn conflict, if they can reach a state
from which termination is no longer possible. This can bedose ofdeadlockwhere neither process is
capable of doing anything, diwelockwhere the system continues to run without ever terminating.

It is difficult to reason about conflicts in a modular way. Ifayrocesses are free from conflict
individually, they may well be involved in a conflict when ning together, and vice versa [18]. This
makes it difficult to apply most methods of abstraction comnmomodel checking [1] to verify systems
to be free from conflict, and standard process-algebraitvagnces [6] are not applicable either.

Conflict equivalence is introduced in [11] as the best pdsgibocess equivalence to reason compo-
sitionally about conflicts. Conflict equivalence is coatsan observation equivalence [12] and different
from failures and trace equivalence [7]. The process-algeliheory most closely related to conflict
equivalence idair testing[2, 13, 15]. The essential difference between conflict emjaivce and fair
testing lies in the capability to compare processes thab@xdiocking behaviour, as expressed by the
set of certain conflictf9, 10, 11].

In [5, 16, 17], various conflict-preserving rewrite rule® arsed to simplify processes and check
whether or not large systems of concurrent finite-stateraata are free from conflict. While of good
use in practice, the rewrite rules are incomplete, and iaiesnan open question how processes can be
normalised or compared for conflict equivalence.

This paper improves on previous results about conflict edemce and the associated conflict pre-
order [11], and fair testing [15], by providing a state-lshebaracterisation of the conflict preorder. It
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proposedess conflicting pairaas a more concrete way to compare processes for their conflioe-
haviour than the abstract test-based characterisatiomy nsinconflicting completions [11] and the
refusal treesof [15]. Less conflicting pairs give a means to directly comepprocesses based on their
reachable state sets, which leads to an alternative digoti test the conflict preorder. While still linear
exponential, this algorithm is simpler and has better tiomglexity than the decision procedure for fair
testing [15].

In the following, Section 2 briefly reviews the needed temtogy of languages, automata, and
conflict equivalence. Then Section 3 introduces less conijigairs and shows how they can be used
to describe certain conflicts and the conflict preorder. ixféeds, Section 4 proposes an algorithm to
calculate less conflicting pairs for finite-state automatej Section 5 adds some concluding remarks.

2 Preliminaries

2.1 Languages and Automata

Event sequences and languages are a simple means to dgsodbss behaviours. Their basic building
blocks areeventswhich are taken from a finitelphabetz. Two special events are used, gilent eventr
and thetermination eventv. These are never included in an alphabeinless mentioned explicitly.

2* denotes the set of all finitkacesof the formoay0, - - - oy, of events fromX, including theempty
trace . Thelengthof tracesis denoted bys|. A subsetl. C Z* is called danguage Theconcatenation
of two tracess,t € 2* is written asst, and a trace is called gprefixof t, writtensC t, if t = sufor some
traceu. A languagd. C X* is prefix-closedif s€ L andr C simpliesr € L.

In this paper, process behaviour is modelled using nonudnestic labelled transitions systens
automata A= (Z,Q,—,Q°), whereX is a finite alphabet oéventsQ is a set ofstates — C Q x (ZU
{1,w}) x Q is thestate transition relationandQ° C Q is the set ofinitial states The automator is
calledfinite-stateif its state seQ is finite.

The transition relation is written in infix notation-> y, and is extended to traces by Iettingi X
forall x € Q, andx 3y if x > z-% y for somez € Q. The transition relation must satisfy the additional
requirement that, whenever? y, there does not exist any outgoing transition frenThe automator
is calleddeterministicif |Q°| < 1 and the transition relation contains no transitions labet, and if
x % y; andx > y, always impliesy; = ys.

To support silent transitions;, = y, with s € (ZU {w})*, denotes the existence of a trace (XU
{w,T})* such thatx L y, ands is obtained front by deleting allt events. For a state s¥tC Q and
a statey € Q, the expressioiX = y denotes the existence pfc X such thatx = y, andA = y means
thatQ° = y. Furthermorex = y denotes the existence of a traxsuch thak = y, andx = denotes the
existence of a statg € Q such thatx =2 y. For a state, state set, or automakrthelanguageand the
marked languagare

L(X)={se (TU{w})*|X=>} and LX)=L(X)NT'w. 1)

Every prefix-closed languadeis recognised by an automaténsuch that. (A) = L, but only regular
languages are recognised by a finite-state automaton [8].

When two automata are running in parallel, lock-step syowilsation in the style of [7] is used. The
synchronous compositiasf A= (3,,Q,, —4,Qa) @andB = (25, Qg, —g, Q) IS

A|B= (ZaUZXg,Qa x Qp,—,Qa x QB) 2
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Figure 1: Examples of blocking and nonblocking automata.

w

where
(Xa,X8) = (Ya,¥B) if 0 € (SaNZE)U{w}, Xa >aYa, andxg g Ve |
(XA,XB) £> (yA,xB) if oe (ZA\ZB) U {T} andxa £>A Y/
(Xa.X8) = (Xa,y8) if 0 € (Zg\Za)U{T} andxg >pys .

In synchronous composition, shared events (includignust be executed by all automata together,
while events used by only one of the composed automata amd &i) events are executed independently.

2.2 Conflict Equivalence

The key liveness property in supervisory control theory] [is4the nonblockingproperty. Given an
automatonA, it is desirable that every trace in(A) can be completed to a traceliff(A), otherwiseA
may become unable to terminate. A process that may beconideuttaterminate is calletlocking
This concept becomes more interesting when multiple pesseare running in parallel—in this case the
termconflictingis used instead.

Definition 1. An automatorA = (Z,Q,—,Q°) is nonblockingif for every statex € Q, Q° = x implies
thatL®(x) # 0. OtherwiseA is blocking Two automata andB arenonconflictingf A|| B is nonblocking,
otherwise they areonflicting

Example 1. AutomatonAy in Figure 1 is nonblocking, as it is always possible to reaeles, and
terminate. Automatoy on the other hand is blocking, because it can enter btaddter execution of
a B, from where it is no longer possible to reach a state wheréetineination evento is enabled.

For an automaton to be nonblocking, it is enough that a texhstatecan be reached fronevery
reachable state. There is no requirement for terminatidretguaranteed. For example, automatgn
in Figure 1 is nonblocking despite the presence of a pos#iliilgite loop of a-transitions in stateg.
Nonblocking is also different from “may”-testing [15], wdhi only requires the possibility of termination
from the initial state. The testing semantics most simitandnblocking is “should’-testing, which is
also known agair testing[15].

To reason about nonblocking in a compositional way, theomaif conflict equivalencés developed
in [11]. According to process-algebraic testing theony sutomata are considered as equivalent if they
both respond in the same way to all tests of a certain type 4} conflict equivalence, testis an
arbitrary automaton, and thresponsds the observation whether or not the test is conflicting it
automaton in question.

Definition 2. Let A andB be two automataA is less conflictinghanB, written A <cont B, if, for every
automatonT, if B|| T is nonblocking therA || T also is nonblocking.A and B are conflict equivalent
A gconf B, |f A Sconf B andB sconf A

Example 2. Consider automat&; andB; in Figure 2.A; is notless conflicting tham;, sinceA || T1 is
blocking whileBy || T1 is nonblocking. This is becaugg || T1 can enter the blocking statey,q;) after
executing ofa, whereas after executing in B,, it eventually becomes possible to continue using either
the B- or y-transition ofT;. It can also be shown th8y <qnt A1 does not hold.
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Figure 2: Two automata that are not conflict equivalent.

The properties of the conflict preord€gons and of conflict equivalence and their relationship to other
process-algebraic relations are studied in [11]. It is ghdo consider deterministic tests in Definition 2,
and conflict equivalence is is the coarsest possible congeugith respect to synchronous composition
that respects blocking, making it an ideal equivalence $&rin compositional verification [5, 17].

2.3 The Set of Certain Conflicts

Every automaton can be associated with a languagertdin conflictswhich plays an important role in
conflict semantics [9].

Definition 3. For an automatoA = (3, Q,—,Q°), write

CoNF(A) = {se 2* | For every automatof such thaff =, A||T is blocking} ; (3)
NCoNF(A) = {se =* | There exists an automatdhsuch thafl = andA|| T is nonblocking . (4)

CoNF(A) is the set otertain conflictsof A. It contains all traces that, when possible in the environ-
ment, necessarily cause blocking. Its complem@@NF(A) is the most general behaviour of processes
that are to be nonconflicting withA. If Ais nonblocking, therCoNF(A) = 0 andNCoONF(A) = X*, be-
cause in this cas&||U is nonblocking, wher&) is a deterministic automaton such th&(U) = Z*w.
The set of certain conflicts becomes more interesting fazkihy automata.

Example 3. Consider again automatdsy in Figure 1. Clearlya 3 € ConNF(Bp) asBp can enter the
deadlock statées by executinga 3, and therefore every te$tthat can executa 8 is conflicting withBy.
But alsoa € ConF(Byp), becausdy can enter statb, by executinga, from where the only possibility
to terminate is by executinBw. So any test that can executealso needs to be able to execat if it

is to be nonconflicting withBp; but such a test is conflicting witBy as explained above. It can be shown
that Conr(Bg) = aX*.

The set of certain conflicts is introduced in [9], and its mdi@s and its relationship to conflict
equivalence are studied in [11]. Even if an automaton is e@rchinistic, its set of certain conflicts is a
language but as shown in Example 3, it is not necessarily a subseedétiguagé (A) of its automaton.

If a tracesis a trace of certain conflicts, then so is any extensior\n algorithm to compute the set of
certain conflicts for a given finite-state automaton is pneestin [10].

Certain conflicts constitute the main difference betweenflmbd equivalence andair testing [15].

In fair testing, processes are not allowed to synchroniséheriermination evendv, so termination is
determined solely by the test. This can be expressed asatosdlilivalence by requiring thab be
enabled in all states of the automata compared [11].

Conversely, it is possible to factor out certain conflictarirany given automaton, by redirecting all
traces of certain conflicts to a single state [9, 10]. For edapautomatoiBy in Figure 1 can be replaced
by the conflict equivalent automatday, which uses the single deadlock stateTwo automataA andB
are conflict equivalent if and only if their normalised fori¥sand B’ are fair testing equivalent. The
decision procedure for fair testing [15] can be used to testonflict preorder, and vice versa.
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Figure 3: Two automata that are conflict equivalent.

3 Characterising the Conflict Preorder

This section is concerned about characterising two autoaindB as conflict equivalent, or charac-
terising A as less conflicting thaB, in a state-based way. First, 3.1 explains the crucial ptigseof
conflict equivalence using exampleisess conflicting pairgre introduced in 3.2, and they are used to
characterise certain conflicts in 3.3 and the conflict prexoird 3.4.

3.1 Understanding Conflict Equivalence

Every reachable state of an automatearries anonblocking requiremenfalso known as aoncon-
flicting completion[11]) that needs to be satisfied by tests that are to be nomtorgl with A. For
example, ifA = Xa, then every tesT that can executs needs to be able to continue with at least one
tracet € L(xa), or T is conflicting withA. An automatorA is less conflicting than another automatn

if every nonblocking requirement associated withlso is a nonblocking requirement associated Bith

Example 4. Consider again automats, andB; in Figure 2. They have the same marked languages.
Thus, if the initial stateag of A; is blocking in combination with some te$t, then so is the initial
stateby of B;. But this is not the case whe || T enters a statéay, xy) after execution ofx. Statea;
requiresxr to be capable of performing at least one trace from the laygu&(a;) = (aa)*Bw +
(aa)*ayw, whereas the statdg andb,, which can both be entered after executngrequire a trace
from the languager* Sw anda*yw, respectively. Both of these languages contain tracesdeuts the
languagd “(a; ). AutomatonT; in Figure 2 is in conflict withA; but not withB;.

In general, it is not enough to compare only the marked lagesiaf states reached by equal traces.
Not every nonblocking requirements is a marked languageroksstate of its automaton. The following
example shows one of the problems.

Example 5. Consider automaté, andB; in Figure 3. The marked language of the initial stateAgf
is L(ap) = aa ™ w, while the marked languages of the two stateBjrthat can be entered initially are
L®(bp) = a*wandL?(b;) = a™ w. Although the marked languages are different, for any aatoni , if

B2 || T is nonblocking, them; || T must also be nonblocking. T is to be nonconflicting in combination
with B, sinceB, may initially enter statd;, there must be the possibility to continue with evemt
However, after executing, automatorB, may again silently enter statg, which means thatr must
be possible again. This is enough to ensure #dltT is nonblocking. Using this argument, it can be
shown thatA, andB, are conflict equivalent.

3.2 Less Conflicting Pairs

In order to compare two nondeterministic automata accgrtirconflicts, it is necessary to identify sets
of states the two automata may reach under the same input.isTione using the well-knowsubset
construction[8]. To capture termination, the usual powerset state siga@etended by a special staie
entered only after termination.
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Definition 4. Thedeterministic state spaa automatomA = (%, Q,—,Q°) is
Q'=2°U{w} (5)
and thedeterministic transition functiodge!: Q' x (XU {w}) — QU for Ais defined as

) if 0= candX =:

’ 6
{yeQ|XZ2y}, otherwise ©)

5/get(xv U) = {

The deterministic transition functiodg® is extended to tracese =* UZ*w in the standard way.
Note thatéget(x,s) is defined for every tracee 2* U Z* w; if none of the states iX accepts the tracg
this is indicated byge{(X,s) = 0. This is also true for termination: @ is enabled in some state ¥
then 3§¢{(X, ) = w, otherwised§e(X, w) = 0.

In order to compare two automateandB with respect to possible confliciairs of state sets of the
subset construction & andB need to be considered. Therefore, the deterministic trandunction is
also applied to pair¥ = (Xa, Xg) of state setXa C Qa andXg C Qg,

ORB(X,9) = BRE(Xa, Xe.S) = (3R°(Xa, 5), 58%(Xe,9)) - ()

To determine whetheh <conf B, it is necessary to check all states< Qa against matching state
setsXg C Qg and determine whether all possible conflictsxgfare also present iXg. For example,
when automator\, in Figure 3 is in statey, thenB, may be inbg or b;. In statea;, at least one of
the traces i " w needs to be enabled to avert blocking, and the same requiteémavert blocking is
seen in staté;. When state, is entered with some te$t, blocking occurs if none of the tracesan” w
is enabled, and such a teBtis also blocking when combined with a system that may blayior b;.
Therefore a; is considered in the following dsss conflictingLC) than{bg, b, }.

It cannot always be determined directly whether a state Qa is less conflicting than a state set
Xg C Qg. In some cases, it is necessary also to consider the detstimisuccessors afa and Xg.
Therefore, the following definition considers paj¥, Xg) of state sets.

Definition 5. LetA= (Z,Q,, —4,Qa) andB = (Z,Qg, —g, Qg) be automata. The seC (A,B) C QdAetx
Qe of less conflicting pairgor A andB is inductively defined by

LCO(A,B) = {w} x Q¥ U { (Xa,Xg) | X8 C Qg and there existsg € Xg with L?(xg) =0} ; (8)
LC™ (A B) = { (Xa,Xa) | there existsxg € Xg such that for alt € =*, if xg 9 then there 9)
existsr C tw such thaﬁg%(XA,XB, r) e LC'(A,B) for somei <n} ;
LC(A,B)= | JLC"(AB). (10)
n>0
Remark 1. If (Xa,Xg) ¢ LC(A,B), then according to (9), for every statg € Xg, there existg € *
such thatg £, andé9(Xa, Xg,r) ¢ LC (A, B) for all prefixesr C tw.
The idea of Definition 5 is to classify a paiKa,Xg) as less conflicting, if the marked language
of Xa is anonconflicting completiofiL1] for the process with initial state$s. That is, every test that
is nonconflicting in combination with each of the stateXjncan terminate with at least one trace from

the marked language &. Or conversely, every test that cannot terminate using &ttyedraces in the
marked language 0fp also is conflicting withXg (see Lemma 1 below).
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The first state seXa of a pair(Xa, Xg) is just used to represeni@guageof possible completions.
If state setsXa andYa have the same languages, then all péXg, Xg) and (Ya,Xg) have exactly the
same less conflicting status. For the second statégzsen the other hand, the complete nondeterministic
behaviour is relevant.

A pair (w, Xg) is considered as “less conflicting” (8), since terminati@s lalready been achieved

in A. If Xg contains a states such thal®(xg) = 0, then(Xa, Xg) also is less conflicting (8), because con-
flict is guaranteed iXg. For other pairgXa, Xg), it must be checked wheth¥g contains a requirement
to avert blocking matching that given by the languag&©f{9).
Example 6. Consider again automa#g andBy in Figure 1. It holds that{ap}, {bp}) € LC*(Ag,Bo).
There are three ways to terminate frdog by executingw or aBw or aafw. All three traces are
possible inag, each taking the paif{ap},{bo}) to the deterministic successtw,w) € LC°(Ay, Bo).
This is enough to confirm that (9) is satisfied.

On the other hand/{ap},{b2}) ¢ LC(Ao,Bp). From stateay, blocking occurs with a tesE that

can only executgcw, but this test is nonblocking with,. It holds thatb, &3’ where tracgBw has the
prefixese, B, andBw, but 355, ({20}, {b2}.€) = ({ao}, {b2}) ¢ LC°(Ao. Bo), O5c, ({20} {b2}.B) =
(0,{ba}) & LC°(A0,Bo), andds®h ({ao},{b2},Bw) = (0,w) ¢ LC°(Ao, Bo). Therefore, (9) is not satis-
fied and({ag}, {b2}) ¢ LC1(Ag,Bo). It can also be shown thafag}, {b2}) ¢ LC (A, Bo).

For alevel-1less conflicting paifXa,Xg) € LC(A,B), if Xg does not contain blocking states, then
there must exist a staig € Xg such thal®(xg) C L*(Xa). This is not the case for every less conflicting
pair, as some nonblocking requirements are only impligtytained in the automaton. To show that
(Xa,Xg) is a less conflicting pair, it is enough to find a statedre Xg that can cover an initial segment
of L“(Xa), as long as a less conflicting pair ofcaver levelis reached afterwards.

Example 7. Consider again automat andBs, in Figure 3. By definition(w, w) € LC°(A;,By), and
following from this, ({a1}, {bo,b1}) € LC*(A;,By), because the marked languageapis a*w, which
also is the marked language [nf.

Now consider the paif{ag}, {bo,b1}). Stateag has the marked languagex " w, i.e., to avert block-
ing from ag, a test must be able to execute at least one of the traaes . Although this language is
not directly associated with any stateBp, the nonblocking requirement is implicitly present in stai.

If blocking is to be averted from stabg, eventa must be possible. After executimg statebyg is entered,
from where it is always possible to silently return to statavith marked language * w. Therefore, in
order to avert blocking from stats, it is necessary to execute and afterwards be able to terminate
using one of the traces mm™ w. This amounts to the implicit nonblocking requirement te@xe a trace
from aa ™ w in stateb;.

Therefore({ag}, {bo,b1}) ¢ LC(A2,B>), but ({ap}, {bo,b1}) € LC?(Az,B,) according to (9): ev-
ery trace that leads to a terminal state from statdas the prefixa, and 62;%2({%},{b0,b1},a) =
({a]_}, {bo, b]_}) S LCl(Az, Bz).

As shown in the example, some nonblocking requirements twalve constructed using a saturation
operation that combines two previously found nonblockieguirements. The levelof a less conflicting
pair (Xa, Xg) € LC"(A,B) represents the nesting depth of applications of this suaraperation.

The following two lemmas relate the state-based definitioless conflicting pairs to possible tests
and thus to the conflict preorder. A pdiXa,Xg) is a less conflicting pair, if every tedt such that
LP(Xa) NLY(T) = 0 also is conflicting withXg.

Lemma 1. Let A= (Z,Qn, —4,Q4), B= (%,Qg,—5,Qg), andT = (3,Q;,—+,Q7) be automata, and
letxr € Qr be a (possibly unreachable) state. For every less confiptiir (Xa, Xg) € LC (A, B), at least
one of the following conditions holds.
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(i) Xa= w, or Xa C Qa and there existsa € Xa such thal.®(xa,xt) # 0.
(i) There exist statesg € Xg, ¥g € Qp, andyr € Qr such thatxg,xt) = (ys,yr) andL®(yg,yr) = 0.

(Here and in the following, notatiolf’(xa, Xt ) is abused to be a shorthand f&t((xa,Xr)).)

Proof. As (Xa,Xg) is a less conflicting pair, it holds th&Ka, Xg) € LC"(A,B) for somen € No. The
claim is shown by induction on.

If (Xa,Xg) € LCO(A, B) then by (8) it holds thaXa = w, or Xg C Qg and there existgg € Xg such
that L®(xg) = 0. In the first case (i) holds, and in the second case (ii)$hakixg, xr) < (xg,x7) and
L9(xg,xT) = L¥(Xg) NL¥(xT) = 0.

Now assume the claim holds for alK n, i.e., for all (Xa,Xg) € LCi(A, B), one of the conditions
(i) or (i) holds, and considefXa,Xg) € LC™1(A B). By (9), there existsg € Xg such that for all
t € 5%, if xg -2 then there exists a prefixC tw such thaté,g’%(XA,XB, r) € LC'(A,B) for somei < n. If
L (xg,xr) = 0, (ii) follows immediately agxg,x7) < (Xg,xr). Therefore assume tha®(xg,x7) # 0,
i.e., there exists € Z* such thaixg, xT) W Thenxg t:“>’, so there exists C tw such thaﬁ,&‘?g(XA,XB, re

LCi(A, B) for somei < n. Asr C tw andxr t:w>, it also holds thatt EN yr for someyr € Qt. Let
52%(XA,XB,r) = (Ya,Yg). By inductive assumption, (i) or (i) holds f@¥a,Yg) € LC'(A, B) andyr.

(i) In this case, eitheYa = w, or Ya C Qa and there existga € Ya andu € Z* such thatya,yr) 2f
Ya = w, thenéget(XA,r) =Ya = w and according to Definition 4 there exisise Z* such thatr = raw,
and there exist stateg € Xa andya € Qa such thaia =2 ya =, i.e., (Xa, Xr) == If there existg/a € Ya
andu € ¥* such thatya, yr) £ then since5,‘jet(XA, r) = Ya, there existsa € Xa such thaixa EN Ya, i.€.,
(Xa,XT) = (Ya,¥7) =. In both cases, (i) holds fdiXa, Xg) andxr.

(i) If there exists a statgp € Yg such that(yg,yr) = (z8,zr) wherelL®(zz,zr) = 0, then since
5get(x3,r) =Yg, there existsg € Xg such thatxg = ys, which implies(xg, xT) =N (Ye,¥1) = (28,21)
with L(zg,zr) = 0. Thus, (ii) holds for(Xa, Xg) andxr. O

Conversely, if a pair of state setsrist a less conflicting pair foA andB, then this pair gives rise to
a test automaton to show thatis not less conflicting thaB. This test exhibits blocking behaviour in
combination withA but not withB.

Lemma2. LetA= (3,Q,, — 5, Qa) andB= (Z,Qg, —g, Qg) be automata. For every pafr= (Xa, Xg) ¢
LC (A,B), there exists a deterministic automafBn= (%, Q¢,—1,{X7}) such that both the following
conditions hold.

(i) For all statexa € Xa, it holds thatL®(x,,x7) = 0.
(i) For all statesxg € Xg, Y8 € Qs, Y1 € Qr such thatXz, X7 ) = (Ys,Yr), it holds thatL®(yg, y7) # 0.

Proof. Construct the deterministic automat®gn = (X, Q;, —,{X7}) such that
L(Tx) ={se€ " UZ'w| 6 %(X,r) ¢ LC(A,B) forallr C s} . (11)

This language is prefix-closed by construction and nonergtauseX ¢ LC (A,B). Therefore Tx is a
well-defined automaton.

(i) Let xa € Xa. If xa 2% for somet € %, then&8%(X,tw) = (w,Ys) € LC°(A,B) C LC(A,B) for
someYg € Q¥ by Definition 4 and 5. It follows from (11) thato ¢ L (Tx), and thus(xa, x5 9 does
not hold. Since € >* was chosen arbitrarily, it follows th&f’(x,,x7 ) = 0.
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(i) Let xg € Xg, Y8 € Qs, Y1 € Qr, ands € ¥* such that(xg,x7) 2 (Yg,yr). Clearlyse L(Tx),
and by (11) it follows thaB{%(X,r) ¢ LC(A,B) for all prefixesr C s. Let 5%(X,s) = Y. ThenY ¢

LC (A,B), so there exists a tratec Z* such thayg 12 and for allr C t it holds thaté/g’?Bt(Y, r)¢LC(AB)
(see Remark 1). Thug = yg 12 and for all prefixesi C stew, it holds thatégﬁg(x, u) ¢ LC(A,B). Then

stw € L (Tx ) according to (11), and sindg is deterministic, it follows thagy L3 Therefore(ys,yr) t:“ﬁ,
e, L%y, yr) # 0. O

3.3 Less Conflicting Pairs and Certain Conflicts

Less conflicting pairs can be used to characterise the ssrtafin conflictsof an automaton as defined
in 2.3. This shows the close link between the conflict preoedel the set of certain conflicts. If a
pair (0,Xg) is a less conflicting pair then, since termination is impassfrom 0, conflict must be also
present inXg. In this case, every trace leadingXg must be a trace of certain conflicts. This observation
leads to the following alternative characterisation ofgheof certain conflicts.

Theorem 3. The set of certain conflicts & = (X,Q,—, Q") can also be written as
ConF(B) = {se " | (0,35%(Q°,r)) € LC(O,B) for some prefix C s}, (12)
whereO = (3,0,0,0) stands for the empty automaton.

Proof. First lets< =* such that®, 55¢(Q°,r)) € LC (O, B) for somer C s, and letT = (Z,Q;, —1,Q%)
be an automaton such tHEt=. It is to be shown thaB || T is blocking. SinceT = andr C s, it holds
that T = x7 for some statesr € Qr. Since(0, 35¢4(Qe,r)) € LC(0,B), either (i) or (ii) in Lemma 1
holds. However, (i) is impossible as the first state set optieis empty, so (ii) must be true. Thus, there
exists a state € 65¢Y(Q°,r) such that(x,xt) = (y,yr) whereL®(y,yr) = 0. ThenB || T is blocking as
BT = (xxr)= (Y,y1).

Conversely, les € =* such that(0, 3§¢'(Q°,r)) ¢ LC (O, B) for every prefixr C s. It is to be shown
thats € NConF(B). Consider the deterministic automatdrsuch that

L(T)={te=*| (0,5%(Q",r)) ¢ LC(O,B) forall r Ct} . (13)

T is a well-defined automaton &g T) is prefix-closed by construction. It remains to be shown that
B|| T is nonblocking. LetB| T i (X,x7). Thent € L(T), and by definition ofT (13), it holds that
(0,588(Q°,t)) ¢ LC(O,B), and the same holds for all prefixestofAlso x € 8§¢Y(Q°,t), so there exists
atraceu € 2* such thak =, and for every prefix C ucw, it holds thats3% (0, 65°{(Q°, t),r) ¢ LC(O,B)
(see Remark 1). By definition (13), it follows thatw € L (T), and sinceT is deterministic alsor =
ThereforeB|| T 5N (x,x7) =, i.e.,B| T is nonblocking. O

The result of Theorem 3 shows how less conflicting pairs gdiser certain conflicts for the case
when two automata are compared, and in combination with lgaithm in Section 4, less conflicting
pairs lead to an alternative presentation of the algorith@j {o compute the set of certain conflicts.

3.4 Testing the Conflict Preorder

Given the less conflicting pairs for two autom&tandB, it is possible to determine wheth&r<cons B.
AutomatonAis less conflicting thaB if every testT that is nonconflicting in combination witB also is
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nonconflicting withA. To check this condition, it is enough to consider traBé3 = (xg,x7), and check
whether termination is also possible for every stat®f A such thatA || T = (xa,xr). This amounts to
checking whethef{xa},Xg) € LC (A, B) whenA = x4 and33(Qg,s) = Xg.

However, this condition does not apply to traces of certanflcts. If s € Conr(B), then every
testT that can executs is in conflict with B. In this caseA can still be less conflicting thaB, no
matter whetheA can or cannot execute the tragand terminate afterwards. This observation leads to
the following result.

Theorem 4. Let A= (Z,Q,,—4,Qa) andB = (3,Qg, —g, Qp) be two automataA is less conflicting
thanB if and only if for all s€ NConF(B) and allxa € Qa such thatA = xa it holds that({xa},Xg) €
LC (A,B), whered3®(Qg,s) = Xa.

Proof. First assume that for afle NConr(B) and allxa € Qa such thalA = x, it holds that({xa}, Xg) €
LC(A,B), whered$®(Qg,s) = Xg. Let T = (Z,Q;,—+,Q%) such thaB|| T is nonblocking, and assume
thatA|| T = (xa,xr). SinceB|| T is nonblocking andr =, it follows thats € NConr(B). Therefore
by assumptior{{xa},Xg) € LC (A, B), so (i) or (ii) in Lemma 1 must be true. However, (ii) cannotcho
because for alkg € Xg = 53¢(Q°, s) it holds thatB || T = (xa,xr), and sinceB|| T is nonblocking, there
cannot exist any statg/g,yr) such that(xg,xr) = (ys,yr) andL®(yg,yr) = 0. Thus, (i) must be true,
and this means thaf’(xa,x) # 0. SinceT ands such thatA|| T = (xa,x) were chosen arbitrarily, it
follows thatA <cons B.

Second assume that there existsN CoNF(B) andxa € Qa such thatA = xa andX = ({xa}, Xa) ¢
LC (A,B), whereXg = 85¢(Qg,s). LetNg = (X,Qy, —n, {X}) be a deterministic recogniser of the lan-
guageNCoNF(B), and letTx = (%, Qr,—1,{X }) be the deterministic automaton that exists according
to Lemma 2. Since € NCONF(B), there exists a unique statec Qy such thalNg 5 xs. Then construct
the automaton

T:<ZvQNUQT7—>NU—>TU{(X37T>X9|')}’{XKI}> : (14)

Clearly, A|| T = (xa,Xs) — (Xa, %7 ), andL? (x5, %7) = 0 by Lemma 2 (i). ThusA|| T is blocking.

On the other hand3 || T is nonblocking. To see this, considBr| T 2N (YB,¥71). If yr € Qn, then
it follows from the fact thaB || Ng is nonblocking [11] that there existsc * such that(yg,yr) =.
Otherwiseyr € Qr, which means that= suandT - xs -5 X3 - yr. Also sinceB => yg, it follows that
yg € 8581(Qg,t) = 6% Qg,su) = 63°(3584(Qg, ), u) = 85 (Xg, ), i.e., there existsg € Xg such that
X8 = Ya. Thus(xg,>¢) = (Y, yr), and by Lemma 2 (ii), it holds that°(yg, yr) # 0.

Thus,A|| T is blocking andB || T is nonblocking, s\ <conf B cannot hold. O

Example 8. Consider again automat® andBg in Figure 1. Recall thaCoNF(By) = aZ* from Ex-
ample 3, so the only state #y that can be reached by a tras¢ CoNF(Bp) is ap. Therefore, it is
enough to check the paifap},{bo}) according to Theorem 4, and it has been shown in Example 6 that
({ao},{bo}) € LCl(Ao,Bo). It follows that Ag <conf Bo. This conclusion is made despite the fact that
({ao},{b2}) ¢ LC(Ap,Bp), becausé{ap}, {b,}) is only reachable by traces’ € Conr(Bg), n > 2.

When using Theorem 4 to determine whether an automateriess conflicting than some blocking
automatorB, the set of certain conflicts & must be known first. This can be achieved using Theorem 3,
which makes it possible to classify state sets in the sulosestaiction o as certain conflicts. If a state
setXg C Qg is found to represent certain conflicts, i@,Xg) € LC (O, B) according to Theorem 3, then
(Xa,Xg) € LC (A, B) for every state seta C Qa. Successors reached only from such pairs are also certain
conflicts of B and should not be considered when testing wheM€rqns B according to Theorem 4.
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({ac}, {b1.bp}) S

(0,{bs})
Figure 4: Less conflicting pairs for the automata pairs iruFeg2 and 3.

Example 9. Consider again automa#g andB; in Figure 2. Composing\ with a deterministic version
of By results in the following four pairs of states A& and sets of states iB; that should be tested
according to Theorem 4 to determine whetAgr<cons Bs:

({ao},{bo}) ({au},{b1;b2}) ({&2},{b1,b2}) ({aa},{bs}) . (15)

All four pairs need to be considered Bgsis nonblocking and thu§€onr(B;) = 0.

The graph to the left in Figure 4 shows these four pairs and de¢erministic successors. The four
pairs (15) are marked as initial states, and the arrows igtéeh represent the deterministic transition
function. Although the deterministic transition functisrdefined for all state set pairs and events, arrows
to (0,0) are suppressed for clarity of presentation.

The following less conflicting pairs to compafe to B; are determined from the graph:

(w,w) € LC%(A1,B1) ; (16)
({aO}v {bO})v ({a17a2}7 {b17 bZ})a ({a3}7 {b3}) € LCl(Ala Bl) . (17)

For example({ay,ay}, {b1,bo}) € LC1(A1,B;), because all the ways to reach termination from digte
i.e., all traces iL®(b;) = a*Bw take the pair{as,ax},{b1,by}) to (w, w) € LCO(A1,B1). No further
pairs are found il.C2(A1,By), soLC(A1,B;) consists only of the pairs listed above. For example,
({a1},{b1,b2}) ¢ LC?(A1,By), because the tracesfw € L®(b;) and yw € L(b,) do not have any
prefixes that reach a pair IlC(Ay, By).

As ({a1},{b1,b2}) ¢ LC(A1,Bs), it follows from Theorem 4 thaf; is notless conflicting tharB; .

Example 10. Consider again automat® and B, in Figure 3. Again note thaCoNr(B;) = 0. By
composingA, with a deterministic version 0By, it becomes clear that the only pairs that need to be
tested to determine wheth@s <conf B, according to Theorem 4 ardap}, {bo,b1}) reached aftek,
({a1},{bo,b1}) reached aftea ™, and({az},{bo,b1}) reached afteara ™.

The graph with these pairs and their deterministic sucesss@hown to the right in Figure 4, with
the three crucial pairs marked as initial. The followingslesnflicting pairs are discovered (see Exam-
ple 7):

(w,w) € LCO(A2,By) ; (18)
({al}ﬂ {b07b1})7 ({a17a2}7{b07b1})7 ({a2}7{b07b1}) € LCl(Az,Bz) ; (19)
({ao}, {bo,b}) € LC*(A2,Bp) . (20)

As the three crucial pairs are all irC (A2, By), it follows from Theorem 4 thaf, <cons Bo.
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The result of Theorem 4 is related to the decision procedurdair testing [15]. The fair testing
decision procedure starts by composing the automAtarith a determinised form oB, which gives
rise to the same state set combinations that need to be eoedids in Theorem 4. From this point
on, the two methods differ. The fair testing decision pracedannotates each state of the synchronous
product ofA and the determinised form & with automata representing the associated refusal trees,
and searches for matching automata (or more precisely, &chimgproductive subautomatawithin
these annotations. The method based on less conflicting gnaiids some of the resulting complexity by
performing the complete decision on the flat state spaceec$ythchronous product of the determinised
forms of A andB.

4  Algorithm to Compute Less Conflicting Pairs

This section proposes a method to effectively compute sgedenflicting pairs for two given finite-state
automataA andB. This is done in a nested iteration. Assuming that the.€8Y A, B) is already known,
the set_.C"*1(A,B) is computed in a secondary iteration basedrame conflicting triples

Definition 6. Let A= (£,Q,,—,,Qa) andB = (Z,Qg, —g,Qp) be automata. The sdC"(A,B) C
Qe QUetx Qg of n' level more conflicting triplegor A andB is defined inductively as follows.

MCG(AB) = {(0,w,xg) | xs € Qg } ; (1)

MC i, 1(A,B) = { (Xa, Xs,X8) | (Xa, Xg) & LC"(A,B) andxg € Xg and there existé¥a, Y, yg) € (22)
MCP,(A,B) ando € X such tha®§s(Xa, Xg, 0) = (Ya,Yg) andxg =y } ;

MC"(A,B) = | J MCp(A,B) . (23)

m>0

For a pair(Xa, Xg) to be a less conflicting pair, according to Definition 5 thereshibe a states € Xg
such that every trace that takesto termination inB has a prefix that leads to another less conflicting
pair. A triple (Xa,Xg,Xg) is considered “more conflicting” ifXa,Xg) is not yet known to be a less
conflicting pair, and the statg € Xg cannot be used to confirm the above property. Therefore, Laafhm
shows that a triplgXa, Xg, xg) is niM-level “more conflicting” if and only if the statgs € Xg can reach
termination without passing through a pairi@".

If (Xa,Xg,Xs) is “more conflicting” for allxg € Xg, then the pai(Xa, Xg) cannot be a less conflicting
pair. Otherwise, if there exists at least one siate Xg such that Xa, Xg, Xg) is not “more conflicting”,
then(Xa, Xg) is added to set of less conflicting pairs in the next iteratiimeorem 6 below confirms the
correctness of this approach.

Lemmab. LetA= (3,Q,, — 4, Qa) andB = (X, Qg, —g, Q) be automata, lat € Ng and(Xa, Xg, Xg) €
QUetx QU x Qg. The following statements are equivalent.

(i) (Xa:Xg,xg) € MC"(A,B);
(i) There exists a tracee Z*wU{e} such thad{s(Xa, Xg, ) = (0, w) andxg 2, andégf’Bt(XA, Xg,r) ¢
LC"(A,B) for all prefixesr C s. '

Proof. First let(Xa,Xg,xg) € MC"(A,B), i.e., (Xa, Xs,Xg) € MC}},(A,B) for somem € Np. It is shown
by induction onmthat (ii) holds.

In the base casen= 0, and by definitionXa, Xg,Xg) € MCg(A,B) means thatXa, Xg) = (0, w).
Then consides = ¢, and note33%(Xa, Xg, €) = (Xa, Xa) = (0, w) andxs £ Clearlyr C ¢ impliesr = ¢,
and3§%(Xa, Xg, £) = (0,w) ¢ LC(A,B) 2 LC"(A,B) by Lemma 1.
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({aO}-,{bOabl}l) a ({al}v bOVbl}bi) ({alﬁa,%}’v{bo’bljﬁbl)({az}’{bf)vbl}?b:'-)
>0 <
a ' ( a a

({20}, {bo, b1}, bo R N : \ ({a2},{bo,b1},bo)

Figure 5: Calculating more conflicting triples for automAtsandB; in Figure 3.

Now consider(Xa, Xg,Xg) € MC,,1(A,B). It follows from Definition 6 that(Xa,Xg) ¢ LC"(A,B)
andxg € Xg, and there existéYa, Yg,ys) € MC1(A,B) ando € = such thaﬁ,&’%(XA, Xg,0) = (Ya,Yg) and
Xg = Yg. By inductive assumption, there exists a traee=* wU{¢e} such thaﬁ,‘i‘%(YA,YB,s) = (0,w) and
yg =, and for allr C sit holds thatd$% (Ya, Ya,r) ¢ LC"(A,B). Thend{%s(Xa, X, 0S) = 83%(Ya, Yg,5) =
(0, w) andxg = yg =, and for allr C osit holds thatdgs!(Xa, Xa,r) ¢ LC"(A,B).

Conversely, les € *wU {&} such that (i) holds. This means tha{%(Xa, Xs, S) = (0, w) andxg 2,
and 6§%(XA,XB,r) ¢ LC"(A,B) for all r C s. It is shown by induction om = |9 that (Xa, Xg,Xg) €
MCN (A, B).

In the base casen= 0 ands = ¢, it holds by definition thatXa, Xg) = 62%(XA, Xg,€) = (0,w) €
MCJ(A,B).

Now let s = ot such thatlt| = m, and 5§%(Xa, Xg,) = (0,w) and xg =, and 5% (Xa, Xa,r) ¢
LC"(A,B) for all prefixesr Cs. Write 5;\’%(XA,XB,0) = (Ya,Yg) and xg 2 ve 1y Thenyg X and
SR%(Ya, Ya,t) = OR%(Xa, Xa, Ot) = K% (Xa, X8, 5) = (0, w) and 8% (Ya,Ya,1) ¢ LC"(A,B) forall r C t.
Then(Ya,Ys,Ys) € MC},(A, B) by inductive assumption, and by Definition 6 it follows tlix, Xg, xg) €
MCh. (A B). O

Theorem 6. Let A= (Z,Q,, —4,Qa) andB = (3,Qg, —5, Q) be automata, and lete No. Then
LC™(A,B) = { (Xa, Xg) € QIe'x QUt| (Xa, Xa,Xg) ¢ MC"(A,B) for somexg € Xz } . (24)

Proof. Let (Xa,Xg) € LC"1(A,B). Then by Definition 5, there existg € Xg such that for alt ¢ =*
such thatxg t:(">, there exists T tw such thatéj\’fB‘(XA, Xg,r) € LCi(A, B) for somei < n. Equivalently,
this means that there does not exist a titaee&* such thaixg 9 and for all prefixes C tw it holds that
6;\’?,3‘(XA,XB, r) ¢ LC"(A,B). Then(Xa, Xg,xg) ¢ MC" (A, B) because otherwise such a trace would exist
by Lemma 5.

Conversely, letxg € Xg such that(Xa,Xs,xs) ¢ MC"(A,B). To check the condition in Defini-
tion 5 (9), considet € >* such thatxg ¥ Then clearlyéget(xg,tw) = w. By Definition 4, it holds
that eitherdi®(Xa, tw) = w or 55%(Xa,tw) = 0. If 55%(Xa,tw) = w, thendfH(Xa, Xa, tw) = (w, w) €
LC°(A,B). Otherwised®(Xa, tw) = 0 and thusd{%(Xa, Xa,tw) = (0, w), and by Lemma 5 there must
existr C tw such tha‘régfé(XA,XB,r) € LC"(A,B) as otherwiséXa, Xg,Xg) € MC"(A,B). In both cases,
6§g(XA,XB, r) € LC'(A,B) for somer C tw andi < n. Sincet € =* with xg 12 was chosen arbitrarily, it
follows from Definition 5 (9) that{Xa, Xg) € LC""1(A B). O

Example 11. Figure 5 shows a graph representing the more conflictinggi check whethek, <conf
B, in Figure 3. The arrows in the graph represent the detertiriignsition function in combination
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with the transition relation oB,. An arrow (Xa, Xg, Xg) A (Ya,Ys,ys) indicates thaﬁgzgz(XA,XB, o) =

(Y/_\,YB) andxg :0> YB-

In the first iteration to comput®CO(A;, By), first the triple (0, w, b,) is added toMCS(Az, By).
Next, the triples({ap}, {bo,b1},b0) and ({a1},{bo,b1},bo) are added td1C(Az,B,) as they can im-
mediately reachd, w,by). Finally, ({ag},{bo,b1},b1) is also added tMCI(Az,B,) as it reaches
({a1},{bo,b1},bp) € MC$(A2,B,). No further triples are found to be iIMC9(A;,B,). Therefore,
({a1},{bo,b1},b1) ¢ MC®(A;,B,), so it follows from Theorem 6 that{a; }, {bo,b1}) € LC1(A2,By),
and likewise({ay,ax}, {bo,b1}), ({az2},{bo,b1}) € LC1(Az,By).

In the next iteration to computédC (A, B,), note that({a; },{bg, b1 },bo) ¢ MC1(A,B,) because
({aa},{bo,b1}) € LCl(Az,Bz). Still, ({ao}, {bo,b1},bo) € MC%(AZ,BZ) because of the transition to
(0,w,by) € MC(A2,By), but ({ag}, {bo,b1},b1) ¢ MC3(Az,B,) because now{as},{bo,b1},b0) ¢
MC1(Az,B,). Accordingly, the paif{ag}, {bo,b1}) is added td_ C?(Az,B;).

In a final iteration to comput®C2(A,,B;), only one more conflicting triple is found®, w,by,) €
MC3(Az,B>). No further pairs are added IiC3(Az,B,). At this point, the iteration terminates, having
found exactly the four less conflicting pairs given in Exaenp0, (19) and (20).

To determine whether an automaténis less conflicting than automatds, it is first needed to
determine the set of certain conflicts Bf and then to find all the state-set pairs foandB that are
reachable from a pair liké{xa},Xg) associated with some trace that is not a certain confli&. ofhe
more conflicting triples can be constructed as they are died during the backwards search from the
terminal states.

The complexity of each iteration of the more conflicting legp computation is determined by the
number of arrows in the graph, which is bounded Dy |Qg|2- 21! . 2198l because the powerset transi-
tions are deterministic, which is not the case for the ttaors of B. Each iteration except the last adds
at least one less conflicting pair, so the number of iteratisrbounded by 22/ . 219!, The complexity
of this loop dominates all other tasks of the computationer&fore, the worst-case time complexity to
determine whetheh <.qnf B using less conflicting pairs is

O(|Z|-|Qg[?- 4l 4l) = O(|z| |Qg[?- 22nI2el) . (25)

This shows that the conflict preorder can be tested in lingaoreential time, as it is the case for the fair
testing preorder. Yet, the complexity (25) is better thamtime complexity of the decision procedure
for fair testing, which isO(|Qa| - |Qg| - 231Ql+5Q8l) [15].

5 Conclusions

Less conflicting pairs provide a concrete state-based meartsracterise the extent by which one pro-
cess is or is not less conflicting than another. The chaiaatem generalises and includes previous
results about certain conflicts, and it gives rise to a dinemt to test the conflict preorder and the related
fair testing preorder by inspecting sets of reachable staBased on the characterisation, an effective
algorithm is presented to test whether a finite-state automia less conflicting than another. The al-
gorithm, while still linear exponential, has better timerguexity than the previously known decision
procedure for fair testing.

In the future, the authors would like to apply the theoregisults of this paper to compute abstrac-
tions and improve the performance of compositional modetkimg algorithms. The more thorough
understanding of the conflict preorder will make it posstioldetter simplify processes with respect to
conflict equivalence and other related liveness properties
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The effective usages of computational resources are a pricoacern of up-to-date distributed appli-
cations. In this paper, we present a methodology to reasmut adssource usages (acquisition, release,
revision, ...), and therefore the proposed approach esébleredicthad usages of resources. Keep-
ing in mind the interplay between local and global informatoccurring in the application-resource
interactions, we model resources as entities with locatigs and global properties governing the
overall interactions. Formally, our model takes the shdmaextension oft-calculus with primi-
tives to manage resources. We develop a Control Flow Arsadysihputing a static approximation of
process behaviour and therefore of the resource usages.

1 Introduction

Evolutionary programming paradigms for distributed systechanged the way computational resources
are integrated into applications. Resources are usuatigrgehically distributed and have their own
states, costs and access mechanisms. Moreover, resoteces areated nor destroyed by applications,
but directly acquired on-the-fly when needed from suitabkource rental services. Clearly, resource
acquisition is subject to availability and requires theeggnent between client requirements and ser-
vice guarantees (Service Level Agreement — SLA). The dyoawguisition of resources increases the
complexity of software since the capability of adaptingdngbur strictly depends on resource availabil-
ity. Ubiquitous computingl] and Cloud computing8, 16, 2] provide illustrative examples of a new
generation of applications where resource awareness kasab®ajor concern.

The design of suitable mechanisms to control the distrib@equisition and ownership of com-
putational resources is therefore a great challenge. tadeling the foundations of the distributed
management of resources could support state-of-the-aanads of programming language constructs,
algorithms and reasoning techniques for resource-awagggmming. In the last few years, the problem
of providing the mathematical basis for the mechanismsaiygport resource acquisition and usage has
been tackled by several authors (see e.g. [3, 7, 13, 11,d.&itetonly a few).

Here we consider a programming model where processes amgreces are distinguished entities.
Resources are computational entities having their owrclifde. Resources can range from compu-
tational infrastructures, storage and data services toiageurpose devices. Processes dynamically
acquire the required resources when available, but theyotasreate any resource. This simple pro-
gramming model abstracts the features of several intagedistributed applications. As an example, let
us consider a cloud system offering computing resources.available resources are the CPU units of a
given power and processes can only acquire the CPU time, awadiable, to run some specialised code.
Similar considerations apply to storage services, whaesicprocesses can only acquire slots of the
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available storage. In our programming model, the deplogsdurces can be dynamicatyconfigured

to deal with resource upgrade, resource un-availabildgusty intrusion and failures. A distinguished
feature of our approach is that the reconfiguration stepatimglthe structure of the available resources
are not under the control of client processes.

In this paper, we introduce the formal basis of our prograngnmodel. Specifically, we introduce
a process calculus with explicit primitives for the distridd ownerships of resources. In our calculus,
resources are not statically granted to processes, buatkayynamically acquired on-the-fly when they
are needed.

We start from therr-calculus [14] and we extend it with primitives to represeggources and the
operations to acquire and release resources on demandalGermtur approach is the identification of an
abstract notion of resource. In our model, resourcestatefulentities available in the network environ-
ment where processes live. Specifically, a resource isidescthrough the declaration of its interaction
endpoint (the resource name), litkal state and itglobal properties. Global properties establish and
enforce the SLA to be satisfied by any interaction the resoengages with its client process. The global
interaction properties can be expressed by means of a kuitgource-aware logic in the style of [3], or
contract-based logic as in [10, 4]. The interplay betweealland global information occurring in the
process-resource interactions motivates the adjeGi@cal given to our extension of tha-calculus.

Since we build over ther-calculus, name-passing is the basic communication mérhaamong
processes. Beyond exchanging channel nhames, processpassaresource names as well. Resource
acquisition is instead based on a different abstractionortter to acquire the ownership of a certain
resource, a process issues a suitable request. Such regrmged in the network environment to the
resource. The resource is granted only if it is availableother words the process-resource interaction
paradigm adheres to thmublish-subscribanodel: resources act as publishers while processes act as
subscribers. Notice that processes issue their requeiisuribeing aware of the availability of the
resources. When they have completed their task on the adqusource they release it and make it
available for new requests. The two-stage nature of theigiublbscribe paradigm relaxes the inter-
dependencies among computational components thus auiaiigh degree of loose coupling among
processes and resources. In this sense our model also tese¢ugde-based systems [12]. Consequently,
our model seems to be particularly suitable to manage loliggd systems where the set of published
resources is subject to frequent changes and dynamic rgacatibns.

To summarise, our approach combines the basic featureg aftalculus (i.e. dynamic communi-
cation topology of processes via name passing) with theighulslibscribe paradigm for the distributed
acquisition of resources. This is our first contribution.eThterplay between local and global views is
also one of the novel features of our proposal. A second iboibn consists in the development of a
Control Flow AnalysigCFA) for our calculus. The analysis computes a safe appration of resource
usages. Hence, it can be used to statically check whethet tinerglobal properties of resources usages
are respected by process interactions. In particular,ljishgetectingoad usage®f resources, due to
policy violations. This suggests where are sensible pamtise code that need dynamic check in order
to avoid policy violations.

Related WorkThe primitives for resource management make our approahteapecify a wide range

of the resource behaviour of distributed systems such asdQmmputing and Ubiquitous Computing.
We believe that our approach also leverages analysis tpohrsiuch as CFA and behavioural types. A
simplified version of the G-Local-calculus has been presented in [6]. The work presenteddiféees

in several ways from the previous one. The version of theubadcwe considered in this paper is more
expressive of the one presented in [6] since here proceasgzass resource names around. This feature
was not allowed in [6]. Also, the management of resourceiaitiun and release is much more powerful.
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PP = processes M = action prefixes
0 empty process T internal action
P prefix action | x(w) free input
(vz) P restriction | xw free output
P+P choice | a(r) access action
|

|
|
|
| PP parallel composition
|
|
|

rel(r) release action
(r,¢,n){P} resource joint point
req(s){P} resource request point
IP replication

Figure 1: The syntax of G-Locat-calculus.

In [3] an extension of th& -calculus is proposed to statically verify resource usadesr notion
of global usages is inspired by this work. Titecalculus dialect of [13] provides a general framework
for checking resource usages in distributed systems. fapproach private names are extended to
resources, i.e. names with a set of traces to define contasl regources. Also resource request and
resource release are simulated through communicatingtprivames and structural rules respectively.
This gives shared semantics of resources, i.e. severagses can have a concurrent access to resources
(by communicating private names). In our approach, whemegss obtains a resource, it has an exclu-
sive access to it. Furthermore, resource entities can bandgally reconfigured, while this is not the
case in [13].

In [11], resources form a monoid and the evolution of proessmd resources happens in a SCCS
style. In our approach, resources are independent statefities equipped with their own global inter-
action usage policy. A dialect of the-calculus, where resources are abstractly representethwviges
and can be allocated or de-allocated has been introducd&jinip this approach reconfigurations steps
are internalized inside processes via the operations kocading and de-allocating channels. A type
system capturing safe reconfigurations over channels hars inefoduced. In our approach resources
are more structured than channels and their reconfigurateps are not under the control of processes.
Finally, the work presented ir?] mainly focuses on specifying SLA by describing resourcesuitable
constraints. Our approach can exploit constraints to espgbal resource usages as well.

2 The G-Local i-Calculus

Syntax We consider the monadic version tfcalculus [14] extended with suitable primitives to de-
clare, access and dispose resources. The syntax is didptalfey. 1. Here V is a set of channel names
(ranged over by y,2), R is a set of resource names (ranged overr lsyt) and A is a set of actions
(ranged over by, ) for running over resources. We assume that these setsiamgsgadisjoint. From
now on, for the sake of simplicity, we often omit the trailiGg

The input prefixx(w).P binds the namev (either a channel or a resource) within the prod&sshile
the output prefixkw P sends the name along channek and then continues @& Note that resource
names can be communicated, however they cannot be used/ia® prames and used as channels. As
usual, input prefixes and restrictions act as bindings. Tésmmg of the remaining operators is standard.
The notions of names(), free namesn(), bound names$n() and substitution{—/-} are defined as
expected.

Our extension introduces resource-aware constructs irttaculus. The access prefixr) models
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the invocation of the operatiam € A over the resource bound to the variahl&@races, denoted by, n’ €

A*, are finite sequences of events. A usage policy is a set afdrdkhe release prefiel(r) describes

the operation of releasing the ownership of the resosrc our programming model, resources are
viewed as stateful entities, equipped with policies caising their usages. More precisely, a resource
is atriple(r,¢,n), wherer e R is a resource name, < @ is the associated policy amge A* is a state £
denotes the empty state). Policies specify the requirgolpties on resource usages. Policies are usually
defined by means of a resource-aware logic (see [3, 4, 9,WDBilg states keep track of the sequence of
actions performed on resources, by means of (an abstraufli@xecution traces.

For instance, in [3], the policies are expressed in termatwfraata over an infinite alphabet, where
automata steps correspond to actions on resources andtéites mdicate policy violations.

To cope with resource-awareness, we introduce two prigstinanaging resource boundaries: re-
source joint poin{r,¢,n ){P} and resource request poret|(r){P}. Intuitively, proces$ when plugged
inside the resource boundafy,¢,n){P} can fire actions acting over the resourceThe staten is
updated at each actiom(r) according to the required poliog. A resource request poimeqg(r){P}
represents a process asking for the resourénly if the request is fulfilled, i.e. the required resouixe
available, the process can enter the required resourcaelbpuand can use the resourgerovided that
the policy is satisfied. Processes of the famy,n){0} represent available resources. These processes
are idle: they cannot perform any operation. In other warelspurces can only react to requests.

Example 2.1 To illustrate the main features of the calculus, we consaeamall example, which de-
scribes a workshop with two hammers and one mallet. Toolsadelled as resource entities: hammer
and mallet, with the policy;, (¢m, resp.) that one can only make hard hit (soft hit, resp.) whsing
hammer (mallet, resp.). We model workers as a replicatedga®, whose instantiations take a hammer
or a mallet to do jobs, whose chain is described by Jobs. Jdbads are modelled as sending/receiving
hammer and mallet on the channelyxFurthermore, we assume that there are two types of jolrd, ha
jobs on the channel x and soft jobs on the channel y, which@s @y hardhit and softhit actions
respectively.

The initial configuration of the workshop is given below. ®eses (hammer and mallet) have empty
traces. Note that we have two resources of the same name maminigh corresponds to the number of
available hammers in the workshop. Intuitively, it meara tnly two jobs, which use hammers, can be
concurrently done. We have a sequence of four jobs descojpéte process Jobs.

Tools:= (hammergy, €){0}|(hammerdy, £){0}|(mallet, ¢, £){0}
Workers:= Ix(s).req(s){hard_hit(s)}|!y(t).req(t){softhit(s)}
Jobs:= x(hammej.y{mallet).x{mallet).x(hamme}.0
Workshop:= TooldWorkersJobs

Operational semantics The operational semantics of our calculus is defined by #resition relation
given in Tab. 1. Labelg, u’ for transitions are for silent actionsx(w) for free input,xvfor free output,
x(v) for bound outputar (r), a? anda(r) (rel(r), rel?r andrel(r), resp.) for closed, open and faulty
access or release actions over resourdne effect of bound output is to extrude the sent name fram th
initial scope to the external environment.

We assume a notion of structural congruence and we denotes=it Blrhis includes the standard
laws of ther-calculus, such as the monoidal laws for the parallel coiitiposand the choice operator.
To simplify the definition of our Control Flow Analysis, we pose a discipline in the choice of fresh
names, and therefore to alpha-conversion. Indeed, thé m#sanalysing a procesB, must still hold
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(vx)(r,0,n){P} = (r,¢,n){(vX)P}
(vxjreq(r){P} =req(r){(vx)P}
(r2,02,n2){0} || (r1,61,m){P} = (ra, ¢1,M1){(r2, ¢2,12){0} || P}

Figure 2: Structural congruence.

for all its derivative processe®, including all the processes obtained fr@rby alpha-conversion. In
particular, the CFA uses the names and the variables oogunP. If they were changed by the dynamic
evolution, the analysis values would become a sort of daggkferences, no more connected with the
actual values. To statically maintain the identity of valaad variables, we partition all the names used
by a process into finitely many equivalence classes. We denith |n| the equivalence class of the
namen, that is calledcanonical namef n. Not to further overload our notation, we simply writdor

|n|, when unambiguous. We further demand that two names campba-atnamed only when they have
the same canonical name.

In addition, we introduce specific laws for managing the uvese-aware constructs, reported in
Fig. 2. If two processe®; andP, are equivalent, then ald® and P> when plugged inside the same
resource boundaries are. Resource request and resouncpgits can be swapped with the restriction
boundary since restriction is not applied to resource namesnly to channel names. The last law is
crucial for managing the discharge of resources. This léowalrearrangements of available resources,
e.g. an available resource is allowed to enter or escapéwatiesource boundary.

The rulesAct, Par, Res Comm Cong Choice OpenandCloseare the standard-calculus ones.
The ruleAct describes actions of processes, e.g. the silent actianirfpeit and free output. Concretely,
xw.P sends the name along the channet and then behaves like, while x(w).P receives a name via
the channek, to whichw is bound, and then behaves liRe We only observe that our semantics is a late
one, e.gw is actually bound to a value when a communication occursallyirt.P performs the silent
actiont and then behaves like.

The rulePar expresses the parallel computation of processes, whileuteeChoicerepresents a
choice among alternatives. The r@demmis used to communicate free names. The r&lesandOpen
are rules for restriction. The first ensures that an actioR f also an action ofvz)P, provided that
the restricted nameis not in the action. In the case pin the action, the rul® pentransforms a free
output actionxzinto a bound output actior(z), which basically expresses opening scope of a bound
name. The rul€losedescribes communication of bound names, which also clbgsescbpe of a bound
name in communication.

We are now ready to comment on the semantic rules corregpptalthe treatment of resources. The
rule Actr models a process that tries to perform an actidinel, resp.) on the resourae This attempt is
seen as anpen actiondenoted by the labet? (rel?r, resp.).

Intuitively, if the process is inside the scoperofsee the ruld.ocalk), and the action satisfies the
policy forr, then the attempt will be successful and the corresponditigrawill be denoted by the label
a(r) (see the ruldPolicy;). If this is not the case, the process is stuck. Similarlyhé process tries to
release a resource with the actieh.

We introduce the rul€omng to model the communication of resource names between EeEes

When a resource is available, then it can be acquired by a prodeskat enters the corresponding
resource boundargr, ¢, n), as stated by the rulkcquire

Symmetrically, according to the ruReleasethe proces® can release an acquired resourcand
update the state of its resources by appendéhtp 1. In the resulting process, the proc&ssscapes the
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P=P P 5P PP,

(Act) PSP s a(r),rel(r) (Cong) m
u H Pl—>P2
(Pay) % bn(u)nfn(P) =2  (Choice Lfl
Pl || P2—> Pl, || P2 P1+ P27—> Pl’
H o, XY o
(Re§ —— " z¢n(u) (Open ———"  yux
(VZ)E—’(VZ)P' (vy)Pﬂ P
(Comm) NG (Closs P2 pr g, X, py
Pl PSPl Py/z) P P (vy) (P || P{y/z})
(Acte) a(r).PﬁTP (Commy) PP Ry
rel(r).p &% p PL|| PP} || Py{r/s}
(Acquire) req(r){P} || (r,¢,n){0} = (r,¢,n){P}
rel?r ’
(Releasg re::(’r)—) P
(rv¢vn){P} _— (r7¢7n're|){o} ” P’
ax ., ax
(Policys) r—F naré (Policys) P—F nat¢
(58P} = (:6.0.0) (P (r.9.m){P} = (1.0.1){0} | P
(Locah) i f¢n(u) (Locab) PP r ¢n(u)
(r,¢,m{P}— (r,¢,n){P’} req(r){P} — req(r){P"}
(Appea) PP (r,4,n){0} (Disappeay (r,,n){P} -0

Table 1: Operational Semantics.

resource boundary. Furthermore, the resource becomdaldgai.e. it encloses the empty proc@sdf
the process is not inside the scope @géee the ruld.ocak), then, as in the case of accesses, the process
is stuck.

The rulesPolicy;, Policy, check whether the execution of the actigron the resource obeys the
policy ¢, i.e. whether the updated stajea, obtained by appending to the current statg, is consistent
w.r.t. ¢. If the policy is obeyed, then the updated state is stored in the resource state according to the
rule Policy; and the action becomesosedand if not, then the resource is forcibly released according
to the rulePolicy, and the action becoméasulty. Notice thatPolicy. is the rule managing the recovery
from bad access to resources.

The rulesLocal, and Local, express that actions can bypass resource boundariesofdy if they
do not involve the resourae

Finally, the rulesAppearand Disappeardescribe the abstract behaviour of the resource manager
performing asynchronous resource reconfigurations. leratlords, resource configuration is not under
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the control of processes. Resources are created and dabtrgyexternal entities and processes can only
observe their presence/absence. This is formally repteddry the rule®\ppearandDisappear

Example 2.2 To explain the operational semantics, we come back to ouringnexample. The follow-

ing trace illustrates how the workshop works. At the begignWorkers instantiates a new worker (a
resource request point) when receiving a hard job:

Workshop
=WorkergT oolgx(s).req(s){hard_hit(s) }|x(hamme}.Jobs
5 Worker$T oolgJobs|req(hamme){hard_hit(hammej},

where Jobs:= y{mallet).x{mallet).x(hamme}. At this point the new worker can take a hammer and
other jobs are also available (on the channeyX In the following, for the sake of simplicity, we only

show sub-processes that involve computation. Assumehthatetv worker takes a hammer, then we have
the following transition:

req(hammej{hard_hit(hammej) }|(hammerg¢y,, £){0}
5 (hammergy, €){hard_hit(hammej}
Now, three workers are similarly instantiated for doing @inaining jobs.

Worker$Jobs

5 Workergreq(mallet){so ft_hit(mallet) }|x{mallet).x(hammej

5 Workersreg(mallet){soft hit(mallet) }|req(mallet) {hard_hit(mallet). }|x(hamme}

5 Workersgreg(mallet){soft_hit(mallet) }|req(mallet){hard_hit(mallet) }|req(hammej{hard_hit(mallet) }

In the current setting, the new three workers make one redqurethe remaining hammer and two
requests on the mallet. Since we have only one mallet, ongoofiallet requests could be done at a
time. Suppose the first job get done first, we have the foltpwansition:

(hammergy, ) {hard_hit(hamme) }
fard hit(hamme), (hammergy, hard_hit){0}

Note that the hammer is available again. Similarly, the secjob is done as follows:

req(mallet){soft hit(mallet) }|(mallet ¢, £){0}
5 (mallet, ¢, ) {softhit(mallet) }

Softht(male)  mallet gy, 0 ft hit) {0}

If the third job would be processed, then a forced releasédcoccur. This happens because the worker
attempts to do a hard hit by using a mallet in doing the job,clrhiiolates the mallet policy.

req(mallet){hard_hit(mallet).0}|(mallet ¢m, £){0}
% (mallet ¢, £){hard_hit(mallet)}

Pard MMAMME, - ammeygh, £){0}[0

Finally, the similar trace is for the fourth job.
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3 Control Flow Analysis

In this section, we present a CFA for our calculus, extendiregone forr-calculus [5]. The CFA
computes a safe over-approximation of all the possible conications of resource and channel names
on channels. Furthermore, it provides an over-approxonatif all the possible usage traces on the
given resources and records the names of the resourcesthbe@ossibly not released, thus providing
information on possible bad usages. The analysis is pe€dmamder the perspective of processes. This
amounts to saying that the analysis tries to answer thewwltp question: “Are the resources initially
granted sufficient to guarantee a correct usage?”. In otbellsywe assume that a certain fixed amounts
of resources is given and we do not consider any dynamic figewation, possible in our calculus, due to
the rulesAppearandDisappear The reconfiguration is up to the resource manager and isicoessed

by the CFA.

For the sake of simplicity, we provide the analysis for a stilm$ our calculus, in which processes
enclosed in the scopes of resourcessaguential processdgsanged over by, Q’), as described by the
following syntax. Intuitively, a sequential process regmats a single thread of execution in which one
or more resources can be used.

PP as beforeinFig.1 Q,Q == sequential processes

| (r,¢,n){Q} 0
| req(s){Q} | (v Q
| mQ
| Q+Q
| (ré,m{Q}
| (r,¢,m{0}IQ
| req(s){Q}

This implies that one single point for releasing each resmorccurs in each non deterministic branch
of a process. The extension to general parallel processesrisdiate. Nevertheless, it requires some
more complex technical machinery in order to check whethéreparallel branches synchronise among
them, before releasing the shared resource.

In order to facilitate our analysis, we further associatelay < £ with resource boundaries as fol-
lows: (r,¢,n){Q}X andreq(r){Q}X, in order to give a name to the sub-processes in the resatopes
Note that this annotation can be performed in a pre-pracgstep and does not affect the semantics of
the calculus. During the computation, resources are reteasd acquired by other processes. Statically,
sequences of labefse £* are used to record the sequences of sub-processes posaiéing the scope
of a resource. Furthermore, to make our analysis more irdtivey we enrich the execution tracgs
with special actions that record the fact that a resourcéobasn possibly:

* acquired by the process labellgdin(x ), with a successful request;

* released by the process labelpedout( x ) with a successful release;

« taken away from the process labellgderr_out(x ) because of an access actionrahat does not
satisfy the policy.

The new set of traces id*, where A = Au{in(x),out(x).err_out(x) | x € £}. The corresponding
dynamic traces can be obtained by simply removing all theiapactions.

The result of analysing a proceBsis a tuple(p,k,I,¥) called estimateof P, that provides an
approximation of resource behavior. More precisg@lyand k offer an over-approximation of all the
possible values that the variables in the system may be btmyrahd of the values that may flow on
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channels. The componehtprovides a set of traces of actions on each resource. Fitaligcords a
set of the resources that can be possibly not released. ths@formation, we can statically check
resource usages against the required policies.

To validate the correctness of a given estimgtex,l", W), we state a set of clauses that operate
upon judgments in the forrfp, k, I, W) =% P, whered is a sequence of paifgr, ¢,n),S], recording the
resource scope nesting. This sequence is initially emptyotd by €, €].

The analysis correctly captures the behavioPpf.e. the estimatép,«,I",W) is valid for all the
derivativesP’ of P. In particular, the analysis keeps track of the followinfpimation:

 An approximationo: N UR — p(N UR) of names bindings. i p(x) then the channel variable
x can assume the channel valueSimilarly, if r € p(s) then the resource varialdean assume the
resource value.

 An approximationk : N - o (N UR) of the values that can be sent on each channdl< K (a),
then the channel valuecan be output on the chanrelwhile r € k(a), then the resource value
can be output on the chanreel

« Anapproximatior : R —p({[(¢,n),S]| ¢ e ®,Se £*,n ¢ A*}) of resource behavior. [{(¢,n),S] ¢
I(r) thenn is one of the possible traces ovethat is performed by a sequence of sub-processes,
whose labely are juxtaposed is.

» An approximation¥ € o({d | d is a sequence of paifsr,¢,n),S|} of the resources which are
possible locked by processes in deadlock for trying to a&coeso release a resource not in their
scope. More precisely, & isin ¥ and[(r,,n),S] occurs ind, then the resourcecan be possibly
acquired by a process that can be stuck and that therefole motibe able to release it.

The judgments of the CFA are given in Tab. 2, which are basedtrttural induction of pro-
cesses. We use the following shorthands to simplify thetrtreat of the sequenced. The pred-
icate [(r,¢,n),x] EO is used to check whether the paifr,¢,n),x] occurs ind, i.e. whetherd =
o'[r,(¢,n),x]0". With 3{[(r,¢,n.a),S]/[(r,¢,n),S]} we indicate that the pair(r,¢,n),S] is re-
placed by[(r,¢,n.a),S] in the sequencé. With d\ [(r,¢,n),S|] we indicate the sequence where the
occurrencd (r,¢,n),S] has been removed, i.e. the sequeda®’, if d=3'[(r,¢,n),S]d".

All the clauses dealing with a compound process check tieaditialysis also holds for its immediate
sub-processes. In particular, the analysisPoaihd that of(vx)P are equal to the one &. This is an
obvious source of imprecision (in the sense of over-appnatbn). We comment on the main rules.
Besides the validation of the continuation procBsshe rule for output, requires that the set of names
that can be communicated along each elemenp(ed) includes the names to whighcan evaluate.
Symmetrically, the rules for input demands that the set afgmthat can pass alomgs included in the
set of names to which can evaluate. Intuitively, the estimate components talcedncount the possible
dynamics of the process under consideration. The clausegks mimic the semantic evolution, by
modelling the semantic preconditions and the consequenfct®e possible synchronisations. In the
rule for input, e.g., CFA checks whether the preconditiora gfynchronisation is satisfied, i.e. whether
there is a corresponding output possibly sending a value#mbe received by the analysed input. The
conclusion imposes the additional requirements on thenasti components, necessary to give a valid
prediction of the analysed synchronisation action, maimét the variabley can be bound to that value.

To gain greater precision in the prediction of resource esam the second rule, the continuation
process is analysed, for all possible bindings of the resouariables. This explains why we have all
the other rules for resources, without resource variables.
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(p,K,T,W)E°O
(p,k,T,W)E2T.P
(p,K,T, W) =% xwP
(p,K,I, W) EC x(y).P

(p,k,T, W) =2 x(s).P

(p,K,T, W) 2P +Ps

(P, K,T, W) 2Py || P,
(p,k,T, W) 2 (vX)P
(p,k, T, W) 2P
(p,k, T, W) £ (r,¢,n){Q}°
(p,k, T, W) £ (r,¢,n){0}°

(p.K,T, W) 0 req(r) {Q}X

(p.K,T, W) =2 a(r).Q

(0,K, T, W) =2 w(r).Q

(p.k,T. W) 2 (r,0,n){0}° | Q

iff true

iff (p,k,7,W)E°P

iff vaep(x):p(w) k(@) A (p,k,[,W)E°P

iff vaep(x):k(@)nNcp(y) A (p,k,[, W)= P

iff Vaep(x):k(a)nR cp(s)
AYrep(s): (p,k,T,W) 2 P{r/s}

iff (0,k,7,W)ECPLA(P,K, T, W)ESP,
iff (0,k,7,W)E°PLA(P,K,T,W)ECP,
iff (p,k,I,W)E2PAaxep(X)

iff (p,k,l,W)E°P

iff (p,k,I,W) =00(r.9.n).8] Q

iff [(¢,n),S]el(r)

iff V[(¢,n),S]el(r)Ax¢Sh
= (p,k,, W) 2Lre:nn00)-%X] @

iff [(r,,n),Sx]EdAN.aEP=(p,k,T,W)EY Q
A[(r¢.n),Sx]EdAN.O

= [(¢,n.errout(x)),Sx] M (r)A(p,k,I W) =" Q
A[(9,n),SX] EOo=0eW

with &’ = 5{[(r7¢7na)vsX]/[(rv(Pan)vSX]}
andd” =&~ [(r,9.n),Sx]

iff [(r7¢7n)7SX] Ed= (p,K,F,lP) |:5\[(f:¢¢fl)7SX] Q
A [(¢,n.w.0ut(x)),Sx] el (r)
A [(r7¢’n)asx:| ¢ O0=0¢ecV¥Y

iff (p,k,T, W) (r,0,n){0}5A (p.k,T, W) 2 Q

Table 2: CFA Equational Laws
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The rule forresource joint pointupdatesd to record that the immediate sub-process is inside the
scope of the new resource and there it is analysed. If theepsds empty, i.e. in the case the resource is
available, the trace of actions is recorded ).

In the rule forresource request pointhe analysis foQ is performed for every possible element
[(¢,n),S] from the componenk (r). This amounts to saying that the resourcean be used starting
from any possible previous tracge In order not to append the same trace more than once, we liave t
condition thatS does not contairy. This prevents the process labellgdo do it. Furthermorep) is
enriched by the special actiam( x ) that records the fact that the resouraean be possibly acquired by
the process labelleg.

According to the rule fomccess actionf the pair[(r,¢,n),Sx] occurs ind (i.e. if we are inside the
resource scope oj and the updated history.a obeys the policy, then the analysis result also holds for
the immediate subprocess adds updated ind’, by replacing[(r,¢,n),Sx] in d with [(r,¢,n.a),Sx],
therefore recording the resource accesseptussibly made by the sub-process labellegiby

In case the action possibly violates the policy associatitd m(see the last conjunct), the process
labelled x may loose the resourae as recorded by the trace in [(¢,n.err_out(x)),Sx], with the
special actiorerr_out( ) appended ta). If instead, the action onis not viable because the process is
not in the scope of, then all the resources in the contéxtould not be released, as recorded by the
componentd.

According to the rule forelease the trace of actiong’ = n.w.out(x) overr at x is recorded in
I"(r). Other sub-processes can access the resource startinghigdracen’. Furthermore[(r,¢,n),S]
is removed frond and this reflects the fact that the proc€ssan exit its scope, once released the resource
r. Similarly, in the last rule[(r,¢,n),S] is removed fromd and there the proce€gis analysed. Again,
if the action onr is not possible because the process is not in the scopetlwén all the resource in the
contextd could not be released, as recorded by the compdHent

Example 3.1 We briefly interpret the results of CFA on our running examplenore complex of exem-
plification of CFA is given in the next example (see below)stkire associate labels with the resource
boundaries as follows:

Tools:= (hammergn, £){0}*|(hammergn, £){0}%2|(mallet, ¢, £){0} 1
Workers:= Ix(s).req(s){hard_hit(s) }*n|ly(t).req(t){so ft hit(s) }xm

It is easy to see that there is one policy violation, whichagtared by our CFA in the component
I"(hammey), from which we can extract the following tracén(xm).err_out(Xm), Xm). It occurs when
doing the third job the worker tries to hit hard using a mall&¥e know that the channel x (y, resp.) is
supposed to send/receiving hard jobs (soft jobs, resp.)sénding/receiving hammer (mallet, resp.) and
names s and t are supposed to be bound to hammer and mallectesty. By checking the component
p andk, we can explain the above violation too. On the one hand, weddhatp(t) is a singleton set
of mallet, whilep(s) is a set of hammer and mallet, which is a wrong bound of s. Omther hand,
similarly we found thak (x) contains only hammer, while(y) contains hammer and mallet, which is
awrong use of y.

Example 3.2 (Robot Scenario)We now consider a scenario, where a set of robots collabdateach

a certain goal, e.g. to move an item from one position to agotithout loss of generality, we assume
that robots operate in a space represented by a two-dimeabkigrid. We also assume that certain
positions over the grid are faulty, and therefore they cadrti® crossed by robots. To move the item, a
robot needs to take it, and this is allowed provided that thmiis co-located within the range of robot’s
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Figure 3: The initial configuration of the robot scenario.
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Figure 4: The policy automata of the robots’ famili€: (left), R, (middle) andR3 (right).

sensor. Moreover, since robots have a small amount of enmErgyer, they can perform just a few of steps
with the item. Finally, we consider three families of rob@i®s, R, and R): each robot in the family has
different computational capabilities.

Fig. 3 gives a pictorial description of the initial configuran of the scenario. Positions are rep-
resented by circles and double circles. Double circlesdaté faulty positions. The item is located at
position p and the goal is to move it into the positiog. prhere is just one faulty positions pcrossing
through which is considered a failure. Moreover, we cons@ecenario where the three families of
robots R,R, and R are initially located at g, ps and , respectively (e.g. all the robots of the family
R: are located at p).

Sensors are modelled by clearly identified resources. Tieosg" of the I" robot family is specified
by the resourcésns j, ;,ni j), where sng; is the name of the sensay,  is the abstract representation
of the sequence of moving actions which led the robot frormitigal position to the current one and
initially equals toe, and ¢; is the global policy on demand. We assume that each familgbaits has
its own policy described by the automata in Fig. 4. The patiegstraints robots’ movement in the grid.
We model the movement activities of robots with the follgveictions: E(sng, W(sng, S(sng, and
N(sn9 that describe the movements on east (west, south and nesif)r Basically, sensors are a sort
of private resources of the robots (each robot will neveeask its sensor) and the actions over sensors
update their states.

The item is modelled by a resource of the fdiif, ¢, ), wheren describes the sequence of actions
performed on the item, angy simply states that the item is never located at the positianimtially,

n is equal toe. The same set of actions adopted for robots’ movement (iyaer ), W(IT ), S(IT),
andN(IT)) are exploited to transport the item in the grid. Finally,abarobot in the family E {1,2,3}
is specified by a process Rof the form: (sns;, ¢;,ni){Qi;}X, where Q; specifies the'} robot's
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behaviour of the'l! robot family andy is a label associated with the resource boundary. For instain
the process gs (see below), the robot goes to north (without the item), thetes to grasp the item. If
this operation succeeds, the robot goes to east and rel¢hsdéem there. Note that we use two monadic
actions to move the item and the sensor together. This caultbhe by using polyadic actions, which

however we leave for future work.
For the sake of simplicity, we do not model co-location oksemand items. The specification of the
robot scenario is given below.

Ry1:=(sng 1,91, Po){req(IT){E(IT).E(sng,1).S(IT).S(sng 1).rel(IT) }Xr1}Xsu1
Ry2:=(sng 2,91, po){req(IT){E(IT).E(sng,2).E(IT).E(sng 2).rel(IT ) }Xr12} Xsi2
Ryi3:= (sNs,3,01. o) {req(IT){E(IT).E(sng 3).rel(IT ) }Aris} X

Ro1:= (SN$.1, 92, p3) {req(IT){N(IT).N(sng1).E(IT).E(sng,1).rel(IT) pXra pXe
Ro2:= (SN2, ¢2, p3) {req(IT){N(IT).N(sn$2) . N(IT).N(sng2).rel(IT ) A2z} X2
Ro3:= (SNg3, 92, p3){NR(sng3).req(IT){E(IT).E(sng).rel(IT ) }Xr23} X3
Rs1:= (SNg 1,93, p7){req(IT){S(IT).S(sng 1) rel(IT) }Ars1 X

Rs2:= (SN2, ¢3, p7) {req(IT){N(IT).N(sng2).rel (1T ) jXr3z} Xss2

System= (IT, ¢, Po) {0} | Ry1 | Ri2 | Rz || Ret | Re2 | Rz || Rea |l Ra2

The following trace illustrates the behaviour of the speatibn of the scenario. At the beginning, the
item lies in the range of the family of robot .RThen a reconfiguration step putting together the robot
R11 and the item is performed.

System= (IT,¢;,€){0}||(sng,1,$1,€){ Q11 }|R12||RL3||R2 1/|R2 2[R 3l|Rs 1/|Rs 2 =
(sng1,¢1,){(IT,¢1,€){0}||Qr1}||Ra2/[Re3/[Re1]|R22/|R23|Rs 1/|Rs 2

As aresult, robot R, can grasp (acquire) the item; the pair item-robot moves cst,eaen on south.
Finally, the robot disposes the item at the positicn p

System>  (sng1,1, Po){(IT,$1,€){Q11}||IRe2/|Re.1/|Re2||Re.1]|Rs2
E(IT) E(sng1) S(UT) S(sngi) rel(IT)

(IT,¢1,e.E.Srel){0}]|(sng,1, $1,£.E.S){0}||R12||[R2,1/|R2,2||R3.1/|R3 2

It is easy, given an initial location, to map a sequence ofoast performed over the item into a
path on the grid, namely each action operated over the iteeaE{1T), W(IT), S(IT), andN(IT))
corresponds to a single moving step in the space grid. Theasel action, instead, is interpreted as a
sort of self-loop in the grid, i.e. the execution of the releaction does not move the item. For example,
the sequence.E.S. in the above setting would model the patgipjpps. From now on, by abuse of
notation, we will freely use paths in place of sequences tid@E over the item/sensors.

Now, the item is in the range of the family of robots Rgain by applying the reconfiguration step,
robot R 1 is allowed to operate with the item. Then, it takes the itelkesn a move on north, then on
east, and disposes the item at the positien For the sake of simplicity, in the following we show only
sub-processes of the system that involve computation:

(IT, 1, Popapsp3){0}[|Rz1
7 N(IT) N(sng1) E(IT) E(sngi) rel(IT)

(IT, ¢1, Popap3p3pPap7P7){0}[|(SN$ 1, §2, P3Pap7) {0}
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Note that a forced release would have occurred at this stéeiftem proceeded governed by the robot
Ro.. The reason is that £3 attempts to move the item into the positionand this results in releasing
the item at the position 4oy the rule Policy. Now the robot R, has the chance to take the item, and,
if the north move occurs, the goal is achieved and the tas@rigeted.

(IT,¢1, Popapsp3pap7p7){0}||Rs2
T N(IT) N(sng2) rel(IT)

(IT, ¢1, PopapsP3Pap7P7PsPs){0}]| (SN2, P3, P7Ps) {0}

Now we explain the features of the CFA. The CFA (in partictieT component) computes the set
of possible traces of the trajectories in the grid reachihg goal, among which the ones below:

in(xr11).E.Srel.out(xr11).in(Xr21) .N.E.rel.out( xy21).in(Xr32).N.rel.out(Xr32), Xr11- Xr21- Xr32
in(Xr11)-E.E.rel.out(xr11).in(Xr32)-N.rel.out(Xr32), Xr12-Xr32

in(Xr13)-E.rel.out(xr13).in(Xr23)-E.rel.out(Xr23) .in(Xr32).N.rel.out(xr32), Xr13-Xr23-Xr32
in(xr11).E.Srel.out(Xr11).in(Xr22) .N.err_out( xr22).in( Xr23)-E.rel.out(Xr23).in( Xr32) .N.rel.out( Xr32), Xr11-Xr22-Xr23-Xr32

This set produces the following sequences of positionz [ Pz P4 P7P7 PsPs, PoP4P7P7PsPs, and
also mp4pP4P7P7PsPs and @ PaP3P3P4P4P7P7PsPs. Note that the last trace is faulty (e.g. traces contain
error actions ercout, see below) since it contains a forced releaseart(x.2) (see below). Conse-
quently, the system does not respect the pdligyfor the item. In particular, there are three faulty traces
found by the analysis, which have the following common prefix

in(xr11)-E.Srel.out(xr11).in(Xr22).N.out_err(Xr22), Xr11-Xr22

The reason is that the robot,R is forced to release the item when attempting to move it imobad
position . Moreover, there is no faulty trace of actions over sensatich means the system respects
the policiesg; ; for sensors and therefore complies with it.

The analysis provides us with an approximation of the oVéhaviour of the analysed process.
Moreover, it is proved to be correct: the analysis indee@aeis the operational semantics of G-Local
nt-calculus, as shown by the following subject reduction Itesu

Theorem 3.3 (Subject Reduction) (p,«,I, ) =° P and pL P, then(p,k,I, ) S P'.

We can further prove that there always exists a a least clodi€p,«,I", ) that is acceptable for
CFA rules, and therefore it always exists a least estimatds depends from the fact that the set of
analysis estimates constitutes a Moore family.

Theorem 3.4 (Existence of estimates) For all 3,P, the set{(p,k,I,)|(p,k,I, ) =° P} is a Moore
family.

Moreover, our analysis offers information on the resoursage, included bad usages. The compo-
nentl is indeed in charge of recording all the possible usagedraseach resourge Actually, for each
r, traces are composed of paiksp, ), Sx ], whereSis made of labels of the processes that acquired the
resource andn records every action on included the special actionis(x ), out(x) anderr_out(x),
that indicate that the process labellgdnay acquire and release (or it may be forced to release) the
resource. This information offers a basis for studying ayitgproperties, by suitably handling the safe
over-approximation the CFA introduces. We want to focus mmwthe traces including special error
actions, that we cafiaulty.
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Definition 3.5 A tracen ¢ A* is faulty if it includes ercout(x) for somey ¢ L.

In particular, on the one hand if the analysis contains yatnlices, then there is th@ssibility of
policy violations, while if all the traces are not faulty,eth we can prove that policy violations cannot
occur at run time, and therefore that the processes cornest! their resources.

We can show it formally, as follows.

Definition 3.6 The process P, where r is declared with poligyP complies with¢ for r, if and only if

* . . . a(r * . . .
PL p implies that there is noPsuch that P ) P”, where = is the reflexive and transitive closure
u
of —.

Definition 3.7 A process P, where r is declared with poligyis said torespectp for r, if and only if
3(p,K,T,W).(p,k,T, W) EEIP and V[ (¢,n),S] €T (r).n is not faulty

Theorem 3.8 If P respectghe policy¢ for r then, Pcomplies with¢.

4 Concluding Remarks

Our work combines the name-passing of tiiealculus with the publish-subscribe paradigm to cope
with resource-awareness. We have shown that this has leadhémne passing process calculus with
primitives for acquiring and releasing stateful resourc&ur research program is to provide formal
mechanisms underlying the definition of a resource-awasgramming model. The work reported in
this paper provides a first step in this direction. There isralmer of ways in which our calculus could be
extended. In terms of calculus design, we assumed a moregliest primitive for managing resource
binding. This is a reasonable assumption for several c@gesteresting issue for future research is to
extend the calculus with a polyadic request primitives rmgkor a finite number of resources. In terms
of reasoning mechanisms, it would be interesting to exfiléi\ techniques to develop methodologies
to analyze the code in order to avoid bad accesses to resodtis® it would be interesting to apply the
typing techniques (behavioral types) introduced in [3]aptare a notion of resource contract.
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Synchronous coordination systems allow the exchange of data by logically indivisible actions involv-
ing all coordinated entities. This paper introduces behavioural automata, a logically synchronous
coordination model based on the Reo coordination language, which focuses on relevant aspects for
the concurrent evolution of these systems. We show how our automata model encodes the Reo and
Linda coordination models and how it introduces an explicit predicate that captures the concurrent
evolution, distinguishing local from global actions, and lifting the need of most synchronous models
to involve all entities at each coordination step, paving the way to more scalable implementations.

1 Introduction

Synchronous constructs in languages such as Reo [1] and Esterel [7] are useful for programming reactive
systems, though in general their realisations for coordinating distributed systems become problematic.
For example, it is not clear how to efficiently implement the high degrees of synchronisation expressed
by Reo in a distributed context. To remedy this situation, the GALS (globally asynchronous, locally
synchronous) model [9, 13] has been adopted, whereby local computation is synchronous and commu-
nication between different machines is asynchronous.

Our work contributes to the field of coordination, in particular to the Reo coordination language,
by incorporating the same ideas behind GALS in our approach to execute synchronisation models.
More specifically, we introduce behavioural automata to model synchronous coordination, inspired in
Reo [6]. Each step taken by an automata corresponds to a round of “synchronous” actions performed
by the coordination layer, where data flow atomically through a set of points of the coordinated system.
The main motivation behind behavioural automata is to describe the synchronous semantics underlying
Dreams [18], a prototype distributed framework briefly discussed in §5.2 that stands out by the decoupled
execution of Reo-like coordination models in a concurrent setting. Dreams improves the performance
and scalability of previous attempts to implement similar coordination models. Our automata model
captures exactly the features implemented by Dreams.

Behavioural automata assume certain properties over their labels, such as the existence of a compo-
sition operator, and use a predicate associated to each of its states that is needed to guide the composition
of automata. Different choices for the composition operator of labels and the predicates yield different
coordination semantics. We instantiate our automata with the semantics for Reo and Linda coordination
models, but other semantic models can also be captured by our automata [18]. We do not instantiate
behavioural automata with Esterel as the propagation of synchrony in this language differs from our
dataflow-driven approach [3].

Summarising, the main contributions of this paper are:

e a unified automata model that captures dataflow-oriented synchronous coordination models;
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e the introduction of concurrency predicates, increasing the expressiveness of the model when deal-
ing with composed automata; and

e the decoupling of execution of a distributed implementation based on our automata model, by
avoiding unnecessary synchronisation of actions whenever possible.

Each behavioural automaton has a concurrenty predicate that indicates, for each state, which labels of
other automata require synchronisation. When composing two automata, labels must be either composed
in a pairwise fashion, or they can be performed independently when the concurrency predicate does not
require synchronisation. We exploit how to use concurrency predicates to distinguish transitions of a
composed automaton that originate from all intermediate automata, or from only a subset of them. We
also illustrate how to obtain more complex notions of coordination by increasing the complexity of
concurrency predicates.

This paper is organised as follows. We introduce behavioural automata in §2. We then encode Reo
as behavioural automata in §3 and Linda as behavioural automata in §4. In §5 we motivate the need for
concurrency predicates, both from a theoretical and practical perspectives. We conclude in §6.

2 A stepwise coordination model

In this section we present an automata model, dubbed behavioural automata. This model represents our
view of a dataflow-driven coordination system, following the categorisation of Arbab [3]. Each transition
in an automaton represents the atomic execution of a number of actions by the coordination system.
We describe the behaviour of a system by the composition of the behaviour of its sub-systems running
concurrently, each with its own automaton. Furthermore, we allow the data values exchanged over the
coordination layer to influence the choice of how components communicate with each other as well. We
borrow ideas from the Tile model [14, 4], distinguishing evolution in time (execution of the coordination
system) and evolution in space (composition of coordination systems). Behavioural automata can be
built by composing more primitive behavioural automata, and each transition of an automaton denotes a
round of the coordination process, where data flow atromically through zero or more ports of the system.

We use behavioural automata to give semantics to Reo, based on the constraint automata model [6],
and to (distributed) Linda [15]. Each label of an automaton describes which ports should have dataflow,
and what data should be flowing in each port. We write IP to denote a global set of ports, L[P] to denote
the set of all labels over the ports P C P, and D to denote a global set of data values. We associate a
predicate over labels to each state ¢ of an automaton, referred to as C(q). These predicates are used to
guide the composition of behavioural automata.

Definition 1 (Behavioural automata) A behavioural automaton of a system over a set of ports P C P
is a labelled transition system (Q,L[P],—, C), where L[P] is the set of labels over P, — C Q x L[P] x Q
is the transition relation, and C : Q — 2LP s predicate over states and labels, called concurrency
predicate, regarded as a function that maps states to sets of labels.

The key ingredients of behavioural automata are atomic steps and concurrency predicates. Each label
of a behavioural automaton has an associated atomic step, which captures aspects such as the ports that
have flow and the data flowing through them, and concurrency predicate describe, for each state, which
labels from other automata running concurrently require synchronisation.

Example 1 (Alternating coordinator) We present the alternating coordinator (AC) in Figure 1. It re-
ceives data from two data writers Wy and W, and sends data to a reader R. The components Wi, W,
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a
b

Figure 1: Alternating coordinator (left), and its behavioural automaton (right).

v,w) = read w from a,

€(g0) ) Clat) ¢
sinw read v from b, and
@ write w to ¢
s2(v)

s2(v) = write vto ¢

and R are connected, respectively, to the ports a, b and c of the alternating coordinator. The alternat-
ing coordinator describes how data can flow between the components, and coordination is specified by
the behavioural automaton depicted on the right side of Figure 1. Each transition of this automaton
represents a possible step in time of the coordinator AC, describing how the ports a, b, and c can have
dataflow. Initially, the coordinator is in state qg, where the only possible action is reading a value w from
W) through a and sending it to the reader R through c, while reading and buffering a value v sent by W,
through b. Note that if only one of the writers can produce data, the step cannot be taken, and the system
cannot evolve. In the next state, q, the only possible step is to send the value v to the reader R, returning
to state qo. The arrows between states represent the transition relation —. In both states there is the
possibility of allowing the concurrent execution of other automata, provided that this execution does not
interfere with the current behaviour. The conditions of when other automata can execute concurrently
are captured by the concurrency predicate C, depicted by squiggly arrows (~~p) from each state.

2.1 Labels, atomic steps and concurrent predicates

Labels over a set of ports P are elements from a set L[P] with some properties required for composition,
which we will introduce later. Furthermore, a label ¢ € L[P] can be restricted to a smaller set of ports
P' C P, written /(") We require each label £ € L[P] to have an associated description of where and which
data flow in the connector, written as o/(¢), and captured by the notion of atomic step.

Definition 2 (Atomic step) An atomic step over the alphabet P C P is a tuple (P, F,IP,OP,data) where:
FCP IPCF OPCF IPNOP =0 and data : (IPUOP) — D.

We write AS[P] to denote the set of all atomic steps over the ports in P. P is a set of ports in the scope
of the atomic step. The flow set F is the set of ports that synchronise, i.e., that have data flowing in the
same atomic step. The sets IP and OP represent the input and output ports of the atomic step that have
dataflow, and whose values are considered to be relevant when performing a step. Ports in F but not in
IP or OP are ports with dataflow, but whose data values are not relevant, that is, they are used only for
imposing synchronisation constraints. The data values that flow through the relevant ports are given by
the data function data. We distinguish /P and OP to capture data dependencies.

Concurrency predicates are used to compose behavioural automata. When composing two automata
a; and ay, if a; has ports Py, has the concurrency predicate C;, and is in state ¢;, then E(ZP]) € Ci(q1)
means that a; can perform ¢, only when composed with a transition from a;, otherwise a; can perform
¢, without requiring a; to perform a transition.! When clear from context, we omit the restriction and

write £ € C;(q;) instead of E(ZPI) € C1(q1). We give a possible definition for concurrency predicates based

'We present a variation of the original definition of concurrency predicates [18] to make the decision of belonging to a
concurrent predicate more local.
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solely on the set of known ports.> Given a connector with known ports Py, the concurrency predicate of
every state is given by the predicate

cp(Py) = {¢| a(¢) = (P,F,IP,OP,data) ,Ph)NF #0}. €))
Example 2 We define the atomic steps and concurrency predicates from Example 1 as follows.
a(si(v,w)) = (P.abc.ab.c.{a,b,c — w,v,w}) Clq1(v)) = cp(P)
(X(Sz(V)) = <P7 ¢, @,C,{C = V}> e(qo) = CP(P)
For simplicity, we write a ...ay instead of {ay,...,a,} when the intended notion of set is clear from

the context. The alphabet P is {a,b,c}, and the concurrency predicates allow only steps where none of
the known ports has flow.

2.2 Composition of behavioural automata

To compose behavioural automata we require labels to be elements of a partial monoid (L, ®), that is, (1)
there must be a commutative operator ® : L> — L for labels, and (2) the composition of two labels can be
undefined, meaning that they are incompatible. For technical convenience, we require & to be associative
and to have an identity element. The atomic step (P, F,IP,OP,data) of a composed label ¢; ® ¢, must
obey the following conditions, where, for every label ¢; or {5, ot(¢;) = (P, F;,IP;,OP;,data;).
PCPUP IP C (IPl UIPQ)\(OPI @] Opz) datay ™ datay
FCFHUF OP C OP1UOP, data = data; U data,

The atomic step of a label ¢ is represented by o(¢). The notation m; > my represents that the values
of the common domain of mappings m; and m, match. The requirements on the sets /P and OP reflect
that when composing two atomic steps, the input ports that have an associated output port are no longer
treated as input ports (since the dependencies have been met), and the output ports are combined. The
intuition behind the removal of input ports that match an output port is the preservation of the semantics
of Reo: multiple connections to an output port replicate data, but multiple connections to input data
require the merging of data from a single source.

We now describe the composition of behavioural automata based on the operator ® and on concur-
rency predicates. This composition mimics the composition of existing Reo models [6, 11, §].

Definition 3 (Product of behavioural automata) The product of two behavioural automata by = (Qy,
L[P1],—1,C1) and by = (Q2,L[P2],—2,C2), denoted by by 1< by, is the behavioural automaton (Q; X

0O, L [Plng] > where—>and€are deﬁned as follows:
= {{(p, )>|P—>1P 6]—>2q75=€1®52,€#L}U )
{<<p,q> e< >> [P =1 P ) ¢ Ca(0)} U {((.0), 4, (pd) | a520 0 ¢ Ci(p)} (3)
C(p,q) = Ci(p)UCa(q) for peQi,q€ Qs. )

Case (3) covers the situation where one of the behavioural automata performs a step admitted by the
concurrency predicate of the other, and case (4) defines the composition of two concurrency predicates.

In practice, our framework based on behavioural automata, briefly described in §5.2, uses a symbolic
representation for data values assuming that variables can be instantiated after selecting the transition.
This suggests the use of a late-semantics for data-dependencies. Our approach to compose labels resem-
bles Milner’s synchronous product in SCCS [17], with the main difference that the product of behavioural
automata do not require the all labels to be synchronised. The product of labels from two behavioural
automata can be undefined, and labels can avoid synchronisation when the concurrency predicate holds.

2Qther semantic models may require more complex concurrency predicates. For example, the concurrency predicates for
the Reo automata model [8] depend on the current state (Section 3.6.2 of [18]).
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where:
o(s3(v)) = {ad',d' ,d',0,{d — v})
o(s4(v)) = (ad',a,0,a,{a — v})

Figure 2: Behavioural automaton of the lossy-FIFO connector.

a a
b b

Figure 3: The sink and source ports of LF, AC, and their composition.

2.3 Example: lossy alternator

Recall the behavioural automaton AC of the alternating coordinator, illustrated in Figure 1. Data is
received always via ports a and b simultaneously, and sent via port ¢, alternating the values received
from a and b. We now imagine the following scenario: the data on a becomes available always at a
much faster rate than data on b. To adapt our alternating coordinator to this new scenario, we introduce
a lossy-FIFO connector LF [1] and compose it with the alternating coordinator, yielding LF 1 AC.

Recall the definition of ¢p : P — L[P] given by Equation (1). The behavioural automaton for the
lossy-FIFO connector is depicted in Figure 2, and its atomic steps range over the ports {a,a’}, where
d' is an input port and a is an output port. We depict the interface of both of these connectors on left
hand side of Figure 3. After combining the behavioural automata of the two connectors, they become
connected via their shared port a. The new variation of the alternating coordinator can then be connected
to data producers and consumers by using the ports @', b and c, as depicted at the right hand side of
Figure 3.

Intuitively, the lossy-FIFO connector receives data @’ and buffers its value before sending it through a.
When the buffer is full data received from a’ replaces the content of the buffer. The connector
resulting from the composition LF >1 AC is formalised in Table 1 and in Figure 4. The flow sets of the
labels s1(v,w), s2(v), s3(v) and s4(v) are, respectively, abc, ¢, d', and d’a, and the set of known ports
is P={d,a,b,c}. Let Crr and Cyc be the concurrency predicates of LF and AC. The concurrency
predicate Cpprac for LF <1 AC results from the union of the predicates of the states of each behavioural
automaton, and corresponds precisely to the concurrency predicate that maps each state to cp(d’,a,b,c).
The name of each state in LF >1 AC is obtained by pairing names of a state from LF and a state from AC.
Some states and transitions are coloured in grey with their labels omitted to avoid cluttering the diagram.

From the diagram it is clear that some transitions originate only from the LF or the AC connector,
while others result from the composition via the operator ®. The transitions s,(v) and s3(w) can be per-
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LF Crr(empty)  Crr(full(v'))

® s1(u,v) s2(w) s1(v,w) true true
(Pdc,dc, s2(v) false false
) 8 e )
s4(z2) L (for z #v) 1
( ) <R abc,ab,c, . AC eAC(qO) GAC(ql (V/))
Say {a,b,c —v,u,v}) s3(v) false false

s4(v) true true

Table 1: Atomic steps of the composition of labels from LF and AC (left), and verification of the concur-
rency predicate for each label (right).

cp(d,a,b,c)  s3(v) s2(w) ®s3(v)

Figure 4: Behavioural automaton for the composition of LF and AC.

formed simultaneously or interleaved; simultaneously because s2(v) @ s3(w) is defined, and interleaved
because Cpr never contains s»(v) and C4¢ never contains s3(w). The possible execution scenarios of
these atomic steps follow our intuition that steps ‘approved’ by concurrency predicates can be performed
independently. The steps s (u,v) and s4(w) can be taken only when composed.

2.4 Locality

We introduce the notion of locality as a property of behavioural automata that guarantees the absence
of certain labels in the concurrency predicates of independent behavioural automata, that is, in automata
without shared ports.

Definition 4 (Locality of behavioural automata) A behavioural automaton b = (Q,L[P],—,C) obeys
the locality property if. for any port set P’ such that PNP' =0, Yl eL[P']-Yge Q-/P) ¢ C(q).

Any two behavioural automata with disjoint port sets that obey the locality property can therefore
evolve concurrently in an interleaved fashion. Let b = b <1 b, be a behavioural automaton and ¢ a label

from b;. We say ¢ is a local step of b if (q1,q2) 4 (4},45) is a transition of b and either g 4 q)

g2 =qh, and £ € Ca(q2); or q» i>2 g5, q1 = ¢}, and £ € C;(q). In the behavioural automaton exemplified
in Figure 4, the local steps are exactly the transitions labelled by the steps s2(w) and s3(v).
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Proposition 1 Ler b = by <1 by 1 b3 be a behavioural automaton where b; = (Q;,L[P],—;,C;), for i €
1..3, and assume the locality property from Definition 4 holds for by, by and bs. Suppose P NPz = 0.
Then, for any step ngl) € L[P] performed by by and q2 € O, if €(1P2) ¢ Co(q2) then ¢y is a local step of b.

Proof. Observe that < is associative, up to the state names, because the composition of labels ® is
associative. From Py N P; =0, {; € L[P,], and from the locality property in Definition 4 we conclude that
Vg € Q3 -E(IP3) ¢ C3(q). Therefore, for any state g3 € Q3 and for a state g, € Q; such that EEPZ) ¢ Ca(q),
we have that EYJZ) ¢ C2(g2)UCs(g3). We conclude that E(IPZUP3) ¢ €', where €' is the concurrency predicate
of by > b3, hence a local step of b. O

If the locality property holds for each behavioural automata b; in a composed system b = b; > -+ - <
by, then, using Proposition 1, we can infer wether atomic steps from b; are local steps of b based only on
the concurrency predicates of its neighbour automata, i.e., the automata that share ports with b;.

2.5 Concrete behavioural automata

A behavioural automaton is an abstraction of concrete coordination models that focuses on aspects rel-
evant to the execution of the coordination model. As we will argue, Reo and Linda can be cast in our
framework of behavioural automata. Therefore, both Reo and Linda coordination models can be seen as
specific instances of the stepwise model described above. For a concrete coordination model to fit into
the stepwise model, we need to define: (1) labels in the concrete model; (2) the encoding ¢ of labels into
atomic steps; (3) composition of labels; and (4) concurrency predicates.

We start by encoding the constraint automata semantics of Reo as behavioural automata. Later,
because of its relevance in the coordination community as one of the first coordination languages, we
also encode Linda as a behavioural automaton. Other coordination models have also been encoded as
behavioural automata in Proenga’s Ph.D. thesis [18].

3 Encoding Reo

Reo [1, 2] is presented as a channel-based coordination language wherein component connectors are
compositionally built out of an open set of primitive connectors, also called primitives. Channels are
primitives with two ends. Existing tools for Reo include an editor, an animation generator, model check-
ers, editors of Reo-specific automata, QoS modelling and analysis tools, and a code generator [5, 16].
The behaviour of each primitive depends upon its current state.> The semantics of a connector is
described as a collection of possible steps for each state, and we call the change of state of the connector
triggered by one of these steps a round. At each round some of the ends of a connector are synchronised,
i.e., only certain combinations of synchronous dataflow through its ends are possible. Dataflow on a
primitive’s end occurs when a single datum is passed through that end. Within any round dataflow may
occur on some number of ends. Communication with a primitive connector occurs through its ports,
called ends. Primitives consume data through their source ends, and produce data through their sink
ends. Connectors are formed by plugging the ends of primitives together in a one-to-one fashion to form
nodes. A node is a logical place consisting of a sink end, a source end, or both a sink and a source end.*
We now give an informal description of some of the most commonly used Reo primitives. Note
that, for all of these primitives, no dataflow is one of the behavioural possibilities. The Sync channel

3Note that most Reo primitives presented here have a single state.
4Generalised nodes with multiple sink and source ends can be defined by combining binary mergers and replicators [6, 11].
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(—) sends data synchronously from its source to its sink end. The LossySync channel ------- >)
differs from the Sync channel only because it can non-deterministically lose data received from its source
port. The SyncDrain (——) has two source ends, and requires both ends to have dataflow syn-
chronously, or no dataflow is possible. The FIFO; channel —{_—1}—) has two possible states: empty or
full. When empty, it can receive a data item from its source end, changing its state to full. When full,
it can only send the data item received previously, changing its state back to empty. Finally, a replicator
(—<) replicates data synchronously to all of its sink ends, while a merger (—>—> ) copies data
atomically from exactly one of its sink ends to its source end.

Example 3 The connector on the right is an exclusive router built by compos-

;'O——)O
ing two LossySync channels (b-e and d-g), one SyncDrain (c-f), one Merger b -~ € j
(h-i-f), and three Replicators (a-b-c-d, e-j-h and g-i-k). The constraints of -
o . . ; . T oa c f
these primitives can be combined to give the following two behavioural possi- ]
bilities (plus the no-flow-everywhere possibility): S
e ends {a,b,c,d,e, f,h,j} synchronise and a data item flows from a to j, d>~. g X
S N

e ends {a,b,c,d,f,g,i,k} synchronise and a data item flows from a to k.

The merger makes a non-deterministic choice whenever both behaviours are possible. Data can never
flow from a to both j and &, as this is excluded by the behavioural constraints of the Merger h-i-f.

3.1 Constraint automata

We briefly describe constraint automata [6]. Constraint automata use a finite set of port names N =
{x1,...,x,}, where x; is the i-th port of a connector. When clear from the context, we write xyz instead
of {x,y,z} to enhance readability. We write x; to represent the variable that holds the data value flowing
through the port x;, and use N to denote the set of data variables {X1,...,Xn}, for each x; € N. We define
DCx for each X C N to be a set of data constraints over the variables in X , where the underlying data
domain is a finite set [D. Data constraints in DCy can be viewed as a symbolic representation of sets of
data-assignments, and are generated by the following grammar:
g = tt } x=d | g1V ‘ —g

where x € N and d € D. The other logical connectives can be encoded as usual. We use the notation
@ = b as a shorthand for the constraint (@a=d; Ab = d\)V...V(a=d, Ab = d,), withD ={d,,...,d,}.
Definition 5 (Constraint Automaton [6]) A constraint automaton (over the finite data domain D) is a
tuple A = (Q,N, —,Q0), where Q is a set of states, N is a finite set of port names, — is a subset of
0 x 2N x DCy x Q, called the transition relation of A, and Qo C Q is the set of initial states.

X X
We write ¢ £> p instead of (¢,X,g,p) € —. For every transition ¢ £> p, we require that g, the guard,

is a DCx-constraint. For every state g € Q, there is a transition g E q.

We define CAS C 2N x DCy to be the set of solutions for all possible labels of the transitions of
constraint automata. That is, X|g € CASif X = {x1,...,x,}, g = \Xi = v;, where v; € D, and there is a
transition ¢ & ¢ such that g satisfies g’. We call each s € CAS a constraint automaton step. Firing a
transition ¢ X—lg> p is interpreted as having dataflow at all the ports in X, while excluding flow at ports
in N'\ X, when the automaton is in the state g. The data flowing through the ports X must satisfy the
constraint g, and the automaton evolves to the state p. Figure 5 exemplifies the constraint automata for
three Reo channels. We do not define here the composition of constraint automata, but encode labels of
constraint automata as labels of behavioural automata, whose composition has been defined in §2.2.
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l i l ala=d
t d
@3 ab|tt altt C@:j ab\a\:z

blb=d

Figure 5: From left to right, constraint automata for the SyncDrain, LossySync and FIFO; channels.

s2(w) s2(w) 51(0) @ 53(v) s2(w)
s2(w) @ s4(v)

Figure 6: Composition of [A.]c, and [Ar]c,. for any v,w € D.

3.2 Constraint automata as behavioural automata

The CA model assumes a finite data domain D, and that data constraints such as tt, @ # d, or = b stand
for simpler data constraints that use @ = d and the operators A and V.
The encoding of the constraint automaton A = (Q, N, —ca, Qo) is the behavioural automaton
[[‘A]]CA = <Q7 L[N]v_)BAa e>
with L[N], —ga, C, and the composition of labels defined as follows:
e L=CAS, and o is defined as: a(X|A\L, xi=di) = (N, X,0,X,{x;—di}\_,).

X X|g'
e We have ¢ ﬁ>BA q for X|g € L[N]if ¢ imA ¢ and g satisfies g’.
e Let cas; = X;|g; be a solution for a label in a constraint automaton with ports N;, for i € 1..2. Then
X UX: if XiNN,=XNN —
casy o casy = 4 K1UX)l(giAg) HXiNN =X00N1 A g1
L otherwise

where g; 7 g» if for any port x € X; N X, and for any d € D, x = d satisfies g; iff x = d satisfies g,.
e C(g) =cp(N) for every g € Q. Recall that cp(N) = {¢ | o(¢) = (P,F,IP,OP, data),PyNF # 0}.
Example 4 Let A = (Qp, N, —1,01) and Ap = (Qr,Np,—2,02) be the constraint automata of the
LossySync and the FIFO| channels, depicted in Figure 5. The encoding of Ay, into behavioural automata
is (O, L[NL],—1,CL), depicted in the left hand side of Figure 6, where:
01 ={q}, Np ={a,b}, CL(q) = cp(NL) for g € O, s1(v) =ab|(Ga=vAb=v), s2(v) =a|(@=v), and
—1={{g,51(v),q) |veD}U{{g,5(v),q) |veD}.
Similarly, the encoding of Af into behavioural automata is (Qr,L[Ng|,—F,Crg), also depicted in
Figure 6, where: R
Or = {empty} U {full(v) | ve€ D}, Cr(q) = cp(Np) for ¢ € Qr, Ngp = {b,c}, s3(v) = b|(b=V),
s4(v) =c|(c=v), and —p= {(empty,s3(v),full(v)) |v € D} U{(full(v),ss(v),empty) | v € D}.
The composed automaton [AL]| - < [AF] ca is depicted in the right hand side of Figure 6, where
s1(v) ®s3(v) = abl(a= VAD = v) and sp(w)®s4(v) = acl(@a=wAc=v).
The composed automata presented in Example 4, which differs from the lossy-FIFO, is equivalent to
the product of the two associated constraint automata [6], with respect to the atomic steps of the labels
of the automata. We expect this equivalence to hold in general, but we do not give a formal proof here.
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4 Encoding Linda

Linda, introduced by Gelernter [15], is seen by many as the first coordination language. We describe it
using Linda-calculus [10], and show how it can be modelled using behavioural automata. Linda is based
on the generative communication paradigm, which describes how different processes in a distributed
environment exchange data. In Linda, data objects are referred to as fuples, and multiple processes can
communicate using a shared tuple-space, where they can write or read tuples.

Communication between processes and the tuple-space is done by actions executed by processes
over the tuple-space. In general, these actions can occur only atomically, that is, the shared tuple-space
can accept and execute an action from only one of the processes at a time. There are four possible
actions, out(t), in(s), rd(s), and eval(P). The actions out(s) and in(s) write and take values to and from
the shared tuple-space, respectively. The action rd(s) is similar to in(s), except that the tuple ¢ is not
removed from the tuple-space. Finally, eval(P) denotes the creation of a new process P that will run in
parallel. We do not address eval(P) here because it is regarded as a reconfiguration of the system.

4.1 Linda-Calculus

We use the Linda-Calculus model, described by Goubault [12], to give a formal description of Linda,
studied also by Ciancarini et al. [10] and others. The Linda-Calculus abstracts away from the local
behaviour of processes, and focuses on the communication primitives between a store and a set of pro-
cesses. Processes P are generated by the following grammar.

P:=Act.P | X | reeX.P | P[P | end (5)
Act :=out(t) | in(s) | rd(s) (6)

We denote the set of all Linda terms as Linda. The first case Act.P represents the execution of a Linda
action. The productions X and recX.P are used to model recursive processes, where X ranges over a set
of variables, and P[P is used to model local non-deterministic choice. We assume that processes do not
have free variables, i.e., every X is bound by a corresponding recX. Finally end represents termination.

We model a Linda store as a multi-set of tuples from a global set Tuple. Each tuple consists of a
sequence of parameters, which can be either a data value v from a domain D (an actual parameter), or a
variable X (a formal parameter). We use the & operator to denote multi-set construction and multi-set
union. For example, we write M =t @t = {|t,¢|} and M ® M = {|t,1,t,t|}, where ¢ is a tuple and {|s,7[}
denotes a multi-set with the elements s and ¢.

A tuple-space term M is a multi-set of processes and tuples, generated by the grammar M ::=
P|t|M®M. We adopt the approach of Goubault and provide a set of inference rules that give the
operational semantics of Linda-Calculus. A relation match C Tuple x Tuple represents the matching of
two tuples. (s,7) € match if ¢ has only D values, and there is a substitution ¥ whose domain is the set
of free variables of s, such that r = s[y]. u[y| denotes the tuple or process u after replacing its free vari-
ables according to y. We also write ¥ = P/x to denote the substitution of x by the process P, and say ¢
y-matches s when 7 matches s and 1 = s[y].

Definition 6 (Semantics of Linda) The semantics of Linda is defined by the inference rules below.

M & PlrecX .P/X] — M &P (rec) M@out(t).P— MOPDt (out)
M@recX.P— Mo P Mord(s).Pdt — MO P[y| Bt ift y-matches s (rd)
M&PIP — MaP (left) M@in(s).PSt — MO P[y]  ift y-matches s (in)

M®PIP —MaP (right) M@ end — M (end)
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Example 5 The following sequence of transitions illustrates the sending of data between two processes.
The labels on the arrows contain the names of the rules applied in each transition of Linda-Calculus. We
use the notation P(x) as syntactic sugar to denote a process P where the variable x occurs freely.

rd(42,x).P(x) © out(42,43).end ©in(42,x).P'(x)
e

10, rd(42,x).P(x) @ end B in(42,x). P (x) & (42,43) 2 rd(42,x).P(x) @ in(42,x).P (x) & (42,43)

D, p(43) @ in(42,%).P (x) @ (42,43) W, p(43) @ P'(43)

4.2 Linda-calculus as behavioural automata

We define an encoding function [-]; 4, : Linda — BA, from Linda tuple-space terms to behavioural
automata. Furthermore, we define the composition of atomic steps that preserve this semantics. We
encode each Linda process P as a behavioural automaton, and we create a special behavioural automaton
that describes the multi-set of available tuples.

Let Act = {a | a € Act} and tAct = {1, | a € Act}. A port @ is regarded as a dual port of a, and
flow of data on a port 7, represents the flow on the ports a and @ simultaneously. The intuition is that
the encoding of processes yields behavioural automata whose ports are actions in Act; the encoding
of tuples yield behavioural automata whose ports are dual actions in Act; and the composition forces
actions and dual actions to synchronise, i.e., to occur simultaneously. We define the global set of ports to
be P = Act UAct U tAct, and define @ = a.

LetM =P &---PP, BT be atuple-space term. In turn, let T =1 & --- B, and m > 0. We define
the encoding of M into a behavioural automaton as follows.

[M] Linda = [P]Linga <+ - 5 [Pa] Linda D [T T Linga

Hence, encoding M boils down to encoding Linda processes P, and the Linda tuple-space T into different
behavioural automaton. In both encodings of components and Linda tuple-spaces we define labels L as
ports, that is, L = P = ActUAct U TAct, and its encoding as atomic steps by the function ¢ defined below.

ala) = (P {a, T4} ,0,0,0) ifa € ActUAct,{act} = {a,a}NAct
1\ (P.{a},0,0,0) ifa € tAct

The composition of two labels aj,a; € L is defined as follows.

Ter 1 aq ¢ TAct N\ ap ¢ TAct \ a; =ap

a ay — .
1@ {J_ otherwise,

where {act} = {aj,az} NAct. The tuple-space is used to enforce every action a performed by a process

to synchronise with the corresponding action @ in the tuple-space encoded as a behavioural automaton.

The definition of ® replaces every pair of ports with dataflow a and @ by a new port with dataflow in 7.
We encode a Linda process P as [P]| ;4. = (Qp,L,—p, C), with components as defined below.

e The set of states Qp is given by Qp = reach(P), where

reach(out(r).P) = {out(z).P}Ureach(P)
reach(rd(s).P) = {rd(¢).P}U(U{reach(P[y])|s y-matchest})
reach(in(s).P) = {in(z).P}U(U{reach(P[y]) | s y-matchest})
reach(PIP") = {PIP'}Ureach(P)Ureach(P")
)

reach(end) = {end}
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e The transition relation —p is given by the following conditions.

out(t).P X0 pif t e Tuple PP, P if PSP
rd(s).P’ % P'lyl if s y-matchest PP, =P if PP
in(s).P @, p [Y] if s 7y-matchest

e C(gq) = ActUAct for every state q.

We now encode a Linda tuple-space T as [T];,4, = (Qr,L,—7,C) with components as defined below.
o Qp =2MTwle) where M(X) is a multi-set over the set X.
e The transition relation — 7 is given by the following conditions:

R als in(s)
M out(r) Mt ift € Tuple, 16&M rd(s) t®©M if s matches t,and t DM MM if s matches t.

e C(q) = ActUAct for every state ¢, as in the encoding of Linda processes.

Note that the input and output ports of the atomic steps obtained with ¢, introduced in §2.1, are
always the empty set, that is, the data value flowing through the ports is not relevant, since the name of
the port uniquely identifies the data. Alternative approaches to implement the encoding into behavioural
automata that use the data values are also possible, but less transparent.

Example 6 Recall the example presented in the end of §4.1 of a sequence of transitions of a tuple-space
term in Linda-Calculus. We present below a simplified version of this example.

(rd)

(out) rd(42,x).P(x) aP® <42’43> RAN P(43) OP @ <42,43>

rd(42,x).P(x) @ out(42,43).P’

The corresponding transitions in the encoded behavioural automaton are presented below.

Tout(42,43)

[rd(42,x).P(x)] inga > [out(42,43).P] s 29 [O] s ——
Trd(42,43)

[rd(42,x).P(x)] jnda > [P'] 2 [(42,43)] [P(43)]Linda > [P'] > [(42,43)]

Observe that we assume an initial empty tuple-space, which is encoded as [0];,4,. A more careful

analysis shows a one-to-one correspondence between the traces of the Linda-calculus term and the traces
of the behavioural automaton, which we do not elaborate in this paper.

S Exploiting concurrency predicates

We introduced a unified model for synchronous coordination that explicitly mentions concurrency pred-
icates, which indicate which actions require synchronisation. We now exploit more complex definitions
of concurrent predicates for Reo and Linda than in our previous examples, and briefly describe a practical
application of behavioural automata in a distributed framework.
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5.1 Complex concurrency predicates

In our examples concurrency predicates of Reo hold when some shared ports from a composed automaton
have dataflow (Equation (1)), and concurrency predicates of Linda allow only a special set of actions tAct
to run concurrently. We now present other concurrency predicates that capture notions such as context
dependency and priority.

Reo Other semantic models for Reo, such as connector colouring [11] and Reo automata [8], capture
the notion of context dependency, a feature missing in constraint automata. By modelling context depen-
dency we avoid the undesired behaviour of the composed connector in Figure 6 where data is lost when
the FIFO, buffer is empty, represented by the label s, (w).

To avoid data from being lost, we replace the LossySync channel by a context dependent LossySync
channel, which is built based on the LossySync channel by replacing the label s»(w) by a label s5(w).
This new label has the same atomic step, i.e., @(s2(w)) = o (s5(w)), but can be executed in parallel
only if its neighbours require the port b to have no dataflow. This condition is enforced by adapting the
definition of concurrency predicates to check wether a given set of ports Y requires synchronisation.

Pex(Po,Y) = {s* | ¥ €cp(Py) vV XNY #0} 7

In our example, we avoid the losing of data by defining C(q) = cp,,(ab,0), C(empty) = cp . (bc,b),
and C(£full(v)) = cp,,(ab,c). The label s5(w) is in C(empty) but not in C(full), i.e., s5(w) can be
performed independently of the FIFO; channel only when the FIFO; is full. Other important details,
such as the composition of labels of the form s¥, are not presented in this paper. A more precise and
complete formulation can be found in Proenca’s Ph.D. thesis (Sections 3.6.2 and 4.4.2 of [18]).

Linda Consider now that Linda processes have a total order =<, representing a ranking among processes.
When two processes can interact simultaneously with the shared tuple-space, only the higher rank should
be chosen. We present only a sketch of this approach due to space limitation.

We start by tagging labels ¢ of the Linda behavioural automata with the process that executes it.
For example, a label ¢ of an automaton of a process p is renamed to /7. Labels of the shared tuple-
space are not changed. The composition of labels must be such that /7 @ { = ‘L'f . It is then enough
to change the concurrency predicates of the automata of each process p in state g to C(g) = Act UActU
{‘L'ZC |Tr€tAct Nx=<p A q# end} and leave the concurrency predicate of the automaton of the shared
tuple-space unchanged. Hence, a transition cannot be performed in parallel if it is in Act or Act, or if it is
a T action from a process with lower priority and the current process is not yet stopped.

5.2 Increased scalability via decoupled execution

We use the behavioural automata model in a distributed framework, Dreams, where several independent
threads run concurrently [18]. Each thread has its own behavioural automaton, and communicates only
with those threads whose behavioural automata share ports with its own automata. The details regarding
this tool are out of the scope this paper, but we explain how it benefits from using behavioural automata.
The diagram in Figure 7 depicts the configuration of a system in Dreams, where each cloud represents
an independent thread of execution, and edges represent communication links between threads whose
automata share ports. The direction of each edge only illustrates the expected direction of dataflow.
For efficiency reasons, and to allow a lightweight reconfiguration, Dreams does not create the complete
behavioural automaton of a connector. Instead, it collects only the behaviour of the current round.
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f\/_\/\/ a’ Y a
connector LF
/\/\/\ C

O O b

connectory

reader

Figure 7: Configuration of a system in Dreams.

Knowing that only the labels of the automata relevant for the current round are composed, and as-
suming that the locality property introduced in Definition 4 holds, we can perform local steps that, as
the name suggests, involve only a subpart of the system. Recall the example of the lossy alternator,
presented in §2.3. The diagram in Figure 7 uses the same example, in a context where two arbitrary large
connectors connector; and connector, are attached to the source of the lossy alternator, and a reader
component is attached to the sink of the lossy alternator. Consider that the reader can always receive any
data value, that is, its behavioural automaton has a single state, and a transition labelled by r(v) for every
data value v, such that at(r(v)) = (c,c,c,0,{c — v}).

Observe that we do not use explicitly the composed connector LF >1 AC, but LF and AC as inde-
pendent entities instead, since the Dreams framework can postpone the composition of their labels to
runtime. Consider that the AC automaton is in state ¢ (v), hence it can perform a step s> (v), writing a
value v to the port c. In this example AC is connected via the ports a, b, and ¢. The label s,(v) does not
have dataflow on a nor on b, and the reader can perform a label r(v) because s2(v) @ r(v) # L. Using
the concurrency predicate in Equation (1), we conclude that s,(v) ® r(v) is in the concurrency predicates
of LF and connector,. Furthermore, from the locality property we conclude that all other connectors not
attached to AC also allow s, (v) ® r(v) to be executed concurrently. Hence, Dreams can chose to perform
this step by analysing only the behaviour of AC and reader, depicted by a grey box.

The instantiations of Linda and Reo yield a similar result. The shared tuple-space can communicate
with a single process at a time, without synchronising with every other process. Reo can, for example,
send data from a full FIFO; independently of the behaviour of the connector attached to its sink port.
The benchmarks performed for the Dreams framework [18] show optimistic results regarding the use of
local steps in synchronous coordination.

6 Conclusion

We introduce behavioural automata to model coordination systems. The three main concepts that under-
lie behavioural automata are atomicity, composability, and dataflow. We allow a sequence of actions that
cannot be interleaved with interfering instructions (atomicity), we construct more complex systems out
of building blocks that can be analysed independently (composability), and we represent the data values
that are exchanged between components (dataflow).

Behavioural automata unify existing dataflow-oriented models with synchronous constructs by leav-
ing open the definitions of composition of labels and of concurrency predicates. The focus of behavioural
automata is on concurrent systems, and on avoiding synchronisation of actions whenever it is unneces-
sary. By capturing a multitude of coordination models, we allow any of these models to be included in
implementations based on behavioural automata, such as the Dreams framework.

As future work, we expect to formally show the correctness of the encodings of Reo and Linda. We
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would also like to discover which properties can be shown for behavioural automata that are directly
reflected on encoded models. A more practical track of our work involves the development of tools.
Further development of Dreams to make it ready for use by a broader community is in our agenda.
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