
EPTCS 58

Proceedings of the

10th International Workshop on the

Foundations of Coordination Languages
and Software Architectures

Aachen, Germany, 10th September, 2011

Edited by: Mohammad Reza Mousavi and Antonio Ravara

27th July 2011
ISSN: 2075-2180
Open Publishing Association

i

Table of Contents

Table of Contents .. i

Foreword .. ii
Mohammad Reza Mousavi and Antonio Ravara

Invited Presentation: How Erlang views the world and what we have learned in the last25 years of
programming distributed systems. .. iv

Joe Armstrong

Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca 1
Luca Aceto, Matteo Cimini, Anna Ingolfsdottir, Arni Hermann Reynisson,
Steinar Hugi Sigurdarson and Marjan Sirjani

A Verified Algebra for Linked Data .. 20
Ross Horne and Vladimiro Sassone

A State-Based Characterisation of the Conflict Preorder 34
Simon Ware and Robi Malik

Predicting global usages of resources endowed with local policies . 49
Chiara Bodei, Viet Dung Dinh and Gian Luigi Ferrari

Decoupled execution of synchronous coordination models via behavioural automata 65
Jośe Proença, Dave Clarke, Erik de Vink and Farhad Arbab

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. ii–iii, doi:10.4204/EPTCS.58.0

c© M.R. Mousavi and A. Ravara
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

Foreword

Mohammad Reza Mousavi
Department of Computer Science, Eindhoven University of Technology,

P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

António Ravara
Department of Informatics

Faculty of Sciences and Technology, New University of Lisbon

Welcome to the proceedings of FOCLASA 2011, the 10th International Workshop on the Founda-
tions of Coordination Languages and Software Architectures. FOCLASA 2011 was held in Aachen,
Germany on September 10th, 2011 as a satellite event of CONCUR 2011, the 22nd International Con-
ference on Concurrency Theory.

The workshop provides a venue where researchers and practitioners could meet, exchange ideas,
identify common problems, determine some of the key and fundamental issues related to coordination
languages and software architectures, and explore together and disseminate solutions. Indeed, a number
of hot research topics are currently sharing the common problem of combining concurrent, distributed,
mobile and heterogeneous components, trying to harness theintrinsic complexity of the resulting sys-
tems. These include coordination, peer-to-peer systems, grid computing, web services, multi-agent sys-
tems, and component-based systems. Coordination languages and software architectures are recognized
as fundamental approaches to tackle these issues, improving software productivity, enhancing maintain-
ability, advocating modularity, promoting reusability, and leading to systems more tractable and more
amenable to verification and global analysis.

This year, we received ten submissions involving 33 authorsfrom 12 different countries. Papers
underwent a rigorous review process, and all accepted papers received 4 review reports. After the re-
view process, the international Program Committee of FOCLASA 2010 decided to select five papers
for presentation during the workshop and inclusion in theseproceedings. These papers tackle different
issues that are currently central to our community, specification and reasoning frameworks parallel and
concurrent systems, systems with linked data, resource-constrained and timed systems and data-flow co-
ordination models. The workshop features an invited speechby Joe Armstrong from Ericsson, Sweden.
The best papers of the workshop will be invited for a special issue in Science of Computer Programming
(Elsevier). We would like to thank all the members of the program committee for their great work during
the review process, the external reviewers for providing insightful review reports, the authors for submit-
ting papers to the workshop, and the participants for attending the workshop in Aachen. All these people
contribute to the success of the 2011 edition of FOCLASA.

Mohammad Reza Mousavi
Antonio Ravara

M.R. Mousavi and A. Ravara iii

Program Committee

• Jonathan Aldrich, Carnegie Mellon University, USA

• Luis Barbosa, University of Minho, Portugal

• Bernhard Beckert, Karlsruhe Institute of Technology, Germany

• Antonio Brogi, University of Pisa, Italy

• Carlos Canal, University of Malaga, Spain

• Vittorio Cortellessa, University of L’Aquila, Italy

• Gregor Goessler, INRIA Grenoble - Rhone-Alpes, France

• Ludovic Henrio, INRIA Sophia Antipolis, France

• Paola Inverardi, Universita dell’Aquila, Italy

• Mohammad Reza Mousavi, Eindhoven University of Technology, The Netherlands (Co-chair)

• Jaco van de Pol, University of Twente, The Netherlands

• Antonio Ravara, New University of Lisbon, Portugal (Co-chair)

• Gwen Salaun, Grenoble INP - INRIA - LIG, France

• Carolyn Talcott, SRI International, USA

• Emilio Tuosto, University of Leicester, UK

• Mirko Viroli, University of Bologna, Italy

• Danny Weyns, Katholieke Universiteit Leuven, Belgium

External Reviewers

• Marco Autili, University of L’Aquila, Italy

• Francesco Bongiovanni, INRIA-Sophia Antipolis, France

• Daniel Bruns, Karlsruhe Institute of Technology, Germany

• Simon Gay, University of Glasgow, UK

• Jeroen J.A. Keiren, Eindhoven University of Technology, The Netherlands

• Vladimir Klebanov, Karlsruhe Institute of Technology, Germany

• Neda Noroozi, Eindhoven University of Technology, The Netherlands and Fanap Co., Iran

• Meriem Ouederni, University of Malaga, Spain

Steering Committee

• Farhad Arbab, CWI, The Netherlands

• Antonio Brogi, University of Pisa, Italy

• Carlos Canal, University of Malaga, Spain

• Jean-Marie Jacquet, University of Namur, Belgium

• Ernesto Pimentel, University of Malaga, Spain

• Gwen Salaun, Grenoble INP - INRIA Grenoble - LIG, France

• Mirko Viroli, University of Bologna, Italy

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. iv–iv, doi:10.4204/EPTCS.58.0.1

c© J. Armstrong
This work is licensed under the Creative Commons
Attribution-Noncommercial-No Derivative Works License.

How Erlang views the world and what we have learned in the
last 25 years of programming distributed systems.

Joe Armstrong
Ericsson Telecom AB, Stockholm, Sweden

Erlang views the world as a large collection of isolated communicating processes. These processes
have no shared memory. During normal operation processes communicate by exchanging messages. Ab-
normal situations are handled through the exchange of signals. Signals and messages are fundamentally
different. Erlang was originally designed for building “fault tolerant systems that run forever” which is
the main reason for our insistence on process isolation. Erlang was invented long before the advent of
cheap massive distributed systems and long before the multicore chip emerged. The first Erlang applica-
tions were in their nature distributed and built to run on clusters. Multicores are essentially “clusters on
a chip” so what we learned from programming clusters carriesnaturally over to the world of multicores.
This talk is about the lessons and pitfalls of building distributed systems in Erlang. What works and what
doesn’t work and the possible reasons for this.

Biography Joe Armstrong is the principle inventor of the Erlang programming Language and coined
the term ”Concurrency Oriented Programming”. He works for Ericsson where he developed Erlang
and was chief architect of the Erlang/OTP system. Joe has a PhD in computer science from the Royal
Institute of Technology in Stockholm (KTH), Sweden and is anexpert in the construction of fault tolerant
systems. He is the author of several books on Erlang.

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. 1–19, doi:10.4204/EPTCS.58.1

Modelling and Simulation of Asynchronous Real-Time
Systems using Timed Rebeca

Luca Aceto1 Matteo Cimini1 Anna Ingolfsdottir1

Arni Hermann Reynisson1 Steinar Hugi Sigurdarson1

Marjan Sirjani1,2
1Reykjavik University, Iceland 2University of Tehran, Iran

In this paper we propose an extension of the Rebeca language that can be used to model
distributed and asynchronous systems with timing constraints. We provide the formal
semantics of the language using Structural Operational Semantics, and show its expressive-
ness by means of examples. We developed a tool for automated translation from timed
Rebeca to the Erlang language, which provides a first implementation of timed Rebeca.
We can use the tool to set the parameters of timed Rebeca models, which represent the
environment and component variables, and use McErlang to run multiple simulations for
different settings. Timed Rebeca restricts the modeller to a pure asynchronous actor-based
paradigm, where the structure of the model represents the service oriented architecture,
while the computational model matches the network infrastructure. Simulation is shown
to be an effective analysis support, specially where model checking faces almost immediate
state explosion in an asynchronous setting.

1 Introduction

This paper presents an extension of the actor-based Rebeca language [22] that can be used to
model distributed and asynchronous systems with timing constraints. This extension of Rebeca
is motivated by the ubiquitous presence of real-time computing systems, whose behaviour
depends crucially on timing as well as functional requirements.

A well-established paradigm for modelling the functional behaviour of distributed and
asynchronous systems is the actor model. This model was originally introduced by Hewitt [8]
as an agent-based language, and is a mathematical model of concurrent computation that treats
actors as the universal primitives of concurrent computation [1]. In response to a message that
it receives, an actor can make local decisions, create more actors, send more messages, and
determine how to respond to the next message it receives. Actors have encapsulated states
and behaviour, and are capable of redirecting communication links through the exchange of
actor identities. Different interpretations, dialects and extensions of actor models have been
proposed in several domains and are claimed to be the most suitable model of computation for
the dominating applications, such as multi-core programming and web services [9].

Reactive Objects Language, Rebeca [22], is an operational interpretation of the actor model
with formal semantics and model-checking tools. Rebeca is designed to bridge the gap between
formal methods and software engineers. The formal semantics of Rebeca is a solid basis
for its formal verification. Compositional and modular verification, abstraction, symmetry
and partial-order reduction have been investigated for verifying Rebeca models. The theory

2 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

underlying these verification methods is already established and is embodied in verification
tools [14, 21, 22]. With its simple, message-driven and object-based computational model, Java-
like syntax, and a set of verification tools, Rebeca is an interesting and easy-to-learn model for
practitioners.

Motivation and Contribution. Although actors are attracting more and more attention both
in academia and industry, little has been done on timed actors and even less on analyzing timed
actor-based models. In this work we present

• timed Rebeca by extending Rebeca with time constraints,

• the formal semantics of timed Rebeca using Structural Operational Semantics (SOS) [19],

• a tool for mapping timed Rebeca models to Erlang, and

• experimental results from the simulation of timed Rebeca models using McErlang [7].

The contribution of this work is offering a pure asynchronous actor-based modelling lan-
guage with timing primitives and analysis support. Timed Rebeca can be used in a model-driven
methodology in which the designer builds an abstract model where each component is a reac-
tive object communicating through non-blocking asynchronous messages. The structure of the
model can very well represent service oriented architectures, while the computational model
matches the network infrastructure. Hence the model captures faithfully the behaviour of the
system in a distributed and asynchronous world.

Comparison with other timed models. Comparing with the well-established timed mod-
els, like timed automata [2], TCCS [25], and real-time Maude [18], timed Rebeca offers an
actor-based syntax and a built-in actor-based computational model, which restricts the style
of modelling to an event-based concurrent object-based paradigm. Modelling time-related
features in computational models has been studied for a long time [3, 2]; while we have no
claims of improving the expressiveness of timed models, we believe that our model is highly
usable due to its actor-based nature and Java-like syntax. The usability is due to the one to one
correspondence between the entities of the real world and the objects in the model, and the
events and actions of the real world and the computational model. Moreover, the syntax of the
language is familiar for software engineers and practitioners.

Comparison with other timed actor models. We know of a few other timed actor-based
modelling languages [20, 16, 4] that we will explain in more detail in the related work section. In
[20] a central synchronizer acts like a coordinator and enforces the real-time and synchronization
constraints (called interaction constraints). The language for the coordinated actors is briefly
proposed in [16]; however, the main focus is having reusable real-time actors without hardwired
interaction constraints. The constraints declared within the central synchronizer in this line of
work can be seen as the required global properties of a timed Rebeca model. We capture the
architecture and configuration of a system via a timed Rebeca model and then we can check
whether the global constraints are satisfied. The language primitives that we use to extend
Rebeca are consistent with the proposal in [16]. The primitives proposed in [4] are different
from ours; they introduced an await primitive where we keep the asynchronous nature of the
model.

L. Aceto at al. 3

Analysis support. In order to analyze timed Rebeca models, we developed a tool to facilitate
their simulation. In a parallel project [11], a mapping from timed Rebeca to timed automata is
developed and UPPAAL [24] is used for model checking. The asynchronous nature of Rebeca
models causes state explosion while model checking even for small models. One solution is
using a modular approach like in [12]. Here, we selected an alternative solution as a comple-
mentary tool for analysis. Using our tool we can translate a timed Rebeca model to Erlang [6],
set the parameters which represent the environment and component variables, and run McEr-
lang [7] to simulate the model. The tool allows us to change the settings of different timing
parameters and rerun the simulation in order to investigate different scenarios, find potential
bugs and problems, and optimize the model by manipulating the settings. The parameters can
be timing constraints on the local computations (e.g., deadlines for accomplishing a requested
service), computation time for providing a service, and frequency of a periodic event. Param-
eters can also represent network configurations and delays. In our experiments we could find
timing problems that caused missing a deadline, or an unstable state in the system.

The formal semantics presented in this paper is the basis for the correct mapping from
timed Rebeca to Erlang. The detailed mapping, and the tool together with some examples can
be found at [10].

Our choice to use the actor-based programming language Erlang is also based on the idea
of covering the whole life cycle of the system in future, and of providing a refinement step for
implementing the code from our timed Rebeca model.

2 Related Work

Different approaches are used in designing formal modelling languages for real-time systems.
The model of timed automata, introduced by Alur and Dill [2], has established itself as a
classic formalism for modelling real-time systems. The theory of timed automata is a timed
extension of automata theory, using clock constraints on both locations and transitions. In many
other cases the proposed modelling languages for real-time systems are extensions of existing
languages with real-time concepts—see, for example, TCCS [25] and Real-time Maude [18].

A real-time actor model, RT-synchronizer, is proposed in [20], where a centralized syn-
chronizer is responsible for enforcing real-time relations between events. Actors are extended
with timing assumptions, and the functional behaviours of actors and the timing constraints
on patterns of actor invocation are separated. The semantics for the timed actor-based lan-
guage is given in [16]. Two positive real-valued constants, called release time and deadline, are
added to the send statement and are considered as the earliest and latest time when the message
can be invoked relative to the time that the method executing the send is invoked. In Timed
Rebeca, we have the constructs after and deadline, which are representing the same concepts,
respectively, except that they are relative to the time that the message (itself) is sent. So, it more
directly reflects the computation architecture including the network delays. In our language,
it is also possible to consider a time delay in the execution of a computation where in [16] it is
possible to specify an upper bound on the execution time of a method. While RT-synchronizer
is an abstraction mechanism for the declarative specification of timing constraints over groups
of actors, our model allows us to work at a lower level of abstraction. Using timed Rebeca,
a modeller can easily capture the functional features of a system, together with the timing
constraints for both computation and network latencies, and analyze the model from various

4 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

points of view.
There is also some work on schedulability analysis of actors [17], but this is not applied on

a real-time actor language. Time constraints are considered separately. Recently, there have
been some studies on schedulability analysis for Rebeca models [13]. This work is based on
mapping Rebeca models to timed automata and using UPPAAL to check the schedulability of
the resulting models. Deadlines are defined for accomplishing a service and each task spends a
certain amount of time for execution. In the above-mentioned papers, modelling of time is not
incorporated in the Rebeca language.

Creol is a concurrent object-oriented language with an operational semantics written in an
actor-based style, and supported by a language interpreter in the Maude system. In [5], Creol is
extended by adding best-case and worst-case execution time for each statement, and a deadline
for each method call. In addition, an object is assigned a scheduling strategy to resolve the
nondeterminism in selecting from the enabled processes. This work is along the same lines as
the one presented in [13] and the focus is on schedulability analysis, which is carried out in a
modular way in two steps: first one models an individual object and its behavioural interface
as timed automata, and then one uses UPPAAL to check the schedulability considering the
specified execution times and the deadlines. In this work, network delays are not considered,
and the execution time is weaved together with the statements in a fine-grained way.

In [4] a timed version of Creol is presented in which the only additional syntax is read-
only access to the global clock, plus adding a data-type Time together with its accompanying
operators to the language. Timed behaviour is modelled by manipulating the Time variables
and via the await statement in the language.

3 Timed Rebeca

A Rebeca model consists of a set of reactive classes and the main program in which we declare
reactive objects, or rebecs, as instances of reactive classes. A reactive class has an argument of type
integer, which denotes the length of its message queue. The body of the reactive class includes
the declaration for its known rebecs, variables, and methods (also called message servers). Each
method body consists of the declaration of local variables and a sequence of statements, which
can be assignments, if statements, rebec creation (using the keyword new), and method calls.
Method calls are sending asynchronous messages to other rebecs (or to self) to invoke the
corresponding message server (method). Message passing is fair, and messages addressed to a
rebec are stored in its message queue. The computation takes place by taking the message from
the front of the message queue and executing the corresponding message server [22].

Timing features in an asynchronous and distributed setting. To decide on the timing prim-
itives to be added to the Rebeca syntax, we first considered the different timing features that
a modeller might need to address in a message-based, asynchronous and distributed setting.
These features (like the computation time, or periodic events) can be common in any setting.

1. Computation time: the time needed for a computation to take place.

2. Message delivery time: the time needed for a message to travel between two objects, that
depends on the network delay (and possibly other parameters).

L. Aceto at al. 5

3. Message expiration: the time within which a message is still valid. The message can be
a request or a reply to a request (a request being served).

4. Periods of occurrences of events: the time periods for periodic events.
We introduce an extension of Rebeca with real-time primitives to be able to address the

above-mentioned timing features. In timed Rebeca model, each rebec has its own local clock,
which can be considered as synchronized distributed clocks1. Methods are still executed
atomically, but we can model passing of time while executing a method. Instead of a message
queue for each rebec, we have a bag containing the messages that are sent. The timing primitives
that are added to the syntax of Rebeca are delay, now, deadline and after. Figure 1 shows the
grammar for Timed Rebeca. The delay statement models the passing of time for a rebec during
execution of a method (computation time), and now returns the local time of the rebec. The
keywords after and deadline can only be used in conjunction with a method call. Each rebec
knows about its local time and can put deadline on the messages that are sent declaring that
the message will not be valid after the deadline (modelling the message expiration). The after
primitive, attached to a message, can be used to declare a constraint on the earliest time at
which the message can be served (taken from the message bag by the receiver rebec). The
modeller may use these constraints for various purposes, such as modelling the network delay
or modelling a periodic event.

The messages that are sent are put in the message bag together with their time tag and
deadline tag. The scheduler decides which message is to be executed next based on the time
tags of the messages. The time tag of a message is the value of now when the message was sent,
with the value of the argument of the after added to it when the message is augmented with an
after. The intuition is that a message cannot be taken (served) before the time that the time tag
determines.

The progress of time is modeled locally by the delay statement. Each delay statement within
a method body increases the value of the local time (variable now) of the respective rebec by
the amount of its argument. When we reach a call statement (sending a message), we put that
message in the message bag augmented with a time tag. The local time of a rebec can also be
increased when we take a message from the bag to execute the corresponding method.

The scheduler takes a message from the message bag, executes the corresponding message
server atomically, and then takes another message. Every time the scheduler takes a message for
execution, it chooses a message with the least time tag. Before the execution of the corresponding
method starts, the local time (now) of the receiver rebec is set to the maximum value between its
current time and the time tag of the message. The current local time of each rebec is the value
of now. This value is frozen when the method execution ends until the next method of the same
rebec is taken for execution.

The arguments of after and delay are relative values, but when the corresponding messages
are put in the message bag their tags are absolute values, which are computed by adding the
relative values of the arguments to the value of the variable now of the sender rebec (where
the messages are sent). To summarize, Timed Rebeca extends Rebeca with the following four
constructs.

• Delay: delay(t), where t is a positive natural number, will increase the value of the local
clock of the respective rebec by the amount t.

1In this paper we do not address the problem of distributed clock synchronization; several options and protocols
for establishing clock synchronization in a distributed system are discussed in the literature, including [23].

6 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

ModelF EnvVar∗ Class∗ Main EnvVarF env T 〈v〉+;
MainFmain { InstanceDcl∗ } InstanceDclF C r(〈r〉∗) : (〈c〉∗);
ClassF reactiveclass C { KnownRebecs Vars MsgSrv∗ }

KnownRebecsF knownrebecs { VarDcl∗ } VarsF statevars { VarDcl∗ } VarDclF T 〈v〉+;
MsgSrvFmsgsrv M(〈T v〉∗) { Stmt∗ }

StmtF v = e; | r = new C(〈e〉∗); | Call; | i f (e) MSt [else MSt] | delay(t); | now();
CallF r.M(〈e〉∗) [after(t)] [deadline(t)]
MStF { Stmt∗ } | Stmt

Figure 1: Abstract syntax of Timed Rebeca. Angle brackets 〈...〉 are used as meta parenthesis,
superscript + for repetition more than once, superscript ∗ for repetition zero or more times,
whereas using 〈...〉 with repetition denotes a comma separated list. Brackets [...] show being
optional. Identifiers C, T, M, v, c, and r denote class, type, method, variable, constant, and rebec
names, respectively; and e denotes an (arithmetic, boolean or nondetermistic choice) expression.

• Now: now() returns the time of the local clock of the rebec from which it is called.

• Deadline: r.m() deadline(t), where r denotes a rebec name, m denotes a method name of r
and t is a natural number, means that the message m is sent to the rebec r and is put in the
message bag. After t units of time the message is not valid any more and is purged from
the bag. Deadlines are used to model message expirations (timeouts).

• After: r.m() after(t), where r denotes a rebec name, m denotes a method name of r and
t is a natural number, means that the message m is sent to the rebec r and is put in the
message bag. The message cannot be taken from the bag before t time units have passed.
After statements can be used to model network delays in delivering a message to the
destination, and also periodic events.

Ticket Service Example We use a ticket service as a running example throughout the article.
Listing 1 shows this example written in Timed Rebeca. The ticket service model consists
of two reactive classes: Agent and TicketService. Two rebecs, ts1 and ts2, are instantiated
from the reactive class TicketService, and one rebec a is instantiated from the reactive class
Agent. The agent a is initialized by sending a message f indTicket to itself in which a message
requestTicket is sent to the ticket service ts1 or ts2 based on the parameter passed to f indTicket.
The deadline for the message requestTicket to be served is requestDeadline time units. Then,
after checkIssuedPeriod time units the agent will check if it has received a reply to its request by
sending a checkTicket message to itself, modelling a periodic event. There is no receive statement
in Rebeca, and all the computation is modeled via asynchronous message passing, so, we need
a periodic check. The attemptCount variable helps the agent to keep track of the ticket service
rebec that the request is sent to. The token variable allows the agent to keep track of which
incoming ticketIssued message is a reply to a valid request. When any of the ticket service rebecs
receives the requestTicket message, it will issue the ticket after serviceTime1 or serviceTime2 time
units, which is modelled by sending ticketIssued to the agent with the token as parameter. The

L. Aceto at al. 7

expression ?(serviceTime1,serviceTime2) denotes a nondeterministic choice between serviceTime1
and serviceTime2 in the assignment statement. Depending on the chosen value, the ticket service
may or may not be on time for its reply.

1 env int requestDeadline, checkIssuedPeriod, retryRequestPeriod, newRequestPeriod, serviceTime1,
serviceTime2;

2

3 reactiveclass Agent {
4 knownrebecs { TicketService ts1; TicketService ts2; }
5 statevars { int attemptCount; boolean ticketIssued; int token; }
6 msgsrv initial() { self.findTicket(ts1); } // initialize system, check 1st ticket service
7 msgsrv findTicket(TicketService ts) {
8 attemptCount += 1; token += 1;

9 ts.requestTicket(token) deadline(requestDeadline); // send request to the TicketService
10 self.checkTicket() after(checkIssuedPeriod); // check if the request is replied
11 }

12 msgsrv ticketIssued(int tok) { if (token == tok) { ticketIssued = true; } }
13 msgsrv checkTicket() {
14 if (!ticketIssued && attemptCount == 1) { // no ticket from 1st service,

15 self.findTicket(ts2); // try the second TicketService

16 } else if (!ticketIssued && attemptCount == 2) { // no ticket from 2nd service,
17 self.retry() after(retryRequestPeriod); // restart from the first TicketService

18 } else if (ticketIssued) { // the second TicketService replied,

19 ticketIssued = false;
20 self.retry() after(newRequestPeriod); // new request by a customer

21 }

22 }

23 msgsrv retry() {
24 attemptCount = 0; self.findTicket(ts1); // restart from the first TicketService

25 }

26 }

27

28 reactiveclass TicketService {
29 knownrebecs { Agent a; }
30 msgsrv initial() { }
31 msgsrv requestTicket(int token) {
32 int wait = ?(serviceTime1,serviceTime2); // the ticket service sends the reply

33 delay(wait); // after a non-determinstic delay of

34 a.ticketIssued(token); // either serviceTime1 or serviceTime2

35 }

36 }

37

38 main {
39 Agent a(ts1, ts2):(); // instantiate agent, with two known rebecs

40 TicketService ts1(a):(); // instantiate 1st and 2nd ticket services, with

41 TicketService ts2(a):(); // the agent as their known rebecs

42 }

Listing 1: A Timed Rebeca model of the ticket service example

3.1 Structural Operational Semantics for Timed Rebeca

In this section we provide an SOS semantics for Timed Rebeca in the style of Plotkin [19]. The
behaviour of Timed Rebeca programs is described by means of the transition relation → that
describes the evolution of the system.

The states of the system are pairs (Env,B), where Env is a finite set of environments and B
is a bag of messages. For each rebec A of the program there is an environment σA contained
in Env, that is a function that maps variables to their values. The environment σA represents
the private store of the rebec A. Besides the user-defined variables, environments also contain

8 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

the value for the special variables self, the name of the rebec, now, the current time, and sender,
which keeps track of the rebec that invoked the method that is currently being executed. The
environment σA also maps every method name of A to its body.

The bag contains an unordered collection of messages. Each message is a tuple of the
form (Ai,m(v),A j,TT,DL). Intuitively, such a tuple says that at time TT the sender A j sent the
message to the rebec Ai asking it to execute its method m with actual parameters v. Moreover
this message expires at time DL.

The system transition relation→ is defined by the rule scheduler:

(scheduler)
(σAi (m),σAi [now = max(TT,σAi (now)), [arg = v], sender = A j], Env, B) τ→ (σ′Ai

, Env′,B′)

({σAi }∪Env, {(Ai,m(v),A j,TT,DL)}∪B)→ ({σ′Ai
}∪Env′, B′)

C

where the conditionC is defined as follows: σAi is not contained in Env, and (Ai,m(v),A j,TT,DL)<
B, and σAi(now) ≤ DL, and TT ≤min(B). The scheduler rule allows the system to progress by
picking up messages from the bag and executing the corresponding methods. The third side
condition of the rule, namely σAi(now) ≤ DL, checks whether the selected message carries an
expired deadline, in which case the condition is not satisfied and the message cannot be picked.
The last side condition is the predicate TT ≤ min(B), which shows that the time tag TT of the
selected message has been the smallest time tag of all the messages for all the rebecs Ai in the
bag B. The premise executes the method m, as described by the transition relation τ→ , which
will be defined below. The method body is looked up in the environment of Ai and is executed
in the environment of Ai modified as follows: (1) The variable sender is set to the sender of
the message. (2) In executing the method m, the formal parameters arg are set to the values of
the actual parameters v. Methods of arity n are supposed to have arg1,arg2, . . . ,argn as formal
parameters. This is without loss of generality since such a change of variable names can be
performed in a pre-processing step for any program. (3) The variable now is set to the maximum
between the current time of the rebec and the time tag of the selected message.

The execution of the methods of rebec Ai may change the private store of the rebec Ai, the
bag B by adding messages to it and the list of environments by creating new rebecs through new
statements. Once a method is executed to completion, the resulting bag and list of environments
are used to continue the progress of the whole system.

The transition relation τ→ describes the execution of methods in the style of natural seman-
tics [15]. (See Figure 2 for selected rules. The full set of rules may be found in Appendix A.)
Since in this kind of semantics the whole computation of a method is performed in a single
step, this choice perfectly reflects the atomic execution of methods underlying the semantics of
the Rebeca language. The general form of this type of transition is (S,σ,Env,B) τ→ (σ′,Env′,B′).
A single step of τ→ consumes all the code S and provides the value resulting from its execution.
Carrying the bag B is important because new messages may be added to it during the execution
of a statement S. Also Env is required because new statements create new rebecs and may
therefore add new environments to it. In the semantics, the local environment σ is separated
from the environment list Env for the sake of clarity. The result of the execution of the method
thus amounts to the modified private store σ′, the new list of environments Env′ and the new
bag B′.

The rules for assignment, conditional statement and sequential composition are standard.
The rules for the timing primitives deserve some explanation.

L. Aceto at al. 9

(msg) (varname.m(v) a f ter(d) deadline(DL),σ,Env,B)
τ→ (σ,Env, {(σ(varname),m(eval(v,σ)),σ(sel f),σ(now) + d,σ(now) + DL)}∪B)

(delay) (delay(d),σ,Env,B) τ→ (σ[now = σ(now) + d],Env,B)

(create) (varname = new O(v),σ,Env,B)
τ→ (σ[varname = A], {σA[now = σ(now), self = A]}∪Env, {(A, initial(eval(v,σ)),σ(sel f),σ(now),+∞)}∪B)

Figure 2: Selected Method-Execution Transition Rules. In rule create, the rebec name A should
not appear in the range of the environment σ. The function eval evaluates expressions in a given
environment in the expected way. In each rule, we assume that σ is not contained in Env.

• Rule msg describes the effect of method invocation statements. For the sake of brevity,
we limit ourselves to presenting the rule for method invocation statements that involve
both the after and deadline keywords. The semantics of instances of that statement without
those keywords can be handled as special cases of that rule by setting the argument of
after to zero and that of deadline to +∞, meaning that the message never expires. Method
invocation statements put a new message in the bag, taking care of properly setting its
fields. In particular the time tag for the message is the current local time, which is the
value of the variable now, plus the number d that is the parameter of the after keyword.

• Delay statements change the private variable now for the considered rebec.

Finally, the creation of new rebecs is handled by the rule create. A fresh name A is used to
identify the newly created rebec and is assigned to varname. A new environment σA is added to
the list of environments. At creation time, σA is set to have its method names associated to their
code. A message is put in the bag in order to execute the initial method of the newly created
rebec.

4 Mapping from Timed Rebeca to Erlang

In this section, we present a translation from the fragment of Timed Rebeca without rebec
creation to Erlang (for an extended explanation and a more formal description see [10]). The
motivation for translating Timed Rebeca models to Erlang code is to be able to use McErlang [7]
to run experiments on the models. This translation also yields a first implementation of Timed
Rebeca.

McErlang is a model-checking tool written in Erlang to verify distributed programs written
in Erlang. It supports Erlang datatypes, process communication, fault detection and fault
tolerance and the Open Telecom Platform (OTP) library, which is used by most Erlang programs.
The verification methods range from complete state-based exploration to simulation, with
specifications written as LTL formulae or hand-coded runtime monitors. This paper focuses
on simulation since model checking with real-time semantics is not yet offered by McErlang.
Note, however, that our translation opens the possibility of model checking (untimed) Rebeca
models using McErlang, which is not the subject of this paper.

10 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

1 receive
2 Pattern1 when Guard1 -> Expr1;
3 Pattern2 when Guard2 -> Expr2;
4 ...

5 after
6 Time -> Expr
7 end

Listing 2: Syntax of a receive with timeout.

Erlang Primer Erlang is a dynamically-typed general-purpose programming language, which
was designed for the implementation of distributed, real-time and fault-tolerant applications.
Originally, Erlang was mostly used for telephony applications such as switches. Its concurrency
model is based on the actor model.

Erlang has few concurrency and timing primitives:

• Pid = spawn(Fun) creates a new process that evaluates the given function Fun in parallel
with the process that invoked spawn.

• Pid !Msg sends the given message Msg to the process with the identifier Pid.

• receive ... end receives a message that has been sent to a process; message discrimination
is based on pattern matching.

• after is used in conjunction with a receive and is followed by a timeout block as shown in
Listing 2, after the specified time (deadline for receiving the required pattern) the process
executes the timeout block

• erlang:now() returns the current time of the process

When a process reaches a receive expression it looks in the queue and takes a message that
matches the pattern if the corresponding guard is true. A guard is a boolean expression, which
can include the variables of the same process. The process looks in the queue each time a
message arrives until the timeout occurs.

Mapping The abstract syntax for a fragment of Erlang that is required to present the translation
is shown in Figure 3. Table 1 offers an overview of how a construct in one language relates to
one in the other. We discuss the general principles behind our translation in more detail below.

Reactive classes are translated into three functions, each representing a possible behaviour
of an Erlang process: 1) the process waits to get references to known rebecs, 2) the process
reads the initial message from the queue and executes it, 3) the process reads messages from
the queue and executes them. Once processes reach the last function they enter a loop. Erlang
pseudocode for the reactive class TicketService in the Rebeca model in Listing 1 is shown in
Listing 3.

A message server is translated into a match expression (see Figure 3), which is used inside
receive ... end. In Listing 3, requestTicket is the pattern that is matched on, and the body of the
message server is mapped to the corresponding expression.

Message send is implemented depending on whether after is used. If there is no after,
the message is sent like a regular message using the ! operator, as shown on line 4 in Listing

L. Aceto at al. 11

ProgramF Function∗ FunctionF v(Pattern∗)→ e
ExprF e1 ope e2 | e(〈e〉∗) | e1 ! e2 | e1 , e2 | Pattern = e | case e of Match end | receive Match end
| receive Match after Time → e end| if 〈Match〉∗end | BasicValue | v | {〈e〉∗} | [〈e〉∗]

MatchF Pattern when Guard→ e
PatternF v | BasicValue | {〈Pattern〉∗} | [〈Pattern〉∗] TimeF int

ValueF BasicValue | {〈Value〉∗} | [〈Value〉∗] BasicValueF atom | number | pid | fid
GuardF g1 opg g2 | BasicValue | v | g(〈g〉∗) | {〈g〉∗} | [〈g〉∗]

Figure 3: Abstract syntax of a relevant subset of Erlang. Angle brackets 〈...〉 are used as meta
parenthesis, superscript + for repetition more than once, superscript * for repetition zero or
more times, whereas using 〈...〉 with repetition denotes a comma separated list. Identifiers v, p
and g denote variable names, patterns and guards, respectively, and e denotes an expression.
Note that {} and [] are parts of the syntax of Erlang representing tuples and lists, respectively.

Timed Rebeca Erlang
Model → A set of processes

Reactive classes → A process whose behaviour consists of three functions
Known rebecs → Record of variables
State variables → Record of variables

Message server → A match in a receive expression
Local variables → Record of variables
Message send → Message send expression

Message send w/after → Message send expression in the timeout block of a receive
with an empty pattern, the timeout block is always executed,
sending the message after the specified time

Message send w/deadline → Message send expression with the deadline as parameter
Delay statement → Empty receive with a timeout
Now expression → System time

Assignment → Record update
If statement → If expression

Nondeterministic selection → Random selection in Erlang

Table 1: Structure of the mapping from Timed Rebeca to Erlang.

12 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

1 ticketService() ->
2 receive
3 % wait for a message with a set of known rebecs

4 {Agent} ->
5 % proceed to the next behaviour

6 ticketService(#ticketService_knownrebecs{agent=Agent})
7 end.
8 ticketService(KnownRebecs) ->
9 receive

10 % wait for the ’initial’ message

11 initial ->
12 % process message ’initial’ and proceed to the next behaviour

13 ticketService(KnownRebecs, #ticketService_statevars{})
14 end.
15 ticketService(KnownRebecs, StateVars) ->
16 receive
17 % wait for each message servers

18 requestTicket ->
19 % process message ’requestTicket’ and loop

20 ticketService(KnownRebecs, StateVars)

21 end.

Listing 3: Pseudo Erlang code capturing the behaviour of the ticketService process.

1 Sender = self(),
2 spawn(fun() ->
3 receive after 15 ->
4 TicketService ! {{Sender, now(), inf}, requestTicket}
5 end
6 end)

Listing 4: Example of a message send after 15 time units in Erlang.

4. However, if the keyword after is present a new process is spawned which sleeps for the
specified amount of time before sending the message as described before. Setting a deadline
for the delivery of a message is possible by changing the value inf, which denotes no deadline
(as shown on line 3 in Listing 4), to an absolute point in time. Messages are tagged with the
time at which they were sent. For the simulation we use the system clock to find out the current
time by calling the Erlang function now().

Moreover, since message servers can reply to the sender of the message, we need to take
care of setting the sender as part of the message as seen on line 4 in Listing 4.

As there is no pattern to match with, the delay statement is implemented as a receive
consisting of just a timeout that makes the process wait for a certain amount of time. For
example, delay(10) is translated to receive after 10 ->ok end.

The deadline of each message is checked right before the body of the message server is
executed. The current time is compared with the deadline of the message to see if the deadline
has expired and, if so, the message is purged.

L. Aceto at al. 13

Request
deadline

Check issued
period

Retry request
period

New request
period

Service
time 1

Service
time 2

Result

2 1 1 1 3,4 7 Not issued
2 2 1 1 4 7 Not issued
2 2 1 1 3 7 Ticket issued

Table 2: Experimental simulation results for ticket service.

5 Simulation of Timed Rebeca Using McErlang

In this section, we present experimental results for two case studies. The first case study is the
ticket service model displayed in Listing 1 and the second is a model of a sensor network. In
each case we run a simulation for ten times, and for each case for 30 minutes or until a runtime
monitor fails, which means that an erroneous state has been reached. The simulations are run
in a setting in which a time unit is 1000 ms. The experiment platform is Macbook 2.0GHz Intel
Core 2 Duo - Aluminum 4GB memory Mac OS X, 10.6.6, and Erlang R13B04.

Ticket Service The ticket service model is described in Section 3. For each simulation, we
change one of the following parameters: the amount of time that is allowed to pass before a
request is processed, the time that passes before agent checks if he has been issued a ticket,
the amount of time that passes before agent tries the next ticket service if he did not receive a
ticket, the amount of time that passes before agent restarts the ticket requests in case neither
ticket service issued a ticket and two different service times, which are non-deterministically
chosen as delay time in a ticket service and model the processing time for a request. Table 5
shows different settings of those parameters for which the ticket services never issue a ticket
to the agent because of tight deadlines, as well as settings for which a ticket is issued during a
simulation of the model.

Sensor Network We model a simple sensor network using Timed Rebeca. (See Listing 5 in
Appendix B for the complete description of the model.) A distributed sensor network is set
up to monitor levels of toxic gasses. The sensor rebecs (sensor0 and sensor1), announce the
measured value to the admin node (admin rebec) in the network. If the admin node receives
reports of dangerous gas levels, it immediately notifies the scientist (scientist rebec) on the
scene about it. If the scientist does not acknowledge the notification within a given time frame,
the admin node sends a request to the rescue team (rescue rebec) to look for the scientist. The
rescue team has a limited amount of time units to reach the scientist and save him.

The rebecs sensor0 and sensor1will periodically read the gas-level measurement, modelled
as a non-deterministic selection between GAS_LOW and GAS_HIGH, and send their values to admin.
The admin continually checks, and acts upon, the sensor values it has received. When the admin
node receives a report of a reading that is life threatening for the scientist (GAS_HIGH), it
notifies him and waits for a limited amount of time units for an acknowledgement. The rescue
rebec represents a rescue team that is sent off, should the scientist not acknowledge the
message from the admin in time. We model the response speed of the rescue team with a
non-deterministic delay of 0 or 1 time units. The admin keeps track of the deadlines for the
scientist and the rescue team as follows:

14 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

Network
delay

Admin
period

Sensor 0
period

Sensor 1
period

Scientist
deadline

Rescue
deadline

Result

1 4 2 3 2 3 Mission failed
1 4 2 3 2 4 Mission success
2 1 1 1 4 5,6,7 Mission failed
2 4 1 1 4 7 Mission success

Table 3: Experimental simulation results for sensor network.

• the scientistmust acknowledge that he is aware of a dangerous gas-level reading before
scientistDeadline time units have passed;

• the rescue team must have reached the scientistwithin rescueDeadline time units.

Otherwise we consider the mission failed.
The model can be parameterized over the values of network delay, admin sensor-read

period, sensor0 read period, sensor1 read period, scientist reply deadline and rescue-team
reply deadline, as shown in Table 5. In that table, we can see two different cases in which we
go from mission failure to mission success between simulations. In the first scenario, we go
from mission failure to success as we increase the rescue deadline, as expected. In the second
scenario, we changed the parameters to model a faster sensor update and we observed mission
failure. In this scenario, increasing the rescue deadline further (from 5 to 7) is insufficient. Upon
closer inspection, we observe that our model fails to cope with the rapid sensor updates and
admin responses because it enters an unstable state. The admin node initiates a new rescue
mission while another is still ongoing, eventually resulting in mission failure. This reflects a
design flaw in the model for frequent updates that can be solved by keeping track of an ongoing
rescue mission in the model. Alternatively, increasing the value of admin sensor-read period
above half the rescue deadline eliminates the flaw and the simulation is successful again.

6 Future Work

The work reported in this paper paves the way to several interesting avenues for future work.
In particular, we have already started modelling larger real-world case studies and analyzing
them using our tool. We plan to explore different approaches for model checking Timed Rebeca
models. It is worth noting that the translation from Timed Rebeca to Erlang immediately
opens the possibility of model checking untimed Rebeca models using McErlang. This adds
yet another component to the verification toolbox for Rebeca, whose applicability needs to be
analyzed via a series of benchmark examples. As mentioned in the paper, McErlang supports
the notion of time only for simulation and not in model checking, and therefore cannot be used
as is for model checking Timed Rebeca models. We plan to explore different ways in which
McErlang can be used for model checking Timed Rebeca. One possible solution is to store the
local time of each process and write a custom-made scheduler in McErlang that simulates the
way the Timed Rebeca scheduler operates. The formal semantics for Timed Rebeca presented
in this paper is also used in another parallel line of work [11]. The aim of that study is to map
Timed Rebeca to timed automata [2] in order to use UPPAAL [24] for model checking Timed
Rebeca models. The translation from Timed Rebeca to timed automata will be integrated in our
tool suite. We are also working on a translation of Timed Rebeca into (Real-time) Maude. This

L. Aceto at al. 15

alternative translation would allow designers to use the analysis tools supported by Maude
in the verification and validation of Timed Rebeca models. Our long-term goal is to have a
tool suite for modelling, executing, simulating, and model checking asynchronous object-based
systems using Timed Rebeca.

Acknowledgements The work on this paper has been partially supported by the projects
“New Developments in Operational Semantics” (nr. 080039021), “Meta-theory of Algebraic
Process Theories” (nr. 100014021) and “Timed Asynchronous Reactive Objects in Distributed
Systems: TARO” (nr. 110020021) of the Icelandic Research Fund.

References

[1] G. Agha (1990): Actors: A Model of Concurrent Computation in Distributed Systems. MIT Press,
Cambridge, MA, USA.

[2] R. Alur & D Dill (1994): A Theory of Timed Automata. Theoretical Computer Science 126, pp. 183–235.
doi:10.1016/0304-3975(94)90010-8.

[3] Henry Givens Baker (1978): Actor Systems for Real-Time Computation. Technical Report, MIT.

[4] Joakim Bjørk, Einar Broch Johnsen, Olaf Owe & Rudolf Schlatte (2010): Lightweight Time Modeling
in Timed Creol. In: RTRTS, pp. 67–81. doi:10.4204/EPTCS.36.4.

[5] Frank S. de Boer, Tom Chothia & Mohammad Mahdi Jaghoori (2009): Modular Schedulability Analysis
of Concurrent Objects in Creol. In: FSEN, pp. 212–227. doi:10.1007/978-3-642-11623-0 12.

[6] Erlang: Erlang Programming Language Homepage. Http://www.erlang.org.

[7] Lars-Åke Fredlund & Hans Svensson (2007): McErlang: a model checker for a distributed functional
programming language. In: ICFP, pp. 125-136. doi:10.1145/1291151.1291171.

[8] C. Hewitt (1972): Description and Theoretical Analysis (Using Schemata) of PLANNER: A Language for
Proving Theorems and Manipulating Models in a Robot. MIT Artificial Intelligence Technical Report
258, Department of Computer Science, MIT.

[9] Carl Hewitt (2007): What is Commitment? Physical, Organizational, and Social (Revised). In: Proceed-
ings of Coordination, Organizations, Institutions, and Norms in Agent Systems II, Lecture Notes in
Computer Science, Springer, pp. 293–307. doi:10.1007/978-3-540-74459-7 19.

[10] ICEROSE: ICEROSE Homepage. Http://en.ru.is/icerose/applying-formal-methods/projects/TARO.

[11] Mohammad Javad Izadi (2010): An Actor-based Model for Modeling and Verification of Real-Time Systems
- Master Thesis, University of Tehran, Iran.

[12] M. M. Jaghoori, F.S. de Boer, T. Chothia & M. Sirjani (2007): Task scheduling in Rebeca. In: Proc.
Nordic Workshop on Programming Theory (NWPT’07). Extended abstract.

[13] M. M. Jaghoori, F.S. de Boer, T. Chothia & M. Sirjani (2009): Schedulability of Asynchronous Real-Time
Concurrent Objects. Logic and Algebraic Programming 78(5), pp. 402–416. A preliminary version
appeared in NWPT/FLACOS 2007 as an extended abstract. doi:10.1016/j.jlap.2009.02.009.

[14] Mohammad Mahdi Jaghoori, Marjan Sirjani, Mohammad Reza Mousavi, Ehsan Khamespanah &
Ali Movaghar (2009): Symmetry and Partial Order Reduction Techniques in Model Checking Rebeca. Acta
Informaticae 47(1), pp. 33–66. doi:10.1007/s00236-009-0111-x.

[15] Gilles Kahn (1987): Natural Semantics. In Franz-Josef Brandenburg, Guy Vidal-Naquet & Martin
Wirsing, editors: STACS 87, 4th Annual Symposium on Theoretical Aspects of Computer Science,
Passau, Germany, February 19-21, 1987, Proceedings, Lecture Notes in Computer Science 247,
Springer-Verlag, pp. 22–39. doi:10.1007/BFb0039592.

16 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

[16] Brian Nielsen & Gul Agha: Semantics for an actor-based real-time language. In: Proceedings of The
Fourth International Workshop on Parallel and Distributed Real-Time Systems (WPDRS’96), IEEE
Computer Society Press, Los Alamitos, CA, USA, 1996.

[17] Libero Nigro & Francesco Pupo (2001): Schedulability Analysis of Real Time Actor Systems Using
Coloured Petri Nets. In: Proc. Concurrent Object-Oriented Programming and Petri Nets, pp. 493–
513. doi:10.1007/3-540-45397-0 21.

[18] Peter Csaba Ölveczky & José Meseguer (2002): Specification of real-time and hybrid systems in rewriting
logic. Theor. Comput. Sci. 285(2), pp. 359–405. doi:10.1016/S0304-3975(01)00363-2.

[19] G. D. Plotkin (1981): A Structural Approach to Operational Semantics. Technical Report DAIMI FN-19,
Computer Science Department, Aarhus University, Aarhus, Denmark.

[20] Shangping Ren & Gul Agha (1995): RT-synchronizer: Language Support for Real-Time Specifications in
Distributed Systems. In: Workshop on Languages, Compilers and Tools for Real-Time Systems, pp.
50–59. doi:10.1145/216636.216656.

[21] M. Sirjani, A. Movaghar, A. Shali & F.S. de Boer (2005): Model Checking, Automated Abstraction,
and Compositional Verification of Rebeca Models. Journal of Universal Computer Science 11(6), pp.
1054–1082.

[22] M. Sirjani, A. Movaghar, A. Shali & F.S. de Boer (Dec. 2004): Modeling and Verification of Reactive
Systems using Rebeca. Fundamenta Informatica 63(4), pp. 385–410.

[23] Andrew S. Tanenbaum & Maarten van Steen (2007): Distributed systems - principles and paradigms (2.
ed.). Pearson Education.

[24] UPPAAL: UPPAAL Homepage. Http://uppaal.com.
[25] Wang Yi (1991): CCS + time = an interleaved model for real time systems. In: Proceedings of ICALP

1991, Lecture Notes in Computer Science 510, Springer-Verlag, pp. 217–228. doi:10.1007/3-540-
54233-7 136.

L. Aceto at al. 17

A Method-Execution Transition Rules

(msg) (varname.m(v) a f ter(d) deadline(DL),σ,Env,B)
τ→ (σ,Env, {(σ(varname),m(eval(v,σ)),σ(sel f),σ(now) + d,σ(now) + DL)}∪B)

(delay) (delay(d),σ,Env,B) τ→ (σ[now = σ(now) + d],Env,B)

(assign) (x = e,σ,Env,B) τ→ (σ[x = eval(e,σ)],Env,B)

(create) (varname = new O(v),σ,Env,B)
τ→ (σ[varname = A], {σA[now = σ(now), self = A]}∪Env, {(A, initial(eval(v,σ)),σ(sel f)),σ(now),+∞)}∪B)

(cond1)
eval(e,σ) = true (S1,σ,Env,B) τ→ (σ′,Env′,B′)

(i f (e) then S1 else S2,σ,Env,B) τ→ (σ′,Env′,B′)

(cond2)
eval(e,σ) = f alse (S2,σ,Env,B) τ→ (σ′,Env′,B′)

(i f (e) then S1 else S2, σ,Env,B) τ→ (σ′,Env′,B′)

(seq)
(S1,σ,Env,B) τ→ (σ′,Env′,B′), (S2,σ′,Env′,B′) τ→ (σ′′,Env′′,B′′)

(S1;S2,σ,Env,B) τ→ (σ′′,Env′′,B′′)

Figure 4: The Method-Execution Transitions Rules. In rule create, the rebec name A should not
appear in the range of the environment σ. The function eval evaluates expressions in a given
environment in the expected way. In each rule, we assume that σ is not contained in Env.

B Rebeca Model for the Sensor Network

1 env int netDelay;
2 env int adminCheckDelay;
3 env int sensor0period;
4 env int sensor1period;
5 env int scientistDeadline;
6 env int rescueDeadline;
7

8 reactiveclass Sensor {
9 knownrebecs {

10 Admin admin;

11 }

12

13 statevars {
14 int period;
15 }

18 Modelling and Simulation of Asynchronous Real-Time Systems using Timed Rebeca

16

17 msgsrv initial(int myPeriod) {
18 period = myPeriod;

19 self.doReport();
20 }

21

22 msgsrv doReport() {
23 int value;
24 value = ?(2, 4); // 2=safe gas levels, 4=danger gas levels

25 admin.report(value) after(netDelay);
26 self.doReport() after(period);
27 }

28 }

29

30 reactiveclass Scientist {
31 knownrebecs {
32 Admin admin;

33 }

34

35 msgsrv initial() {}
36

37 msgsrv abortPlan() {
38 admin.ack() after(netDelay);
39 }

40 }

41

42 reactiveclass Rescue {
43 knownrebecs {
44 Admin admin;

45 }

46

47 msgsrv initial() {}
48

49 msgsrv go() {
50 int msgDeadline = now() + (rescueDeadline-netDelay);
51 int excessiveDelay = ?(0, 1); // unexpected obstacle might occur during rescue
52 delay(excessiveDelay);
53 admin.rescueReach() after(netDelay) deadline(msgDeadline);
54 }

55 }

56

57 reactiveclass Admin {
58 knownrebecs {
59 Sensor sensor0;

60 Sensor sensor1;

61 Scientist scientist;

62 Rescue rescue;

63 }

64

65 statevars {
66 boolean reported0;
67 boolean reported1;
68 int sensorValue0;
69 int sensorValue1;
70 boolean sensorFailure;
71 boolean scientistAck;
72 boolean scientistReached;
73 boolean scientistDead;
74 }

75

76 msgsrv initial() {
77 self.checkSensors();
78 }

79

80 msgsrv report(int value) {

L. Aceto at al. 19

81 if (sender == sensor0) {
82 reported0 = true;
83 sensorValue0 = value;

84 } else {
85 reported1 = true;
86 sensorValue1 = value;

87 }

88 }

89

90 msgsrv rescueReach() {
91 scientistReached = true;
92 }

93

94 msgsrv checkSensors() {
95 if (reported0) reported0 = false;
96 else sensorFailure = true;
97

98 if (reported1) reported1 = false;
99 else sensorFailure = true;

100

101 boolean danger = false;
102 if (sensorValue0 > 3) danger = true;
103 if (sensorValue1 > 3) danger = true;
104

105 if (danger) {
106 scientist.abortPlan() after(netDelay);
107 self.checkScientistAck() after(scientistDeadline); // deadline for the scientist to answer
108 }

109

110 self.checkSensors() after(adminCheckDelay);
111 }

112

113 msgsrv checkRescue() {
114 if (!scientistReached) {
115 scientistDead = true; // scientist is dead
116 } else {
117 scientistReached = false;
118 }

119 }

120

121 msgsrv ack() {
122 scientistAck = true;
123 }

124

125 msgsrv checkScientistAck() {
126 if (!scientistAck) {
127 rescue.go() after(netDelay);
128 self.checkRescue() after(rescueDeadline);
129 }

130 scientistAck = false;
131 }

132 }

133

134 main {
135 Sensor sensor0(admin):(sensor0period);

136 Sensor sensor1(admin):(sensor1period);

137 Scientist scientist(admin):();

138 Rescue rescue(admin):();

139 Admin admin(sensor0, sensor1, scientist, rescue):();

140 }

Listing 5: A Timed Rebeca model of the sensor network example

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. 20--33, doi:10.4204/EPTCS.58.2

A Verified Algebra for Linked Data

Ross Horne and Vladimiro Sassone
Electronics and Computer Science, University of Southampton, United Kingdom

{rjh06r,vs}@ecs.soton.ac.uk

A foundation is investigated for the application of looselystructured data on the Web. This area is
often referred to as Linked Data, due to the use of URIs in datato establish links. This work focuses
on emerging W3C standards which specify query languages forLinked Data. The approach is to
provide an abstract syntax to capture Linked Data structures and queries, which are then internalised
in a process calculus. An operational semantics for the calculus specifies how queries, data and
processes interact. A labelled transition system is shown to be sound with respect to the operational
semantics. Bisimulation over the labelled transition system is used to verify an algebra over queries.
The derived algebra is a contribution to the application domain. For instance, the algebra may be
used to rewrite a query to optimise its distribution across acluster of servers. The framework used to
provide the operational semantics is powerful enough to model related calculi for the Web.

1 Introduction

The application of interest is a powerful emerging idea commonly referred to as the Web of Data [6].
The Web of Data marks a shift from publishing documents to publishing data. The Web is based on
documents which contain links to other documents. The Web ofData is concerned with resources more
general than documents. Data on the Web contains links to resources described in multiple data sources.
In both the case of the Web and the Web of Data the links betweendocuments and resources, respectively,
are established by a standardised global naming system --- the URI. On the Web, URIs allow documents
in distributed locations with distinct ownership to refer to each other. Similarly, in a Web of Data, URIs
allow data in distributed locations with distinct ownership to refer to common resources.

Suppose that the URIs are not used as a standard naming system. In this case, each data source uses
its own naming system. Typically, in this case each data source is disjoint, hence traditional database
techniques may be applied. This is referred to as closed world system, since the boundaries of the data
source are known. For instance, classical negation can be used to determine whether some data does not
appear in a data source, and schemata can constrain the structure of data.

In contrast, the presence of URIs as a global naming system, enables an open world system. In an
open world system a variety of protocols can be used to obtaindata from multiple sources based on the
URIs which appear. For instance, a request may be sent to a URIto directly obtain some data about that
URI. Alternatively, services may be used to find data relevant to a URI. In this open world setting, there is
no guarantee that mechanisms find all relevant data. There may always be data not known locally which
refers to a resource; hence in general optimal query resultscannot be obtained and classical negation
cannot be applied. Another restriction in an open world system is that schemata which constrain data
cannot be enforced globally.

A light semi-structured data format must be agreed for the Web of Data. The W3C recommends the
Resource Description Framework (RDF) as a general format for presenting data [16]. RDF is based on
triples which consist of a subject, predicate and object. The subject, predicate and object are all named by
URIs. Each URI in a triple may represent resources in different locations, hence a triple links locations.

R. Horne& V. Sassone 21

Other semi-structured data formats contain URIs, such as feeds. RDF is intended as a minimal data
format to which other formats can be lifted.

Assuming that Linked Data can be gathered, observations about Linked Data can be made. The W3C
recommendation is to use SPARQL Queries to make such observations [24]. In this work, to model this
scenario, both RDF Data and SPARQL Queries are internalisedin a process calculus. The operational
semantics of the process calculus specifies how queries anddata interact, to realise the W3C recommen-
dations. The operational semantics are realistic since there is no guarantee of maximal responses, only
that responses are correct.

Two SPARQL Queries may be indistinguishable with respect totheir operational behaviour. Such
operationally equivalent queries are bisimilar. In this work, bisimulation is used to derive an algebra over
SPARQL Queries. The algebra agrees with expected equivalences analogous to those uncovered by re-
lational algebra and exposes some new equivalences. The derived algebra can be used to rewrite a query
to a normal form. Normal forms are useful for optimisation purposes. A query can be optimised before
being distributed over multiple data sources. Distribution of queries is a key challenge for enabling a
Web of Data [11].

Section 2 presents a syntax and semantics for RDF triples, SPARQL queries and processes which
internalise both triples and queries. Section 3 provides analternative operational semantics using a
labelled transition system. The labelled transition system is proven to be sound with respect to the
reduction system. Section 4 introduces two notions of equivalence over the calculus, which correspond
to the two operational semantics. Bisimulation for the labelled transition system is proven to be complete
with respect to contextual equivalence for the reduction system. An algebra for queries is verified using
bisimulation.

2 A syntax and semantics for the syndication calculus

The concrete syntax for both RDF and SPARQL Query are specified in W3C recommendations [16, 24].
Here an abstract syntax is presented to model the core features of the concrete syntax. This abstract
syntax is easier to define than the concrete syntax, which issugared to make programming easier.

The operational semantics of the calculus is specified as a reduction system. The syntax and rules
of the reduction system borrow from a fragment of Linear Logic, extended with a continuation. Related
work has investigated other approaches to using Linear Logic for both query languages and process
calculi [17, 13, 3].

Note that the description of the syntax and reduction systemis brief. A similar syntax and reduction
system are extensively discussed in the thesis of the first author [14]. The main contribution of this paper
is the bisimulation results for queries.

2.1 A syntax for RDF triples

An abstract syntax for triples conveys the RDF data format. The atoms of the syntax are names and
literals. Names represent occurrences of URIs, which are represented by identifiers in italics, such as
John or knows. Literals are basic data values, such as the strings‘Paul’ or‘77-3426’. The definition of
literals in the XML Schema Datatypes specification [4] is assumed. Variablesa,b . . . andx,y . . . represent
place holders for names and literals respectively.

A triple consists of three components: the subject, the predicate and the object, which is written
(subject predicate object). The subject is related by the predicate to the object, similarly to simple sen-

22 Linked Data Algebra

φ ::= I true
| 0 false
| φ∨φ or
| φ∧φ and
| ¬φ not
| . . . etc.

U ::= C asked triple
| φ filter
| U ⊕U choice
| U ⊗U tensor
| ∨

a.U select name
| ∨

x.U select literal
| ∗U iteration
| U ; P then

P ::= ⊥ nothing
| P O P par
| ∧

a.P blank node
| U query
| C stored triple

Figure 1: The syntax of constraints (φ), queries (U) and processes (P), over triples (C).

tences in English of form subject-verb-object, where URIs and literals are used instead of words. The
syntax ensures that literals can only appear as the object ofa triple. The example below presents two
RDF triples.

(b4 home starr.uk) (b4 give_name ‘Ringo’)

Predicates are names such ashome. For instance, the first triple above means that a subjectb4 is
related by predicatehome to objectstarr.uk. The second triple above indicates that subjectb4 is related
by predicategiven_name to the literal‘Ringo’.

2.2 A syntax for SPARQL queries

In this section an abstract syntax for queries, Fig. 1, represents the core features of SPARQL Query [24].
SPARQL Queries are used to read from RDF triples. Synchronisation constructs allow substantial
queries to be expressed. The syntax of processes, also in Fig. 1, demonstrates how both queries and
content can be internalised in a process calculus, which suggests a high level language for Linked Data,
which uses query results. In this model, persistently stored triples are used to answer queries. A stored
triple is indicated by an underscore.

Ask queries and multiplicative operators. The simplest ‘ask’ query provides a triple to be matched.
There are three multiplicative operators: a tensor product(⊗) for synchronously joining queries, a par
operator (O) for composing processes in parallel and the operator then (;) for guarding a process with a
query. The difference between tensor and par is that queriescomposed using tensor must happen simul-
taneously (in the same atomic step), whereas processes composed in parallel may be used in different
atomic steps. Tensor is the implicit join of queries used in SPARQL. Then and par are part of a higher
level language, where query results are immediately used. These operators are multiplicative since they
control the sharing of resources.

The additive operators and select queries. There are three additive operators: choose (⊕), select (
∨

)
and the blank node quantifier (

∧
). The choose operator presents a choice between two queries, hence

models the SPARQL keywordUNION. The select operator is a quantifier which binds a variable.Select
is used to modelSELECT queries in SPARQL, which discover names and literals. The names and literals
discovered can also be bound in a continuation process, hence value passing is modelled at a high level.
Blank node quantifiers provide a model for blank nodes in RDF[16]. A blank node is a local name

R. Horne& V. Sassone 23

P O ⊥ ≡ P P O Q ≡ Q O P P O (Q O R) ≡ (P O Q) O R

∧
a.⊥ ≡ ⊥

∧
a.
∧

b.P ≡
∧

b.
∧

a.P
∧

a.P O Q ≡
∧

a.(P O Q) a < fn(P)

Figure 2: The structural congruence over processes.

where the scope of the blank node is indicated by the scope of the quantifier. Blank nodes allow further
data structures to be represented in RDF, including XML.

Constraints and optional queries. A constraint may be used in a query. Constraints form a Boolean
algebra of basic predicates, such as inequalities and regular expressions. The specification of constraints
can be found under the keywordFILTER in the recommendation [24]. A choice between a query and true
models an optional query in SPARQL, so the keywordOPTIONAL is defined as follows:OPTIONALU ,
U ⊕ I.

Repeated queries and iteration. A common requirement of a query language is that more than one
result can be obtained. Bounded multiple copies of queries can be synchronously posed, using queries
with natural number exponents and finite sums. Exponents and sums are just abbreviations defined as
follows.

U0 , I Un+1 , U ⊗Un Σ0
n=0Un , I Σk+1

n=0Un , Σk
n=0Un⊕Uk+1

A natural number exponentn repeatedly applies the tensor product, so the query must be answered
exactlyn times. The sum with boundn allows the query to be answered between 0 andn times. Sums
model the keywordLIMIT, such thatU LIMITk , Σk

n=0Un.
Unbounded iteration of queries is indicated by an explicit operator (∗), which allows zero or more

copies of a query to be answered. Note that iteration differsfrom replication in common process calculi.
All copies of an iterated query must be answered simultaneously using disjoint resources.

2.3 A reduction system for the calculus

The reduction system presents a concise operational semantics for the calculus. The reduction system is
defined by a structural congruence and a relation over processes called the commitment relation. A fur-
ther preorder over triples formalises key features of RDF Schema (RDFS [7]). RDFS is a light extension
to RDF, which improves interoperability by resolving aliases between URIs.

The structural congruence (≡ in Fig. 2) is defined such that (P,O,⊥) forms a commutative monoid.
Alpha conversion can also be applied to blank node quantifiers. Furthermore, blank node quantifiers can
be eliminated in the presence of nothing, commute and distribute over par. All reductions are considered
up to structural congruence --- as standard in process calculi.

The commitment relation (⊲ in Fig. 3) specifies atomic operational steps. The process on the left of
the commitment relation, becomes the process on the right. Acommitment is performed atomically.

Working with aliases for URIs is a key problem in Linked Data [2]. Aliases arise since different
data sources use different URIs for similar purposes. For instance, in the context of a song, predicate
lyricist may be more specific than predicatecreator (see subPropertyOf in RDFS [7]). Similarly,song0
andsong1 may be URIs for the same song (see sameAs in OWL [2]). Hence thealiaseslyricist ⊑ creator

24 Linked Data Algebra

C ⊑ D
C O D⊲C

� φ
φ⊲⊥

P O U ⊲Q
P O (U ⊕V)⊲Q

P O V ⊲Q
P O (U ⊕V)⊲Q

P O U ⊲P′ Q O V ⊲Q′

P O Q O (U ⊗V)⊲P′ O Q′

∗U ⊲⊥
P O U ⊲Q
P O ∗U ⊲Q

P O (∗U ⊗∗U)⊲Q
P O ∗U ⊲Q

P O U
{
b/a

}
⊲Q

P O ∨
a.U ⊲Q

P O U{v/x}⊲Q
P O ∨

x.U ⊲Q

P O U ⊲Q
P O (U ; R)⊲Q O R

P⊲P′
P O Q⊲P′ O Q

P O Q⊲P′ O Q′

P O ∧
a.Q⊲P′ O ∧

a.Q′ a < fn
(

P,P′,β
)

Figure 3: Commitment rules: ask, filter, choose left, choose right, tensor, weakening, dereliction, con-
traction, select name, select literal, guard, context, andblank node (fn indicates the free names).

andsong0 ⊑ song1 may be assumed. The application specific set of alias assumptions is referred to asβ.
The transitive reflexive closure ofβ gives rise to a preorder (⊑) over URIs.

The ask axiom, guard rule and alias assumptions. The following example demonstrates the interac-
tion of an ask query with a continuation and a stored triple. The axiom ‘ask’ allows a query triple and
a stored triple to interact. The stored triple remains available after the commitment. The axiom ‘guard’
makes the continuation process available after the commitment.

(
song0 lyricist b4

) O ((
song1 creator b4

)
; P

)
⊲

(
song0 lyricist b4

) O P

Above, the conditions for a match are relaxed by the preorderover triples (⊑). The preorder over
triples is the point-wise extension of the preorder over URIs introduced above.

The tensor and select rules. The following example demonstrates two synchronised queries, in the
presence of two stored triples. The first query poses a pattern to match, while the second query selects a
name with respect to a pattern.

((b2 role singer)⊗∨
b.((b role guitarist) ; P)) O

(b2 role singer) O (b3 role guitarist)
⊲

(b2 role singer) O
(b3 role guitarist) O P

{
b3/b

}

In the above example, the ‘tensor’ rule divides the stored triples between the two parts of the query. On
the left the ‘select’ rule is applied. The ‘select’ rule substitutes a suitable URI for the quantified name.
The result is that a URI is passed to the continuation.

The choose rule. The following example demonstrates a choice between queries. The ‘choose left’
rule is used in this case.

∨
a.(((a knows b2) ; P)⊕ ((b2 knows a) ; Q)) O (b1 knows b2)⊲ (b1 knows b2) O P

{
b1/a

}

The query result determines the continuation triggered.

R. Horne& V. Sassone 25

Constraints in queries. The example query below selects a literal. The data literal appears in a triple
and a constraint. The rules ensure that both a suitable triple appears and the constraint imposed holds.

∨
x.((|x| ≤ 5)⊗ (b1 name x) ; P) O (b1 name ‘John’)⊲ (b1 name ‘John’) O P

{
‘John’/x

}

The satisfaction relation for evaluating constraints�, is left to the W3C recommendation [24]. Satisfac-
tion is assumed to define a Boolean algebra of constraints.

The rules for iteration of queries. The example below demonstrates iteration used to answer two
copies of the same query. Two iterated queries are answered using ‘dereliction’, which are combined
using the conventional tensor rule. The ‘contraction’ rulethen reduces the combined queries to a single
query.

∗
∨

c.((c is busy) ; P) O (b2 is busy) O (b3 is busy)⊲ (b2 is busy) O (b3 is busy) O P
{
b2/c

}
O P

{
b3/c

}

A continuation for each result is triggered. Note the ‘weakening’ rule could be used to allow the query
to be answered zero times.

Blank nodes as quantifiers. The example below demonstrates a query which discovers a blank node.
The ‘blank node’ rule uses a temporary name to represent the blank node. The result is that the scope of
the blank node quantifier is extended to include the continuation, which receives the blank node.

∨
c.((c creator b2) ; U) O∧
a.
(
(a author b2) O (a status open)

) ⊲
∧

a.

(
U{a/c}O
(a author b2) O (a status open)

)

The aliasauthor ⊑ creator is assumed above. The temporary name must not appear in the alias assump-
tions (β). The unused stored triple is idled.

Rules for an additive disjunction, tensor product, existential quantification, universal quantification
and iteration, are borrowed from Linear Logic [9]. The sequent calculus is extended to indicate a contin-
uation process, constraints extend the basic units with a Boolean algebra, and a preorder accommodates
aliases over names.

3 A labelled transition system for the operational semantics

The operational semantics can be expressed as a labelled transition system. This provides an alternative
operational semantics to the reduction system. This alternative semantics allows the behaviour of queries
and data to be evaluated separately and then composed. Lemma2 verifies that the labelled transition
system and reduction system describe the same behaviour.

3.1 The purpose of labels

A labelled transition consists of two processes and a label.The first process is the process before the
transition. The label is a constraint on the context in whicha transition can take place. The second
process is the resulting process after the transition.

The labels are formed from a commutative monoid over triples(E,⊗, I). A label indicates the inputs
and outputs of a process. An input indicates that a process can proceed if it can receive the triples on the

26 Linked Data Algebra

C ⊑ D

D C◮ ⊥
U E◮ Q

U ; P E◮ Q O P

U E◮ P V F◮ Q

U ⊗V E⊗F◮ P O Q

U E◮ P

U ⊕V E◮ P

V E◮ Q

U ⊕V E◮ Q

� φ

φ I ◮ ⊥
U

{
b/a

}
E◮ Q

∨
a.U E◮ Q

U{v/x} E◮ Q
∨

x.U E◮ Q ∗U I ◮ ⊥
U E◮ P

∗U E◮ P

∗U ⊗∗U E◮ P

∗U E◮ P

Figure 4: Labelled transitions for queries: input triple, trigger guard, tensor, choose left, choose right,
filter, select name, select literal, weakening, dereliction and contraction.

label from its context. An output indicates that a process outputs the triple on the label to its context. For
instance, the query below inputs a triple; while the stored triple below outputs a triple.

(b4 knows b3) ; P (b4 knows b3)◮ P (b4 knows b3) (b4 knows b3)◮ (b4 knows b3)

A relevant interpretation is that the first transition above is an action from the perspective of a client
which resolves a query; whereas the second is an action from the perspective of a server that provides a
triple. Two processes composed in parallel with matching inputs and outputs may interact. For instance,
the above processes can be composed, resulting in the following transition. The unit label indicates an
operational step without side effects.

(b4 knows b3) ; P O (b4 knows b3) I ◮ P O (b4 knows b3)

Output labels can also indicate extruded names. For instance, the example below extrudes the name
a. The extruded names represent blank nodes where the scope ofthe blank node quantifier may be
extended. This is similar to extrusion of new names in theπ-calculus [22].

∧
a.(a has paper) O (b2 has stone) a|(a has paper)◮ (a has paper) O (b2 has stone)

The commutative monoid rules can always be applied to reorder labels.

3.2 Labelled transitions for queries

The input transitions allow the behaviour of a query to be modelled independently. The rules for queries
are presented in Fig. 4. The rules accumulate RDF triples on an input label, which represents contexts in
which a query may be answered.

The ‘input triple’ rule poses the triple as an input on the label. The triple on the label may be
strengthened by the preorder over triples. The ‘trigger guard’ rule allows a continuation process to be
triggered exposing the continuation. The following example demonstrates a query consisting of a single
triple and a continuation process, where the preordercolleague ⊑ knows is assumed.

(b4 knows b3) ; P (b4 colleague b3)◮ P

Select quantifiers are resolved by anticipating the name orliteral to input. For instance, the following
labelled transition indicates that the query can be answered in a context where a name is chosen. The
same name is passed to the continuation process.

∨
a.((b4 knows a) ; P) (b4 knows b3)◮ P

{
b3/a

}

R. Horne& V. Sassone 27

C ⊑ D

C D◮C

P α|E◮ Q
∧

a.P α+a|E◮ Q
a < fn (β)

P α|E◮ Q
∧

a.P α|E◮
∧

a.Q
a < α∪ fn(E)

P α|E◮ P′

P O Q α|E◮ P′ O Q
α∩ fn (Q) = ∅ P α0|E◮ P′ Q α1|F◮ Q′

P O Q α0+α1|E⊗F◮ P′ O Q′
α0∩ fn (Q) = ∅
α1∩ fn (P) = ∅

P E⊗F◮ P′ Q α|F◮ Q′

P O Q E◮
∧
α.(P′ O Q′)

α∩ (fn (P)∪ fn (E)) = ∅

Figure 5: Process rules: output triple, open, blank node context, par context, parallel outputs and close.
The symmetric versions of the par context and close rule are also assumed.

Choices are resolved by anticipating the left or right branch. For instance, the following transition
indicates the label and continuation which results from choosing the left branch.

((b4 knows b2) ; P)⊕ ((b4 knows b3) ; Q) (b4 knows b2)◮ P

Tensor synchronises two queries, by composing their respective labels and continuations. For in-
stance, the following query simultaneously inputs two triples. The continuations of both queries are
triggered in parallel, with the appropriate substitutions.

∨
a.(((b4 knows a) ; P)⊗ (

∨
x.(a name x) ; Q)) (b4 knows b2)⊗(b2 name ‘John’)◮ P

{
b2/a

}
O Q

{
b2,‘John’/a,x

}

A constraint is disposed when it is satisfied. For instance,in the following query the length of a
selected literal is constrained, but satisfied by the substitution.

∨
x.((b2 name x)⊗ (|x| ≤ 5) ; P) (b2 name ‘John’)◮ P

{
‘John’/x

}

Iteration anticipates the number of copies of a query to poseusing weakening, dereliction and con-
traction. For instance, two copies of the following query are posed using contraction and dereliction.
The label indicates the two separate triples which are to be answered simultaneously. Both continuations
are composed in parallel.

∗∨a.((b4 knows a) ; P) (b4 knows b2)⊗(b4 knows b3)◮ P
{
b2/a

}
O P

{
b3/a

}

The rules of the labelled transition system are sufficient to model queries.

3.3 Labelled transitions for an RDF store

The behaviour of stored RDF triples can be modelled using output labels. The rules of output labels are
presented in Fig. 5. The names extruded on the label are indicated byα, where+ indicates disjoint union
of names. The abbreviation

∧
α.P is used to indicate the quantification of all names inα.

Stored triples can output the triple on the label. The same triple appears in the continuation un-
changed. The preorder over names may be used to weaken the output triple. Names are extruded on

28 Linked Data Algebra

the label using the ‘open scope’ rule. For instance, the following triple outputs a triple and extrudes the
blank node, using the assumptioncolleague ⊑ knows.

∧
b4.(b4 colleague b3) b4|(b4 knows b3)◮ (b4 colleague b3)

Output labels composed in parallel can be combined. Extruded names on both labels must be disjoint
to preserve the scope of blank nodes. For instance, the following transition simultaneously outputs two
triples and extrudes three names.

∧
b4.

(∧
b2.(b4 knows b2) O ∧

b3.(b4 knows b3)
)

b2,b3,b4|(b4 knows b2)⊗(b4 knows b3)◮ (b4 knows b2) O (b4 knows b3)

Two parallel processes may interact using the close rule. Close allows complementary inputs and
outputs to be matched. Names extruded on the output label areintroduced as quantifiers in the contin-
uation. Any inputs not answered remain on the resulting label, to be answered later. For instance, the
following iterated query is answered twice. One copy is answered by the available process and the other
copy must be answered by the context for the transition to occur. In the continuation, the scope of the
blank node is extended.

∗∨a.((b4 knows a) ; P) O ∧
b3.(b4 knows b3) (b4 knows b2)◮

∧
b3.

(
P
{
b2/a

}
O P

{
b3/a

}
O (b4 knows b3)

)

The context rule for parallel composition allows a process which does not contribute to an interaction
to idle. Similarly, the context rule for blank node quantifiers allows a blank node to be ignored in a
transition if it does not appear on the label.

3.4 Comparison of the two operational semantics

To justify the labelled transition system, the labelled transitions are compared to the reductions of the
reduction system. If a unit labelled transition can be derived then the corresponding reduction can also
be derived. The significance is that, given the independentperspectives of the query and the store in
terms of labelled transitions, their combination satisfies the global perspective specified by the reduction
system.

Scope extrusion presents technical difficulties. The following technical lemma reduces these diffi-
culties, by eliminating scope extrusion. The proof demonstrates that combinations of opening names and
closing names can be eliminated from a proof tree which uses an extruded name.

Lemma 1 (Elimination of extrusion). Suppose that a labelled transition proof uses name extrusion, but
not in the conclusion. The same labelled transition, up to structural congruence, holds without any name
extrusion.

Note that full proofs for all theorems are provided in the thesis of the first author [14].
Every completed labelled transition can also be expressed as a reduction, Lemma 2. The proof works

by transforming proof trees so that labels used in interactions are eliminated.

Lemma 2 (Elimination of labels). P I ◮ Q if and only if P⊲Q.

Thus the local perspective of the labelled transition system and the global perspective of the reduction
system specify the same operational capabilities.

R. Horne& V. Sassone 29

4 An algebra for the syndication calculus

In this section bisimulation is introduced as the natural notion of equivalence over the labelled transition
system. Bisimulation is demonstrated to be sound with respect to equivalence in the reduction system.
Thus every pair of bisimilar processes are equivalent with respect to the natural notion of equivalence
over the reduction system. Bisimulation is then used to verify an algebra over queries and processes.

4.1 Bisimulation

Processes which are capable of the same observable behaviour can be regarded as equivalent. The
observable behaviour of a process is given by the labels of the labelled transition system. Observational
equivalence of processes is established using the technique of (strong) bisimulation, as follows.

Definition 1 (Bisimulation). Bisimulation, written ∼, is the greatest symmetric relation such that the
following holds, for any label l. If P ∼ Q and P l ◮ P′ then there exists some Q′ such that Q l ◮ Q′ and
P′ ∼ Q′.

The following verifies that bisimulation is a congruence --- a relation which holds in any context. It
is necessary that bisimulation is a congruence for it to be used as an algebra. A context is a process with
a place holder for some syntax.

Lemma 3 (Bisimulation is a congruence). If P ∼ Q and C is a context, then CP ∼ CQ.

An alternative notion of equivalence is defined using the reduction system. Contextual equivalence
is used in related work to justify notions of bisimulation ontheπ-calculus and ambient calculus [15, 21].

Definition 2 (Contextual equivalence). Contextual equivalence, written ≃, is the greatest symmetric,
reduction closed, context closed relation. A relation R is reduction closed iff P R Q and P⊲ P′ then
there exists some Q′ such that Q⊲Q′ and P′ R Q′. A relation R is context closed iff P R Q yields that
CP R CQ, for all contexts C.

Bisimulation is sound with respect to contextual equivalence. Soundness is essential to justify the
chosen notion of bisimulation.

Theorem 1 (Bisimulation is a contextual equivalence). If P ∼ Q then P ≃ Q.

Proof. Reduction closure follows from Lemma 2 and context closure follows from Lemma 3. �

Soundness of bisimulation ensures that algebraic properties proven using bisimulation also hold for
contextual equivalence. Bisimulation simplifies proofs in the following section. Note that complete-
ness (contextual equivalence is a bisimulation) is not required for this work. Completeness can only be
achieved in an extended version of the calculus.

4.2 Algebraic properties of queries

Using bisimulation as an equivalence, key properties of queries are established. This section amounts
to a soundness proof of the algebraic properties established. Thus if any two process are equivalent
according to the algebraic properties then they are bisimilar; and furthermore, by Theorem 1, they are
contextually equivalent.

For the labelled transition system, structural congruenceis not assumed, hence verified here. The
proof for the distributivity of blank node quantifiers overpar requires extensive case analysis. The case
of associativity of par follows from distributivity of blank node quantifiers. Proofs are similar to the
analogous bisimulations in theπ-calculus [22].

30 Linked Data Algebra

Proposition 2. The structural congruence (Fig.2) is a bisimulation. So, (P,O,⊥) forms a commutative
monoid. Blank node quantifiers annihilate with ⊥, commute, and distribute over O.

Bisimulation reveals some canonical algebraic propertiesof queries. Firstly, queries form an idem-
potent semiring. Semirings are ubiquitous in computer science. A notable feature of semirings is that the
ideals of a semiring form a semiring.

Proposition 3. (U,⊗,⊕, I,0) is a commutative idempotent semiring. That is, (U,⊗, I) is a commutative
monoid, (U,⊕,0) is idempotent commutative monoid. ⊗ distributes over ⊕ and 0 annihilates with ⊗.

Idempotent semirings have a natural preorder, given byU ≤ V iff U ⊕V ∼ V. Hence queries have
this natural preorder. An immediate consequence is that choice is a colimit, i.e. least upper bound, of
two queries.

Proposition 4. Choice is a colimit of its branches. That is, V ≤W and U ≤W, if and only if V ⊕U ≤W.

The preorder over queries can be used to optimise queries. Ifa query offers a choice between a query
and a weaker query, with respect to the preorder, the stronger branch may be eliminated. For instance,
in related work [23], is is claimed thatU OPTIONAL (V OPTIONALW) is not the same as (U OPTIONAL
V) OPTIONALW. Under the interpretation ofOPTIONAL in the calculus it holds thatU ⊗ ((V ⊗ (W ⊕ I)) ⊕
I) ≤ U ⊗ ((V ⊕ I)⊗ (W ⊕ I)), by distributivity, commutativity and idempotency. So thefirst is a stronger
query.

A single rule is sufficient to capture the algebra of the select quantifier. From this algebra common
equalities can be derived. The derived rules are suitable for the optimisation technique of flattening
nested selects used in relational algebra [8]. The proof of commutativity of quantifiers requires capture
avoiding substitution to be assumed. The presence of the tensor in the rule is required to prove that∨

a.U ⊗V ≤∨
a.(U ⊗V), whena < fn (V).

Proposition 5. Selects are colimits of substitutions. So, U
{
b/a

}
⊗V ≤W for all b, if and only if

∨
a.U⊗V ≤

W. Immediate consequences are that, select commutes, distributes over choice, is annihilated by true
and distributes over tensor. Furthermore, alpha conversion of bound variables is verified.

The following rules of regular algebra hold. The first of therules is sufficient to demonstrate that
∗V⊗U is a fixed point of the (monotone) mapW 7→U⊕ (V⊗W). The second rule demonstrates that∗V⊗
U is the least such fixed point. Historically, Redko demonstrated that no finite collection of equations
could axiomatise iteration [25]. The formulation below, was proven to be complete by Kozen [19].

Proposition 6. An iterated query expands as follows ∗U ∼ I⊕ (U⊗∗U). Furthermore, if U⊕ (V⊗W)≤W
then ∗V ⊗U ≤W.

A classic consequence of the above is that queries without select can always be denested to a single
iteration [20]. However, select breaks denesting since iteration and select do not commute. For instance
the following query requires two iterations. The result is that for each of the first continuation triggered,
zero or more instances of the second continuation are triggered. This query can be expressed using
sub-queries in the current SPARQL Query working draft [10].

∗
∨

a.
∨

n.
(
((a name n) ; P)⊗∗

∨
e.((a email e) ; Q)

)

Iteration can be expressed as a colimit of repeated queries.This is a strictly more general property
than Proposition 6 [18]. Since all constructs are colimits which distribute over tensor, the ideals gen-
erated by queries form a (commutative) quantale, as exploited by Montanari, Hoare and others [5, 12].
Quantales are related to spectral theory, which is related to information retrieval techniques used by
search engines. Clarification of this connection is futurework.

R. Horne& V. Sassone 31

Proposition 7. Iteration is a colimit of powers of queries. So, Un ⊗V ≤ W for all n, if and only if
∗U ⊗V ≤W.

Kozen demonstrates that Boolean algebras can be embedded inKleene algebras [20]. The ‘tests’
of Kozen correspond to ‘constraints’ in SPARQL. Bisimulation verifies that the Boolean algebra of
constraints embeds in the Kleene algebra, in the same manner, with similar consequences.

Proposition 8. The Boolean algebra of constraints embeds in queries. Using standard classical impli-
cation, φ⇒ ψ if and only if φ ≤ ψ. Or is choice, and is tensor, exists is select and an iterated constraint
is always true.

As with classical implication, the preorder over triples can be embedded in the partial order over
processes. However, since alias assumptions are only a preorder, if C ∼ D then it holds thatC ⊑ D and
D ⊑ C, which is weaker than equality. Maintaining distinction ofnames is important for applications
whereβ is not fixed over time.

Proposition 9. C ⊑ D if and only if C ≤ D.

The multiplicatives then, par and times and the units are related in the following manner. Combined
with the previous rules the properties of then are established. The second rule shows that ‘then’ can be
replaced by the unit delay (as in [1]).

Proposition 10. An empty continuation can be removed, a continuation can be decomposed into the
guard and a unit delayed process, and two continuations can be combined in a single par continuation,
as follows.

I ;⊥ ∼ I U ⊗ (I ; P) ∼ U ; P (U ; P) ; Q ∼ U ; (P O Q)

The algebra can be applied to optimise queries for distribution. In the example below the first query
is rewritten as the tensor product of two queries.

∗∨a.(((a knows b2) ; P)⊕ ((a knows b3) ; Q)) ∼ ∗∨a.((a knows b2) ; P)⊗ ∗∨a.((a knows b3) ; Q)

The second query above is better for distribution. The tensor product allows two smaller queries to be
immediately evaluated in parallel. The tighter scope of theselect quantifiers reduces the branching when
potential values to select are considered. The distribution of queries across clusters of servers is a major
problem for processing Linked Data [11].

5 Conclusion

The calculus introduced provides the first operational semantics for SPARQL Query -- a W3C recom-
mendation for querying Linked Data. The calculus has a concise logical semantics defined by a reduction
system. The power of the calculus lies in the synchronisation primitives for queries. The synchronisa-
tion primitives are required to match the expressiveness ofthe core of SPARQL Query. Queries are
internalised in a high-level process calculus, where queryresults determine continuation processes.

An alternative labelled transition system is shown to matchthe expressive power of the reduction
system. Furthermore, the notion of bisimulation in the labelled transition system is sound with respect
to equivalence in the reduction system. Bisimulation is used to verify an algebra over queries, which
extends existing notions of an algebra for SPARQL Query. An algebra of queries is useful when tackling
problems associated with Linked Data, such as distributed query planning.

32 Linked Data Algebra

The operational semantics combines several formalisms, asexpected for a real language. The queries
form a semiring, which provides a natural partial order. This partial order is used to characterise choice,
selects and iteration as colimits. Also, iteration is the least fixed point of a monotonic map over queries,
hence queries form a Kleene algebra. A preorder over URIs allows small permissible mismatches be-
tween content and queries to be resolved, capturing key features of the RDFS standard. Also, a Boolean
algebra of constraints is naturally embedded in queries, toprovide further control. The calculus demon-
strates that key features of SPARQL and related standards for Linked Data can be tightly integrated in
one framework.

References

[1] Samson Abramsky, Simon Gay & Rajagopal Nagarajan (1995): Interaction Categories and the Foundations
of Typed Concurrent Programming. In Manfred Broy, editor:Proceedings of the NATO Advanced Study
Institute on Deductive Program Design, Marktoberdorf, Germany, Springer, pp. 35--114.

[2] Harith Alani et al. (2002):Managing Reference: Ensuring Referential Integrity of Ontologies for the Seman-
tic Web. In Gómez-Pérez et al., editors:Knowledge Engineering and Knowledge Management: Ontologies
and the Semantic Web, 2473, Springer, pp. 235--246, doi:10.1007/3-540-45810-7_29.

[3] G. Bellin & P. J. Scott (1994):On the π-Calculus and Linear Logic. Theoretical Computer Science135, pp.
11--65, doi:10.1016/0304-3975(94)00104-9.

[4] Paul V. Biron & Ashok Malhotra (2004):XML Schema part 2: Datatypes Second Edition. W3C, MIT,
Cambridge, MA. REC-xmlschema-2-20041028.

[5] Stefano Bistarelli, Ugo Montanari & Francesca Rossi (1997): Semiring-Based Constraint Satisfaction and
Optimization. Journal of the ACM44(2), pp. 201--236, doi:10.1145/256303.256306.

[6] Christian Bizer (2009):The Emerging Web of Linked Data. IEEE Intelligent Systems24, pp. 87--92,
doi:10.1109/MIS.2009.102.

[7] Dan Brickley & R.V. Guha (2004):RDF Vocabulary Description Language 1.0: RDF Schema. W3C, MIT,
Cambridge, MA. REC-rdf-schema-20040210.

[8] Richard Cyganiak (2005):A relational algebra for SPARQL. Hewlit Packard Labs, Bristol. HPL-2005-170.

[9] Jean-Yves Girard (1987): Linear Logic. Theoretical Computer Science50(1), pp. 1--112,
doi:10.1016/0304-3975(87)90045-4.

[10] Steve Harris, Andy Seaborne & Eric Prud’hommeaux (2010): SPARQL 1.1 Query Language. W3C, MIT,
Cambridge, MA. WD-sparql11-query-20101014.

[11] Olaf Hartig et al. (2009): Executing SPARQL Queries over the Web of Linked Data. In A. Bern-
stain et al., editors:The Semantic Web -- ISWC 2009, Chantilly, VA, 5823, Springer, pp. 293--309,
doi:10.1007/978-3-642-04930-9_19.

[12] C. A. R. Tony Hoare, Bernhard Möller, Georg Struth & Ian Wehrman (2009):Concurrent Kleene Algebra. In
Mario Bravetti & Gianluigi Zavattaro, editors:CONCUR 2009, Bologna, Italy, 5710, Springer, pp. 399--414,
doi:10.1007/978-3-642-04081-8_27.

[13] Joshua S. Hodas & Dale Miller (1994):Logic Programming in a Fragment of Intuitionistic Linear Logic.
Information and Computation110(2), pp. 327--365.

[14] Ross Horne (2011):Programming Languages and Principles for Read--Write Linked Data. Ph.D. thesis,
Electronics and Computer Science, University of Southampton.

[15] Alan Jeffrey & Julian Rathke (2005):Contextual equivalence for higher-order π-calculus revisited. Logical
Methods in Computer Science1(4), pp. 1--22, doi:10.2168/LMCS-1(1:4)2005.

[16] Graham Klyne & Jeremy Carroll (2004):Resource Description Framework: Concepts and Abstract Syntax.
W3C, MIT, Cambridge, MA. REC-rdf-concepts-20040210.

R. Horne& V. Sassone 33

[17] Naoki Kobayashi & Akinori Yonezawa (1993):ACL -- A Concurrent Linear Logic Programming Paradigm.
In: Proceedings of the 1993 International Logic Programming Symposium, MIT Press, pp. 279--294.

[18] Dexter Kozen (1990):On Kleene algebras and Closed Semirings. In Rovan, editor:Proceedings on Mathe-
matical Foundations of Computer Science, 452, Springer-Verlag, pp. 26--47.

[19] Dexter Kozen (1994):A Completeness Theorem for Kleene Algebras and the Algebra of Regular Events.
Information and Computation110, pp. 366--390, doi:10.1006/inco.1994.1037.

[20] Dexter Kozen (1997):Kleene algebra with tests. ACM Transactions on Programing Languages and Systems
19, pp. 427--443, doi:10.1145/256167.256195.

[21] Massimo Merro & Matthew Hennessy (2002):Bisimulation congruences in safe ambients. In: Principles of
programming languages, ACM, pp. 71--80, doi:10.1145/503272.503280.

[22] Robin Milner, Joachim Parrow & David Walker (1992):A calculus of mobile processes, part I and II. Infor-
mation and Computation100(1), pp. 1--40, doi:10.1016/0890-5401(92)90008-4.

[23] Jorge Pérez, Marcelo Arenas & Claudio Gutierrez (2009): Semantics and Complexity of SPARQL. ACM
Transactions on Database Systems34(3), pp. 1--45, doi:10.1145/1567274.1567278.

[24] Eric Prud’hommeaux & Andy Seaborne (2008):SPARQL Query Language for RDF. W3C, MIT, Cambridge,
MA. REC-rdf-sparql-query-20080115.

[25] V. N. Redko (1964):On defining relations for the algebra of regular events. Ukrainskii Matematicheskii
Zhurnal, pp. 120--126.

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. 34–48, doi:10.4204/EPTCS.58.3

c© Simon Ware and Robi Malik

A State-Based Characterisation of the Conflict Preorder

Simon Ware Robi Malik
Department of Computer Science, University of Waikato, Hamilton, New Zealand

{siw4,robi}@waikato.ac.nz

This paper proposes a way to effectively compare the potential of processes to causeconflict. In discrete
event systems theory, two concurrent systems are said to be in conflict if they can get trapped in a situ-
ation where they are both waiting or running endlessly, forever unable to complete their common task.
Theconflict preorderis a process-algebraic pre-congruence that compares two processes based on their
possible conflicts in combination with other processes. This paper improves on previous theoretical
descriptions of the conflict preorder by introducingless conflicting pairsas a concrete state-based char-
acterisation. Based on this characterisation, an effective algorithm is presented to determine whether
two processes are related according to the conflict preorder.

1 Introduction

A key question in process algebra is how processes can be composed and compared [4, 6]. An under-
standing of what makes processes equivalent is important for several applications, ranging from com-
parison and minimisation in model checking to program construction using abstraction and refinement.
Several equivalence relations have been studied, most notably observation equivalence[12], failures
equivalence[7], and trace equivalence[7]. Each equivalence has its own properties, making it suitable
for particular applications and verification tasks [6].

This paper focuses onconflict equivalence, which compares processes based on which other pro-
cesses they can come into conflict [3, 14] with. Two processesare in conflict, if they can reach a state
from which termination is no longer possible. This can be because ofdeadlockwhere neither process is
capable of doing anything, orlivelockwhere the system continues to run without ever terminating.

It is difficult to reason about conflicts in a modular way. If two processes are free from conflict
individually, they may well be involved in a conflict when running together, and vice versa [18]. This
makes it difficult to apply most methods of abstraction common in model checking [1] to verify systems
to be free from conflict, and standard process-algebraic equivalences [6] are not applicable either.

Conflict equivalence is introduced in [11] as the best possible process equivalence to reason compo-
sitionally about conflicts. Conflict equivalence is coarserthan observation equivalence [12] and different
from failures and trace equivalence [7]. The process-algebraic theory most closely related to conflict
equivalence isfair testing [2, 13, 15]. The essential difference between conflict equivalence and fair
testing lies in the capability to compare processes that exhibit blocking behaviour, as expressed by the
set of certain conflicts[9, 10, 11].

In [5, 16, 17], various conflict-preserving rewrite rules are used to simplify processes and check
whether or not large systems of concurrent finite-state automata are free from conflict. While of good
use in practice, the rewrite rules are incomplete, and it remains an open question how processes can be
normalised or compared for conflict equivalence.

This paper improves on previous results about conflict equivalence and the associated conflict pre-
order [11], and fair testing [15], by providing a state-based characterisation of the conflict preorder. It

Simon Ware and Robi Malik 35

proposesless conflicting pairsas a more concrete way to compare processes for their conflicting be-
haviour than the abstract test-based characterisation using nonconflicting completionsin [11] and the
refusal treesof [15]. Less conflicting pairs give a means to directly compare processes based on their
reachable state sets, which leads to an alternative algorithm to test the conflict preorder. While still linear
exponential, this algorithm is simpler and has better time complexity than the decision procedure for fair
testing [15].

In the following, Section 2 briefly reviews the needed terminology of languages, automata, and
conflict equivalence. Then Section 3 introduces less conflicting pairs and shows how they can be used
to describe certain conflicts and the conflict preorder. Afterwards, Section 4 proposes an algorithm to
calculate less conflicting pairs for finite-state automata,and Section 5 adds some concluding remarks.

2 Preliminaries

2.1 Languages and Automata

Event sequences and languages are a simple means to describeprocess behaviours. Their basic building
blocks areevents, which are taken from a finitealphabetΣ. Two special events are used, thesilent eventτ
and thetermination eventω . These are never included in an alphabetΣ unless mentioned explicitly.

Σ∗ denotes the set of all finitetracesof the formσ1σ2 · · ·σn of events fromΣ, including theempty
traceε . Thelengthof traces is denoted by|s|. A subsetL ⊆ Σ∗ is called alanguage. Theconcatenation
of two tracess, t ∈ Σ∗ is written asst, and a traces is called aprefixof t, writtens⊑ t, if t = sufor some
traceu. A languageL ⊆ Σ∗ is prefix-closed, if s∈ L andr ⊑ s impliesr ∈ L.

In this paper, process behaviour is modelled using nondeterministic labelled transitions systemsor
automata A= 〈Σ,Q,→,Q◦〉, whereΣ is a finite alphabet ofevents, Q is a set ofstates, →⊆ Q× (Σ∪
{τ ,ω})×Q is thestate transition relation, andQ◦ ⊆ Q is the set ofinitial states. The automatonA is
calledfinite-stateif its state setQ is finite.

The transition relation is written in infix notationx
σ→ y, and is extended to traces by lettingx

ε→ x
for all x ∈ Q, andx

sσ→ y if x
s→ z

σ→ y for somez∈ Q. The transition relation must satisfy the additional
requirement that, wheneverx

ω→ y, there does not exist any outgoing transition fromy. The automatonA
is calleddeterministicif |Q◦| ≤ 1 and the transition relation contains no transitions labelled τ , and if
x

σ→ y1 andx
σ→ y2 always impliesy1 = y2.

To support silent transitions,x
s⇒ y, with s∈ (Σ∪{ω})∗, denotes the existence of a tracet ∈ (Σ∪

{ω ,τ})∗ such thatx
t→ y, ands is obtained fromt by deleting allτ events. For a state setX ⊆ Q and

a statey∈ Q, the expressionX
s⇒ y denotes the existence ofx ∈ X such thatx

s⇒ y, andA
s⇒ y means

thatQ◦ s⇒ y. Furthermore,x ⇒ y denotes the existence of a tracessuch thatx
s⇒ y, andx

s⇒ denotes the
existence of a statey ∈ Q such thatx

s⇒ y. For a state, state set, or automatonX, the languageand the
marked languageare

L(X) = {s∈ (Σ∪{ω})∗ | X s⇒} and Lω(X) = L(X)∩Σ∗ω . (1)

Every prefix-closed languageL is recognised by an automatonA such thatL(A) = L, but only regular
languages are recognised by a finite-state automaton [8].

When two automata are running in parallel, lock-step synchronisation in the style of [7] is used. The
synchronous compositionof A= 〈ΣA,QA,→A,Q

◦
A〉 andB= 〈ΣB,QB,→B,Q

◦
B〉 is

A‖B= 〈ΣA∪ΣB,QA×QB,→,Q◦
A×Q◦

B〉 (2)

36 A State-Based Characterisation of the Conflict Preorder

A0 :
α

α
β

ω ωa0 a1 a2

aω

B0 :

α
α

α

β

β
ω

ωb0

b1

b2

b3

b4 bω

B′
0 : α α ,β

ω b0

bω

⊥

Figure 1: Examples of blocking and nonblocking automata.

where
(xA,xB)

σ→ (yA,yB) if σ ∈ (ΣA∩ΣB)∪{ω}, xA
σ→A yA, andxB

σ→B yB ;

(xA,xB)
σ→ (yA,xB) if σ ∈ (ΣA\ΣB)∪{τ} andxA

σ→A yA ;

(xA,xB)
σ→ (xA,yB) if σ ∈ (ΣB\ΣA)∪{τ} andxB

σ→B yB .

In synchronous composition, shared events (includingω) must be executed by all automata together,
while events used by only one of the composed automata and silent (τ) events are executed independently.

2.2 Conflict Equivalence

The key liveness property in supervisory control theory [14] is the nonblockingproperty. Given an
automatonA, it is desirable that every trace inL(A) can be completed to a trace inLω(A), otherwiseA
may become unable to terminate. A process that may become unable to terminate is calledblocking.
This concept becomes more interesting when multiple processes are running in parallel—in this case the
termconflictingis used instead.

Definition 1. An automatonA= 〈Σ,Q,→,Q◦〉 is nonblockingif for every statex ∈ Q, Q◦ ⇒ x implies
thatLω(x) 6= /0. OtherwiseA is blocking. Two automataA andBarenonconflictingif A‖B is nonblocking,
otherwise they areconflicting.

Example 1. AutomatonA0 in Figure 1 is nonblocking, as it is always possible to reach state a2 and
terminate. AutomatonB0 on the other hand is blocking, because it can enter stateb3 after execution of
αβ , from where it is no longer possible to reach a state where thetermination eventω is enabled.

For an automaton to be nonblocking, it is enough that a terminal statecan be reached fromevery
reachable state. There is no requirement for termination tobe guaranteed. For example, automatonA0

in Figure 1 is nonblocking despite the presence of a possiblyinfinite loop of α-transitions in statea0.
Nonblocking is also different from “may”-testing [15], which only requires the possibility of termination
from the initial state. The testing semantics most similar to nonblocking is “should”-testing, which is
also known asfair testing[15].

To reason about nonblocking in a compositional way, the notion ofconflict equivalenceis developed
in [11]. According to process-algebraic testing theory, two automata are considered as equivalent if they
both respond in the same way to all tests of a certain type [4].For conflict equivalence, atest is an
arbitrary automaton, and theresponseis the observation whether or not the test is conflicting withthe
automaton in question.

Definition 2. Let A andB be two automata.A is less conflictingthanB, written A.conf B, if, for every
automatonT, if B‖T is nonblocking thenA‖T also is nonblocking.A andB areconflict equivalent,
A≃conf B, if A.conf B andB.conf A.

Example 2. Consider automataA1 andB1 in Figure 2.A1 is not less conflicting thanB1, sinceA1‖T1 is
blocking whileB1‖T1 is nonblocking. This is becauseA1‖T1 can enter the blocking state(a2,q1) after
executing ofα , whereas after executingα in B1, it eventually becomes possible to continue using either
theβ - or γ-transition ofT1. It can also be shown thatB1 .conf A1 does not hold.

Simon Ware and Robi Malik 37

A1: B1: T1:
α

α

α
α

β

γ

ω
a0

a1

a2

a3 aω α

α α

α

β

γ

ω
b0

b1

b2

b3 bω

α
α
α

β

γ

ω
q0

q1

q2

q3 qω

Figure 2: Two automata that are not conflict equivalent.

The properties of the conflict preorder.conf and of conflict equivalence and their relationship to other
process-algebraic relations are studied in [11]. It is enough to consider deterministic tests in Definition 2,
and conflict equivalence is is the coarsest possible congruence with respect to synchronous composition
that respects blocking, making it an ideal equivalence for use in compositional verification [5, 17].

2.3 The Set of Certain Conflicts

Every automaton can be associated with a language ofcertain conflicts, which plays an important role in
conflict semantics [9].

Definition 3. For an automatonA= 〈Σ,Q,→,Q◦〉, write

Conf(A) = {s∈ Σ∗ | For every automatonT such thatT
s⇒, A‖T is blocking} ; (3)

NConf(A) = {s∈ Σ∗ | There exists an automatonT such thatT
s⇒ andA‖T is nonblocking} . (4)

Conf(A) is the set ofcertain conflictsof A. It contains all traces that, when possible in the environ-
ment, necessarily cause blocking. Its complementNConf(A) is the most general behaviour of processes
that are to be nonconflicting withA. If A is nonblocking, thenConf(A) = /0 andNConf(A) = Σ∗, be-
cause in this caseA‖U is nonblocking, whereU is a deterministic automaton such thatLω(U) = Σ∗ω .
The set of certain conflicts becomes more interesting for blocking automata.

Example 3. Consider again automatonB0 in Figure 1. Clearlyαβ ∈ Conf(B0) asB0 can enter the
deadlock stateb3 by executingαβ , and therefore every testT that can executeαβ is conflicting withB0.
But alsoα ∈Conf(B0), becauseB0 can enter stateb2 by executingα , from where the only possibility
to terminate is by executingβω . So any test that can executeα also needs to be able to executeαβ if it
is to be nonconflicting withB0; but such a test is conflicting withB0 as explained above. It can be shown
thatConf(B0) = αΣ∗.

The set of certain conflicts is introduced in [9], and its properties and its relationship to conflict
equivalence are studied in [11]. Even if an automaton is nondeterministic, its set of certain conflicts is a
language, but as shown in Example 3, it is not necessarily a subset of the languageL(A) of its automaton.
If a traces is a trace of certain conflicts, then so is any extensionst. An algorithm to compute the set of
certain conflicts for a given finite-state automaton is presented in [10].

Certain conflicts constitute the main difference between conflict equivalence andfair testing [15].
In fair testing, processes are not allowed to synchronise onthe termination eventω , so termination is
determined solely by the test. This can be expressed as conflict equivalence by requiring thatω be
enabled in all states of the automata compared [11].

Conversely, it is possible to factor out certain conflicts from any given automaton, by redirecting all
traces of certain conflicts to a single state [9, 10]. For example, automatonB0 in Figure 1 can be replaced
by the conflict equivalent automatonB′

0, which uses the single deadlock state⊥. Two automataA andB
are conflict equivalent if and only if their normalised formsA′ andB′ are fair testing equivalent. The
decision procedure for fair testing [15] can be used to test the conflict preorder, and vice versa.

38 A State-Based Characterisation of the Conflict Preorder

A2: B2:

α

α τ

ω
a0 a1

a2

aω

α

τ

ω
b0 b1

bω

Figure 3: Two automata that are conflict equivalent.

3 Characterising the Conflict Preorder

This section is concerned about characterising two automata A andB as conflict equivalent, or charac-
terisingA as less conflicting thanB, in a state-based way. First, 3.1 explains the crucial properties of
conflict equivalence using examples.Less conflicting pairsare introduced in 3.2, and they are used to
characterise certain conflicts in 3.3 and the conflict preorder in 3.4.

3.1 Understanding Conflict Equivalence

Every reachable state of an automatonA carries anonblocking requirement(also known as anoncon-
flicting completion[11]) that needs to be satisfied by tests that are to be nonconflicting with A. For
example, ifA

s⇒ xA, then every testT that can executes needs to be able to continue with at least one
tracet ∈ Lω(xA), or T is conflicting withA. An automatonA is less conflicting than another automatonB,
if every nonblocking requirement associated withA also is a nonblocking requirement associated withB.

Example 4. Consider again automataA1 andB1 in Figure 2. They have the same marked languages.
Thus, if the initial statea0 of A1 is blocking in combination with some testT, then so is the initial
stateb0 of B1. But this is not the case whenA1 ‖T enters a state(a1,xT) after execution ofα . Statea1

requiresxT to be capable of performing at least one trace from the language Lω(a1) = (αα)∗βω +
(αα)∗αγω , whereas the statesb1 andb2, which can both be entered after executingα , require a trace
from the languageα∗βω andα∗γω , respectively. Both of these languages contain traces outside of the
languageLω(a1). AutomatonT1 in Figure 2 is in conflict withA1 but not withB1.

In general, it is not enough to compare only the marked languages of states reached by equal traces.
Not every nonblocking requirements is a marked language of some state of its automaton. The following
example shows one of the problems.

Example 5. Consider automataA2 andB2 in Figure 3. The marked language of the initial state ofA2

is Lω(a0) = αα+ω , while the marked languages of the two states inB2 that can be entered initially are
Lω(b0) = α∗ω andLω(b1) = α+ω . Although the marked languages are different, for any automatonT, if
B2‖T is nonblocking, thenA2‖T must also be nonblocking. IfT is to be nonconflicting in combination
with B2, sinceB2 may initially enter stateb1, there must be the possibility to continue with eventα .
However, after executingα , automatonB2 may again silently enter stateb1, which means thatα must
be possible again. This is enough to ensure thatA2 ‖T is nonblocking. Using this argument, it can be
shown thatA2 andB2 are conflict equivalent.

3.2 Less Conflicting Pairs

In order to compare two nondeterministic automata according to conflicts, it is necessary to identify sets
of states the two automata may reach under the same input. This is done using the well-knownsubset
construction[8]. To capture termination, the usual powerset state spaceis extended by a special stateω
entered only after termination.

Simon Ware and Robi Malik 39

Definition 4. Thedeterministic state spaceof automatonA= 〈Σ,Q,→,Q◦〉 is

Qdet
A = 2Q ∪{ω} , (5)

and thedeterministic transition functionδ det
A : Qdet× (Σ∪{ω})→ Qdet for A is defined as

δ det
A (X,σ) =

{
ω , if σ = ω andX

ω⇒;

{y∈ Q | X
σ⇒ y}, otherwise.

(6)

The deterministic transition functionδ det
A is extended to tracess∈ Σ∗ ∪ Σ∗ω in the standard way.

Note thatδ det
A (X,s) is defined for every traces∈ Σ∗∪Σ∗ω ; if none of the states inX accepts the traces,

this is indicated byδ det
A (X,s) = /0. This is also true for termination: ifω is enabled in some state inX,

thenδ det
A (X,ω) = ω , otherwiseδ det

A (X,ω) = /0.
In order to compare two automataA andB with respect to possible conflicts,pairs of state sets of the

subset construction ofA andB need to be considered. Therefore, the deterministic transition function is
also applied to pairsX = (XA,XB) of state setsXA ⊆ QA andXB ⊆ QB,

δ det
A,B(X,s) = δ det

A,B(XA,XB,s) = (δ det
A (XA,s),δ det

B (XB,s)) . (7)

To determine whetherA .conf B, it is necessary to check all statesxA ∈ QA against matching state
setsXB ⊆ QB and determine whether all possible conflicts ofxA are also present inXB. For example,
when automatonA2 in Figure 3 is in statea1, thenB2 may be inb0 or b1. In statea1, at least one of
the traces inα+ω needs to be enabled to avert blocking, and the same requirement to avert blocking is
seen in stateb1. When statea1 is entered with some testT, blocking occurs if none of the traces inα+ω
is enabled, and such a testT is also blocking when combined with a system that may be inb0 or b1.
Therefore,a1 is considered in the following asless conflicting(LC) than{b0,b1}.

It cannot always be determined directly whether a statexA ∈ QA is less conflicting than a state set
XB ⊆ QB. In some cases, it is necessary also to consider the deterministic successors ofxA and XB.
Therefore, the following definition considers pairs(XA,XB) of state sets.

Definition 5. Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata. The setLC(A,B)⊆Qdet

A ×
Qdet

B of less conflicting pairsfor A andB is inductively defined by

LC0(A,B) = {ω}×Qdet
B ∪ {(XA,XB) | XB ⊆ QB and there existsxB ∈ XB with Lω(xB) = /0} ; (8)

LCn+1(A,B) = {(XA,XB) | there existsxB ∈ XB such that for allt ∈ Σ∗, if xB
tω⇒ then there

existsr ⊑ tω such thatδ det
A,B(XA,XB, r) ∈ LC i(A,B) for somei ≤ n} ;

(9)

LC(A,B) =
⋃

n≥0

LCn(A,B) . (10)

Remark 1. If (XA,XB) /∈ LC(A,B), then according to (9), for every statexB ∈ XB, there existst ∈ Σ∗

such thatxB
tω⇒, andδ det(XA,XB, r) /∈ LC(A,B) for all prefixesr ⊑ tω .

The idea of Definition 5 is to classify a pair(XA,XB) as less conflicting, if the marked language
of XA is a nonconflicting completion[11] for the process with initial statesXB. That is, every test that
is nonconflicting in combination with each of the states inXB can terminate with at least one trace from
the marked language ofXA. Or conversely, every test that cannot terminate using any of the traces in the
marked language ofXA also is conflicting withXB (see Lemma 1 below).

40 A State-Based Characterisation of the Conflict Preorder

The first state setXA of a pair(XA,XB) is just used to represent alanguageof possible completions.
If state setsXA andYA have the same languages, then all pairs(XA,XB) and (YA,XB) have exactly the
same less conflicting status. For the second state setXB on the other hand, the complete nondeterministic
behaviour is relevant.

A pair (ω ,XB) is considered as “less conflicting” (8), since termination has already been achieved
in A. If XB contains a statexB such thatLω(xB) = /0, then(XA,XB) also is less conflicting (8), because con-
flict is guaranteed inXB. For other pairs(XA,XB), it must be checked whetherXB contains a requirement
to avert blocking matching that given by the language ofXA (9).
Example 6. Consider again automataA0 andB0 in Figure 1. It holds that({a0},{b0}) ∈ LC1(A0,B0).
There are three ways to terminate fromb0, by executingω or αβω or ααβω . All three traces are
possible ina0, each taking the pair({a0},{b0}) to the deterministic successor(ω ,ω) ∈ LC0(A0,B0).
This is enough to confirm that (9) is satisfied.

On the other hand,({a0},{b2}) /∈ LC1(A0,B0). From statea0, blocking occurs with a testT that

can only executeβω , but this test is nonblocking withb2. It holds thatb2
βω→, where traceβω has the

prefixesε , β , andβω , but δ det
A0,B0

({a0},{b2},ε) = ({a0},{b2}) /∈ LC0(A0,B0), δ det
A0,B0

({a0},{b2},β) =
(/0,{b4}) /∈ LC0(A0,B0), andδ det

A0,B0
({a0},{b2},βω) = (/0,ω) /∈ LC0(A0,B0). Therefore, (9) is not satis-

fied and({a0},{b2}) /∈ LC1(A0,B0). It can also be shown that({a0},{b2}) /∈ LC(A0,B0).
For alevel-1 less conflicting pair(XA,XB) ∈ LC1(A,B), if XB does not contain blocking states, then

there must exist a statexB ∈ XB such thatLω(xB)⊆ Lω(XA). This is not the case for every less conflicting
pair, as some nonblocking requirements are only implicitlycontained in the automaton. To show that
(XA,XB) is a less conflicting pair, it is enough to find a state inxB ∈ XB that can cover an initial segment
of Lω(XA), as long as a less conflicting pair of alower levelis reached afterwards.
Example 7. Consider again automataA2 andB2 in Figure 3. By definition,(ω ,ω) ∈ LC0(A2,B2), and
following from this,({a1},{b0,b1}) ∈ LC1(A2,B2), because the marked language ofa1 is α+ω , which
also is the marked language ofb1.

Now consider the pair({a0},{b0,b1}). Statea0 has the marked languageαα+ω , i.e., to avert block-
ing from a0, a test must be able to execute at least one of the traces inαα+ω . Although this language is
not directly associated with any state inB2, the nonblocking requirement is implicitly present in stateb1.
If blocking is to be averted from stateb1, eventα must be possible. After executingα , stateb0 is entered,
from where it is always possible to silently return to stateb1 with marked languageα+ω . Therefore, in
order to avert blocking from stateb1, it is necessary to executeα and afterwards be able to terminate
using one of the traces inα+ω . This amounts to the implicit nonblocking requirement to execute a trace
from αα+ω in stateb1.

Therefore({a0},{b0,b1}) /∈ LC1(A2,B2), but ({a0},{b0,b1}) ∈ LC2(A2,B2) according to (9): ev-
ery trace that leads to a terminal state from stateb1 has the prefixα , andδ det

A2,B2
({a0},{b0,b1},α) =

({a1},{b0,b1}) ∈ LC1(A2,B2).
As shown in the example, some nonblocking requirements haveto be constructed using a saturation

operation that combines two previously found nonblocking requirements. The leveln of a less conflicting
pair (XA,XB) ∈ LCn(A,B) represents the nesting depth of applications of this saturation operation.

The following two lemmas relate the state-based definition of less conflicting pairs to possible tests
and thus to the conflict preorder. A pair(XA,XB) is a less conflicting pair, if every testT such that
Lω(XA)∩Lω(T) = /0 also is conflicting withXB.
Lemma 1. Let A= 〈Σ,QA,→A,Q

◦
A〉, B= 〈Σ,QB,→B,Q

◦
B〉, andT = 〈Σ,QT ,→T ,Q

◦
T〉 be automata, and

let xT ∈QT be a (possibly unreachable) state. For every less conflicting pair(XA,XB)∈ LC(A,B), at least
one of the following conditions holds.

Simon Ware and Robi Malik 41

(i) XA = ω , or XA ⊆ QA and there existsxA ∈ XA such thatLω(xA,xT) 6= /0.

(ii) There exist statesxB ∈ XB, yB ∈ QB, andyT ∈ QT such that(xB,xT)⇒ (yB,yT) andLω(yB,yT) = /0.

(Here and in the following, notationLω(xA,xT) is abused to be a shorthand forLω((xA,xT)).)

Proof. As (XA,XB) is a less conflicting pair, it holds that(XA,XB) ∈ LCn(A,B) for somen ∈ N0. The
claim is shown by induction onn.

If (XA,XB) ∈ LC0(A,B) then by (8) it holds thatXA = ω , or XB ⊆ QB and there existsxB ∈ XB such
that Lω(xB) = /0. In the first case (i) holds, and in the second case (ii) holds as(xB,xT)

ε→ (xB,xT) and
Lω(xB,xT) = Lω(xB)∩Lω(xT) = /0.

Now assume the claim holds for alli ≤ n, i.e., for all (XA,XB) ∈ LC i(A,B), one of the conditions
(i) or (ii) holds, and consider(XA,XB) ∈ LCn+1(A,B). By (9), there existsxB ∈ XB such that for all

t ∈ Σ∗, if xB
tω⇒ then there exists a prefixr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈ LC i(A,B) for somei ≤ n. If

Lω(xB,xT) = /0, (ii) follows immediately as(xB,xT)
ε→ (xB,xT). Therefore assume thatLω(xB,xT) 6= /0,

i.e., there existst ∈ Σ∗ such that(xB,xT)
tω⇒. ThenxB

tω⇒, so there existsr ⊑ tω such thatδ det
A,B(XA,XB, r)∈

LC i(A,B) for somei ≤ n. As r ⊑ tω andxT
tω⇒, it also holds thatxT

r⇒ yT for someyT ∈ QT . Let
δ det

A,B(XA,XB, r) = (YA,YB). By inductive assumption, (i) or (ii) holds for(YA,YB) ∈ LC i(A,B) andyT .

(i) In this case, eitherYA = ω , orYA ⊆ QA and there existsyA ∈YA andu∈ Σ∗ such that(yA,yT)
uω⇒. If

YA = ω , thenδ det
A (XA, r) =YA = ω and according to Definition 4 there existsrA ∈ Σ∗ such thatr = rAω ,

and there exist statesxA ∈ XA andyA ∈ QA such thatxA
rA⇒ yA

ω⇒, i.e.,(xA,xT)
rAω
=⇒. If there existsyA ∈YA

andu∈ Σ∗ such that(yA,yT)
uω⇒, then sinceδ det

A (XA, r) =YA, there existsxA ∈ XA such thatxA
r⇒ yA, i.e.,

(xA,xT)
r⇒ (yA,yT)

uω⇒. In both cases, (i) holds for(XA,XB) andxT .
(ii) If there exists a stateyB ∈ YB such that(yB,yT) ⇒ (zB,zT) whereLω(zB,zT) = /0, then since

δ det
B (XB, r) = YB, there existsxB ∈ XB such thatxB

r⇒ yB, which implies(xB,xT)
r⇒ (yB,yT) ⇒ (zB,zT)

with Lω(zB,zT) = /0. Thus, (ii) holds for(XA,XB) andxT .

Conversely, if a pair of state sets isnot a less conflicting pair forA andB, then this pair gives rise to
a test automaton to show thatA is not less conflicting thanB. This test exhibits blocking behaviour in
combination withA but not withB.

Lemma 2. LetA= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata. For every pairX = (XA,XB) /∈

LC(A,B), there exists a deterministic automatonTX = 〈Σ,QT ,→T ,{x◦T}〉 such that both the following
conditions hold.

(i) For all statesxA ∈ XA, it holds thatLω(xA,x
◦
T) = /0.

(ii) For all statesxB ∈ XB, yB ∈ QB, yT ∈ QT such that(xB,x
◦
T)⇒ (yB,yT), it holds thatLω(yB,yT) 6= /0.

Proof. Construct the deterministic automatonTX = 〈Σ,QT ,→T ,{x◦T}〉 such that

L(TX) = {s∈ Σ∗∪Σ∗ω | δ det
A,B(X, r) /∈ LC(A,B) for all r ⊑ s} . (11)

This language is prefix-closed by construction and nonemptybecauseX /∈ LC(A,B). Therefore,TX is a
well-defined automaton.

(i) Let xA ∈ XA. If xA
tω⇒ for somet ∈ Σ∗, thenδ det

A,B(X, tω) = (ω ,YB) ∈ LC0(A,B) ⊆ LC(A,B) for

someYB ∈ Qdet
B by Definition 4 and 5. It follows from (11) thattω /∈ L(TX), and thus(xA,x◦T)

tω⇒ does
not hold. Sincet ∈ Σ∗ was chosen arbitrarily, it follows thatLω(xA,x

◦
T) = /0.

42 A State-Based Characterisation of the Conflict Preorder

(ii) Let xB ∈ XB, yB ∈ QB, yT ∈ QT , ands∈ Σ∗ such that(xB,x
◦
T)

s⇒ (yB,yT). Clearly s∈ L(TX),
and by (11) it follows thatδ det

A,B(X, r) /∈ LC(A,B) for all prefixesr ⊑ s. Let δ det
A,B(X,s) = Y. ThenY /∈

LC(A,B), so there exists a tracet ∈ Σ∗ such thatyB
tω⇒ and for allr ⊑ t it holds thatδ det

A,B(Y, r) /∈ LC(A,B)

(see Remark 1). ThusxB
s⇒ yB

tω⇒ and for all prefixesu⊑ stω , it holds thatδ det
A,B(X,u) /∈ LC(A,B). Then

stω ∈ L(TX) according to (11), and sinceTX is deterministic, it follows thatyT
tω⇒. Therefore,(yB,yT)

tω⇒,
i.e.,Lω(yB,yT) 6= /0.

3.3 Less Conflicting Pairs and Certain Conflicts

Less conflicting pairs can be used to characterise the set ofcertain conflictsof an automaton as defined
in 2.3. This shows the close link between the conflict preorder and the set of certain conflicts. If a
pair (/0,XB) is a less conflicting pair then, since termination is impossible from /0, conflict must be also
present inXB. In this case, every trace leading toXB must be a trace of certain conflicts. This observation
leads to the following alternative characterisation of theset of certain conflicts.

Theorem 3. The set of certain conflicts ofB= 〈Σ,Q,→,Q◦〉 can also be written as

Conf(B) = {s∈ Σ∗ | (/0,δ det
B (Q◦, r)) ∈ LC(O,B) for some prefixr ⊑ s} , (12)

whereO= 〈Σ, /0, /0, /0〉 stands for the empty automaton.

Proof. First lets∈ Σ∗ such that(/0,δ det
B (Q◦, r)) ∈ LC(O,B) for somer ⊑ s, and letT = 〈Σ,QT ,→T ,Q

◦
T〉

be an automaton such thatT
s⇒. It is to be shown thatB‖T is blocking. SinceT

s⇒ andr ⊑ s, it holds
that T

r⇒ xT for some statexT ∈ QT . Since(/0,δ det
B (Q◦, r)) ∈ LC(O,B), either (i) or (ii) in Lemma 1

holds. However, (i) is impossible as the first state set of thepair is empty, so (ii) must be true. Thus, there
exists a statex∈ δ det

B (Q◦, r) such that(x,xT)⇒ (y,yT) whereLω(y,yT) = /0. ThenB‖T is blocking as
B‖T

r⇒ (x,xT)⇒ (y,yT).
Conversely, lets∈ Σ∗ such that(/0,δ det

B (Q◦, r)) /∈ LC(O,B) for every prefixr ⊑ s. It is to be shown
thats∈NConf(B). Consider the deterministic automatonT such that

L(T) = {t ∈ Σ∗ | (/0,δ det
B (Q◦, r)) /∈ LC(O,B) for all r ⊑ t } . (13)

T is a well-defined automaton asL(T) is prefix-closed by construction. It remains to be shown that

B‖T is nonblocking. LetB‖T
t⇒ (x,xT). Thent ∈ L(T), and by definition ofT (13), it holds that

(/0,δ det
B (Q◦, t)) /∈ LC(O,B), and the same holds for all prefixes oft. Also x∈ δ det

B (Q◦, t), so there exists

a traceu∈ Σ∗ such thatx
uω⇒, and for every prefixr ⊑ uω , it holds thatδ det

O,B(/0,δ det
B (Q◦, t), r) /∈ LC(O,B)

(see Remark 1). By definition (13), it follows thattuω ∈ L(T), and sinceT is deterministic alsoxT
uω⇒.

Therefore,B‖T
t⇒ (x,xT)

uω⇒, i.e.,B‖T is nonblocking.

The result of Theorem 3 shows how less conflicting pairs generalise certain conflicts for the case
when two automata are compared, and in combination with the algorithm in Section 4, less conflicting
pairs lead to an alternative presentation of the algorithm [10] to compute the set of certain conflicts.

3.4 Testing the Conflict Preorder

Given the less conflicting pairs for two automataA andB, it is possible to determine whetherA.conf B.
AutomatonA is less conflicting thanB if every testT that is nonconflicting in combination withB also is

Simon Ware and Robi Malik 43

nonconflicting withA. To check this condition, it is enough to consider tracesB‖T
s⇒ (xB,xT), and check

whether termination is also possible for every statexA of A such thatA‖T
s⇒ (xA,xT). This amounts to

checking whether({xA},XB) ∈ LC(A,B) whenA
s⇒ xA andδ det

B (Q◦
B,s) = XB.

However, this condition does not apply to traces of certain conflicts. If s∈ Conf(B), then every
test T that can executes is in conflict with B. In this case,A can still be less conflicting thanB, no
matter whetherA can or cannot execute the traces and terminate afterwards. This observation leads to
the following result.

Theorem 4. Let A = 〈Σ,QA,→A,Q
◦
A〉 andB = 〈Σ,QB,→B,Q

◦
B〉 be two automata.A is less conflicting

thanB if and only if for all s∈NConf(B) and allxA ∈ QA such thatA
s⇒ xA it holds that({xA},XB) ∈

LC(A,B), whereδ det
B (Q◦

B,s) = XB.

Proof. First assume that for alls∈NConf(B) and allxA ∈QA such thatA
s⇒ xA it holds that({xA},XB)∈

LC(A,B), whereδ det
B (Q◦

B,s) = XB. Let T = 〈Σ,QT ,→T ,Q
◦
T〉 such thatB‖T is nonblocking, and assume

that A‖T
s⇒ (xA,xT). SinceB‖T is nonblocking andT

s⇒, it follows thats∈ NConf(B). Therefore
by assumption({xA},XB) ∈ LC(A,B), so (i) or (ii) in Lemma 1 must be true. However, (ii) cannot hold,
because for allxB ∈ XB = δ det

B (Q◦,s) it holds thatB‖T
s⇒ (xB,xT), and sinceB‖T is nonblocking, there

cannot exist any state(yB,yT) such that(xB,xT) ⇒ (yB,yT) andLω(yB,yT) = /0. Thus, (i) must be true,
and this means thatLω(xA,xT) 6= /0. SinceT ands such thatA‖T

s⇒ (xA,xT) were chosen arbitrarily, it
follows thatA.conf B.

Second assume that there existss∈NConf(B) andxA ∈ QA such thatA
s⇒ xA andX = ({xA},XB) /∈

LC(A,B), whereXB = δ det
B (Q◦

B,s). Let NB = 〈Σ,QN,→N,{x◦N}〉 be a deterministic recogniser of the lan-
guageNConf(B), and letTX = 〈Σ,QT ,→T ,{x◦T}〉 be the deterministic automaton that exists according
to Lemma 2. Sinces∈NConf(B), there exists a unique statexs∈QN such thatNB

s→ xs. Then construct
the automaton

T = 〈Σ,QN ∪̇QT ,→N ∪→T ∪{(xs,τ ,x◦T)},{x◦N}〉 . (14)

Clearly,A‖T
s⇒ (xA,xs)

τ→ (xA,x
◦
T), andLω(xA,x

◦
T) = /0 by Lemma 2 (i). Thus,A‖T is blocking.

On the other hand,B‖T is nonblocking. To see this, considerB‖T
t⇒ (yB,yT). If yT ∈ QN, then

it follows from the fact thatB‖NB is nonblocking [11] that there existsu ∈ Σ∗ such that(yB,yT)
uω⇒.

OtherwiseyT ∈ QT , which means thatt = suandT
s→ xs

τ→ x◦T
u→ yT . Also sinceB

t⇒ yB, it follows that
yB ∈ δ det

B (Q◦
B, t) = δ det(Q◦

B,su) = δ det
B (δ det

B (Q◦
B,s),u) = δ det

B (XB,u), i.e., there existsxB ∈ XB such that
xB

u⇒ yB. Thus(xB,x
◦
T)

u⇒ (yB,yT), and by Lemma 2 (ii), it holds thatLω(yB,yT) 6= /0.
Thus,A‖T is blocking andB‖T is nonblocking, soA.conf B cannot hold.

Example 8. Consider again automataA0 andB0 in Figure 1. Recall thatConf(B0) = αΣ∗ from Ex-
ample 3, so the only state inA0 that can be reached by a traces /∈ Conf(B0) is a0. Therefore, it is
enough to check the pair({a0},{b0}) according to Theorem 4, and it has been shown in Example 6 that
({a0},{b0}) ∈ LC1(A0,B0). It follows thatA0 .conf B0. This conclusion is made despite the fact that
({a0},{b2}) /∈ LC(A0,B0), because({a0},{b2}) is only reachable by tracesαn ∈Conf(B0), n≥ 2.

When using Theorem 4 to determine whether an automatonA is less conflicting than some blocking
automatonB, the set of certain conflicts ofB must be known first. This can be achieved using Theorem 3,
which makes it possible to classify state sets in the subset construction ofB as certain conflicts. If a state
setXB ⊆ QB is found to represent certain conflicts, i.e.,(/0,XB) ∈ LC(O,B) according to Theorem 3, then
(XA,XB)∈ LC(A,B) for every state setXA⊆QA. Successors reached only from such pairs are also certain
conflicts ofB and should not be considered when testing whetherA.conf B according to Theorem 4.

44 A State-Based Characterisation of the Conflict Preorder

LC(A1,B1) : LC(A2,B2) :

α

α

α

α

ω

ω
(ω ,ω)

(/0,ω)

β

β

γ

γ

β ,γ
({a0},{b0}) ({a1,a2},{b1,b2})

({a3},{b3})

({a1},{b1,b2}) ({a2},{b1,b2})

(/0,{b3})

α
ααα

ωω ωω

(ω ,ω)(/0,ω)

({a0},{b0,b1}) ({a1},{b0,b1}) ({a1,a2},{b0,b1})

({a2},{b0,b1})

Figure 4: Less conflicting pairs for the automata pairs in Figure 2 and 3.

Example 9. Consider again automataA1 andB1 in Figure 2. ComposingA1 with a deterministic version
of B1 results in the following four pairs of states inA1 and sets of states inB1 that should be tested
according to Theorem 4 to determine whetherA1 .conf B1:

({a0},{b0}) ({a1},{b1,b2}) ({a2},{b1,b2}) ({a3},{b3}) . (15)

All four pairs need to be considered asB1 is nonblocking and thusConf(B1) = /0.
The graph to the left in Figure 4 shows these four pairs and their deterministic successors. The four

pairs (15) are marked as initial states, and the arrows in thegraph represent the deterministic transition
function. Although the deterministic transition functionis defined for all state set pairs and events, arrows
to (/0, /0) are suppressed for clarity of presentation.

The following less conflicting pairs to compareA1 to B1 are determined from the graph:

(ω ,ω) ∈ LC0(A1,B1) ; (16)

({a0},{b0}), ({a1,a2},{b1,b2}), ({a3},{b3}) ∈ LC1(A1,B1) . (17)

For example,({a1,a2},{b1,b2}) ∈ LC1(A1,B1), because all the ways to reach termination from stateb1,
i.e., all traces inLω(b1) = α∗βω take the pair({a1,a2},{b1,b2}) to (ω ,ω) ∈ LC0(A1,B1). No further
pairs are found inLC2(A1,B1), so LC(A1,B1) consists only of the pairs listed above. For example,
({a1},{b1,b2}) /∈ LC2(A1,B1), because the tracesαβω ∈ Lω(b1) and γω ∈ Lω(b2) do not have any
prefixes that reach a pair inLC1(A1,B1).

As ({a1},{b1,b2}) /∈ LC(A1,B1), it follows from Theorem 4 thatA1 is not less conflicting thanB1.

Example 10. Consider again automataA2 and B2 in Figure 3. Again note thatConf(B2) = /0. By
composingA2 with a deterministic version ofB2, it becomes clear that the only pairs that need to be
tested to determine whetherA2 .conf B2 according to Theorem 4 are({a0},{b0,b1}) reached afterε ,
({a1},{b0,b1}) reached afterα+, and({a2},{b0,b1}) reached afterαα+.

The graph with these pairs and their deterministic successors is shown to the right in Figure 4, with
the three crucial pairs marked as initial. The following less conflicting pairs are discovered (see Exam-
ple 7):

(ω ,ω) ∈ LC0(A2,B2) ; (18)

({a1}, {b0,b1}), ({a1,a2},{b0,b1}), ({a2},{b0,b1}) ∈ LC1(A2,B2) ; (19)

({a0},{b0,b1}) ∈ LC2(A2,B2) . (20)

As the three crucial pairs are all inLC(A2,B2), it follows from Theorem 4 thatA2 .conf B2.

Simon Ware and Robi Malik 45

The result of Theorem 4 is related to the decision procedure for fair testing [15]. The fair testing
decision procedure starts by composing the automatonA with a determinised form ofB, which gives
rise to the same state set combinations that need to be considered as in Theorem 4. From this point
on, the two methods differ. The fair testing decision procedure annotates each state of the synchronous
product ofA and the determinised form ofB with automata representing the associated refusal trees,
and searches for matching automata (or more precisely, for matchingproductive subautomata) within
these annotations. The method based on less conflicting pairs avoids some of the resulting complexity by
performing the complete decision on the flat state space of the synchronous product of the determinised
forms ofA andB.

4 Algorithm to Compute Less Conflicting Pairs

This section proposes a method to effectively compute the less conflicting pairs for two given finite-state
automataA andB. This is done in a nested iteration. Assuming that the setLCn(A,B) is already known,
the setLCn+1(A,B) is computed in a secondary iteration based onmore conflicting triples.

Definition 6. Let A = 〈Σ,QA,→A,Q
◦
A〉 and B = 〈Σ,QB,→B,Q

◦
B〉 be automata. The setMCn(A,B) ⊆

Qdet
A ×Qdet

B ×QB of nth level more conflicting triplesfor A andB is defined inductively as follows.

MCn
0(A,B) = {(/0,ω ,xB) | xB ∈ QB} ; (21)

MCn
m+1(A,B) = {(XA,XB,xB) | (XA,XB) /∈ LCn(A,B) andxB ∈XB and there exists(YA,YB,yB)∈

MCn
m(A,B) andσ ∈ Σ such thatδ det

A,B(XA,XB,σ) = (YA,YB) andxB
σ⇒ yB } ;

(22)

MCn(A,B) =
⋃

m≥0

MCn
m(A,B) . (23)

For a pair(XA,XB) to be a less conflicting pair, according to Definition 5 there must be a statexB ∈XB

such that every trace that takesxB to termination inB has a prefix that leads to another less conflicting
pair. A triple (XA,XB,xB) is considered “more conflicting” if(XA,XB) is not yet known to be a less
conflicting pair, and the statexB ∈XB cannot be used to confirm the above property. Therefore, Lemma 5
shows that a triple(XA,XB,xB) is nth-level “more conflicting” if and only if the statexB ∈ XB can reach
termination without passing through a pair inLCn.

If (XA,XB,xB) is “more conflicting” for allxB ∈ XB, then the pair(XA,XB) cannot be a less conflicting
pair. Otherwise, if there exists at least one statexB ∈ XB such that(XA,XB,xB) is not “more conflicting”,
then(XA,XB) is added to set of less conflicting pairs in the next iteration. Theorem 6 below confirms the
correctness of this approach.

Lemma 5. Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata, letn∈N0 and(XA,XB,xB) ∈

Qdet
A ×Qdet

B ×QB. The following statements are equivalent.

(i) (XA,XB,xB) ∈ MCn(A,B);

(ii) There exists a traces∈ Σ∗ω ∪{ε} such thatδ det
A,B(XA,XB,s) = (/0,ω) andxB

s⇒, andδ det
A,B(XA,XB, r) /∈

LCn(A,B) for all prefixesr ⊑ s.

Proof. First let (XA,XB,xB) ∈ MCn(A,B), i.e., (XA,XB,xB) ∈ MCn
m(A,B) for somem∈ N0. It is shown

by induction onm that (ii) holds.
In the base case,m= 0, and by definition(XA,XB,xB) ∈ MCn

0(A,B) means that(XA,XB) = (/0,ω).
Then considers= ε , and noteδ det

A,B(XA,XB,ε) = (XA,XB) = (/0,ω) andxB
ε⇒. Clearlyr ⊑ ε impliesr = ε ,

andδ det
A,B(XA,XB,ε) = (/0,ω) /∈ LC(A,B)⊇ LCn(A,B) by Lemma 1.

46 A State-Based Characterisation of the Conflict Preorder

α
α

α
α

α

α

α

α
α

α
α

α

α

α
α

α
ω ωω ω

(ω ,ω ,bω)(/0,ω ,bω)

({a0},{b0,b1},b0) ({a1},{b0,b1},b0)

({a1,a2},{b0,b1},b0)

({a2},{b0,b1},b0)

({a0},{b0,b1},b1) ({a1},{b0,b1},b1) ({a1,a2},{b0,b1},b1)({a2},{b0,b1},b1)

Figure 5: Calculating more conflicting triples for automataA2 andB2 in Figure 3.

Now consider(XA,XB,xB) ∈ MCn
m+1(A,B). It follows from Definition 6 that(XA,XB) /∈ LCn(A,B)

andxB ∈XB, and there exists(YA,YB,yB)∈MCn
m(A,B) andσ ∈ Σ such thatδ det

A,B(XA,XB,σ)= (YA,YB) and

xB
σ⇒ yB. By inductive assumption, there exists a traces∈Σ∗ω∪{ε} such thatδ det

A,B(YA,YB,s)= (/0,ω) and

yB
s⇒, and for allr ⊑ s it holds thatδ det

A,B(YA,YB, r) /∈ LCn(A,B). Thenδ det
A,B(XA,XB,σs) = δ det

A,B(YA,YB,s) =

(/0,ω) andxB
σ⇒ yB

s⇒, and for allr ⊑ σs it holds thatδ det
A,B(XA,XB, r) /∈ LCn(A,B).

Conversely, lets∈ Σ∗ω ∪{ε} such that (ii) holds. This means thatδ det
A,B(XA,XB,s) = (/0,ω) andxB

s⇒,
and δ det

A,B(XA,XB, r) /∈ LCn(A,B) for all r ⊑ s. It is shown by induction onm= |s| that (XA,XB,xB) ∈
MCn

m(A,B).
In the base case,m= 0 ands= ε , it holds by definition that(XA,XB) = δ det

A,B(XA,XB,ε) = (/0,ω) ∈
MCn

0(A,B).
Now let s = σ t such that|t| = m, and δ det

A,B(XA,XB,s) = (/0,ω) and xB
s⇒, and δ det

A,B(XA,XB, r) /∈
LCn(A,B) for all prefixesr ⊑ s. Write δ det

A,B(XA,XB,σ) = (YA,YB) and xB
σ⇒ yB

t⇒. ThenyB
t⇒ and

δ det
A,B(YA,YB, t) = δ det

A,B(XA,XB,σ t) = δ det
A,B(XA,XB,s) = (/0,ω) andδ det

A,B(YA,YB, r) /∈ LCn(A,B) for all r ⊑ t.
Then(YA,YB,yB)∈MCn

m(A,B) by inductive assumption, and by Definition 6 it follows that(XA,XB,xB)∈
MCn

m+1(A,B).

Theorem 6. Let A= 〈Σ,QA,→A,Q
◦
A〉 andB= 〈Σ,QB,→B,Q

◦
B〉 be automata, and letn∈N0. Then

LCn+1(A,B) = {(XA,XB) ∈ Qdet
A ×Qdet

B | (XA,XB,xB) /∈ MCn(A,B) for somexB ∈ XB} . (24)

Proof. Let (XA,XB) ∈ LCn+1(A,B). Then by Definition 5, there existsxB ∈ XB such that for allt ∈ Σ∗

such thatxB
tω⇒, there existsr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈ LC i(A,B) for somei ≤ n. Equivalently,

this means that there does not exist a tracet ∈ Σ∗ such thatxB
tω⇒ and for all prefixesr ⊑ tω it holds that

δ det
A,B(XA,XB, r) /∈ LCn(A,B). Then(XA,XB,xB) /∈ MCn(A,B) because otherwise such a trace would exist

by Lemma 5.
Conversely, letxB ∈ XB such that(XA,XB,xB) /∈ MCn(A,B). To check the condition in Defini-

tion 5 (9), considert ∈ Σ∗ such thatxB
tω⇒. Then clearlyδ det

B (XB, tω) = ω . By Definition 4, it holds
that eitherδ det

A (XA, tω) = ω or δ det
A (XA, tω) = /0. If δ det

A (XA, tω) = ω , thenδ det
A,B(XA,XB, tω) = (ω ,ω) ∈

LC0(A,B). Otherwiseδ det
A (XA, tω) = /0 and thusδ det

A,B(XA,XB, tω) = (/0,ω), and by Lemma 5 there must
existr ⊑ tω such thatδ det

A,B(XA,XB, r) ∈ LCn(A,B) as otherwise(XA,XB,xB) ∈ MCn(A,B). In both cases,

δ det
A,B(XA,XB, r) ∈ LC i(A,B) for somer ⊑ tω andi ≤ n. Sincet ∈ Σ∗ with xB

tω⇒ was chosen arbitrarily, it

follows from Definition 5 (9) that(XA,XB) ∈ LCn+1(A,B).

Example 11. Figure 5 shows a graph representing the more conflicting triples to check whetherA2 .conf

B2 in Figure 3. The arrows in the graph represent the deterministic transition function in combination

Simon Ware and Robi Malik 47

with the transition relation ofB2. An arrow(XA,XB,xB)
σ→ (YA,YB,yB) indicates thatδ det

A2,B2
(XA,XB,σ) =

(YA,YB) andxB
σ⇒ yB.

In the first iteration to computeMC0(A2,B2), first the triple(/0,ω ,bω) is added toMC0
0(A2,B2).

Next, the triples({a0},{b0,b1},b0) and({a1},{b0,b1},b0) are added toMC0
1(A2,B2) as they can im-

mediately reach(/0,ω ,bω). Finally, ({a0},{b0,b1},b1) is also added toMC0
2(A2,B2) as it reaches

({a1},{b0,b1},b0) ∈ MC0
1(A2,B2). No further triples are found to be inMC0

3(A2,B2). Therefore,
({a1},{b0,b1},b1) /∈ MC0(A2,B2), so it follows from Theorem 6 that({a1},{b0,b1}) ∈ LC1(A2,B2),
and likewise({a1,a2},{b0,b1}), ({a2},{b0,b1}) ∈ LC1(A2,B2).

In the next iteration to computeMC1(A2,B2), note that({a1},{b0,b1},b0) /∈ MC1
1(A2,B2) because

({a1},{b0,b1}) ∈ LC1(A2,B2). Still, ({a0},{b0,b1},b0) ∈ MC1
1(A2,B2) because of the transition to

(/0,ω ,bω) ∈ MC1
0(A2,B2), but ({a0},{b0,b1},b1) /∈ MC1

2(A2,B2) because now({a1},{b0,b1},b0) /∈
MC1

1(A2,B2). Accordingly, the pair({a0},{b0,b1}) is added toLC2(A2,B2).
In a final iteration to computeMC2(A2,B2), only one more conflicting triple is found,(/0,ω ,bω) ∈

MC2
0(A2,B2). No further pairs are added inLC3(A2,B2). At this point, the iteration terminates, having

found exactly the four less conflicting pairs given in Example 10, (19) and (20).

To determine whether an automatonA is less conflicting than automatonB, it is first needed to
determine the set of certain conflicts ofB, and then to find all the state-set pairs forA andB that are
reachable from a pair like({xA},XB) associated with some trace that is not a certain conflict ofB. The
more conflicting triples can be constructed as they are discovered during the backwards search from the
terminal states.

The complexity of each iteration of the more conflicting triples computation is determined by the
number of arrows in the graph, which is bounded by|Σ| · |QB|2 ·2|QA| ·2|QB|, because the powerset transi-
tions are deterministic, which is not the case for the transitions ofB. Each iteration except the last adds
at least one less conflicting pair, so the number of iterations is bounded by 2|QA| ·2|QB|. The complexity
of this loop dominates all other tasks of the computation. Therefore, the worst-case time complexity to
determine whetherA.conf B using less conflicting pairs is

O(|Σ| · |QB|2 ·4|QA| ·4|QB|) = O(|Σ| · |QB|2 ·22|QA|+2|QB|) . (25)

This shows that the conflict preorder can be tested in linear exponential time, as it is the case for the fair
testing preorder. Yet, the complexity (25) is better than the time complexity of the decision procedure
for fair testing, which isO(|QA| · |QB| ·23|QA|+5|QB|) [15].

5 Conclusions

Less conflicting pairs provide a concrete state-based meansto characterise the extent by which one pro-
cess is or is not less conflicting than another. The characterisation generalises and includes previous
results about certain conflicts, and it gives rise to a directway to test the conflict preorder and the related
fair testing preorder by inspecting sets of reachable states. Based on the characterisation, an effective
algorithm is presented to test whether a finite-state automaton is less conflicting than another. The al-
gorithm, while still linear exponential, has better time complexity than the previously known decision
procedure for fair testing.

In the future, the authors would like to apply the theoretic results of this paper to compute abstrac-
tions and improve the performance of compositional model checking algorithms. The more thorough
understanding of the conflict preorder will make it possibleto better simplify processes with respect to
conflict equivalence and other related liveness properties.

48 A State-Based Characterisation of the Conflict Preorder

References

[1] Christel Baier & Joost-Pieter Katoen (2008):Principles of Model Checking. MIT Press.

[2] Ed Brinksma, Arend Rensink & Walter Vogler (1995):Fair Testing. In Insup Lee & Scott A.
Smolka, editors:Proc. 6th Int. Conf. Concurrency Theory, CONCUR ’95, LNCS 962, Springer,
Philadelphia, PA, USA, pp. 313–327.

[3] C. G. Cassandras & S. Lafortune (1999):Introduction to Discrete Event Systems. Kluwer.

[4] R. De Nicola & M. C. B. Hennessy (1984):Testing Equivalences for Processes. Theoretical Com-
put. Sci.34(1–2), pp. 83–133, doi:10.1016/0304-3975(84)90113-0.

[5] Hugo Flordal & Robi Malik (2009):Compositional Verification in Supervisory Control. SIAM J.
Control and Optimization48(3), pp. 1914–1938, doi:10.1137/070695526.

[6] R. J. van Glabbeek (2001):The Linear Time — Branching Time Spectrum I: The Semantics of
Concrete, Sequential Processes. In J. A. Bergstra, A. Ponse & S. A. Smolka, editors:Handbook of
Process Algebra, Elsevier, pp. 3–99.

[7] C. A. R. Hoare (1985):Communicating Sequential Processes. Prentice-Hall.

[8] John E. Hopcroft, Rajeev Motwani & Jeffrey D. Ullman (2001): Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley.

[9] Robi Malik (2004): On the Set of Certain Conflicts of a Given Language. In: Proc. 7th Int. Work-
shop on Discrete Event Systems, WODES ’04, Reims, France, pp. 277–282.

[10] Robi Malik (2010): The Language of Certain Conflicts of a Nondeterministic Process. Working
Paper 05/2010, Dept. of Computer Science, University of Waikato, Hamilton, New Zealand.

[11] Robi Malik, David Streader & Steve Reeves (2006):Conflicts and Fair Testing. Int. J. Found.
Comput. Sci.17(4), pp. 797–813.

[12] Robin Milner (1989): Communication and concurrency. Series in Computer Science, Prentice-
Hall.

[13] V. Natarajan & Rance Cleaveland (1995):Divergence and Fair Testing. In: Proc. 22nd Int. Collo-
quium on Automata, Languages, and Programming, ICALP ’95, pp. 648–659.

[14] Peter J. G. Ramadge & W. Murray Wonham (1989):The Control of Discrete Event Systems. Proc.
IEEE77(1), pp. 81–98.

[15] Arend Rensink & Walter Vogler (2007):Fair testing. Information and Computation205(2), pp.
125–198, doi:10.1016/j.ic.2006.06.002.

[16] Rong Su, Jan H. van Schuppen, Jacobus E. Rooda & Albert T.Hofkamp (2010):Nonconflict check
by using sequential automaton abstractions based on weak observation equivalence. Automatica
46(6), pp. 968–978, doi:10.1016/j.automatica.2010.02.025.

[17] Simon Ware & Robi Malik (2010):Compositional Nonblocking Verification Using Annotated Au-
tomata. In: Proc. 10th Int. Workshop on Discrete Event Systems, WODES ’10, Berlin, Germany,
pp. 374–379.

[18] K. C. Wong, J. G. Thistle, R. P. Malhame & H.-H. Hoang (2000): Supervisory Control of Dis-
tributed Systems: Conflict Resolution. Discrete Event Dyn. Syst.10, pp. 131–186.

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. 49–64, doi:10.4204/EPTCS.58.4

© C. Bodei, V.D. Dinh, & G.L. Ferrari
This work is licensed under the
Creative Commons Attribution License.

Predicting global usages of resources
endowed with local policies∗

Chiara Bodei, Viet Dung Dinh and Gian Luigi Ferrari
Dipartimento di Informatica, Università di Pisa, Italy

{chiara,dinh,giangi}@di.unipi.it

The effective usages of computational resources are a primary concern of up-to-date distributed appli-
cations. In this paper, we present a methodology to reason about resource usages (acquisition, release,
revision, ...), and therefore the proposed approach enables to predictbadusages of resources. Keep-
ing in mind the interplay between local and global information occurring in the application-resource
interactions, we model resources as entities with local policies and global properties governing the
overall interactions. Formally, our model takes the shape of an extension ofπ-calculus with primi-
tives to manage resources. We develop a Control Flow Analysis computing a static approximation of
process behaviour and therefore of the resource usages.

1 Introduction

Evolutionary programming paradigms for distributed systems changed the way computational resources
are integrated into applications. Resources are usually geographically distributed and have their own
states, costs and access mechanisms. Moreover, resources are not created nor destroyed by applications,
but directly acquired on-the-fly when needed from suitable resource rental services. Clearly, resource
acquisition is subject to availability and requires the agreement between client requirements and ser-
vice guarantees (Service Level Agreement – SLA). The dynamic acquisition of resources increases the
complexity of software since the capability of adapting behaviour strictly depends on resource availabil-
ity. Ubiquitous computing[1] and Cloud computing[8, 16, 2] provide illustrative examples of a new
generation of applications where resource awareness has been a major concern.

The design of suitable mechanisms to control the distributed acquisition and ownership of com-
putational resources is therefore a great challenge. Understanding the foundations of the distributed
management of resources could support state-of-the-art advances of programming language constructs,
algorithms and reasoning techniques for resource-aware programming. In the last few years, the problem
of providing the mathematical basis for the mechanisms thatsupport resource acquisition and usage has
been tackled by several authors (see e.g. [3, 7, 13, 11, 15], to cite only a few).

Here we consider a programming model where processes and resources are distinguished entities.
Resources are computational entities having their own life-cycle. Resources can range from compu-
tational infrastructures, storage and data services to special-purpose devices. Processes dynamically
acquire the required resources when available, but they cannot create any resource. This simple pro-
gramming model abstracts the features of several interesting distributed applications. As an example, let
us consider a cloud system offering computing resources. The available resources are the CPU units of a
given power and processes can only acquire the CPU time, whenavailable, to run some specialised code.
Similar considerations apply to storage services, where client processes can only acquire slots of the

∗Research supported by the Italian PRIN Project “SOFT”, FET Project “ASCENS” and Autonomous Region of Sardinia
Project “TESLA”.

50 Predicting global usages of resources endowed with local policies

available storage. In our programming model, the deployed resources can be dynamicallyreconfigured
to deal with resource upgrade, resource un-availability, security intrusion and failures. A distinguished
feature of our approach is that the reconfiguration steps updating the structure of the available resources
are not under the control of client processes.

In this paper, we introduce the formal basis of our programming model. Specifically, we introduce
a process calculus with explicit primitives for the distributed ownerships of resources. In our calculus,
resources are not statically granted to processes, but theyare dynamically acquired on-the-fly when they
are needed.

We start from theπ-calculus [14] and we extend it with primitives to representresources and the
operations to acquire and release resources on demand. Central to our approach is the identification of an
abstract notion of resource. In our model, resources arestatefulentities available in the network environ-
ment where processes live. Specifically, a resource is described through the declaration of its interaction
endpoint (the resource name), itslocal state and itsglobal properties. Global properties establish and
enforce the SLA to be satisfied by any interaction the resource engages with its client process. The global
interaction properties can be expressed by means of a suitable resource-aware logic in the style of [3], or
contract-based logic as in [10, 4]. The interplay between local and global information occurring in the
process-resource interactions motivates the adjectiveG-Localgiven to our extension of theπ-calculus.

Since we build over theπ-calculus, name-passing is the basic communication mechanism among
processes. Beyond exchanging channel names, processes canpass resource names as well. Resource
acquisition is instead based on a different abstraction. Inorder to acquire the ownership of a certain
resource, a process issues a suitable request. Such requestis routed in the network environment to the
resource. The resource is granted only if it is available. Inother words the process-resource interaction
paradigm adheres to thepublish-subscribemodel: resources act as publishers while processes act as
subscribers. Notice that processes issue their requests without being aware of the availability of the
resources. When they have completed their task on the acquired resource they release it and make it
available for new requests. The two-stage nature of the publish-subscribe paradigm relaxes the inter-
dependencies among computational components thus achieving a high degree of loose coupling among
processes and resources. In this sense our model also resembles tuple-based systems [12]. Consequently,
our model seems to be particularly suitable to manage distributed systems where the set of published
resources is subject to frequent changes and dynamic reconfigurations.

To summarise, our approach combines the basic features of the π-calculus (i.e. dynamic communi-
cation topology of processes via name passing) with the publish-subscribe paradigm for the distributed
acquisition of resources. This is our first contribution. The interplay between local and global views is
also one of the novel features of our proposal. A second contribution consists in the development of a
Control Flow Analysis(CFA) for our calculus. The analysis computes a safe approximation of resource
usages. Hence, it can be used to statically check whether or not the global properties of resources usages
are respected by process interactions. In particular, it helps detectingbad usagesof resources, due to
policy violations. This suggests where are sensible pointsin the code that need dynamic check in order
to avoid policy violations.
Related Work.The primitives for resource management make our approach easy to specify a wide range
of the resource behaviour of distributed systems such as Cloud Computing and Ubiquitous Computing.
We believe that our approach also leverages analysis technique such as CFA and behavioural types. A
simplified version of the G-Localπ-calculus has been presented in [6]. The work presented herediffers
in several ways from the previous one. The version of the calculus we considered in this paper is more
expressive of the one presented in [6] since here processes can pass resource names around. This feature
was not allowed in [6]. Also, the management of resource acquisition and release is much more powerful.

C. Bodei, V.D. Dinh, & G.L. Ferrari 51

P,P′ ∶∶= processes π ,π ′ ∶∶= action prefixes
0 empty process τ internal action∣ π .P prefix action ∣ x(w) free input∣ (νz) P restriction ∣ x̄w free output∣ P+P′ choice ∣ α(r) access action∣ P∥ P′ parallel composition ∣ rel(r) release action∣ (r,ϕ ,η){P} resource joint point∣ req(s){P} resource request point∣ !P replication

Figure 1: The syntax of G-Localπ-calculus.

In [3] an extension of theλ -calculus is proposed to statically verify resource usages. Our notion
of global usages is inspired by this work. Theπ-calculus dialect of [13] provides a general framework
for checking resource usages in distributed systems. In this approach private names are extended to
resources, i.e. names with a set of traces to define control over resources. Also resource request and
resource release are simulated through communicating private names and structural rules respectively.
This gives shared semantics of resources, i.e. several processes can have a concurrent access to resources
(by communicating private names). In our approach, when a process obtains a resource, it has an exclu-
sive access to it. Furthermore, resource entities can be dynamically reconfigured, while this is not the
case in [13].

In [11], resources form a monoid and the evolution of processes and resources happens in a SCCS
style. In our approach, resources are independent statefulentities equipped with their own global inter-
action usage policy. A dialect of theπ-calculus, where resources are abstractly represented vianames
and can be allocated or de-allocated has been introduced in [15]. In this approach reconfigurations steps
are internalized inside processes via the operations for allocating and de-allocating channels. A type
system capturing safe reconfigurations over channels has been introduced. In our approach resources
are more structured than channels and their reconfigurationsteps are not under the control of processes.
Finally, the work presented in [?] mainly focuses on specifying SLA by describing resources as suitable
constraints. Our approach can exploit constraints to express global resource usages as well.

2 The G-Localπ-Calculus

Syntax We consider the monadic version ofπ-calculus [14] extended with suitable primitives to de-
clare, access and dispose resources. The syntax is displayed in Fig. 1. Here,N is a set of channel names
(ranged over byx,y,z), R is a set of resource names (ranged over byr,s,t) andA is a set of actions
(ranged over byα ,β) for running over resources. We assume that these sets are pairwise disjoint. From
now on, for the sake of simplicity, we often omit the trailing0.

The input prefixx(w).P binds the namew (either a channel or a resource) within the processP, while
the output prefix ¯xw.P sends the namew along channelx and then continues asP. Note that resource
names can be communicated, however they cannot be used as private names and used as channels. As
usual, input prefixes and restrictions act as bindings. The meaning of the remaining operators is standard.
The notions of namesn(), free namesfn(), bound namesbn() and substitution{−/−} are defined as
expected.

Our extension introduces resource-aware constructs in theπ-calculus. The access prefixα(r)models

52 Predicting global usages of resources endowed with local policies

the invocation of the operationα ∈A over the resource bound to the variabler. Traces, denoted byη ,η ′ ∈A∗, are finite sequences of events. A usage policy is a set of traces. The release prefixrel(r) describes
the operation of releasing the ownership of the resources. In our programming model, resources are
viewed as stateful entities, equipped with policies constraining their usages. More precisely, a resource
is a triple(r,ϕ ,η), wherer ∈R is a resource name,ϕ ∈Φ is the associated policy andη ∈A∗ is a state (ε
denotes the empty state). Policies specify the required properties on resource usages. Policies are usually
defined by means of a resource-aware logic (see [3, 4, 9, 10]),while states keep track of the sequence of
actions performed on resources, by means of (an abstractionof) execution traces.

For instance, in [3], the policies are expressed in terms of automata over an infinite alphabet, where
automata steps correspond to actions on resources and final states indicate policy violations.

To cope with resource-awareness, we introduce two primitives managing resource boundaries: re-
source joint point(r,ϕ ,η){P} and resource request pointreq(r){P}. Intuitively, processPwhen plugged
inside the resource boundary(r,ϕ ,η){P} can fire actions acting over the resourcer. The stateη is
updated at each actionα(r) according to the required policyϕ . A resource request pointreq(r){P}
represents a process asking for the resourcer. Only if the request is fulfilled, i.e. the required resourceis
available, the process can enter the required resource boundary and can use the resourcer, provided that
the policy is satisfied. Processes of the form(r,ϕ ,η){0} represent available resources. These processes
are idle: they cannot perform any operation. In other words,resources can only react to requests.

Example 2.1 To illustrate the main features of the calculus, we considera small example, which de-
scribes a workshop with two hammers and one mallet. Tools aremodelled as resource entities: hammer
and mallet, with the policyϕh (ϕm, resp.) that one can only make hard hit (soft hit, resp.) whenusing
hammer (mallet, resp.). We model workers as a replicated process, whose instantiations take a hammer
or a mallet to do jobs, whose chain is described by Jobs. Job arrivals are modelled as sending/receiving
hammer and mallet on the channels x,y. Furthermore, we assume that there are two types of jobs, hard
jobs on the channel x and soft jobs on the channel y, which get done by hardhit and so f thit actions
respectively.

The initial configuration of the workshop is given below. Resources (hammer and mallet) have empty
traces. Note that we have two resources of the same name hammer, which corresponds to the number of
available hammers in the workshop. Intuitively, it means that only two jobs, which use hammers, can be
concurrently done. We have a sequence of four jobs describedby the process Jobs.

Tools∶∶= (hammer,ϕh,ε){0}∣(hammer,ϕh,ε){0}∣(mallet,ϕm,ε){0}
Workers∶∶= !x(s).req(s){hard hit(s)}∣!y(t).req(t){so f t hit(s)}

Jobs∶∶= x̄⟨hammer⟩.ȳ⟨mallet⟩.x̄⟨mallet⟩.x̄⟨hammer⟩.0
Workshop∶∶= Tools∣Workers∣Jobs

Operational semantics The operational semantics of our calculus is defined by the transition relation
given in Tab. 1. Labelsµ ,µ ′ for transitions areτ for silent actions,x(w) for free input, ¯xv for free output,
x̄(v) for bound output,α(r), α?r andα(r) (rel(r), rel?r andrel(r), resp.) for closed, open and faulty
access or release actions over resourcer. The effect of bound output is to extrude the sent name from the
initial scope to the external environment.

We assume a notion of structural congruence and we denote it by ≡. This includes the standard
laws of theπ-calculus, such as the monoidal laws for the parallel composition and the choice operator.
To simplify the definition of our Control Flow Analysis, we impose a discipline in the choice of fresh
names, and therefore to alpha-conversion. Indeed, the result of analysing a processP, must still hold

C. Bodei, V.D. Dinh, & G.L. Ferrari 53

(νx)(r,ϕ ,η){P} ≡ (r,ϕ ,η){(νx)P}(νx)req(r){P} ≡ req(r){(νx)P}(r2,ϕ2,η2){0} ∥ (r1,ϕ1,η1){P} ≡ (r1,ϕ1,η1){(r2,ϕ2,η2){0} ∥P}
Figure 2: Structural congruence.

for all its derivative processesQ, including all the processes obtained fromQ by alpha-conversion. In
particular, the CFA uses the names and the variables occurring inP. If they were changed by the dynamic
evolution, the analysis values would become a sort of dangling references, no more connected with the
actual values. To statically maintain the identity of values and variables, we partition all the names used
by a process into finitely many equivalence classes. We denote with ⌊n⌋ the equivalence class of the
namen, that is calledcanonical nameof n. Not to further overload our notation, we simply writen for⌊n⌋, when unambiguous. We further demand that two names can be alpha-renamed only when they have
the same canonical name.

In addition, we introduce specific laws for managing the resource-aware constructs, reported in
Fig. 2. If two processesP1 andP2 are equivalent, then alsoP1 andP2 when plugged inside the same
resource boundaries are. Resource request and resource joint points can be swapped with the restriction
boundary since restriction is not applied to resource namesbut only to channel names. The last law is
crucial for managing the discharge of resources. This law allows rearrangements of available resources,
e.g. an available resource is allowed to enter or escape within a resource boundary.

The rulesAct, Par, Res, Comm, Cong, Choice, OpenandCloseare the standardπ-calculus ones.
The ruleAct describes actions of processes, e.g. the silent action, free input and free output. Concretely,
x̄w.P sends the namew along the channelx and then behaves likeP, while x(w).P receives a name via
the channelx, to whichw is bound, and then behaves likeP. We only observe that our semantics is a late
one, e.g.w is actually bound to a value when a communication occurs. Finally, τ .P performs the silent
actionτ and then behaves likeP.

The rulePar expresses the parallel computation of processes, while therule Choice represents a
choice among alternatives. The ruleCommis used to communicate free names. The rulesResandOpen
are rules for restriction. The first ensures that an action ofP is also an action of(νz)P, provided that
the restricted namez is not in the action. In the case ofz in the action, the ruleOpentransforms a free
output action ¯xz into a bound output action ¯x(z), which basically expresses opening scope of a bound
name. The ruleClosedescribes communication of bound names, which also closes the scope of a bound
name in communication.

We are now ready to comment on the semantic rules corresponding to the treatment of resources. The
ruleActR models a process that tries to perform an actionα (rel, resp.) on the resourcer. This attempt is
seen as anopen action, denoted by the labelα?r (rel?r, resp.).

Intuitively, if the process is inside the scope ofr (see the ruleLocal1), and the action satisfies the
policy for r, then the attempt will be successful and the corresponding action will be denoted by the label
α(r) (see the rulePolicy1). If this is not the case, the process is stuck. Similarly, ifthe process tries to
release a resource with the actionrel.

We introduce the ruleCommR to model the communication of resource names between processes.
When a resourcer is available, then it can be acquired by a processP that enters the corresponding

resource boundary(r,ϕ ,η), as stated by the ruleAcquire.
Symmetrically, according to the ruleRelease, the processP can release an acquired resourcer and

update the state of its resources by appendingrel to η . In the resulting process, the processP escapes the

54 Predicting global usages of resources endowed with local policies

(Act) π .P πÐ→P π ≠ α(r),rel(r) (Cong) P1 ≡P′1 P′1 µÐ→P′2 P′2 ≡P2

P1
µÐ→P2

(Par) P1
µÐ→P′1

P1 ∥P2
µÐ→P′1 ∥P2

bn(µ)∩ fn(P2) = ∅ (Choice) P1
µÐ→P′1

P1+P2
µÐ→P′1

(Res) P
µÐ→P′

(νz)P µÐ→ (νz)P′ z/∈ n(µ) (Open) P
x̄yÐ→P′

(νy)P x̄(y)ÐÐ→P′
y≠ x

(Comm) P1
x̄yÐ→P′1 P2

x(z)ÐÐ→P′2
P1 ∥ P2

τÐ→P′1 ∥P′2{y/z}) (Close) P1
x(z)ÐÐ→P′1 P2

x̄(y)ÐÐ→P′2
P1 ∥ P2

τÐ→ (νy)(P′1 ∥P′2{y/z})

(ActR) α(r).P α?rÐÐ→P

rel(r).P rel?rÐÐ→P
(CommR) P1

x̄rÐ→P′1 P2
x(s)ÐÐ→P′2

P1 ∥ P2
τÐ→P′1 ∥P′2{r/s}

(Acquire) req(r){P} ∥ (r,ϕ ,η){0} τÐ→ (r,ϕ ,η){P}
(Release) P

rel?rÐÐ→P′
(r,ϕ ,η){P} rel(r)ÐÐÐ→ (r,ϕ ,η .rel){0} ∥P′

(Policy1) P
α?rÐÐ→P′ η .α ⊧ ϕ

(r,ϕ ,η){P} α(r)ÐÐ→ (r,ϕ ,η .α){P′} (Policy2) P
α?rÐÐ→P′ η .α /⊧ ϕ

(r,ϕ ,η){P} α(r)ÐÐ→ (r,ϕ ,η){0} ∥P′
(Local1) P

µÐ→P′
(r,ϕ ,η){P} µÐ→ (r,ϕ ,η){P′} r /∈ n(µ) (Local2) P

µÐ→P′
req(r){P} µÐ→ req(r){P′} r /∈ n(µ)

(Appear) P
τÐ→P∥ (r,ϕ ,η){0} (Disappear) (r,ϕ ,η){P} τÐ→ 0

Table 1: Operational Semantics.

resource boundary. Furthermore, the resource becomes available, i.e. it encloses the empty process0. If
the process is not inside the scope ofr (see the ruleLocal1), then, as in the case of accesses, the process
is stuck.

The rulesPolicy1,Policy2 check whether the execution of the actionα on the resourcer obeys the
policy ϕ , i.e. whether the updated stateη .α , obtained by appendingα to the current stateη , is consistent
w.r.t. ϕ . If the policy is obeyed, then the updated stateη .α is stored in the resource state according to the
rule Policy1 and the action becomesclosedand if not, then the resource is forcibly released according
to the rulePolicy2 and the action becomesfaulty. Notice thatPolicy2 is the rule managing the recovery
from bad access to resources.

The rulesLocal1 andLocal2 express that actions can bypass resource boundaries forr only if they
do not involve the resourcer.

Finally, the rulesAppearandDisappeardescribe the abstract behaviour of the resource manager
performing asynchronous resource reconfigurations. In other words, resource configuration is not under

C. Bodei, V.D. Dinh, & G.L. Ferrari 55

the control of processes. Resources are created and destroyed by external entities and processes can only
observe their presence/absence. This is formally represented by the rulesAppearandDisappear.

Example 2.2 To explain the operational semantics, we come back to our running example. The follow-
ing trace illustrates how the workshop works. At the beginning, Workers instantiates a new worker (a
resource request point) when receiving a hard job:

Workshop≡Workers∣Tools∣x(s).req(s){hard hit(s)}∣x̄⟨hammer⟩.Jobs′
τ→Workers∣Tools∣Jobs′ ∣req(hammer){hard hit(hammer)},

where Jobs′ ∶∶= ȳ⟨mallet⟩.x̄⟨mallet⟩.x̄⟨hammer⟩. At this point the new worker can take a hammer and
other jobs are also available (on the channel x,y). In the following, for the sake of simplicity, we only
show sub-processes that involve computation. Assume that the new worker takes a hammer, then we have
the following transition:

req(hammer){hard hit(hammer)}∣(hammer,ϕh,ε){0}
τ→ (hammer,ϕh,ε){hard hit(hammer)}

Now, three workers are similarly instantiated for doing allremaining jobs.

Workers∣Jobs′
τ→Workers∣req(mallet){so f t hit(mallet)}∣x̄⟨mallet⟩.x̄⟨hammer⟩
τ→Workers∣req(mallet){so f t hit(mallet)}∣req(mallet){hard hit(mallet).}∣x̄⟨hammer⟩
τ→Workers∣req(mallet){so f t hit(mallet)}∣req(mallet){hard hit(mallet)}∣req(hammer){hard hit(mallet)}
In the current setting, the new three workers make one request on the remaining hammer and two

requests on the mallet. Since we have only one mallet, one of two mallet requests could be done at a
time. Suppose the first job get done first, we have the following transition:

(hammer,ϕh,ε){hard hit(hammer)}
hard hit(hammer)ÐÐÐÐÐÐÐÐÐ→ (hammer,ϕh,hard hit){0}

Note that the hammer is available again. Similarly, the second job is done as follows:

req(mallet){so f t hit(mallet)}∣(mallet,ϕm,ε){0}
τ→ (mallet,ϕm,ε){so f t hit(mallet)}
so f t hit(mallet)ÐÐÐÐÐÐÐÐ→ (mallet,ϕm,so f t hit){0}

If the third job would be processed, then a forced release could occur. This happens because the worker
attempts to do a hard hit by using a mallet in doing the job, which violates the mallet policy.

req(mallet){hard hit(mallet).0}∣(mallet,ϕm,ε){0}
τ→ (mallet,ϕm,ε){hard hit(mallet)}
hard hit(hammer)ÐÐÐÐÐÐÐÐÐ→ (hammer,ϕh,ε){0}∣0

Finally, the similar trace is for the fourth job.

56 Predicting global usages of resources endowed with local policies

3 Control Flow Analysis

In this section, we present a CFA for our calculus, extendingthe one forπ-calculus [5]. The CFA
computes a safe over-approximation of all the possible communications of resource and channel names
on channels. Furthermore, it provides an over-approximation of all the possible usage traces on the
given resources and records the names of the resources that can be possibly not released, thus providing
information on possible bad usages. The analysis is performed under the perspective of processes. This
amounts to saying that the analysis tries to answer the following question: “Are the resources initially
granted sufficient to guarantee a correct usage?”. In other words, we assume that a certain fixed amounts
of resources is given and we do not consider any dynamic reconfiguration, possible in our calculus, due to
the rulesAppearandDisappear. The reconfiguration is up to the resource manager and is not addressed
by the CFA.

For the sake of simplicity, we provide the analysis for a subset of our calculus, in which processes
enclosed in the scopes of resources aresequential processes(ranged over byQ,Q′), as described by the
following syntax. Intuitively, a sequential process represents a single thread of execution in which one
or more resources can be used.

P,P′ ∶∶= as before in Fig.1 Q,Q′ ∶∶= sequential processes∣ (r,ϕ ,η){Q} 0∣ req(s){Q} ∣ (νz) Q∣ π .Q∣ Q+Q′∣ (r,ϕ ,η){Q}∣ (r,ϕ ,η){0}∣∣Q∣ req(s){Q}
This implies that one single point for releasing each resource occurs in each non deterministic branch

of a process. The extension to general parallel processes isimmediate. Nevertheless, it requires some
more complex technical machinery in order to check whether all the parallel branches synchronise among
them, before releasing the shared resource.

In order to facilitate our analysis, we further associate labelsχ ∈ L with resource boundaries as fol-
lows: (r,ϕ ,η){Q}χ andreq(r){Q}χ , in order to give a name to the sub-processes in the resource scopes.
Note that this annotation can be performed in a pre-processing step and does not affect the semantics of
the calculus. During the computation, resources are released and acquired by other processes. Statically,
sequences of labelsS∈ L∗ are used to record the sequences of sub-processes possibly entering the scope
of a resource. Furthermore, to make our analysis more informative, we enrich the execution tracesη
with special actions that record the fact that a resource hasbeen possibly:

• acquired by the process labelledχ : in(χ), with a successful request;

• released by the process labelledχ : out(χ) with a successful release;

• taken away from the process labelledχ : err out(χ) because of an access action onr that does not
satisfy the policy.

The new set of traces iŝA∗, whereÂ = A∪{in(χ),out(χ),err out(χ) ∣ χ ∈ L}. The corresponding
dynamic traces can be obtained by simply removing all the special actions.

The result of analysing a processP is a tuple(ρ ,κ ,Γ,Ψ) called estimateof P, that provides an
approximation of resource behavior. More precisely,ρ and κ offer an over-approximation of all the
possible values that the variables in the system may be boundto, and of the values that may flow on

C. Bodei, V.D. Dinh, & G.L. Ferrari 57

channels. The componentΓ provides a set of traces of actions on each resource. Finally, Ψ records a
set of the resources that can be possibly not released. Usingthis information, we can statically check
resource usages against the required policies.

To validate the correctness of a given estimate(ρ ,κ ,Γ,Ψ), we state a set of clauses that operate
upon judgments in the form(ρ ,κ ,Γ,Ψ) ⊧δ P, whereδ is a sequence of pairs[(r,ϕ ,η),S], recording the
resource scope nesting. This sequence is initially empty, denoted by[ε ,ε].

The analysis correctly captures the behavior ofP, i.e. the estimate(ρ ,κ ,Γ,Ψ) is valid for all the
derivativesP′ of P. In particular, the analysis keeps track of the following information:

• An approximationρ ∶ N ∪R→℘(N ∪R) of names bindings. Ifa∈ ρ(x) then the channel variable
x can assume the channel valuea. Similarly, if r ∈ ρ(s) then the resource variablescan assume the
resource valuer.

• An approximationκ ∶ N → ℘(N ∪R) of the values that can be sent on each channel. Ifb ∈ κ(a),
then the channel valueb can be output on the channela, while r ∈ κ(a), then the resource valuer
can be output on the channela.

• An approximationΓ ∶R→℘({[(ϕ ,η),S]∣ ϕ ∈Φ,S∈L∗,η ∈ Â∗}) of resource behavior. If[(ϕ ,η),S] ∈
Γ(r) thenη is one of the possible traces overr that is performed by a sequence of sub-processes,
whose labelsχ are juxtaposed inS.

• An approximationΨ ∈ ℘({δ ∣ δ is a sequence of pairs[(r,ϕ ,η),S]} of the resources which are
possible locked by processes in deadlock for trying to access or to release a resource not in their
scope. More precisely, ifδ is in Ψ and[(r,φ ,η),S] occurs inδ , then the resourcer can be possibly
acquired by a process that can be stuck and that therefore could not be able to release it.

The judgments of the CFA are given in Tab. 2, which are based onstructural induction of pro-
cesses. We use the following shorthands to simplify the treatment of the sequencesδ . The pred-
icate [(r,ϕ ,η),χ] E δ is used to check whether the pair[(r,ϕ ,η),χ] occurs inδ , i.e. whetherδ =
δ ′[r,(ϕ ,η),χ]δ ′′. With δ{[(r,ϕ ,η .α),S]/[(r,ϕ ,η),S]} we indicate that the pair[(r,ϕ ,η),S] is re-
placed by[(r,ϕ ,η .α),S] in the sequenceδ . With δ ∖ [(r,ϕ ,η),S] we indicate the sequence where the
occurrence[(r,ϕ ,η),S] has been removed, i.e. the sequenceδ ′δ ′′, if δ = δ ′[(r,φ ,η),S]δ ′′.

All the clauses dealing with a compound process check that the analysis also holds for its immediate
sub-processes. In particular, the analysis of !P and that of(νx)P are equal to the one ofP. This is an
obvious source of imprecision (in the sense of over-approximation). We comment on the main rules.
Besides the validation of the continuation processP, the rule for output, requires that the set of names
that can be communicated along each element ofρ(x) includes the names to whichy can evaluate.
Symmetrically, the rules for input demands that the set of names that can pass alongx is included in the
set of names to whichy can evaluate. Intuitively, the estimate components take into account the possible
dynamics of the process under consideration. The clauses’ checks mimic the semantic evolution, by
modelling the semantic preconditions and the consequencesof the possible synchronisations. In the
rule for input, e.g., CFA checks whether the precondition ofa synchronisation is satisfied, i.e. whether
there is a corresponding output possibly sending a value that can be received by the analysed input. The
conclusion imposes the additional requirements on the estimate components, necessary to give a valid
prediction of the analysed synchronisation action, mainlythat the variabley can be bound to that value.

To gain greater precision in the prediction of resource usages, in the second rule, the continuation
process is analysed, for all possible bindings of the resource variables. This explains why we have all
the other rules for resources, without resource variables.

58 Predicting global usages of resources endowed with local policies

(ρ ,κ ,Γ,Ψ) ⊧δ 0 iff true

(ρ ,κ ,Γ,Ψ) ⊧δ τ .P iff (ρ ,κ ,Γ,Ψ) ⊧δ P

(ρ ,κ ,Γ,Ψ) ⊧δ x̄w.P iff ∀a ∈ ρ(x) ∶ ρ(w) ⊆ κ(a) ∧ (ρ ,κ ,Γ,Ψ) ⊧δ P

(ρ ,κ ,Γ,Ψ) ⊧δ x(y).P iff ∀a ∈ ρ(x) ∶ κ(a)∩N ⊆ ρ(y) ∧ (ρ ,κ ,Γ,Ψ) ⊧δ P

(ρ ,κ ,Γ,Ψ) ⊧δ x(s).P iff ∀a ∈ ρ(x) ∶ κ(a)∩R ⊆ ρ(s)∧ ∀r ∈ ρ(s) ∶ (ρ ,κ ,Γ,Ψ) ⊧δ P{r/s}
(ρ ,κ ,Γ,Ψ) ⊧δ P1+P2 iff (ρ ,κ ,Γ,Ψ) ⊧δ P1∧(ρ ,κ ,Γ,Ψ) ⊧δ P2

(ρ ,κ ,Γ,Ψ) ⊧δ P1 ∥P2 iff (ρ ,κ ,Γ,Ψ) ⊧δ P1∧(ρ ,κ ,Γ,Ψ) ⊧δ P2

(ρ ,κ ,Γ,Ψ) ⊧δ (νx)P iff (ρ ,κ ,Γ,Ψ) ⊧δ P∧x ∈ ρ(x)
(ρ ,κ ,Γ,Ψ) ⊧δ !P iff (ρ ,κ ,Γ,Ψ) ⊧δ P

(ρ ,κ ,Γ,Ψ) ⊧δ (r,ϕ ,η){Q}S iff (ρ ,κ ,Γ,Ψ) ⊧δ[(r,ϕ ,η),S] Q

(ρ ,κ ,Γ,Ψ) ⊧δ (r,ϕ ,η){0}S iff [(ϕ ,η),S] ∈ Γ(r)
(ρ ,κ ,Γ,Ψ) ⊧δ req(r){Q}χ iff ∀[(ϕ ,η),S] ∈ Γ(r)∧χ /∈S∧⇒ (ρ ,κ ,Γ,Ψ) ⊧δ[(r,ϕ ,η .in(χ)),Sχ] Q

(ρ ,κ ,Γ,Ψ) ⊧δ α(r).Q iff [(r,ϕ ,η),Sχ] E δ ∧η .α ⊧ ϕ⇒ (ρ ,κ ,Γ,Ψ) ⊧δ ′ Q∧ [(r,ϕ ,η),Sχ] E δ ∧η .α /⊧ ϕ⇒ [(ϕ ,η .err out(χ)),Sχ] ∈ Γ(r)∧(ρ ,κ ,Γ,Ψ) ⊧δ ′′ Q∧ [(r,ϕ ,η),Sχ] /E δ ⇒ δ ∈Ψ
with δ ′ = δ{[(r,ϕ ,η .α),Sχ]/[(r,ϕ ,η),Sχ]}
andδ ′′ = δ ∖ [(r,ϕ ,η),Sχ]

(ρ ,κ ,Γ,Ψ) ⊧δ ω(r).Q iff [(r,ϕ ,η),Sχ] E δ ⇒ (ρ ,κ ,Γ,Ψ) ⊧δ∖[(r,ϕ ,η),Sχ] Q∧ [(ϕ ,η .ω .out(χ)),Sχ] ∈ Γ(r)∧ [(r,ϕ ,η),Sχ] /E δ ⇒ δ ∈Ψ

(ρ ,κ ,Γ,Ψ) ⊧δ (r,ϕ ,η){0}S∥Q iff (ρ ,κ ,Γ,Ψ) ⊧δ (r,ϕ ,η){0}S ∧ (ρ ,κ ,Γ,Ψ) ⊧δ Q

Table 2: CFA Equational Laws

C. Bodei, V.D. Dinh, & G.L. Ferrari 59

The rule forresource joint pointupdatesδ to record that the immediate sub-process is inside the
scope of the new resource and there it is analysed. If the process is empty, i.e. in the case the resource is
available, the trace of actions is recorded inΓ(r).

In the rule forresource request point, the analysis forQ is performed for every possible element[(ϕ ,η),S] from the componentΓ(r). This amounts to saying that the resourcer can be used starting
from any possible previous traceη . In order not to append the same trace more than once, we have the
condition thatS does not containχ . This prevents the process labelledχ to do it. Furthermore,η is
enriched by the special actionin(χ) that records the fact that the resourcer can be possibly acquired by
the process labelledχ .

According to the rule foraccess action, if the pair[(r,ϕ ,η),Sχ] occurs inδ (i.e. if we are inside the
resource scope ofr) and the updated historyη .α obeys the policyϕ , then the analysis result also holds for
the immediate subprocess andδ is updated inδ ′, by replacing[(r,ϕ ,η),Sχ] in δ with [(r,ϕ ,η .α),Sχ],
therefore recording the resource accesses tor possibly made by the sub-process labelled byχ .

In case the action possibly violates the policy associated with r (see the last conjunct), the process
labelledχ may loose the resourcer, as recorded by the trace inΓ, [(ϕ ,η .err out(χ)),Sχ], with the
special actionerr out(χ) appended toη . If instead, the action onr is not viable because the process is
not in the scope ofr, then all the resources in the contextδ could not be released, as recorded by the
componentΨ.

According to the rule forrelease, the trace of actionsη ′ = η .ω .out(χ) over r at χ is recorded in
Γ(r). Other sub-processes can access the resource starting fromthe traceη ′. Furthermore,[(r,ϕ ,η),S]
is removed fromδ and this reflects the fact that the processQcan exit its scope, once released the resource
r. Similarly, in the last rule,[(r,ϕ ,η),S] is removed fromδ and there the processQ is analysed. Again,
if the action onr is not possible because the process is not in the scope ofr, then all the resource in the
contextδ could not be released, as recorded by the componentΨ.

Example 3.1 We briefly interpret the results of CFA on our running example. A more complex of exem-
plification of CFA is given in the next example (see below). First we associate labels with the resource
boundaries as follows:

Tools∶∶= (hammer,ϕh,ε){0}χ1∣(hammer,ϕh,ε){0}χ2 ∣(mallet,ϕm,ε){0}χ3

Workers∶∶= !x(s).req(s){hard hit(s)}χh ∣!y(t).req(t){so f t hit(s)}χm

It is easy to see that there is one policy violation, which is captured by our CFA in the component
Γ(hammer), from which we can extract the following trace:(in(χm).err out(χm),χm). It occurs when
doing the third job the worker tries to hit hard using a mallet. We know that the channel x (y, resp.) is
supposed to send/receiving hard jobs (soft jobs, resp.), i.e. sending/receiving hammer (mallet, resp.) and
names s and t are supposed to be bound to hammer and mallet respectively. By checking the component
ρ andκ , we can explain the above violation too. On the one hand, we found thatρ(t) is a singleton set
of mallet, whileρ(s) is a set of hammer and mallet, which is a wrong bound of s. On theother hand,
similarly we found thatκ(x) contains only hammer, whileκ(y) contains hammer and mallet, which is
a wrong use of y.

Example 3.2 (Robot Scenario)We now consider a scenario, where a set of robots collaborateto reach
a certain goal, e.g. to move an item from one position to another. Without loss of generality, we assume
that robots operate in a space represented by a two-dimensional grid. We also assume that certain
positions over the grid are faulty, and therefore they cannot be crossed by robots. To move the item, a
robot needs to take it, and this is allowed provided that the item is co-located within the range of robot’s

60 Predicting global usages of resources endowed with local policies

p1

p0, item,R1

p2

p3,R2

p4

p5

p6

p7,R3

p8

Figure 3: The initial configuration of the robot scenario.

p1

p0

p2

p3

p4

p5

p7

e
w

N S
E

W

E

S

N

E

S

p3

p4

p5

p6

p7

p8

E

W
SN

N N

E

S

p6

p7

p8

N

S

Figure 4: The policy automata of the robots’ families:R1 (left), R2 (middle) andR3 (right).

sensor. Moreover, since robots have a small amount of energypower, they can perform just a few of steps
with the item. Finally, we consider three families of robots(R1,R2 and R3): each robot in the family has
different computational capabilities.

Fig. 3 gives a pictorial description of the initial configuration of the scenario. Positions are rep-
resented by circles and double circles. Double circles indicate faulty positions. The item is located at
position p0 and the goal is to move it into the position p8. There is just one faulty position p5, crossing
through which is considered a failure. Moreover, we consider a scenario where the three families of
robots R1,R2 and R3 are initially located at p0, p3 and p7, respectively (e.g. all the robots of the family
R1 are located at p0).

Sensors are modelled by clearly identified resources. The sensor jth of the ith robot family is specified
by the resource(snsi, j ,ϕ j ,ηi, j), where snsi, j is the name of the sensor,ηi, j is the abstract representation
of the sequence of moving actions which led the robot from itsinitial position to the current one and
initially equals toε , andϕ j is the global policy on demand. We assume that each family of robots has
its own policy described by the automata in Fig. 4. The policyconstraints robots’ movement in the grid.
We model the movement activities of robots with the following actions: E(sns), W(sns), S(sns), and
N(sns) that describe the movements on east (west, south and north, resp.). Basically, sensors are a sort
of private resources of the robots (each robot will never release its sensor) and the actions over sensors
update their states.

The item is modelled by a resource of the form(IT,ϕI ,η), whereη describes the sequence of actions
performed on the item, andϕI simply states that the item is never located at the position p5. Initially,
η is equal toε . The same set of actions adopted for robots’ movement (namely E(IT), W(IT), S(IT),
andN(IT)) are exploited to transport the item in the grid. Finally, each robot in the family i∈ {1,2,3}
is specified by a process Ri, j of the form: (snsi, j ,ϕ j ,ηi, j){Qi, j}χ , where Qi, j specifies the jth robot’s

C. Bodei, V.D. Dinh, & G.L. Ferrari 61

behaviour of the ith robot family andχ is a label associated with the resource boundary. For instance, in
the process Q2,3 (see below), the robot goes to north (without the item), thenit tries to grasp the item. If
this operation succeeds, the robot goes to east and releasesthe item there. Note that we use two monadic
actions to move the item and the sensor together. This could be done by using polyadic actions, which
however we leave for future work.

For the sake of simplicity, we do not model co-location of sensors and items. The specification of the
robot scenario is given below.

R1,1 ∶= (sns1,1,ϕ1, p0){req(IT){E(IT).E(sns1,1).S(IT).S(sns1,1).rel(IT)}χr11}χs11

R1,2 ∶= (sns1,2,ϕ1, p0){req(IT){E(IT).E(sns1,2).E(IT).E(sns1,2).rel(IT)}χr12}χs12

R1,3 ∶= (sns1,3,ϕ1, p0){req(IT){E(IT).E(sns1,3).rel(IT)}χr13}χs13

R2,1 ∶= (sns2,1,ϕ2, p3){req(IT){N(IT).N(sns2,1).E(IT).E(sns2,1).rel(IT)}χr21}χs21

R2,2 ∶= (sns2,2,ϕ2, p3){req(IT){N(IT).N(sns2,2).N(IT).N(sns2,2).rel(IT)}χr22}χs22

R2,3 ∶= (sns2,3,ϕ2, p3){NR(sns2,3).req(IT){E(IT).E(sns2,2).rel(IT)}χr23}χs23

R3,1 ∶= (sns3,1,ϕ3, p7){req(IT){S(IT).S(sns3,1).rel(IT)}χr31}χs31

R3,2 ∶= (sns3,2,ϕ3, p7){req(IT){N(IT).N(sns3,2).rel(IT)}χr32}χs32

System∶= (IT,ϕI , p0){0}χIT ∥R1,1 ∥R1,2 ∥R1,3 ∥R2,1 ∥R2,2 ∥R2,3 ∥R3,1 ∥R3,2

The following trace illustrates the behaviour of the specification of the scenario. At the beginning, the
item lies in the range of the family of robot R1. Then a reconfiguration step putting together the robot
R1,1 and the item is performed.

System∶= (IT,ϕI ,ε){0}∣∣(sns1,1,ϕ1,ε){Q1,1}∣∣R1,2∣∣R1,3∣∣R2,1∣∣R2,2∣∣R2,3∣∣R3,1∣∣R3,2 ≡(sns1,1,ϕ1,ε){(IT,ϕI ,ε){0}∣∣Q1,1}∣∣R1,2∣∣R1,3∣∣R2,1∣∣R2,2∣∣R2,3∣∣R3,1∣∣R3,2

As a result, robot R1,1 can grasp (acquire) the item; the pair item-robot moves on east, then on south.
Finally, the robot disposes the item at the position p3.

System
τÐ→ (sns1,1,ϕ1, p0){(IT,ϕI ,ε){Q1,1}∣∣R1,2∣∣R2,1∣∣R2,2∣∣R3,1∣∣R3,2

E(IT)ÐÐÐ→ E(sns1,1)ÐÐÐÐ→ S(IT)ÐÐÐ→ S(sns1,1)ÐÐÐÐ→ rel(IT)ÐÐÐ→(IT,ϕI ,ε .E.S.rel){0}∣∣(sns1,1,ϕ1,ε .E.S){0}∣∣R1,2∣∣R2,1∣∣R2,2∣∣R3,1∣∣R3,2

It is easy, given an initial location, to map a sequence of actions performed over the item into a
path on the grid, namely each action operated over the item (i.e.E(IT), W(IT), S(IT), andN(IT))
corresponds to a single moving step in the space grid. The release action, instead, is interpreted as a
sort of self-loop in the grid, i.e. the execution of the release action does not move the item. For example,
the sequenceε .E.S. in the above setting would model the path p0p4p3. From now on, by abuse of
notation, we will freely use paths in place of sequences of actions over the item/sensors.

Now, the item is in the range of the family of robots R2. Again by applying the reconfiguration step,
robot R2,1 is allowed to operate with the item. Then, it takes the item, makes a move on north, then on
east, and disposes the item at the position p7. For the sake of simplicity, in the following we show only
sub-processes of the system that involve computation:

(IT,ϕI , p0p4p3p3){0}∣∣R2,1
τÐ→ N(IT)ÐÐÐ→ N(sns2,1)ÐÐÐÐ→ E(IT)ÐÐÐ→ E(sns2,1)ÐÐÐÐ→ rel(IT)ÐÐÐ→(IT,ϕI , p0p4p3p3p4p7p7){0}∣∣(sns2,1,ϕ2, p3p4p7){0}

62 Predicting global usages of resources endowed with local policies

Note that a forced release would have occurred at this step ifthe item proceeded governed by the robot
R2,2. The reason is that R2,2 attempts to move the item into the position p5 and this results in releasing
the item at the position p4 by the rule Policy2. Now the robot R3,2 has the chance to take the item, and,
if the north move occurs, the goal is achieved and the task is completed.

(IT,ϕI , p0p4p3p3p4p7p7){0}∣∣R3,2
τÐ→ N(IT)ÐÐÐ→ N(sns3,2)ÐÐÐÐ→ rel(IT)ÐÐÐ→(IT,ϕI , p0p4p3p3p4p7p7p8p8){0}∣∣(sns3,2,ϕ3, p7p8){0}

Now we explain the features of the CFA. The CFA (in particulartheΓ component) computes the set
of possible traces of the trajectories in the grid reaching the goal, among which the ones below:

in(χr11).E.S.rel.out(χr11).in(χr21).N.E.rel.out(χr21).in(χr32).N.rel.out(χr32),χr11.χr21.χr32

in(χr11).E.E.rel.out(χr11).in(χr32).N.rel.out(χr32),χr12.χr32

in(χr13).E.rel.out(χr13).in(χr23).E.rel.out(χr23).in(χr32).N.rel.out(χr32),χr13.χr23.χr32

in(χr11).E.S.rel.out(χr11).in(χr22).N.err out(χr22).in(χr23).E.rel.out(χr23).in(χr32).N.rel.out(χr32),χr11.χr22.χr23.χr32

This set produces the following sequences of positions: p0p4p3p3p4p7p7p8p8, p0p4p7p7p8p8, and
also p0p4p4p7p7p8p8 and p0p4p3p3p4p4p7p7p8p8. Note that the last trace is faulty (e.g. traces contain
error actions errout, see below) since it contains a forced release errout(χ2,2) (see below). Conse-
quently, the system does not respect the policyϕIT for the item. In particular, there are three faulty traces
found by the analysis, which have the following common prefix:

in(χr11).E.S.rel.out(χr11).in(χr22).N.out err(χr22),χr11.χr22

The reason is that the robot R2,2 is forced to release the item when attempting to move it into the bad
position p5. Moreover, there is no faulty trace of actions over sensors,which means the system respects
the policiesϕi, j for sensors and therefore complies with it.

The analysis provides us with an approximation of the overall behaviour of the analysed process.
Moreover, it is proved to be correct: the analysis indeed respects the operational semantics of G-Local
π-calculus, as shown by the following subject reduction result.

Theorem 3.3 (Subject Reduction) (ρ ,κ ,Γ,ψ)⊧δ P and P
µÐ→∗ P′, then(ρ ,κ ,Γ,ψ) ⊧δ P′.

We can further prove that there always exists a a least choiceof (ρ ,κ ,Γ,ψ) that is acceptable for
CFA rules, and therefore it always exists a least estimate. This depends from the fact that the set of
analysis estimates constitutes a Moore family.

Theorem 3.4 (Existence of estimates) For all δ ,P, the set{(ρ ,κ ,Γ,ψ)∣(ρ ,κ ,Γ,ψ) ⊧δ P} is a Moore
family.

Moreover, our analysis offers information on the resource usage, included bad usages. The compo-
nentΓ is indeed in charge of recording all the possible usage traces on each resourcer. Actually, for each
r, traces are composed of pairs[(φ ,η),Sχ], whereS is made of labels of the processes that acquired the
resourcer andη records every action onr, included the special actionsin(χ), out(χ) anderr out(χ),
that indicate that the process labelledχ may acquire and release (or it may be forced to release) the
resource. This information offers a basis for studying dynamic properties, by suitably handling the safe
over-approximation the CFA introduces. We want to focus nowon the traces including special error
actions, that we callfaulty.

C. Bodei, V.D. Dinh, & G.L. Ferrari 63

Definition 3.5 A traceη ∈ Â∗ is faulty if it includes err out(χ) for someχ ∈ L.

In particular, on the one hand if the analysis contains faulty traces, then there is thepossibility of
policy violations, while if all the traces are not faulty, then we can prove that policy violations cannot
occur at run time, and therefore that the processes correctly use their resources.

We can show it formally, as follows.

Definition 3.6 The process P, where r is declared with policyφ , P complies withϕ for r, if and only if

P
µÐ→∗ P′ implies that there is no P′′ such that P′ α(r)→ P′′, where

µÐ→∗ is the reflexive and transitive closure

of
µÐ→.

Definition 3.7 A process P, where r is declared with policyϕ , is said torespectϕ for r, if and only if

∃(ρ ,κ ,Γ,Ψ).(ρ ,κ ,Γ,ψ)[ε ,ε]P and∀[(ϕ ,η),S] ∈ Γ(r).η is not faulty

Theorem 3.8 If P respectsthe policyϕ for r then, Pcomplies withϕ .

4 Concluding Remarks

Our work combines the name-passing of theπ-calculus with the publish-subscribe paradigm to cope
with resource-awareness. We have shown that this has lead toa name passing process calculus with
primitives for acquiring and releasing stateful resources. Our research program is to provide formal
mechanisms underlying the definition of a resource-aware programming model. The work reported in
this paper provides a first step in this direction. There is a number of ways in which our calculus could be
extended. In terms of calculus design, we assumed a monadic request primitive for managing resource
binding. This is a reasonable assumption for several cases.An interesting issue for future research is to
extend the calculus with a polyadic request primitives asking for a finite number of resources. In terms
of reasoning mechanisms, it would be interesting to exploitCFA techniques to develop methodologies
to analyze the code in order to avoid bad accesses to resources. Also it would be interesting to apply the
typing techniques (behavioral types) introduced in [3] to capture a notion of resource contract.

References

[1] G. Abowd & E.D. Mynatt (2000):Charting past, present, and future research in ubiquitous computing. ACM
Trans. Comput.-Hum. Interact.7, pp. 29–58, doi:10.1145/344949.344988.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz, A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin,
I. Stoica & M. Zaharia (2009):Above the Clouds: A Berkeley View of Cloud Computing. Technical Report
UCB/EECS-2009-28, EECS Department, University of California, Berkeley.

[3] M. Bartoletti, P. Degano, G.L. Ferrari & R. Zunino (2009): Local Policies for Resource Usage Analysis.
ACM Trans. Program. Lang. Syst.doi:10.1145/1552309.1552313.

[4] M. Bartoletti & R. Zunino (2010):A Calculus of Contracting Processes. In: Proc of LICS’10, IEEE Com-
puter Society, pp. 332–341, doi:10.1109/LICS.2010.25.

[5] C. Bodei, P. Degano, F. Nielson & H. Nielson (2001):Static Analysis for the Pi-Calculus with Applications
to Security. Inf. Comput.168(1), pp. 68–92, doi:10.1006/inco.2000.3020.

[6] C. Bodei, V. D. Dinh & G. L. Ferrari (2011):A G-Local π-calculus. In: Proc. of PLACES 2011,
doi:10.4204/EPTCS.38.6. Available athttp://places11.di.fc.ul.pt/proceedings.pdf/view.

64 Predicting global usages of resources endowed with local policies

[7] M. G. Buscemi & U. Montanari (2007):Cc-pi: A Constraint-based Language for Specifying ServiceLevel
Agreements. In: Proc of ESOP’07, LNCS 4421, Springer, pp. 18–32, doi:10.1007/978-3-540-71316-63.

[8] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg & I. Brandic (2009): Cloud computing and emerging IT
platforms: Vision, hype, and reality for delivering computing as the 5th utility. Future Gener. Comput. Syst.
25, pp. 599–616, doi:10.1016/j.future.2008.12.001.

[9] Luı́s Caires (2008):Spatial-behavioral types for concurrency and resource control in distributed systems.
Theor. Comput. Sci.402(2-3), pp. 120–141, doi:10.1016/j.tcs.2008.04.030.

[10] G. Castagna, N. Gesbert & L. Padovani (2009):A theory of Contracts for Web services. ACM Trans. Program.
Lang. Syst.31(5), doi:10.1007/978-3-642-00590-9.

[11] M. Collinson & D.J. Pym (2010):Algebra and Logic for Access Control. Formal Asp. Comput.22(3-4), pp.
483–484, doi:10.1007/s00165-010-0155-2.

[12] D. Gelernter (1985):Generative communication in Linda. ACM Trans. Program. Lang. Syst.7(1), pp. 80–
112, doi:10.1145/2363.2433.

[13] N. Kobayashi, K. Suenaga & L. Wischik (2006):Resource Usage Analysis for the Pi-Calculus. Logical
Methods in Computer Science2(3), pp. 298–312, doi:10.2168/LMCS-2(3:4)2006.

[14] D. Sangiorgi & D. Walker (2001):Pi-Calculus: A Theory of Mobile Processes. Cambridge University Press,
New York, NY, USA.

[15] E. D. Vries, A. Francalanza & M. Hennessy (2009):Uniqueness Typing for Resource Management in
Message-Passing Concurrency. In: Proc. of LINEARITY, EPTCS22, pp. 26–37, doi:10.4204/EPTCS.22.3.

[16] L. Youseff, M. Butrico & D. Da Silva (2008):Toward a Unified Ontology of Cloud Computing. In: Proc of
GCE ’08, pp. 1–10, doi:10.1109/GCE.2008.4738443.

M.R. Mousavi and A. Ravara: FOCLASA 2011
EPTCS 58, 2011, pp. 65–79, doi:10.4204/EPTCS.58.5

c© J. Proença, D. Clarke, E. de Vink & F. Arbab
This work is licensed under the
Creative Commons Attribution License.

Decoupled execution of synchronous coordination models via
behavioural automata

José Proença Dave Clarke
IBBT-DistriNet, KUL,

Leuven, Belgium
{jose.proenca,dave.clarke}@cs.kuleuven.be

Erik de Vink
TUE, Eindhoven,
The Netherlands

evink@win.tue.nl

Farhad Arbab
CWI, Amsterdam,
The Netherlands

farhad.arbab@cwi.nl

Synchronous coordination systems allow the exchange of data by logically indivisible actions involv-
ing all coordinated entities. This paper introduces behavioural automata, a logically synchronous
coordination model based on the Reo coordination language, which focuses on relevant aspects for
the concurrent evolution of these systems. We show how our automata model encodes the Reo and
Linda coordination models and how it introduces an explicit predicate that captures the concurrent
evolution, distinguishing local from global actions, and lifting the need of most synchronous models
to involve all entities at each coordination step, paving the way to more scalable implementations.

1 Introduction

Synchronous constructs in languages such as Reo [1] and Esterel [7] are useful for programming reactive
systems, though in general their realisations for coordinating distributed systems become problematic.
For example, it is not clear how to efficiently implement the high degrees of synchronisation expressed
by Reo in a distributed context. To remedy this situation, the GALS (globally asynchronous, locally
synchronous) model [9, 13] has been adopted, whereby local computation is synchronous and commu-
nication between different machines is asynchronous.

Our work contributes to the field of coordination, in particular to the Reo coordination language,
by incorporating the same ideas behind GALS in our approach to execute synchronisation models.
More specifically, we introduce behavioural automata to model synchronous coordination, inspired in
Reo [6]. Each step taken by an automata corresponds to a round of “synchronous” actions performed
by the coordination layer, where data flow atomically through a set of points of the coordinated system.
The main motivation behind behavioural automata is to describe the synchronous semantics underlying
Dreams [18], a prototype distributed framework briefly discussed in §5.2 that stands out by the decoupled
execution of Reo-like coordination models in a concurrent setting. Dreams improves the performance
and scalability of previous attempts to implement similar coordination models. Our automata model
captures exactly the features implemented by Dreams.

Behavioural automata assume certain properties over their labels, such as the existence of a compo-
sition operator, and use a predicate associated to each of its states that is needed to guide the composition
of automata. Different choices for the composition operator of labels and the predicates yield different
coordination semantics. We instantiate our automata with the semantics for Reo and Linda coordination
models, but other semantic models can also be captured by our automata [18]. We do not instantiate
behavioural automata with Esterel as the propagation of synchrony in this language differs from our
dataflow-driven approach [3].

Summarising, the main contributions of this paper are:

• a unified automata model that captures dataflow-oriented synchronous coordination models;

66 Decoupled execution of synchronous coordination models

• the introduction of concurrency predicates, increasing the expressiveness of the model when deal-
ing with composed automata; and

• the decoupling of execution of a distributed implementation based on our automata model, by
avoiding unnecessary synchronisation of actions whenever possible.

Each behavioural automaton has a concurrenty predicate that indicates, for each state, which labels of
other automata require synchronisation. When composing two automata, labels must be either composed
in a pairwise fashion, or they can be performed independently when the concurrency predicate does not
require synchronisation. We exploit how to use concurrency predicates to distinguish transitions of a
composed automaton that originate from all intermediate automata, or from only a subset of them. We
also illustrate how to obtain more complex notions of coordination by increasing the complexity of
concurrency predicates.

This paper is organised as follows. We introduce behavioural automata in §2. We then encode Reo
as behavioural automata in §3 and Linda as behavioural automata in §4. In §5 we motivate the need for
concurrency predicates, both from a theoretical and practical perspectives. We conclude in §6.

2 A stepwise coordination model

In this section we present an automata model, dubbed behavioural automata. This model represents our
view of a dataflow-driven coordination system, following the categorisation of Arbab [3]. Each transition
in an automaton represents the atomic execution of a number of actions by the coordination system.
We describe the behaviour of a system by the composition of the behaviour of its sub-systems running
concurrently, each with its own automaton. Furthermore, we allow the data values exchanged over the
coordination layer to influence the choice of how components communicate with each other as well. We
borrow ideas from the Tile model [14, 4], distinguishing evolution in time (execution of the coordination
system) and evolution in space (composition of coordination systems). Behavioural automata can be
built by composing more primitive behavioural automata, and each transition of an automaton denotes a
round of the coordination process, where data flow atomically through zero or more ports of the system.

We use behavioural automata to give semantics to Reo, based on the constraint automata model [6],
and to (distributed) Linda [15]. Each label of an automaton describes which ports should have dataflow,
and what data should be flowing in each port. We write P to denote a global set of ports, L[P] to denote
the set of all labels over the ports P ⊆ P, and D to denote a global set of data values. We associate a
predicate over labels to each state q of an automaton, referred to as C(q). These predicates are used to
guide the composition of behavioural automata.

Definition 1 (Behavioural automata) A behavioural automaton of a system over a set of ports P ⊆ P
is a labelled transition system 〈Q,L[P],→,C〉, where L[P] is the set of labels over P,→⊆ Q×L[P]×Q
is the transition relation, and C : Q→ 2L[P] is a predicate over states and labels, called concurrency
predicate, regarded as a function that maps states to sets of labels.

The key ingredients of behavioural automata are atomic steps and concurrency predicates. Each label
of a behavioural automaton has an associated atomic step, which captures aspects such as the ports that
have flow and the data flowing through them, and concurrency predicate describe, for each state, which
labels from other automata running concurrently require synchronisation.

Example 1 (Alternating coordinator) We present the alternating coordinator (AC) in Figure 1. It re-
ceives data from two data writers W1 and W2, and sends data to a reader R. The components W1, W2

J. Proença, D. Clarke, E. de Vink & F. Arbab 67

W1

W2

AC R

a

b

c
q0 q1(v)

C(q0) C(q1(v))
s1(v,w)

s2(v)

s1(v,w) = read w from a,
read v from b, and
write w to c

s2(v) = write v to c

Figure 1: Alternating coordinator (left), and its behavioural automaton (right).

and R are connected, respectively, to the ports a, b and c of the alternating coordinator. The alternat-
ing coordinator describes how data can flow between the components, and coordination is specified by
the behavioural automaton depicted on the right side of Figure 1. Each transition of this automaton
represents a possible step in time of the coordinator AC, describing how the ports a, b, and c can have
dataflow. Initially, the coordinator is in state q0, where the only possible action is reading a value w from
W1 through a and sending it to the reader R through c, while reading and buffering a value v sent by W2
through b. Note that if only one of the writers can produce data, the step cannot be taken, and the system
cannot evolve. In the next state, q1, the only possible step is to send the value v to the reader R, returning
to state q0. The arrows between states represent the transition relation →. In both states there is the
possibility of allowing the concurrent execution of other automata, provided that this execution does not
interfere with the current behaviour. The conditions of when other automata can execute concurrently
are captured by the concurrency predicate C, depicted by squiggly arrows () from each state.

2.1 Labels, atomic steps and concurrent predicates

Labels over a set of ports P are elements from a set L[P] with some properties required for composition,
which we will introduce later. Furthermore, a label ` ∈ L[P] can be restricted to a smaller set of ports
P′ ⊆ P, written `(P

′). We require each label `∈ L[P] to have an associated description of where and which
data flow in the connector, written as α(`), and captured by the notion of atomic step.

Definition 2 (Atomic step) An atomic step over the alphabet P⊆ P is a tuple 〈P,F, IP,OP,data〉 where:
F ⊆ P IP ⊆ F OP ⊆ F IP∩OP = /0 and data : (IP∪OP)→ D.

We write AS[P] to denote the set of all atomic steps over the ports in P. P is a set of ports in the scope
of the atomic step. The flow set F is the set of ports that synchronise, i.e., that have data flowing in the
same atomic step. The sets IP and OP represent the input and output ports of the atomic step that have
dataflow, and whose values are considered to be relevant when performing a step. Ports in F but not in
IP or OP are ports with dataflow, but whose data values are not relevant, that is, they are used only for
imposing synchronisation constraints. The data values that flow through the relevant ports are given by
the data function data. We distinguish IP and OP to capture data dependencies.

Concurrency predicates are used to compose behavioural automata. When composing two automata
a1 and a2, if a1 has ports P1, has the concurrency predicate C1, and is in state q1, then `

(P1)
2 ∈ C1(q1)

means that a2 can perform `2 only when composed with a transition from a1, otherwise a2 can perform
`2 without requiring a1 to perform a transition.1 When clear from context, we omit the restriction and
write `2 ∈C1(q1) instead of `(P1)

2 ∈C1(q1). We give a possible definition for concurrency predicates based

1We present a variation of the original definition of concurrency predicates [18] to make the decision of belonging to a
concurrent predicate more local.

68 Decoupled execution of synchronous coordination models

solely on the set of known ports.2 Given a connector with known ports P0, the concurrency predicate of
every state is given by the predicate

cp(P0) = {` | α(`) = 〈P,F, IP,OP,data〉 ,P0∩F 6= /0} . (1)

Example 2 We define the atomic steps and concurrency predicates from Example 1 as follows.
α(s1(v,w)) = 〈P,abc,ab,c,{a,b,c 7→ w,v,w}〉 C(q1(v)) = cp(P)
α(s2(v)) = 〈P, c, /0,c,{c 7→ v}〉 C(q0) = cp(P)

For simplicity, we write a1 . . .an instead of {a1, . . . ,an} when the intended notion of set is clear from
the context. The alphabet P is {a,b,c}, and the concurrency predicates allow only steps where none of
the known ports has flow.

2.2 Composition of behavioural automata

To compose behavioural automata we require labels to be elements of a partial monoid 〈L,⊗〉, that is, (1)
there must be a commutative operator⊗ : L2 ⇀ L for labels, and (2) the composition of two labels can be
undefined, meaning that they are incompatible. For technical convenience, we require⊗ to be associative
and to have an identity element. The atomic step 〈P,F, IP,OP,data〉 of a composed label `1⊗ `2 must
obey the following conditions, where, for every label `1 or `2, α(`i) = 〈Pi,Fi, IPi,OPi,datai〉.

P ⊆ P1∪P2 IP ⊆ (IP1∪ IP2)\(OP1∪OP2) data1_ data2
F ⊆ F1∪F2 OP ⊆ OP1∪OP2 data = data1 ∪ data2

The atomic step of a label ` is represented by α(`). The notation m1_m2 represents that the values
of the common domain of mappings m1 and m2 match. The requirements on the sets IP and OP reflect
that when composing two atomic steps, the input ports that have an associated output port are no longer
treated as input ports (since the dependencies have been met), and the output ports are combined. The
intuition behind the removal of input ports that match an output port is the preservation of the semantics
of Reo: multiple connections to an output port replicate data, but multiple connections to input data
require the merging of data from a single source.

We now describe the composition of behavioural automata based on the operator ⊗ and on concur-
rency predicates. This composition mimics the composition of existing Reo models [6, 11, 8].
Definition 3 (Product of behavioural automata) The product of two behavioural automata b1 = 〈Q1,
L[P1],→1,C1〉 and b2 = 〈Q2,L[P2],→2,C2〉, denoted by b1 ./ b2, is the behavioural automaton 〈Q1×
Q2,L[P1∪P2],→,C〉, where→ and C are defined as follows:

→ = {
〈
(p,q), `,(p′,q′)

〉
| p `1−→1 p′,q `2−→2 q′, `= `1⊗ `2, ` 6=⊥} ∪ (2)

{
〈
(p,q), `,(p′,q)

〉
| p `−→1 p′, `(P2) /∈ C2(q)} ∪ {

〈
(p,q), `,(p,q′)

〉
| q `−→2 q′, `(P1) /∈ C1(p)} (3)

C(p,q) = C1(p)∪C2(q) for p ∈ Q1,q ∈ Q2. (4)

Case (3) covers the situation where one of the behavioural automata performs a step admitted by the
concurrency predicate of the other, and case (4) defines the composition of two concurrency predicates.

In practice, our framework based on behavioural automata, briefly described in §5.2, uses a symbolic
representation for data values assuming that variables can be instantiated after selecting the transition.
This suggests the use of a late-semantics for data-dependencies. Our approach to compose labels resem-
bles Milner’s synchronous product in SCCS [17], with the main difference that the product of behavioural
automata do not require the all labels to be synchronised. The product of labels from two behavioural
automata can be undefined, and labels can avoid synchronisation when the concurrency predicate holds.

2Other semantic models may require more complex concurrency predicates. For example, the concurrency predicates for
the Reo automata model [8] depend on the current state (Section 3.6.2 of [18]).

J. Proença, D. Clarke, E. de Vink & F. Arbab 69

empty

full(v)

full(w)

cp(a,a′)

cp(a,a′)
cp(a,a′)

s3(v)

s3(w)

s4(v)

s4(w)

s3(w)s3(v)

s3(v)

s3(w)

where:
α(s3(v)) = 〈aa′,a′,a′, /0,{a′ 7→ v}〉
α(s4(v)) = 〈aa′,a, /0,a,{a 7→ v}〉

Figure 2: Behavioural automaton of the lossy-FIFO connector.

LF
a′ a

./ AC

a

b

c
= LF ./ AC

a′

b

c

Figure 3: The sink and source ports of LF, AC, and their composition.

2.3 Example: lossy alternator

Recall the behavioural automaton AC of the alternating coordinator, illustrated in Figure 1. Data is
received always via ports a and b simultaneously, and sent via port c, alternating the values received
from a and b. We now imagine the following scenario: the data on a becomes available always at a
much faster rate than data on b. To adapt our alternating coordinator to this new scenario, we introduce
a lossy-FIFO connector LF [1] and compose it with the alternating coordinator, yielding LF ./ AC.

Recall the definition of cp : P→ L[P] given by Equation (1). The behavioural automaton for the
lossy-FIFO connector is depicted in Figure 2, and its atomic steps range over the ports {a,a′}, where
a′ is an input port and a is an output port. We depict the interface of both of these connectors on left
hand side of Figure 3. After combining the behavioural automata of the two connectors, they become
connected via their shared port a. The new variation of the alternating coordinator can then be connected
to data producers and consumers by using the ports a′, b and c, as depicted at the right hand side of
Figure 3.

Intuitively, the lossy-FIFO connector receives data a′ and buffers its value before sending it through a.
When the buffer is full data received from a′ replaces the content of the buffer. The connector
resulting from the composition LF ./ AC is formalised in Table 1 and in Figure 4. The flow sets of the
labels s1(v,w), s2(v), s3(v) and s4(v) are, respectively, abc, c, a′, and a′a, and the set of known ports
is P = {a′,a,b,c}. Let CLF and CAC be the concurrency predicates of LF and AC. The concurrency
predicate CLF./AC for LF ./ AC results from the union of the predicates of the states of each behavioural
automaton, and corresponds precisely to the concurrency predicate that maps each state to cp(a′,a,b,c).
The name of each state in LF ./ AC is obtained by pairing names of a state from LF and a state from AC.
Some states and transitions are coloured in grey with their labels omitted to avoid cluttering the diagram.

From the diagram it is clear that some transitions originate only from the LF or the AC connector,
while others result from the composition via the operator ⊗. The transitions s2(v) and s3(w) can be per-

70 Decoupled execution of synchronous coordination models

⊗ s1(u,v) s2(w)

s3(y) ⊥ 〈P,a′c,a′,c,
{a′,c 7→ y,w}〉

s4(z) ⊥ (for z 6= v) ⊥
s4(v)

〈P,abc,ab,c,
{a,b,c 7→ v,u,v}〉 ⊥

LF CLF(empty) CLF(full(v′))

s1(v,w) true true
s2(v) false false

AC CAC(q0) CAC(q1(v′))

s3(v) false false
s4(v) true true

Table 1: Atomic steps of the composition of labels from LF and AC (left), and verification of the concur-
rency predicate for each label (right).

empty,q0 empty,q1(w)

full(v),q0 full(v),q1(w)

cp(a′,a,b,c) cp(a′,a,b,c)

cp(a′,a,b,c) cp(a′,a,b,c)

full(v′),q0 full(v′),q1(w)

s3(v)

s3(v)

s1(w
,v)⊗

s4(v
)

s2(w)

s2(w
)⊗ s3(v

) s3(v)

s3(v)

s2(w)

s2(w)⊗ s3(v)

Figure 4: Behavioural automaton for the composition of LF and AC.

formed simultaneously or interleaved; simultaneously because s2(v)⊗ s3(w) is defined, and interleaved
because CLF never contains s2(v) and CAC never contains s3(w). The possible execution scenarios of
these atomic steps follow our intuition that steps ‘approved’ by concurrency predicates can be performed
independently. The steps s1(u,v) and s4(w) can be taken only when composed.

2.4 Locality

We introduce the notion of locality as a property of behavioural automata that guarantees the absence
of certain labels in the concurrency predicates of independent behavioural automata, that is, in automata
without shared ports.

Definition 4 (Locality of behavioural automata) A behavioural automaton b = 〈Q,L[P],→,C〉 obeys
the locality property if, for any port set P′ such that P∩P′ = /0, ∀` ∈ L[P′] · ∀q ∈ Q · `(P) /∈ C(q).

Any two behavioural automata with disjoint port sets that obey the locality property can therefore
evolve concurrently in an interleaved fashion. Let b = b1 ./ b2 be a behavioural automaton and ` a label
from b1. We say ` is a local step of b if (q1,q2)

`−→ (q′1,q
′
2) is a transition of b and either q1

`−→1 q′1,

q2 = q′2, and ` ∈ C2(q2); or q2
`−→2 q′2, q1 = q′1, and ` ∈ C1(q1). In the behavioural automaton exemplified

in Figure 4, the local steps are exactly the transitions labelled by the steps s2(w) and s3(v).

J. Proença, D. Clarke, E. de Vink & F. Arbab 71

Proposition 1 Let b = b1 ./ b2 ./ b3 be a behavioural automaton where bi = 〈Qi,L[Pi],→i,Ci〉, for i ∈
1..3, and assume the locality property from Definition 4 holds for b1, b2 and b3. Suppose P1 ∩P3 = /0.
Then, for any step `

(P1)
1 ∈ L[P1] performed by b1 and q2 ∈Q2, if `(P2)

1 /∈ C2(q2) then `1 is a local step of b.

Proof. Observe that ./ is associative, up to the state names, because the composition of labels ⊗ is
associative. From P1∩P3 = /0, `1 ∈ L[P1], and from the locality property in Definition 4 we conclude that
∀q ∈ Q3 · `(P3)

1 /∈ C3(q). Therefore, for any state q3 ∈ Q3 and for a state q2 ∈ Q2 such that `(P2)
1 /∈ C2(q2),

we have that `(P2)
1 /∈C2(q2)∪C3(q3). We conclude that `(P2∪P3)

1 /∈C′, where C′ is the concurrency predicate
of b2 ./ b3, hence a local step of b. 2

If the locality property holds for each behavioural automata bi in a composed system b = b1 ./ · · · ./
bn, then, using Proposition 1, we can infer wether atomic steps from bi are local steps of b based only on
the concurrency predicates of its neighbour automata, i.e., the automata that share ports with bi.

2.5 Concrete behavioural automata

A behavioural automaton is an abstraction of concrete coordination models that focuses on aspects rel-
evant to the execution of the coordination model. As we will argue, Reo and Linda can be cast in our
framework of behavioural automata. Therefore, both Reo and Linda coordination models can be seen as
specific instances of the stepwise model described above. For a concrete coordination model to fit into
the stepwise model, we need to define: (1) labels in the concrete model; (2) the encoding α of labels into
atomic steps; (3) composition of labels; and (4) concurrency predicates.

We start by encoding the constraint automata semantics of Reo as behavioural automata. Later,
because of its relevance in the coordination community as one of the first coordination languages, we
also encode Linda as a behavioural automaton. Other coordination models have also been encoded as
behavioural automata in Proença’s Ph.D. thesis [18].

3 Encoding Reo

Reo [1, 2] is presented as a channel-based coordination language wherein component connectors are
compositionally built out of an open set of primitive connectors, also called primitives. Channels are
primitives with two ends. Existing tools for Reo include an editor, an animation generator, model check-
ers, editors of Reo-specific automata, QoS modelling and analysis tools, and a code generator [5, 16].

The behaviour of each primitive depends upon its current state.3 The semantics of a connector is
described as a collection of possible steps for each state, and we call the change of state of the connector
triggered by one of these steps a round. At each round some of the ends of a connector are synchronised,
i.e., only certain combinations of synchronous dataflow through its ends are possible. Dataflow on a
primitive’s end occurs when a single datum is passed through that end. Within any round dataflow may
occur on some number of ends. Communication with a primitive connector occurs through its ports,
called ends. Primitives consume data through their source ends, and produce data through their sink
ends. Connectors are formed by plugging the ends of primitives together in a one-to-one fashion to form
nodes. A node is a logical place consisting of a sink end, a source end, or both a sink and a source end.4

We now give an informal description of some of the most commonly used Reo primitives. Note
that, for all of these primitives, no dataflow is one of the behavioural possibilities. The Sync channel

3Note that most Reo primitives presented here have a single state.
4Generalised nodes with multiple sink and source ends can be defined by combining binary mergers and replicators [6, 11].

72 Decoupled execution of synchronous coordination models

() sends data synchronously from its source to its sink end. The LossySync channel ()
differs from the Sync channel only because it can non-deterministically lose data received from its source
port. The SyncDrain () has two source ends, and requires both ends to have dataflow syn-
chronously, or no dataflow is possible. The FIFO1 channel () has two possible states: empty or
full. When empty, it can receive a data item from its source end, changing its state to full. When full,
it can only send the data item received previously, changing its state back to empty. Finally, a replicator
() replicates data synchronously to all of its sink ends, while a merger () copies data
atomically from exactly one of its sink ends to its source end.
Example 3 The connector on the right is an exclusive router built by compos-
ing two LossySync channels (b-e and d-g), one SyncDrain (c- f), one Merger
(h-i- f), and three Replicators (a-b-c-d, e- j-h and g-i-k). The constraints of
these primitives can be combined to give the following two behavioural possi-
bilities (plus the no-flow-everywhere possibility):

• ends {a,b,c,d,e, f ,h, j} synchronise and a data item flows from a to j,

• ends {a,b,c,d, f ,g, i,k} synchronise and a data item flows from a to k.

a c

b

d

f

e

g

h

i

j

k

The merger makes a non-deterministic choice whenever both behaviours are possible. Data can never
flow from a to both j and k, as this is excluded by the behavioural constraints of the Merger h-i- f .

3.1 Constraint automata

We briefly describe constraint automata [6]. Constraint automata use a finite set of port names N =
{x1, . . . ,xn}, where xi is the i-th port of a connector. When clear from the context, we write xyz instead
of {x,y,z} to enhance readability. We write x̂i to represent the variable that holds the data value flowing
through the port xi, and use N̂ to denote the set of data variables {x̂1, . . . , x̂n}, for each xi ∈N. We define
DCX for each X ⊆ N to be a set of data constraints over the variables in X̂ , where the underlying data
domain is a finite set D. Data constraints in DCN can be viewed as a symbolic representation of sets of
data-assignments, and are generated by the following grammar:

g ::= tt
∣∣ x̂ = d

∣∣ g1∨g2
∣∣ ¬g

where x ∈ N and d ∈ D. The other logical connectives can be encoded as usual. We use the notation
â = b̂ as a shorthand for the constraint (â = d1∧ b̂ = d1)∨ . . .∨ (â = dn∧ b̂ = dn), with D= {d1, . . . ,dn}.
Definition 5 (Constraint Automaton [6]) A constraint automaton (over the finite data domain D) is a
tuple A = 〈Q,N, →,Q0〉, where Q is a set of states, N is a finite set of port names, → is a subset of
Q×2N×DCN×Q, called the transition relation of A, and Q0 ⊆ Q is the set of initial states.

We write q
X |g−−→ p instead of (q,X ,g, p) ∈→. For every transition q

X |g−−→ p, we require that g, the guard,

is a DCX -constraint. For every state q ∈ Q, there is a transition q
/0|tt−−→ q.

We define CAS ⊆ 2N×DCN to be the set of solutions for all possible labels of the transitions of
constraint automata. That is, X |g ∈ CAS if X = {x1, . . . ,xn}, g =

∧
x̂i = vi, where vi ∈ D, and there is a

transition q
X |g′−−→ q′ such that g satisfies g′. We call each s ∈ CAS a constraint automaton step. Firing a

transition q
X |g−−→ p is interpreted as having dataflow at all the ports in X , while excluding flow at ports

in N \X , when the automaton is in the state q. The data flowing through the ports X must satisfy the
constraint g, and the automaton evolves to the state p. Figure 5 exemplifies the constraint automata for
three Reo channels. We do not define here the composition of constraint automata, but encode labels of
constraint automata as labels of behavioural automata, whose composition has been defined in §2.2.

J. Proença, D. Clarke, E. de Vink & F. Arbab 73

q ab tt qa tt ab â = b̂
empty full(d)

a â = d

b b̂ = d

Figure 5: From left to right, constraint automata for the SyncDrain, LossySync and FIFO1 channels.

q

s2(w)

s1(v)
./ empty full(v)

s3(v)

s4(v)

= q,empty q,full(v)

s2(w) s2(w)
s1(v)⊗ s3(v)

s4(v)

s2(w)⊗ s4(v)

Figure 6: Composition of JALKCA and JAFKCA, for any v,w ∈ D.

3.2 Constraint automata as behavioural automata

The CA model assumes a finite data domain D, and that data constraints such as tt, â 6= d, or â = b̂ stand
for simpler data constraints that use â = d and the operators ∧ and ∨.

The encoding of the constraint automaton A= 〈Q,N,→CA,Q0〉 is the behavioural automaton
JAKCA = 〈Q,L[N],→BA,C〉

with L[N],→BA, C, and the composition of labels defined as follows:
• L= CAS, and α is defined as: α(X |∧n

i=1 x̂i = di) = 〈N,X , /0,X ,{xi 7→ di}n
i=1〉 .

• We have q
X |g−−→BA q′ for X |g ∈ L[N] if q

X |g′−−→CA q′ and g satisfies g′.

• Let casi = Xi|gi be a solution for a label in a constraint automaton with ports Ni, for i ∈ 1..2. Then

cas1⊗ cas2 =

{
(X1∪X2)|(g1∧g2) if X1∩N2 = X2∩N1 ∧ g1_g2
⊥ otherwise

where g1_g2 if for any port x ∈ X1∩X2 and for any d ∈D, x = d satisfies g1 iff x = d satisfies g2.

• C(q) = cp(N) for every q ∈ Q. Recall that cp(N) = {` | α(`) = 〈P,F, IP,OP, data〉,P0∩F 6= /0}.
Example 4 Let AL = 〈QL,NL,→1,Q1〉 and AF = 〈QF ,NF ,→2,Q2〉 be the constraint automata of the
LossySync and the FIFO1 channels, depicted in Figure 5. The encoding of AL into behavioural automata
is 〈QL,L[NL],→L,CL〉, depicted in the left hand side of Figure 6, where:
QL = {q}, NL = {a,b}, CL(q) = cp(NL) for q ∈QL, s1(v) = ab|(â = v∧ b̂ = v), s2(v) = a|(â = v), and
→L= {〈q,s1(v),q〉 | v ∈ D}∪{〈q,s2(v),q〉 | v ∈ D}.

Similarly, the encoding of AF into behavioural automata is 〈QF ,L[NF],→F ,CF〉, also depicted in
Figure 6, where:

QF = {empty} ∪ {full(v) | v ∈ D}, CF(q) = cp(NF) for q ∈ QF , NF = {b,c}, s3(v) = b|(b̂ = v),
s4(v) = c|(ĉ = v), and →F= {〈empty,s3(v),full(v)〉 | v ∈ D}∪{〈full(v),s4(v),empty〉 | v ∈ D}.

The composed automaton JALKCA ./ JAFKCA is depicted in the right hand side of Figure 6, where
s1(v)⊗ s3(v) = ab|(â = v∧ b̂ = v) and s2(w)⊗ s4(v) = ac|(â = w∧ ĉ = v).

The composed automata presented in Example 4, which differs from the lossy-FIFO, is equivalent to
the product of the two associated constraint automata [6], with respect to the atomic steps of the labels
of the automata. We expect this equivalence to hold in general, but we do not give a formal proof here.

74 Decoupled execution of synchronous coordination models

4 Encoding Linda

Linda, introduced by Gelernter [15], is seen by many as the first coordination language. We describe it
using Linda-calculus [10], and show how it can be modelled using behavioural automata. Linda is based
on the generative communication paradigm, which describes how different processes in a distributed
environment exchange data. In Linda, data objects are referred to as tuples, and multiple processes can
communicate using a shared tuple-space, where they can write or read tuples.

Communication between processes and the tuple-space is done by actions executed by processes
over the tuple-space. In general, these actions can occur only atomically, that is, the shared tuple-space
can accept and execute an action from only one of the processes at a time. There are four possible
actions, out(t), in(s), rd(s), and eval(P). The actions out(t) and in(s) write and take values to and from
the shared tuple-space, respectively. The action rd(s) is similar to in(s), except that the tuple t is not
removed from the tuple-space. Finally, eval(P) denotes the creation of a new process P that will run in
parallel. We do not address eval(P) here because it is regarded as a reconfiguration of the system.

4.1 Linda-Calculus

We use the Linda-Calculus model, described by Goubault [12], to give a formal description of Linda,
studied also by Ciancarini et al. [10] and others. The Linda-Calculus abstracts away from the local
behaviour of processes, and focuses on the communication primitives between a store and a set of pro-
cesses. Processes P are generated by the following grammar.

P ::= Act.P
∣∣ X

∣∣ recX .P
∣∣ P 2 P

∣∣ end (5)

Act ::= out(t)
∣∣ in(s)

∣∣ rd(s) (6)

We denote the set of all Linda terms as Linda. The first case Act.P represents the execution of a Linda
action. The productions X and recX .P are used to model recursive processes, where X ranges over a set
of variables, and P 2 P is used to model local non-deterministic choice. We assume that processes do not
have free variables, i.e., every X is bound by a corresponding recX . Finally end represents termination.

We model a Linda store as a multi-set of tuples from a global set Tuple. Each tuple consists of a
sequence of parameters, which can be either a data value v from a domain D (an actual parameter), or a
variable X (a formal parameter). We use the ⊕ operator to denote multi-set construction and multi-set
union. For example, we write M = t⊕ t = {|t, t|} and M⊕M = {|t, t, t, t|}, where t is a tuple and {|s, t|}
denotes a multi-set with the elements s and t.

A tuple-space term M is a multi-set of processes and tuples, generated by the grammar M ::=
P | t | M⊕M. We adopt the approach of Goubault and provide a set of inference rules that give the
operational semantics of Linda-Calculus. A relation match ⊆ Tuple×Tuple represents the matching of
two tuples. (s, t) ∈ match if t has only D values, and there is a substitution γ whose domain is the set
of free variables of s, such that t = s[γ]. u[γ] denotes the tuple or process u after replacing its free vari-
ables according to γ . We also write γ = P/x to denote the substitution of x by the process P, and say t
γ-matches s when t matches s and t = s[γ].
Definition 6 (Semantics of Linda) The semantics of Linda is defined by the inference rules below.

M⊕P[recX .P/X]−→M⊕P′

M⊕ recX .P−→M⊕P′
(rec)

M⊕P 2 P′ −→M⊕P (left)

M⊕P 2 P′ −→M⊕P′ (right)

M⊕out(t).P−→M⊕P⊕ t (out)

M⊕ rd(s).P⊕ t −→M⊕P[γ]⊕ t if t γ-matches s (rd)

M⊕ in(s).P⊕ t −→M⊕P[γ] if t γ-matches s (in)

M⊕ end−→M (end)

J. Proença, D. Clarke, E. de Vink & F. Arbab 75

Example 5 The following sequence of transitions illustrates the sending of data between two processes.
The labels on the arrows contain the names of the rules applied in each transition of Linda-Calculus. We
use the notation P(x) as syntactic sugar to denote a process P where the variable x occurs freely.

rd(42,x).P(x)⊕out(42,43).end⊕ in(42,x).P′(x)
(out)−−→ rd(42,x).P(x)⊕ end⊕ in(42,x).P′(x)⊕〈42,43〉 (end)−−−→ rd(42,x).P(x)⊕ in(42,x).P′(x)⊕〈42,43〉
(rd)−−→ P(43)⊕ in(42,x).P′(x)⊕〈42,43〉 (in)−−→ P(43)⊕P′(43)

4.2 Linda-calculus as behavioural automata

We define an encoding function J·KLinda : Linda→ BA, from Linda tuple-space terms to behavioural
automata. Furthermore, we define the composition of atomic steps that preserve this semantics. We
encode each Linda process P as a behavioural automaton, and we create a special behavioural automaton
that describes the multi-set of available tuples.

Let Act = {a | a ∈ Act} and τAct = {τa | a ∈ Act}. A port a is regarded as a dual port of a, and
flow of data on a port τa represents the flow on the ports a and a simultaneously. The intuition is that
the encoding of processes yields behavioural automata whose ports are actions in Act; the encoding
of tuples yield behavioural automata whose ports are dual actions in Act; and the composition forces
actions and dual actions to synchronise, i.e., to occur simultaneously. We define the global set of ports to
be P= Act∪Act∪ τAct, and define a = a.

Let M = P1⊕·· ·⊕Pn⊕T be a tuple-space term. In turn, let T = t1⊕·· ·⊕ tm and m≥ 0. We define
the encoding of M into a behavioural automaton as follows.

JMKLinda = JP1KLinda ./ · · · ./ JPnKLinda ./ JT KLinda
Hence, encoding M boils down to encoding Linda processes Pi and the Linda tuple-space T into different
behavioural automaton. In both encodings of components and Linda tuple-spaces we define labels L as
ports, that is, L= P= Act∪Act∪τAct, and its encoding as atomic steps by the function α defined below.

α(a) =
{
〈P,{a,τact} , /0, /0, /0〉 if a ∈ Act∪Act,{act}= {a,a}∩Act
〈P,{a} , /0, /0, /0〉 if a ∈ τAct

The composition of two labels a1,a2 ∈ L is defined as follows.

a1⊗a2 =

{
τact if a1 /∈ τAct ∧ a2 /∈ τAct ∧ a1 = a2
⊥ otherwise,

where {act}= {a1,a2}∩Act. The tuple-space is used to enforce every action a performed by a process
to synchronise with the corresponding action a in the tuple-space encoded as a behavioural automaton.
The definition of⊗ replaces every pair of ports with dataflow a and a by a new port with dataflow in τact.

We encode a Linda process P as JPKLinda = 〈QP,L,→P,C〉, with components as defined below.

• The set of states QP is given by QP = reach(P), where

reach(out(t).P) = {out(t).P}∪ reach(P)
reach(rd(s).P) = {rd(t).P}∪ (⋃{reach(P[γ]) | s γ-matches t})
reach(in(s).P) = {in(t).P}∪ (⋃{reach(P[γ]) | s γ-matches t})

reach(P 2 P′) = {P 2 P′}∪ reach(P)∪ reach(P′)
reach(end) = {end}

76 Decoupled execution of synchronous coordination models

• The transition relation→P is given by the following conditions.

out(t).P′
out(t)−−−→ P′ if t ∈ Tuple P1 2 P2

s−−→ P′1 if P1
s−→ P′1

rd(s).P′
rd(t)−−→ P′[γ] if s γ-matches t P1 2 P2

s−−→ P′2 if P2
s−→ P′2

in(s).P′
in(t)−−→ P′[γ] if s γ-matches t

• C(q) = Act∪Act for every state q.

We now encode a Linda tuple-space T as JT KLinda = 〈QT ,L,→T ,C〉 with components as defined below.

• QT = 2M(Tuple), where M(X) is a multi-set over the set X .

• The transition relation→T is given by the following conditions:

M
out(t)−−−→M⊕ t if t ∈ Tuple, t⊕M

rd(s)−−−→ t⊕M if s matches t, and t⊕M
in(s)−−→M if s matches t.

• C(q) = Act∪Act for every state q, as in the encoding of Linda processes.

Note that the input and output ports of the atomic steps obtained with α , introduced in §2.1, are
always the empty set, that is, the data value flowing through the ports is not relevant, since the name of
the port uniquely identifies the data. Alternative approaches to implement the encoding into behavioural
automata that use the data values are also possible, but less transparent.

Example 6 Recall the example presented in the end of §4.1 of a sequence of transitions of a tuple-space
term in Linda-Calculus. We present below a simplified version of this example.

rd(42,x).P(x)⊕out(42,43).P′
(out)−−→ rd(42,x).P(x)⊕P′⊕〈42,43〉 (rd)−−→ P(43)⊕P′⊕〈42,43〉

The corresponding transitions in the encoded behavioural automaton are presented below.

Jrd(42,x).P(x)KLinda ./ Jout(42,43).P′KLinda ./ J /0KLinda
τout(42,43)−−−−−→

Jrd(42,x).P(x)KLinda ./ JP′K ./ J〈42,43〉K τrd(42,43)−−−−→ JP(43)KLinda ./ JP′K ./ J〈42,43〉K

Observe that we assume an initial empty tuple-space, which is encoded as J /0KLinda. A more careful
analysis shows a one-to-one correspondence between the traces of the Linda-calculus term and the traces
of the behavioural automaton, which we do not elaborate in this paper.

5 Exploiting concurrency predicates

We introduced a unified model for synchronous coordination that explicitly mentions concurrency pred-
icates, which indicate which actions require synchronisation. We now exploit more complex definitions
of concurrent predicates for Reo and Linda than in our previous examples, and briefly describe a practical
application of behavioural automata in a distributed framework.

J. Proença, D. Clarke, E. de Vink & F. Arbab 77

5.1 Complex concurrency predicates

In our examples concurrency predicates of Reo hold when some shared ports from a composed automaton
have dataflow (Equation (1)), and concurrency predicates of Linda allow only a special set of actions τAct
to run concurrently. We now present other concurrency predicates that capture notions such as context
dependency and priority.

Reo Other semantic models for Reo, such as connector colouring [11] and Reo automata [8], capture
the notion of context dependency, a feature missing in constraint automata. By modelling context depen-
dency we avoid the undesired behaviour of the composed connector in Figure 6 where data is lost when
the FIFO1 buffer is empty, represented by the label s2(w).

To avoid data from being lost, we replace the LossySync channel by a context dependent LossySync
channel, which is built based on the LossySync channel by replacing the label s2(w) by a label sb

2(w).
This new label has the same atomic step, i.e., α(s2(w)) = α(sb

2(w)), but can be executed in parallel
only if its neighbours require the port b to have no dataflow. This condition is enforced by adapting the
definition of concurrency predicates to check wether a given set of ports Y requires synchronisation.

cpctx(P0,Y) =
{

sX | sX ∈ cp(P0) ∨ X ∩Y 6= /0
}

(7)

In our example, we avoid the losing of data by defining C(q) = cpctx(ab, /0), C(empty) = cpctx(bc,b),
and C(full(v)) = cpctx(ab,c). The label sb

2(w) is in C(empty) but not in C(full), i.e., sb
2(w) can be

performed independently of the FIFO1 channel only when the FIFO1 is full. Other important details,
such as the composition of labels of the form sX , are not presented in this paper. A more precise and
complete formulation can be found in Proença’s Ph.D. thesis (Sections 3.6.2 and 4.4.2 of [18]).

Linda Consider now that Linda processes have a total order�, representing a ranking among processes.
When two processes can interact simultaneously with the shared tuple-space, only the higher rank should
be chosen. We present only a sketch of this approach due to space limitation.

We start by tagging labels ` of the Linda behavioural automata with the process that executes it.
For example, a label ` of an automaton of a process p is renamed to `p. Labels of the shared tuple-
space are not changed. The composition of labels must be such that `p⊗ ` = τ p

` . It is then enough
to change the concurrency predicates of the automata of each process p in state q to C(q) = Act∪Act∪{

τx
` | τ` ∈ τAct ∧ x� p ∧ q 6= end

}
and leave the concurrency predicate of the automaton of the shared

tuple-space unchanged. Hence, a transition cannot be performed in parallel if it is in Act or Act, or if it is
a τ action from a process with lower priority and the current process is not yet stopped.

5.2 Increased scalability via decoupled execution

We use the behavioural automata model in a distributed framework, Dreams, where several independent
threads run concurrently [18]. Each thread has its own behavioural automaton, and communicates only
with those threads whose behavioural automata share ports with its own automata. The details regarding
this tool are out of the scope this paper, but we explain how it benefits from using behavioural automata.

The diagram in Figure 7 depicts the configuration of a system in Dreams, where each cloud represents
an independent thread of execution, and edges represent communication links between threads whose
automata share ports. The direction of each edge only illustrates the expected direction of dataflow.
For efficiency reasons, and to allow a lightweight reconfiguration, Dreams does not create the complete
behavioural automaton of a connector. Instead, it collects only the behaviour of the current round.

78 Decoupled execution of synchronous coordination models

connector1

connector2

LF

AC reader

a’

b

a

c

Figure 7: Configuration of a system in Dreams.

Knowing that only the labels of the automata relevant for the current round are composed, and as-
suming that the locality property introduced in Definition 4 holds, we can perform local steps that, as
the name suggests, involve only a subpart of the system. Recall the example of the lossy alternator,
presented in §2.3. The diagram in Figure 7 uses the same example, in a context where two arbitrary large
connectors connector1 and connector2 are attached to the source of the lossy alternator, and a reader
component is attached to the sink of the lossy alternator. Consider that the reader can always receive any
data value, that is, its behavioural automaton has a single state, and a transition labelled by r(v) for every
data value v, such that α(r(v)) = 〈c,c,c, /0,{c 7→ v}〉.

Observe that we do not use explicitly the composed connector LF ./ AC, but LF and AC as inde-
pendent entities instead, since the Dreams framework can postpone the composition of their labels to
runtime. Consider that the AC automaton is in state q1(v), hence it can perform a step s2(v), writing a
value v to the port c. In this example AC is connected via the ports a, b, and c. The label s2(v) does not
have dataflow on a nor on b, and the reader can perform a label r(v) because s2(v)⊗ r(v) 6= ⊥. Using
the concurrency predicate in Equation (1), we conclude that s2(v)⊗ r(v) is in the concurrency predicates
of LF and connector2. Furthermore, from the locality property we conclude that all other connectors not
attached to AC also allow s2(v)⊗ r(v) to be executed concurrently. Hence, Dreams can chose to perform
this step by analysing only the behaviour of AC and reader, depicted by a grey box.

The instantiations of Linda and Reo yield a similar result. The shared tuple-space can communicate
with a single process at a time, without synchronising with every other process. Reo can, for example,
send data from a full FIFO1 independently of the behaviour of the connector attached to its sink port.
The benchmarks performed for the Dreams framework [18] show optimistic results regarding the use of
local steps in synchronous coordination.

6 Conclusion

We introduce behavioural automata to model coordination systems. The three main concepts that under-
lie behavioural automata are atomicity, composability, and dataflow. We allow a sequence of actions that
cannot be interleaved with interfering instructions (atomicity), we construct more complex systems out
of building blocks that can be analysed independently (composability), and we represent the data values
that are exchanged between components (dataflow).

Behavioural automata unify existing dataflow-oriented models with synchronous constructs by leav-
ing open the definitions of composition of labels and of concurrency predicates. The focus of behavioural
automata is on concurrent systems, and on avoiding synchronisation of actions whenever it is unneces-
sary. By capturing a multitude of coordination models, we allow any of these models to be included in
implementations based on behavioural automata, such as the Dreams framework.

As future work, we expect to formally show the correctness of the encodings of Reo and Linda. We

J. Proença, D. Clarke, E. de Vink & F. Arbab 79

would also like to discover which properties can be shown for behavioural automata that are directly
reflected on encoded models. A more practical track of our work involves the development of tools.
Further development of Dreams to make it ready for use by a broader community is in our agenda.

References
[1] Farhad Arbab (2004): Reo: a channel-based coordination model for component composition. Mathematical

Structures in Computer Science 14(3), pp. 329–366, doi:10.1017/S0960129504004153.
[2] Farhad Arbab (2005): Abstract Behavior Types: a foundation model for components and their composition.

Science of Computer Programming 55, pp. 3–52, doi:10.1016/j.scico.2004.05.010.
[3] Farhad Arbab (2006): Composition of Interacting Computations, chapter 12, pp. 277–321. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, doi:10.1007/3-540-34874-3 12.
[4] Farhad Arbab, Roberto Bruni, Dave Clarke, Ivan Lanese & Ugo Montanari (2009): Tiles for Reo. In: Recent

Trends in Algebraic Development Techniques, LNCS 5486, Springer, pp. 37–55, doi:10.1007/978-3-642-
03429-9 4.

[5] Farhad Arbab, Christian Koehler, Ziyan Maraikar, Young-Joo Moon & José Proença (2008): Modeling,
testing and executing Reo connectors with the Eclipse Coordination Tools. In: Proceedings of FACS, SCP.

[6] Christel Baier, Marjan Sirjani, Farhad Arbab & Jan J. M. M. Rutten (2006): Modeling component
connectors in Reo by constraint automata. Science of Computer Programming 61(2), pp. 75–113,
doi:10.1016/j.scico.2005.10.008.

[7] Gérard Berry (2000): The foundations of Esterel. In Gordon D. Plotkin, Colin Stirling & Mads Tofte, editors:
Proof, Language, and Interaction, The MIT Press, pp. 425–454.

[8] Marcello M. Bonsangue, Dave Clarke & Alexandra Silva (2009): Automata for Context-Dependent Connec-
tors. In: COORDINATION, LNCS 5521, Springer, pp. 184–203.

[9] D. M. Chapiro (1984): Globally-Asynchronous Locally-Synchronous Systems. Ph.D. thesis, Standford Uni-
versity.

[10] P. Ciancarini, K.K. Jensen & D. Yankelevich (1995): On the Operational Semantics of a Coordination Lan-
guage. In: Object-Based Models and Languages for Concurrent Systems, LNCS 924, pp. 77–106.

[11] Dave Clarke, David Costa & Farhad Arbab (2007): Connector colouring I: Synchronisation and context
dependency. Science of Computer Programming 66(3), pp. 205–225, doi:10.1016/j.scico.2007.01.009.

[12] Régis Cridlig & Eric Goubault (1993): Semantics and Analysis of Linda-Based Languages. In Patrick Cousot,
Moreno Falaschi, Gilberto Filé & Antoine Rauzy, editors: WSA, LNCS 724, Springer, pp. 72–86.

[13] Frederic Doucet, Massimiliano Menarini, Ingolf H. Krüger, Rajesh K. Gupta & Jean-Pierre Talpin (2006): A
Verification Approach for GALS Integration of Synchronous Components. ENTCS 146(2), pp. 105–131.

[14] Fabio Gadducci & Ugo Montanari (2000): The tile model, pp. 133–166. MIT Press, Cambridge, MA, USA.
[15] David Gelernter (1985): Generative communication in Linda. ACM Transactions on Programming Lan-

guages and Systems 7(1), pp. 80–112, doi:10.1145/2363.2433.
[16] Christian Krause (2011): Reconfigurable component connectors. Ph.D. thesis, Leiden University.
[17] Robin Milner (1983): Calculi for Synchrony and Asynchrony. Theor. Comput. Sci. 25, pp. 267–310,

doi:10.1016/0304-3975(83)90114-7.
[18] José Proença (2011): Synchronous Coordination of Distributed Components. Ph.D. thesis, Leiden University.

