
Semantics of Objects As Processes (SOAP)?

Uwe Nestmann1 and António Ravara2

1 BRICS? ? ?, Aalborg University, Denmark
uwe@cs.auc.dk

2 IST, Technical University of Lisbon, Portugal
amar@math.ist.utl.pt

1. Introduction

One of the most popular programming paradigms today is that of object-oriented
programming. With the growing popularity of the language C++ and the ad-
vent of Java as the language of choice for the World Wide Web, object-oriented
programs have taken center stage. Consequently, the past decade has seen an
exponentially increasing interest within the programming language research com-
munity for providing a firm semantic basis for object-oriented constructs.

Recently, there has been growing interest in studying the behavioral prop-
erties of object-oriented programs using concepts and ideas from the world of
concurrent process calculi, in particular calculi with some notion of mobility.
Not only do such calculi, as the well-known π-calculus by Milner, Parrow and
Walker [26], have features like references and scoping in common with object-
oriented languages; they also provide one with a rich vocabulary of reasoning
techniques firmly grounded in structural operational semantics and static typing.

The process calculus view has therefore proven to be advantageous in many
ways for semantics and verification issues. On the one hand, the use of encodings
of object-oriented languages into existing typed mobile process calculi enables
formal reasoning about the correctness of programs; on the other hand, using
standard techniques from concurrency theory in the setting of calculi for objects
may help in reasoning about objects, e.g. by finding appropriate and mathe-
matically tractable notions of behavioral equivalences. Encodings may also help
clarify the overlap and differences of objects and processes, and suggest how to
integrate them best in languages with both.

The aim of the SOAP workshops is to bring together researchers working
mainly in this area, but in related fields as well, where other process models or
calculi are used as a basis for the semantics of objects.

Historical Remarks

The origin of the SOAP workshops may be found in the early Fränkische OOri-
entierungstage 1993, organized by Uwe Nestmann and Terry Stroup, where a
? http://www.cs.auc.dk/soap99/

? ? ? Basic Research in Computer Science, Centre of the Danish National Research Foun-
dation

A. Moreira and S. Demeyer (Eds.): ECOOP’99 Workshops, LNCS 1743, pp. 314–325, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

Semantics of Objects As Processes (SOAP) 315

programming tutorial by Benjamin Pierce [35] on objects in the π-calculus-
based programming language Pict [36] was followed by an invited workshop
on the semantics of objects as processes. The first open workshop, SOAP ’98,
organized by Hans Hüttel and Uwe Nestmann, then took place as a satellite
event to ICALP’98 in Aalborg, Denmark. The proceedings can be downloaded
from http://www.brics.dk/NS/98/Ref/BRICS-NS-98-Ref/, more information is
accessible through the workshop web page at http://www.cs.auc.dk/soap99/.

Brief Summary of SOAP’99

For the ’99 edition of SOAP, taking place as a satellite workshop of ECOOP ’99,
among nine submitted abstracts five were recommended by the programme com-
mittee (Hans Hüttel, Josva Kleist, Uwe Nestmann, and António Ravara) based
on a formal refereeing process, and are summarized below. The proceedings can
be downloaded via http://www.brics.dk/NS/99/Ref/BRICS-NS-99-Ref/, also
accessible through http://www.cs.auc.dk/soap99/.

We would like to thank the organizers of ECOOP ’99, in particular Ana
Maria Moreira, for helping us logistically to set up the SOAP workshop, we
thank BRICS, in particular Uffe Engberg Nielsen, for the publication of these
proceedings, and we thank Massimo Merro and Silvano Dal-Zilio for their assis-
tance in the refereeing process.

According to the specific topics of the accepted contributions, the workshop
programme is composed of two complementary thematic building blocks.

The first block was addressing the motto ‘objects as processes’ literally in
that objects are represented as a derived concept within a framework of pro-
cesses; we welcomed Oscar Nierstrasz, Markus Lumpe, and Jean-Guy Schneider
as invited speakers to present the work they have been accomplishing in this
area—starting out from a mobile process calculus—and to let us learn about
their conclusions. This session was rounded up by a verification approach using
a temporal logic as a target setting for, in this case, UML-style objects.

The second building block, divided into a session on behavioral subtyping
and another one on behavioral typing, is seen as an adaptation of the process-
theoretic viewpoint to some object-oriented framework. While the typed λ-
calculus is a firm ground to study typing for object-oriented languages, the
typing of concurrent objects poses particular problems due to synchronization
constraints. A static notion of typing is not powerful enough to capture dynamic
properties of objects’ behavior, like non-uniform service availability. Concur-
rency theory inspires dynamic notions of typing and subtyping, and this block
of SOAP’99 exemplified the state of the art in the field.

The rest of this report contains brief summaries of workshop presentations
(where the presenting speaker is indicated by a ?), preceded by short overviews
of the fields, and followed by concluding remarks and a list of selected references.

316 Uwe Nestmann and António Ravara

2. Objects as Processes

Background: An Annotated Bibliographic Overview

Rather soon after the development of process algebras, basically triggered by pi-
oneering work of Tony Hoare [15] and Robin Milner [25], and enabled by first at-
tempts to capture the semantics of parallel object-oriented programming within
the POOL-family [3] of languages, Frits Vaandrager [46] started out to give a
first explicit study on the semantics of objects as processes, where he encoded a
variant of POOL into the process algebra ACP [4]. An encoding in this context
usually simply means a translation of some high-level (object) syntax into some
lower-level (process) syntax. An encoding is usually considered ‘good’, if it is
compositional and exhibits some preservation and reflection properties concern-
ing operational and behavioral relations of the languages or calculi involved.

Although some basic principles of concurrent objects could be clearly ex-
pressed in Vaandrager’s approach by means of concurrent processes, several as-
pects of object-oriented programming, like the persistent identities of objects
and certain inheritance features, were not modeled in a natural way. It needed
another landmark invention, the π-calculus [26], to get a more suitable and, as it
turns out, quite appropriate process model for objects. David Walker took over
and extended Vaandrager’s initial work, now targeting at the π-calculus [49].
Moreover, together with Xinxin Liu and Anna Philippou, in a series of papers,
they investigated the possibilities of using the process-algebraic semantics for
reasoning about concurrent object-oriented programs [22, 23, 24, 32, 33, 34],
some of it in order to solve a tricky program transformation problem proposed
by Cliff Jones [19, 20]. Related to this line of research, Xiaogang Zhang and
John Potter provided some more understanding of class-based object-oriented
programs using π-calculus [51]. These developments have not only been of the-
oretical nature, but gave also rise to implementations that closely follow the
pencil-and-paper encodings, like Benjamin Pierce and David Turner exemplified
in their Pict compiler [36].

Another strand of research has been opened up by the advent of the object
calculus (OC) by Mart́ın Abadi and Luca Cardelli [1], who provide a minimal
model of typed objects. Again, the study of encodings has been the main tool for
SOAP-investigations. Hans Hüttel and Josva Kleist gave a first encoding of the
untyped object calculus into the π-calculus [17]. Davide Sangiorgi gave a different
one for the typed object calculus [45], and extended this work together with Josva
Kleist to the imperative object calculus [21]. Hans Hüttel, Josva Kleist, Massimo
Merro and Uwe Nestmann extended this work to mobile objects [18].

There have also been other approaches to internalize object-oriented notions
as primitives within process calculi. Here, we just list Oscar Nierstrasz’ higher-
order object calculus [31], Kohei Honda and Mario Tokoro’s ν-calculus [16], Vasco
Vasconcelos’ TyCO [47], and Gérard Boudol’s Blue Calculus [6]. Two further
object calculi can be viewed either as extensions of OC with concurrency, or as
extensions of process calculi with objects: one by Paolo Di Blasio and Kathleen
Fisher [13] and another one by Andrew Gordon and Paul Hankin [14].

Semantics of Objects As Processes (SOAP) 317

At SOAP ’99, we also had presentations on how to represent objects within
the framework of Petri Nets (see Section 3). In the remainder of the current
section, however, we summarize the three presentations on objects as strongly
typed name-passing processes, and one presentation on objects as cTLA agents.

Piccola — A Small Composition Language
(Oscar Nierstrasz)

Although object-oriented languages are well-suited to implementing software
components, they fail to shine in the construction of component-based applica-
tions, largely because object-oriented design tends to obscure a component-based
architecture. We propose to tackle this problem by clearly separating component
implementation and composition. Piccola is a small ”composition language” that
embodies the paradigm of ”applications = components + scripts.” Piccola mod-
els components and composition abstractions by means of a unifying foundation
of communicating concurrent agents. Flexibility and extensibility are obtained
by modeling both interfaces to components and the contexts in which they live
by extensible records, or ”forms”. We illustrate the realization of an architectural
style in Piccola and show how external components may be adapted and com-
posed according to the style. We show how separating components from their
composition can improve maintainability.

The πL-Calculus
A Formal Foundation for Software Composition
(Markus Lumpe)

In this talk, we present a formal language for software composition that is based
on the π-calculus. More precisely, we present the πL-calculus, a variant of the
π-calculus, in which agents communicate by passing extensible, labeled records,
or so-called ”forms”, rather than tuples. This approach makes it much easier
to model compositional abstractions than it is possible in the plain π-calculus,
since the contents of communications are now independent of positions, agents
are more naturally polymorphic since communication forms can be easily ex-
tended, and environmental arguments can be passed implicitly. The πL-calculus
is developed in three stages: (i) we analyze whether the π-calculus is suitable
to model composition abstractions, (ii) driven by the insights we got using the
π-calculus, we define a new calculus that has better support for software com-
position (e.g., provides support for inherently extensible software construction),
and (iii), we define a first-order type system with subtype polymorphism that
allows us to statically check an agent system in order to prevent the occurrences
of runtime errors.

318 Uwe Nestmann and António Ravara

Object Models in the πL-Calculus
(Jean-Guy Schneider)

The development of concurrent object-based programming languages has suf-
fered from the lack of any generally accepted formal foundation for defining their
semantics, although several formal models have been proposed. Most of these
models define objects and object-oriented abstractions as primitives, but they
either do not incorporate important features found in object-based program-
ming languages (e.g., they lack inheritance), hard-wire the underlying inheri-
tance model, or integrate concepts in a non-orthogonal way. As an approach to
overcome the problems of existing models, we present a (meta-level) framework
for object models in the πL-calculus. We show that common object-oriented pro-
gramming abstractions such as instance variables and methods, different method
dispatch strategies as well as class features are most easily modeled when class
meta-objects are explicitly reified as first class entities. We illustrate that various
concepts which are typically merged (or confused) in object-oriented program-
ming languages can be expressed in a more natural way by making a clear sep-
aration between functional elements (i.e. methods) and their compositions (i.e.
inheritance). Furthermore, we show that the same concepts can also be applied
for modeling mixins, mixin application, and mixin composition.

Composing Object-Oriented
Specifications and Verifications with cTLA
(Günter Graw?, Peter Herrmann, and Heiko Krumm)

In order to support formally correctness preserving refinement steps of object-
oriented system designs, we refer at one hand to the practically well-accepted
Unified Modelling Language (UML) and at the other hand to Leslie Lamport’s
Temporal Logic of Actions (TLA) which supports concise and precise notions
of properties of dynamic behaviors and corresponding proof techniques. We ap-
ply cTLA which is an extension of TLA and supports the modular definition
of process types. Moreover, in cTLA process composition has the character of
superposition which facilitates the modular transformation of UML diagrams to
corresponding formal cTLA process system definitions and their structured ver-
ification. We exemplify transformation and formal verification. Furthermore, we
outline the application of this method for the establishment of domain-specific
specification frameworks which can directly support the UML-based correct de-
sign of OO-systems.

3. Behavioral Typing and Subtyping

Background: An Annotated Bibliographic Overview

Behavioral typing and behavioral subtyping are notions of (respectively) typ-
ing and subtyping for concurrent object-oriented programming, which take into

Semantics of Objects As Processes (SOAP) 319

account dynamic aspects of objects’ behavior. In the beginning of the 90’s, Nier-
strasz argued that typing concurrent objects poses particular problems due to
the non-uniform methods availability, since by synchronization constraints, the
availability of a method depends upon the internal state of the object (which
reflects the state of the system) [30]. Therefore, a static notion of typing, like
interfaces-as-types, is not powerful enough to capture dynamic properties of the
behavior of concurrent objects. Hence, Nierstrasz proposed the use of a regular
language as types for active objects, to characterize the traces of menus offered
by the objects. He also proposed a notion of subtyping, request substitutability,
which is based on a generalization of the principle of substitutability by Wegner
and Zdonick [50], according to the extension relation of Brinksma et. all [7]. It
is a transition relation, close to the failures model.

Several researchers are working on this track, developing object-based process
calculi and static typing disciplines which cope with non-uniform objects.

Jean-Louis Colaço and others [8, 9, 10, 11] propose a calculus of actors and a
type system that aims at the detection of “orphan messages” (messages that may
never be accepted in some actor’s execution path, either because the requested
service is not in the actor’s interface, or due to dynamic changes in an actor’s
interface). Types are interface-like, with multiplicities (thus, without dynamic
information), and the type system requires some complex operations on a lattice
of types. A set-constraints algorithm does the type inference.

Elie Najm and Abdelkrim Nimour [27, 29, 28] propose several versions of a
calculus of objects featuring dynamically changing interfaces and distinguishing
private and public objects’ interfaces. For each version of the calculus, they de-
velop a typing system handling dynamic method offers in private interfaces, and
guaranteeing some liveness properties. Types are sets of deterministic guarded
parametric equations, equipped with a transition relation, and represent infinite
state systems. They define an equivalence relation, a compatibility relation, and
a subtyping relation on types, based on the simulation and on the bisimulation
relations.

Franz Puntigam [38, 39, 40, 41] defines a calculus of concurrent objects, a
process-algebra of types (with the expressiveness of a non-regular language), and
a type system which guarantees that all messages that are sent to an object are
accepted; sequencing of messages is enforced to achieve the purpose.

Gérard Boudol proposes a dynamic type system for the blue calculus (a
variant of the π-calculus directly incorporating the λ-calculus) [5]. The types are
functional, in the style of Curry-Church simple types, and incorporate Hennessy-
Milner logic with recursion (thus, with modalities, interpreted as resources of
names). Processes inhabit the types, and this approach captures some causality
in the usage of names in a process, ensuring that messages to a name will meet a
corresponding offer. Well-typed processes behave correctly, this correct behavior
being preserved under computation.

In the context of the lazy λ-calculus [2], Laurent Dami proposes a liberal
approach to potential errors [12]. He argues that the common notion of erroneous
term is over-restrictive: some programs, in spite of having error terms inside

320 Uwe Nestmann and António Ravara

them, do not actually generate a run-time error when executed. Since there is a
family of programming languages based on the lazy λ-calculus, Dami proposes a
lazy approach to errors—a term is considered erroneous if and only if it always
generates an error after a finite number of interactions with its context.

It seems quite natural to have a liberal approach to potential errors in the
context of non-uniform concurrent objects. António Ravara and others claim
that it allows a more flexible and behavior-oriented style of programming, and
moreover, detects some deadlocks [44, 43, 42]. The type system they propose
accepts all processes that ‘traditional’ systems [48] do, except for those that do
not conform to the restriction that only the output-capability of names can be
transmitted, and furthermore, rejects some deadlocked processes.

In the next section we summarize the four talks in this second building
block—two on behavioral subtyping in the context of petri-nets and two on
behavioral typing of non-uniform object calculi.

A Practical Approach to Behavioural Inheritance
in the Context of Coloured Petri Nets
(Charles Lakos and Glenn Lewis?)

There are a number of proposals for substitutability in the context of concur-
rent object-oriented systems. it is unclear whether these proposals are overly
constrained for practical application.

In the context of colored petri nets, we propose a set of three incremental
modifications which lie somewhere between weak an strong substitutability. The
constraints that we impose can be checked statically and they have the property
that if the refinement is at least as live as the abstraction, then strong substi-
tutability holds. (This property cannot be checked statically.) An examination
of case studies in the literature suggests that the above forms of refinement are
applicable in practice.

While the above proposals were formulated in the context of colored petri
nets, it turns out that if the colored petri nets are transformed into the corre-
sponding (elementary) petri nets, then the three forms of refinement correspond
to recognized net morphisms. The formal definition for these morphisms can
be found elsewhere, as can the proofs that the composition of refinements is a
refinement.

Current work is investigating the extent to which analysis techniques can
take advantage of the structure implicit in the above incremental modifications
in producing more efficient analysis.

Behavioural Types in CoOperative Objects
(Nabil Hameurlain and Christophe Sibertin-Blanc)

Behavioral typing and subtyping has proved to be a very useful concept for the
support of incremental reuse in the area of object-oriented (O-O) languages.

Semantics of Objects As Processes (SOAP) 321

With the emergence of formalisms integrating the O-O approach and Petri nets,
the question arises how behavioral subtyping may be supported by such for-
malisms. We present a formal framework for the definition of behavioral typing
in CoOperative Objects, a concurrent Object Oriented language, based upon
Client/Server Petri nets. This framework is based upon the preorder and equiv-
alence relations which are considered in the study of concurrent systems, allowing
to define various subtyping relations.

A Concurrent Object Calculus
with Types that Express Sequences
(Christof Peter? and Franz Puntigam)

Sequencing of messages specified by types of objects is desirable especially in
concurrent systems. Types in popular concurrent object calculi cannot support
sequencing of messages. We present a calculus that supports sequencing of mes-
sages and compare it to the calculus of Vasconcelos and Honda. Type safety in
our calculus does not allow a certain kind of nondeterminism supported by other
calculi.

Explicit Behavioral Typing for Object Interfaces
(Elie Najm and Abdelkrim Nimour?)

In this paper we describe an approach for typing objects with non-uniform service
availability. We define behavioral types for object interfaces based on labeled
transition systems that specify the succession of available methods (services)
at an interface. Each transition label is a method signature. In addition, each
interface has to be declared public or private. A private object interface has only
one client at a time and offers non-uniform services depending on the “protocol”
the client and the server have agreed on. On the other hand, a public interface
can have multiple clients at the same time and is required to perform the same
services for all its potential clients: the services on a public interface are uniform.

4. Open Discussion

The last workshop session consisted of an open “round-table” discussion on the
topics of the workshop: objects as processes and behavioral types. We summarize
briefly the individual subjects:

– If one successfully studies objects as processes, why not also extend this to
general forms of “component”, and look for more general notions of plugging
of objects/components?

– What is the border between types and programs, or type systems and process
calculi, respectively? Should type declarations be added explicitly? What
should be typed? Names or processes?

322 Uwe Nestmann and António Ravara

– What do we do with untypable, i.e., ill-typed programs? Can we provide sim-
ple fixes automatically? Can we provide over- or underestimates, or should
we simply generate warnings?

– What is the best notion of error? Or, do we have to have many different ones
for different application domains?

– What is the “real” problem domain for behavioral types? Non-uniform Ob-
jects? Protocol specification?

– What would be a good means for comparing the many systems for behavioral
types? By encodings into some generic foundational system? By case studies?

Although we could not find an agreement on the individual questions raised
above, we agreed at least on the fact that more work needs to be done and
seems to be worth being carried out.

Participants: Gérard Boudol, Ilaria Castellani, Mauro Gaspari, Günter Graw,
Glenn Lewis, Markus Lumpe, Uwe Nestmann, Oscar Nierstrasz, Abdelkrim Ni-
mour, Christof Peter, António Ravara, Arend Rensink, Jean-Guy Schneider.

5. Conclusion

The summaries of workshop contributions presented, and summarized above,
show that the field of object-oriented programming can substantially profit from
both the representation of objects as processes as well as from the borrowing of
process-theoretic concepts for adaptation to object-oriented settings.

References

[1] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Monographs in Computer
Science. Springer-Verlag, 1996.

[2] Samson Abramsky. The lazy lambda-calculus. In Research Topics in Functional
Programming, pages 65–117. Addison Wesley, 1990.

[3] Pierre America. Issues in the design of a parallel object-oriented language. Formal
Aspects of Computing, 1(4):366–411, 1989.

[4] Jos Baeten and Peter Weijland. Process Algebra, volume 18 of Cambridge Tracts
in Computer Science. Cambridge University Press, 1990.

[5] Gérard Boudol. Typing the use of resources in a concurrent calculus. In Asian
Computing Science Conference, volume 1345 of lncs, pages 239–253. sv, 1997.

[6] Gérard Boudol. The π-calculus in direct style. Higher-Order and Symbolic Com-
putation, 11:177–208, 1998. Previously published in the Proceedings of POPL ’97,
pages 228–241.

[7] Ed Brinksma, Giuseppe Scollo, and Chris Steenbergen. LOTOS specifications,
their implementations and their tests. Protocol Specification, Testing and Verifi-
cation VI, (IFIP), pages 349–360, 1987.

[8] Jean-Louis Colaço, Mark Pantel, and Patrick Sallé. CAP: an actor dedicated
process calculus. In Workshop Reader of the 10th European Conference on Object-
Oriented Programming (ECOOP’96). Dpunkt Verlag, 1996.

[9] Jean-Louis Colaço, Mark Pantel, and Patrick Sallé. A set constraint-based anal-
yses of actors. In 2nd IFIP Workshop on Formal Methods for Open Object-based
Distributed Systems (FMOODS’97). Chapman & Hall, 1997.

Semantics of Objects As Processes (SOAP) 323

[10] Jean-Louis Colaço, Mark Pantel, and Patrick Sallé. From set-based to multiset-
based analysis: a practical approach. In 4th Workshop on Set Constraints and
Constraint-based Program Analysis, 1998. Satellite event of the 4th International
Conference on Principles and Practice of Constraint Programming (CP’98).

[11] Jean-Louis Colaço, Mark Pantel, Fabien Dagnat, and P. Sallé. Static safety analy-
ses for non-uniform service availability in actors. In 4th IFIP Workshop on Formal
Methods for Open Object-based Distributed Systems (FMOODS’99). Kluwer, 1999.

[12] Laurent Dami. Labelled reductions, runtime errors and operational subsump-
tion. In 24th International Colloquium on Automata, Languages and Programming
(ICALP’97), volume 1256 of Lecture Notes in Computer Science, pages 782–793.
Springer-Verlag, 1997.

[13] Paolo Di Blasio and Kathleen Fisher. A concurrent object calculus. In Ugo
Montanari and Vladimiro Sassone, editors, Proceedings of CONCUR ’96, volume
1119 of Lecture Notes in Computer Science, pages 655–670. Springer-Verlag, 1996.
An extended version appeared as Stanford University Technical Note STAN-CS-
TN-96-36, 1996.

[14] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduction
and typing. In Uwe Nestmann and Benjamin C. Pierce, editors, Proceedings of
HLCL ’98, volume 16.3 of Electronic Notes in Theoretical Computer Science.
Elsevier Science Publishers, 1998.

[15] Charles A. R. Hoare. Communicating sequential processes. Communications of
the ACM, 21(8):666–677, 1978.

[16] Kohei Honda and Mario Tokoro. An object calculus for asynchronous commu-
nication. In Pièrre America, editor, Proceedings of ECOOP ’91, volume 512 of
Lecture Notes in Computer Science, pages 133–147. Springer-Verlag, July 1991.

[17] Hans Hüttel and Josva Kleist. Objects as mobile processes. Research Series
RS-96-38, BRICS, October 1996. Presented at MFPS ’96.

[18] Hans Hüttel, Josva Kleist, Massimo Merro, and Uwe Nestmann. Migration =
cloning ; aliasing (preliminary version). In Informal Proceedings of the Sixth In-
ternational Workshop on Foundations of Object-Oriented Languages (FOOL 6,
San Antonio, Texas, USA). Sponsored by ACM/SIGPLAN, 1999.

[19] Cliff Jones. Constraining interference in an object-based design method. In Marie-
Claude Gaudel and Jean-Pierre Jouannaud, editors, Proceedings of TAPSOFT
’93, volume 668 of Lecture Notes in Computer Science, pages 136–150. Springer-
Verlag, 1993.

[20] Cliff Jones. Accomodating Interference in the Formal Design of Concurrent
Object-Based Programs. Formal Methods in System Design, 8(2):105–122, 1996.
To appear.

[21] Josva Kleist and Davide Sangiorgi. Imperative objects and mobile processes. In
David Gries and Willem-Paul de Roever, editors, Proceedings of PROCOMET
’98, pages 285–303. International Federation for Information Processing (IFIP),
Chapman & Hall, 1998.

[22] Xinxin Liu and David Walker. Confluence of processes and systems of objects.
In Peter D. Mosses, Mogens Nielsen, and Michael I. Schwarzbach, editors, Pro-
ceedings of TAPSOFT ’95, volume 915 of Lecture Notes in Computer Science,
pages 217–231. Springer-Verlag, 1995. Presented in the CAAP-section. Available
as University of Warwick Research Report CS-RR-272, October 1994.

[23] Xinxin Liu and David Walker. Partial confluence of processes and systems of
objects. Theoretical Computer Science, 1998.

[24] Xinxin Liu and David Walker. Concurrent objects as mobile processes. In Plotkin
et al. [37]. To appear.

324 Uwe Nestmann and António Ravara

[25] Robin Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980.
LNCS 92.

[26] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
part I/II. Information and Computation, 100:1–77, September 1992.

[27] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. A calculus of object
bindings. In 2nd IFIP Workshop on Formal Methods for Open Object-based Dis-
tributed Systems (FMOODS’97). Chapman & Hall, 1997.

[28] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Guaranteeing live-
ness in an object calculus through behavioral typing. In IFIP Joint Inter-
national Conference Formal Description Techniques For Distributed Systems
and Communication Protocols & Protocol Specification, Testing, and Verification
(FORTE/PSTV’99). Kluwer, 1999.

[29] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Infinite types for dis-
tributed objects interfaces. In 4th IFIP Workshop on Formal Methods for Open
Object-based Distributed Systems (FMOODS’99). Kluwer, 1999.

[30] O. Nierstrasz. Regular types for active objects. In Object-Oriented Software
Composition, pages 99–121. Prentice Hall, 1995.

[31] Oscar Nierstrasz. Towards an object calculus. In M[ario] Tokoro, O[scar] Nier-
strasz, and P[eter] Wegner, editors, Object-Based Concurrent Computing 1991,
volume 612 of Lecture Notes in Computer Science, pages 1–20. Springer-Verlag,
1992.

[32] Anna Philippou. Reasoning about Systems with Evolving Structure. PhD thesis,
University of Warwick, December 1996.

[33] Anna Philippou and David Walker. On confluence in the π-calculus. In Pierpaolo
Degano, Roberto Gorrieri, and Alberto Marchetti-Spaccamela, editors, Proceed-
ings of ICALP ’97, volume 1256 of Lecture Notes in Computer Science, pages
314–324. Springer-Verlag, 1997.

[34] Anna Philippou and David Walker. On transformations of concurrent object
programs. Theoretical Computer Science, 195(2):259–289, 1998. An extended
abstract appeared in Proceedings of CONCUR ’96, LNCS 1119: 131–146.

[35] Benjamin C. Pierce. Fränkische OOrientierungstage 1993 (Rothenbühl, Fränki-
sche Schweiz, Germany). Tutorial on programming in the π-calculus, 1993.

[36] Benjamin C. Pierce and David N. Turner. Pict: A programming language based
on the pi-calculus. In Plotkin et al. [37]. To appear.

[37] Gordon Plotkin, Colin Stirling, and Mads Tofte, editors. Proof, Language and
Interaction: Essays in Honour of Robin Milner. MIT Press, 1999. To appear.

[38] Franz Puntigam. Types for active objects based on trace semantics. In 1st
IFIP Workshop on Formal Methods for Open Object-based Distributed Systems
(FMOODS’96), pages 5–20. Chapman & Hall, 1996.

[39] Franz Puntigam. Coordination requirements expressed in types for active objects.
In 11th European Conference on Object-Oriented Programming (ECOOP’97),
number 1241 in lncs, pages 367–388. sv, 1997.

[40] Franz Puntigam. Coordination requirements expressed in types for active objects.
In 4th International Euro-Par Conference, number 1470 in lncs, pages 720–727.
sv, 1998.

[41] Franz Puntigam. Non-regular process types. In 5th International Euro-Par Con-
ference, number 1685 in lncs, pages 1334–1343. sv, 1999.

[42] António Ravara and Lúıs Lopes. Programming and implementation issues in non-
unifom TyCO. Technical report, Department of Computer Science, Faculty of

Semantics of Objects As Processes (SOAP) 325

Sciences, University of Porto, 4150 Porto, Portugal, 1999. Presented at the Work-
shop on Object-Oriented Specification Techniques for Distributed Systems and Be-
haviours (OOSDS’99). Satellite event of the 1st Conference on Principles, Logics
and Implementations of high-level programming languages (PLI’99). Web page:
http://www.tec.informatik.uni-rostock.de/IuK/congr/oosds99/program.htm.

[43] António Ravara, Pedro Resende, and Vasco T. Vasconcelos. An algebra of
behavioural types. Technical report, Section of Computer Science, Depart-
ment of Mathematics, Instituto Superior Técnico, 1049-001 Lisboa, Portugal,
1999. Preliminary version presented at the 1st Workshop on Semantics of
Objects as Processes (SOAP’98). Satellite event of the 25th International Col-
loquium on Automata, Languages and Programming (ICALP’98). Web page:
http://www.cs.auc.dk/soap99/index98.html.

[44] António Ravara and Vasco T. Vasconcelos. Behavioural types for a calculus of
concurrent objects. In 3th International Euro-Par Conference, number 1300 in
lncs, pages 554–561. sv, 1997. Full version available as DM-IST Research Report
06/97.

[45] Davide Sangiorgi. An interpretation of typed objects into typed π-calculus. In-
formation and Computation, 143(1):34–73, 1998. Earlier version published as
Rapport de Recherche RR-3000, INRIA Sophia-Antipolis, August 1996.

[46] Frits Vaandrager. Process algebra semantics for POOL. Report CS-R862, Centre
for Mathematics and Computer Science, Amsterdam, August 1986.

[47] Vasco T. Vasconcelos. A process-calculus approach to typed concurrent objects.
PhD thesis, Keio University, 1994.

[48] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of objects.
In 1st International Symposium on Object Technologies for Advanced Software,
volume 742 of lncs, pages 460–474. sv, 1993.

[49] David Walker. Objects in the π-calculus. Information and Computation,
116(2):253–271, 1995.

[50] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modification
mechanism or what like is and isn’t like. In 2nd European Conference on Object-
Oriented Programming (ECOOP’88), number 322 in lncs, pages 55–77. sv, 1988.

[51] Xiaogang Zhang and John Potter. Class-based models in the pi-calculus. In
Christine Mingins, Roger Duke, and Bertrand Meyer, editors, Proceeding of The
25th International Conference in Technology of Object-Oriented Languages and
Systems (TOOLS Pacific ’97, Melbourne, Australia), pages 219–231, November
1997.

	1. Introduction
	2. Objects as Processes
	Piccola -- A Small Composition Language
	The pi-Calculus. A Formal Foundation for Software Composition
	Object Models in the pi-Calculus
	Composing Object-Oriented Specifications and Verifications with cTLA

	3. Behavioral Typing and Subtyping
	A Practical Approach to Behavioural Inheritance in the Context of Coloured Petri Nets
	Behavioural Types in CoOperative Objects
	A Concurrent Object Calculus with Types that Express Sequences
	Explicit Behavioral Typing for Object Interfaces

	4. Open Discussion
	5. Conclusion
	References

