
BR
IC

S
N

S-99-2
H

ütteletal.(eds.):SO
A

P
’99

Proceedings

BRICS
Basic Research in Computer Science

Proceedings of the Workshop on

Semantics of Objects As Processes
SOAP ’99
Lisbon, Portugal, June 15, 1999

Hans Hüttel
Josva Kleist
Uwe Nestmann
António Ravara (editors)

BRICS Notes Series NS-99-2

ISSN 0909-3206 May 1999

Copyright c© 1999, BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Notes Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory NS/99/2/

SOAP — Semantics of Objects As Processes

Purpose One of the most widespread programming paradigms today is
that of object-oriented programming. With the growing popularity of the
language C++ and the advent of Java as the language of choice for the World
Wide Web, object-oriented programs have taken centre stage. Consequently,
the past decade has seen a flurry of interest within the programming language
research community for providing a firm semantic basis for object-oriented
constructs.
Recently, there has been growing interest in studying the behavioural

properties of object-oriented programs using concepts and ideas from the
world of concurrent process calculi, in particular calculi with some notion of
mobility. Not only do such calculi, as the well-known π-calculus by Milner
and others, have features like references and scoping in common with object-
oriented languages; they also provide one with a rich vocabulary of reasoning
techniques firmly grounded in structural operational semantics.
The process calculus view has therefore proven to be advantageous in

many ways for semantics and verification issues. On the one hand, the use
of encodings of object-oriented languages into existing typed mobile process
calculi enables formal reasoning about the correctness of programs; on the
other hand, using standard techniques from concurrency theory in the setting
of calculi for objects may help in reasoning about objects, e.g. by finding ap-
propriate and mathematically tractable notions of behavioural equivalences.
Encodings may also help clarify the overlap and differences of objects and
processes, and suggest how to integrate them best in languages with both.
The aim of the one-day SOAP workshop is to bring together researchers

working mainly in this area, but in related fields as well, where other process
models or calculi are used as a basis for the semantics of objects.

Contents The ’99 edition of SOAP, taking place as a satellite workshop of
ECOOP ’99, is composed of two complementary thematic building blocks.
The first is addressing the motto ‘Semantics of Objects As Processes’ lit-

erally in that objects are represented as a derived concept within a framework
of processes; we are happy to welcome Oscar Nierstrasz, Markus Lumpe, and
Jean-Guy Schneider as invited speakers to present the work they have been
accomplishing in this area—starting out from a mobile process calculus—and
to let us learn about their conclusions. This session is rounded up by a veri-
fication approach using a temporal logic as a target setting for, in this case,
UML-style objects.
The second building block, divided into a session on behavioral subtyping

and another one on behavioral typing, is more to be seen as an adaptation

i

of the process-theoretic viewpoint to some object-oriented framework. While
the typed λ-calculus is a firm ground to study typing for object-oriented
languages, the typing of concurrent objects poses particular problems due to
synchronization constraints. A static notion of typing is not powerful enough
to capture dynamic properties of objects’ behavior, like non-uniform service
availability. Concurrency theory inspires dynamic notions of typing and sub-
typing, and the works that constitute this block of SOAP ’99 exemplify the
research currently being done in the field.

By means of a formal refereeing process, among the nine submitted ab-
stracts five were recommended by the programme committee (Hans Hüttel,
Josva Kleist, Uwe Nestmann, and António Ravara) and are presented here.
(It is expected that the contributions will also appear elsewhere at other
conferences or in journals.)
We would like to thank the organizers of ECOOP ’99, in particular Ana

Maria Moreira, for helping us logistically to set up the SOAP workshop, we
thank BRICS, in particular Uffe H. Engberg, for the publication of these
proceedings, and we thank Massimo Merro and Silvano Dal-Zilio for their
assistance in the refereeing process.

Hans Hüttel Josva Kleist Uwe Nestmann António Ravara

ii

Table of Contents

The workshop will be held at the Faculty of Sciences, University of Lisbon
on June 15, 1999, in the order appearing in these proceedings.

Oscar Nierstrasz
Piccola — A Small Composition Language (Abstract) 1

Markus Lumpe
The πL-Calculus — A Formal Foundation for Software Composition (Abstract) 3

Jean-Guy Schneider
Object Models in the πL-Calculus (Abstract) 5

Günter Graw, Peter Herrmann, Heiko Krumm
Composing object-oriented specifications and verifications with cTLA 7

Charles Lakos, Glenn Lewis
A Practical Approach to Behavioural Inheritance
in the Context of Coloured Petri Nets 21

Nabil Hameurlain, Christophe Sibertin-Blanc
Behavioural Types in CoOperative Objects 29

Christof Peter, Franz Puntigam
A Concurrent Object Calculus with Types that Express Sequences 39

Elie Najm, Abdelkrim Nimour
Explicit behavioral typing for object interfaces 47

iii

iv

Piccola – A Small Composition Language

Oscar Nierstrasz

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),

Neubrückstrasse 10, CH-3012 Bern, Switzerland.
oscar@iam.unibe.ch

http://www.iam.unibe.ch/∼oscar

Abstract

Although object-oriented languages are well-suited to implementing soft-
ware components, they fail to shine in the construction of component-based
applications, largely because object-oriented design tends to obscure a com-
ponent-based architecture. We propose to tackle this problem by clearly
separating component implementation and composition. Piccola is a small
“composition language” that embodies the paradigm of “applications = com-
ponents + scripts.” Piccola models components and composition abstrac-
tions by means of a unifying foundation of communicating concurrent agents.
Flexibility and extensibility are obtained by modelling both interfaces to
components and the contexts in which they live by extensible records, or
“forms”. We illustrate the realization of an architectural style in Piccola and
show how external components may be adapted and composed according to
the style. We show how separating components from their composition can
improve maintainability.

1

2

The πL-Calculus - A Formal Foundation for
Software Composition

Markus Lumpe

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),

Neubrückstrasse 10, CH-3012 Bern, Switzerland.
lumpe@iam.unibe.ch

http://www.iam.unibe.ch/∼lumpe

Abstract

In this talk, we present a formal language for software composition that
is based on the π-calculus. More precisely, we present the πL-calculus, a
variant of the π-calculus, in which agents communicate by passing extensi-
ble, labeled records, or so-called “forms”, rather than tuples. This approach
makes it much easier to model compositional abstractions than it is possi-
ble in the plain π-calculus, since the contents of communications are now
independent of positions, agents are more naturally polymorphic since com-
munication forms can be easily extended, and environmental arguments can
be passed implicitly. The πL-calculus is developed in three stages: (i) we
analyse whether the π-calculus is suitable to model composition abstrac-
tions, (ii) driven by the insights we got using the π-calculus, we define a
new calculus that has better support for software composition (e.g., provides
support for inherently extensible software construction), and (iii), we define
a first-order type system with subtype polymorphism that allows us to stat-
ically check an agent system in order to prevent the occurrences of runtime
errors.

3

4

Object Models in the πL-Calculus

Jean-Guy Schneider

Software Composition Group, University of Berne,
Institute for Computer Science and Applied Mathematics (IAM),

Neubrückstrasse 10, CH-3012 Bern, Switzerland.
schneidr@iam.unibe.ch

http://www.iam.unibe.ch/∼schneidr

Abstract

The development of concurrent object-based programming languages
has suffered from the lack of any generally accepted formal foundation for
defining their semantics, although several formal models have been pro-
posed. Most of these models define objects and object-oriented abstractions
as primitives, but they either do not incorporate important features found in
object-based programming languages (e.g., they lack inheritance), hard-wire
the underlying inheritance model, or integrate concepts in a non-orthogonal
way. As an approach to overcome the problems of existing models, we
present a (meta-level) framework for object models in the πL-calculus. We
show that common object-oriented programming abstractions such as in-
stance variables and methods, different method dispatch strategies as well
as class features are most easily modelled when class metaobjects are ex-
plicitly reified as first class entities. We illustrate that various concepts
which are typically merged (or confused) in object-oriented programming
languages can be expressed in a more natural way by making a clear sep-
aration between functional elements (i.e. methods) and their compositions
(i.e. inheritance). Furthermore, we show that the same concepts can also be
applied for modelling mixins, mixin application, and mixin composition.

5

6

Composing object-oriented specifications and
verifications with cTLA

Günter Graw, Peter Herrmann, Heiko Krumm
Dept. of Computer Science, Dortmund University, D-44221 Dortmund, Germany

Internet: {graw|herrmann|krumm}@ls4.cs.uni-dortmund.de

Abstract

In order to support formally correctness preserving refinement steps of object-
oriented system designs, we refer at one hand to the practically well-accepted Unified
Modelling Language (UML) and at the other hand to L. Lamport’s Temporal Logic
of Actions (TLA) which supports concise and precise notions of properties of dy-
namic behaviours and corresponding proof techniques. We apply cTLA which is an
extension of TLA and supports the modular definition of process types. Moreover,
in cTLA process composition has the character of superposition which facilitates the
modular transformation of UML diagrams to corresponding formal cTLA process
system definitions and their structured verification. We exemplify transformation
and formal verification. Moreover we outline the application of this method for
the establishment of domain-specific specification frameworks which can directly
support the UML-based correct design of OO-systems.

1 Introduction

Meanwhile, the practical design of object-oriented application systems is mostly based
on the Unified Modelling Language UML [21]. Systems are modeled and described by a
series of UML diagrams where each diagram corresponds to a partial view of a system
and concentrates on certain property types and aspects. So, class diagrams describe
the static class structure. Use case diagrams are devoted to specific utilizations and the
objects instances which are responsible for their realization. Collaboration diagrams focus
on the partners and interactions of specific cooperation relations. Statechart diagrams
describe the behaviour of object instances. While several approaches exist which assign
formal semantics to the different diagram types (e.g., [16]), usually UML-based designs
are non-formal. Since the diagrams support intuitive interpretations, the designers easily
understand their pragmatical meanings without reference to formal models. Therefore,
often formal designs are not desirable, especially, since the development and analysis
of formal models would introduce considerable additional costs. Furthermore, for many
interesting formal design checks separate formal models of single diagrams would not
suffice. Instead, very complex models of diagram combinations would be necessary which
model a set of diagrams in context with each other in order to cover interrelations.
The design of critical systems, however, can essentially profit from formal verifications.

We expect benefits at least from formal checks of those functions, aspects, and properties

1

7

which are as well crucial as their provision depends on complex and not easy-to-understand
mechanisms. In particular, aspects of the design of dynamic object system configuration
at runtime, of concurrent execution threads, of combined behaviour of object instances,
and of object interactions are inherently complex and difficult to master without formal
support. In order to support formal modelling and analysis of partial aspects of UML-
based object-oriented system designs, especially with respect to questions of concurrency,
object behaviour, and interactions, we developed transformations from UML diagrams to
formal cTLA specifications [9] and underlying state transition system models.
cTLA is based on L. Lamports Temporal Logic of Actions (TLA) [17] and refers to the

concepts of state transition systems, refinement mappings [1], and the separate definition
of both safety and liveness properties. Unlike TLA, the cTLA composition principle is
oriented at CCS [19] and Lotos [14] and applies the principle of superposition like DisCo
[6]. In comparison with [2], the cTLA processes do not interact via shared variables but
perform joint actions. This stateless way of interaction has different benefits. Especially
constraint-oriented processes can be represented (cf. [23]) which are well suited for the
diagrams of the UML. Furthermore, cTLA supports decompositional proofs. A system
is the logical conjunction of its processes and the style conventions assure the absence of
contradictions in the system formula. Thus, process properties are directly inherited to
the system. The compositionality of cTLA supports the transformation of UML-based
descriptions since each UML diagram of a system description can be modelled by a single
cTLA process which contributes to the system as a whole in a well-defined way. For the
analysis of properties of interrelations relatively small subsystems can be used comprising
only those processes which influence the properties of special interest.
This paper shortly outlines our approach as a whole and concentrates on the formal

verification of refinement steps where a step is represented by two sets of UML diagrams.
The first set describes the starting point of the refinement which we call the abstract
model. The second set specifies the result of the refinement by means of the so-called
refined model. Both models can be transformed to cTLA. Thus, there are two corre-
sponding systems of cTLA processes, the first describing a more abstract state transition
system, the second describing a refined state transition system. The formal verification
shall prove that the refined system has in fact all those safety and liveness properties
which are required by the specification of the abstract system. Since TLA’s formal refine-
ment relation directly corresponds to this practically relevant notion of correct refinement,
verifications can be performed on the basis of TLA where a refinement step is correct,
exactly if the implication ‘Refined System implies Abstract System’ can proved to be a
valid TLA-formula cf. [17].
Of course, the transformation of UML diagrams to cTLA processes and the TLA-

based verification introduces additional efforts. Therefore methods are of high interest
which support correctness relations directly applying to UML specifications of abstract
and refined systems. These objectives are similar to those of the pUML group whose
members investigate diagrammatical transformation rules where a rule directly applies to
an abstract diagram and transforms it to the refined diagram of a correct refinement [20].
Thus, the approach of pUML transformation rules is very ambitious and shall combine the
advantages of correctness-preserving source-code transformations [4] with those of graph-
ical specification and modelling support. With respect to the preservation of behavioural

2

8

properties of concurrent and distributed systems, however, we made the experience that
general correctness-preserving transformation rules are very difficult to handle in the
course of practical design processes. Moreover, the rules are accompanied by so-called
application conditions. The correctness of a transformation is only assured if the appli-
cation condition holds. Since many application conditions are relatively complex, efforts
for their proofs are necessary which are comparable to that of a posterio verifications of
freely designed refinements.
Under these considerations, our present work investigates another direction of di-

rect refinement support. It follows up the framework approach of software development
(cf. [15]) and translates it into the field of specification development. Consequently, we
study special domains of application (e.g., protocol design [11], distributed control of
chemical plants). Corresponding collections of specification modules and patterns for
abstract and refined systems are under development. Moreover, the relations between
those abstract and refined modules and patterns are investigated which correspond to
correct refinement steps. The results are documented by a collection of theorems. The
theorems are implications between refined system patterns and abstract patterns. In
principle, their function is comparable to that of general correctness preserving transfor-
mation rules. Nevertheless, the theorems connect domain-specific specification patterns
and therefore can provide direct application-specific design support.
In the remainder, we outline the formal specification language cTLA. Thereafter we

address basic notions of dynamic behaviours of object systems and their representations
in UML models. We describe the essentials of the transformation from UML diagrams
to cTLA processes. From that, the TLA-based verification of refinements is discussed.
Transformation and verification are exemplified by means of a small application scenario.
Finally, we sketch our present work which is constructing a domain-specific specification
framework for distributed control of chemical plants.

2 Compositional specification style cTLA

cTLA [10, 18] is based on Leslie Lamports Temporal Logic of Actions (TLA) [17] and
supports the definition of parametrized process and system types. A specification of
a simple process or a (sub)system is formed by instantiating a cTLA process type resp.
system type. As in the formal description language Lotos [14], systems are composed from
processes which interact by means of joint actions. Due to this method of composition,
processes can model not only implementation parts but also logical system constraints
(cf. [23]).
As an example of a cTLA process type we outline Object in Fig. 1 describing the

behaviour of an UML object (cf. Sec. 4). In the process type header the name Object
and the process parameters cf, id, and class are declared. The state variables (e.g., state,
lifecycle, qu) model the process state. The set of initial states is descibed by the predicate
INIT. State transitions are specified by means of actions. An action (e.g., callAction) is
a predicate about action parameters (e.g., receiver), state variables describing the state
before executing the action (e.g., lifecycle), and so-called primed state variables modelling
the state after executing the action (e.g., lificycle’). Besides of state transitions specified

3

9

PROCESS Object (cf : ClassFrame ; id : OId ; class : ClassName)

VARIABLES

state : cf.State ; ! object data, links, and control

lifecycle : (unborn, alive, dead); ! life cycle state

qu : queue of Message ; ! messages received

awaitReturnOf : MessageId ; ! if blocked: call message id

. . .; ! message id management, etc.
INIT =̂ lifecycle = unborn ∧ . . . ; ! initially, object does not exist
ACTIONS

callAction (receiver : OId ; objState, objNextState : cf.State ;

message : Message ; mode : SyncMode) =̂ ! send Call-message
lifecycle=alive ∧ lifecycle ′=lifecycle ∧
cf.nextState(state,state,message,receiver,mode) ∧
awaitReturnOf ′=IF mode=blocking THEN message.id ELSE nullId ∧
qu ′=qu ∧ . . . ;

receiveAction (objState, objNextState : cf.State ;

message : Message) =̂ . . . ; ! receive a message
! if message is a return message awaited, it is inserted at the front
! of qu otherwise appended.

returnAction (receiver : OId ; objState, objNextState : cf.State ;

message : Message) =̂ . . . ; ! send Return-message
createAction (receiver : OId ; objState, objNextState : cf.State ;

message : Message) =̂ . . . ; ! send Create-message
. . .;
END

Figure 1: Process type Object.

by actions, a process may perform stuttering steps where it does not change its state while
the process environment performs a state transition.
The cTLA process type Object describes safety properties. Liveness constraints (cf. [3])

are described by additional weak or strong fairness assumptions forcing the execution of an
action if it would be enabled for an infinite period of time otherwise. Weak fair actions (de-
noted by WF : callAction) are only required to execute if the action would otherwise be
incessantly enabled while execution of strong fair actions (denoted by SF : callAction)
is guaranteed even if the action is sometimes disabled. Unlike the definition of [3] and
TLA, cTLA provides for conditional fairness assumptions in order to keep the composi-
tionality of systems. A fair action has to execute only if otherwise infinitely many states
exist where the action is enabled as well as its execution is tolerated by the environment.
Systems and subsystems are described as compositions of concurrent processes which

encapsulate their state variables and change their local states according to the process
actions. The vector of the process state variables represent the state of the entire system.
System state transitions are described by system actions which are logical conjuncts of
process actions and process stuttering steps. Since each process contributes to each system
action by exactly one action or a stuttering step, concurrency is modeled by interleaving
and the coupling of processes by joint actions. The action parameters are used to describe
data transfer between processes.

4

10

PROCESS GlobalSystem (cfs : [class → ClassFrame]; OId : data type;

classOf : [OId → class])

PROCESSES ! the infinite array of object processes

ARRAY obs [OId] of Object(cfs[classOf(index)],index,classOf(index));

ACTIONS ! system actions defining the coupling of the objects

operationCall (caller, callee: OId ;

callerState, callerNextState,
calleeState, calleeNextState : State ;

message : Message ; mode : SyncMode) =̂
! caller calls operation of callee

obs[caller].callAction(callee,callerState,callerNextState,

message,mode) ∧
obs[callee].receiveAction(calleeState,calleeNextState,message) ∧
∀ i ∈ OId \ {caller,callee} obs[i].Stutter ;

operationReturn (. . .) =̂ . . .; ! callee operation returns to caller
objectCreate (. . .) =̂ . . .; ! object sends create message
. . .;

END

Figure 2: Process type GlobalSystem.

As an example Fig. 2 shows the system type GlobalSystem modelling a system of UML
objects. The processes composing the system are listed in the section PROCESSES. For in-
stance, GlobalSystem consists of OId many instances obs[i] of the process type Object (cf.
Fig. 1). The system actions are listed in the section ACTIONS. In the example, the action
operationCallmodels that the object obs[caller] calls an operation of the object obs[callee].
Therefore obs[caller] participates to operationCall by the process action callAction and
obs[callee] by the process action receiveAction. The other processes participate to oper-
ationCall by stuttering steps. Data between the caller and the callee are described by
the system action parameter message. During the execution of operationCall, the process
action parameters message in obs[caller].callAction and obs[callee].receiveAction have to
carry identical values.
cTLA facilitates the combination of different property types like safety and liveness.

Thus, in the resource oriented specification style, all relevant aspects of a component can
be described by a single process type. In the constraint-oriented specification style one
can specify different aspects of a component by separate constraint processes. In order
to support the modularity of verifications, however, liveness properties may be combined
with models of the safety behaviour of the component’s environment (cf. [11]).

3 Dynamic behaviour

Since we concentrate on the issues of concurrency and concurrent object interaction we
give a short outline of the according UML concepts. We view an object system as a set of
objects and a set of threads of activity. An object system evolves during runtime from an
initial object configuration performing steps of execution changing the system state. The
relevant state of a system depends on the set of currently existing objects and their control

5

11

O2 : Business Account O3 : Proxy O1 : BusinessTransaction

AO2 : Business Account AO1 : BusinessTransaction

2. withdraw(a)

1. withdraw(a)

1. withdraw(a)

Figure 3: Collaboration diagram of the example system

and data (attribute values) states (cf. Fig. 1). The state of the object system as a whole
identifies the set of currently existing objects and moreover contains the object states
as components (see [9] for the according cTLA specification of the global system). The
UML uses statechart, interaction (sequence and collaboration), and use case diagrams for
the description of the dynamic behaviour. In the UML, an execution step with an object
corresponds to an action which is modelled in a statechart. Actions may effect the local
and foreign objects as well. There are several kinds of actions:

• A call action results in the invocation of an operation.

• Send actions result in the asynchronous sending of a signal.

• Create actions cause the creation of an instance of a class. They are not permitted
to have a target object.

• By return actions a value or a set of values is returned to the caller.

• A terminate action results in the self-destruction of an object. It should not have
parameters.

• Local invocation actions cause the local invocation of an operation without gener-
ating a call or signal event.

• Actions that are not previously defined are called uninterpreted actions.

Like the UML-metamodel [21] we assume run-to-completion semantics (RTC) for state
machines which follows the idea that requests are processed in sequence one after the
other. This assumption simplifies the synchronization of an object, since an incoming
request is only processed, if the object has reached a stable state configuration. Commu-
nication between objects is specified by means of signal or operation requests. Objects
communicate by means of operation (service provided for another object) requests if the
calling object demands a service by the called object. A request is forwarded by a mes-
sage instance which can carry a set of arguments. Operations can be called synchronously
(sender is blocked, cross in message symbol) or asynchronously, which is modelled which
is modelled in collaboration diagrams. The number which precedes the name of a message
represents its order in an execution sequence.

6

12

4 Transformation

Since cTLA facilitates constraint-oriented specifications, the different diagrams of UML
specifications can be modeled formally by a couple of individual cTLA-processes. Be-
low, we will outline the transformation of UML collaboration diagrams and statecharts
by means of a simple example specification. The idea of the example is that money is
withdrawn from a business account in a business transaction. In the top of Fig. 3 a col-
laboration is shown which represents the withdrawal of money from the business account.
A refined design of the example is presented in the bottom of Fig. 3. The refinement
is manifested in the introduction of a new proxy object for the business account which
is located in another address space. The statecharts of the according object classes are
given in Fig. 4.
Collaboration diagrams are transformed to the cTLA process type CollaborationDia-

gramUnit shown in Fig. 5. We introduce a new process instance for each two objects which
are relevant in the context of the according use case. The process parameters O1 and O2
in CollaborationDiagramUnit are used to address the corresponding process types. More-
over, a constraint process instance should manage the set of active use cases. This causes
the introduction of a corresponding parameter activeUseCases to the actions. The state
variable actMessage keeps track of call messages and callerLocked of blocking caused by
synchronous calls (callerLocked). Since the process type CollaborationDiagramUnit shall
constrain only those actions, which are related to the objects O1, O2 and to the active
use case myUseCase, each action is furnished with a term applying a stuttering step of
the constraint process to those action occurrences which are irrelevant for the constraint
(synchronous mode, no other message until termination.), except for disjunctive terms
applying real constraints (under condition caller = O1 ∧ callee = O2 ∧ myUseCase ∈
activeUseCases).
The transformation of UML statechart diagrams to cTLA processes is performed in

two steps. At first, a statechart which may contain nested states and transitions labelled
by action sequences is transformed to an ordinary state transition system following the
principles explained in [13, 22]. For instance, the statechart at the right side of Fig. 4
describing the BusinessTransaction O1 is transformed to a simple state transition system

withdraw

finished/return

WithdrawCalled

CallBA(a)

done

withdraw/CallBA(a)

receiveReturn/return

waiting for reply

Figure 4: Statechart diagrams of the example system

7

13

PROCESS CollaborationDiagramUnit (O1, O2 : OId; myusecase : UseCase)
BODY
VARIABLES

actMessage : SUBSET(Message.Id); ! List of active messages

callerLocked : {"yes","no"}; ! Is caller locked ?

INIT actMessage = ∅ ∧ callerLocked = "no";
ACTIONS

operationCall (caller, callee : OId; message : Message;

mode : SyncMode; activeUseCases : SUBSET(UseCase)) =̂
! If O1 is caller, O2 is callee, and myusecase is an active use case, only
! messages of type "Withdraw" may be send; message becomes active and

! caller is locked

(caller = O1 ∧ callee = O2 ∧ myusecase ∈ activeUseCases ∧
callerLocked = "no" ∧
((message.operationname = "Withdraw" ∧ mode = "synchronized" ∧

actMessage ′ = actMessage ∪ {message.id} ∧
callerLocked ′ = "yes"))) ∨

! Otherwise process performs a stuttering step

((caller)= O1 ∨ callee)= O2 ∨ myusecase)= activeUseCases) ∧
actMessage ′ = actMessage ∧ callerLocked ′ = callerLocked);

operationReturn (caller, callee : OId; message : Message;

activeUseCases : SUBSET(UseCase)) =̂ . . .;
! If O2 is caller, O1 is callee, and myusecase is an active use case, only

! messages of type "Withdraw" may be returned; furthermore a message must

! be active; message becomes passive and caller is unlocked

Figure 5: Process type CollaborationDiagramUnit.

listed in Fig. 6.
In the second step the transition system is transformed to a cTLA process type. Since

cTLA process types model state transitions in a direct way, this step is very simple.
The process type BusinessTransaction (Fig. 7) contains the state variable state modelling
the three states of the state transition system. The condition INIT specifies that ”i” is
the initial state and the actions callAction, receiveAction, and internalAction model the
transitions. The process parameter id describes the object identifier while myusecase is
used to manage the active use cases in accordance with a further constraint process.
Relations between UML diagrams are modeled in cTLA by means of process action

receiveAction
("withdraw")

donei tcallAction
("withdraw")

internalAction

Figure 6: State transition system of the BusinessTransaction O1.

8

14

PROCESS BusinessTransaction (id : OId; myusecase : UseCase)
BODY
VARIABLES

state : {"i","wfr","t"}; ! actual process state
INIT state = "i";
ACTIONS

callAction (caller : OId; message : Message;

activeUseCases : SUBSET(UseCase)) =̂
(state = "i" ∧ myusecase ∈ activeUseCases ∧ id = caller ∧
message.operationname = "Withdraw" ∧ state ′ = "wfr") ∨

((state)= "i" ∨ myusecase /∈ activeUseCases ∨
id)= caller ∨ message.operationname)= "Withdraw") ∧
state ′ = state);

receiveAction (callee : Oid; message : Message;

activeUseCases : SUBSET(UseCase)) =̂
(state = "wfr" ∧ myusecase ∈ activeUseCases ∧ id = callee ∧
message.operationname = "Withdraw" ∧ state ′ = "wfr") ∨

((state)= "wfr" ∨ myusecase /∈ activeUseCases ∨
id)= callee ∨ message.operationname)= "Withdraw") ∧
state ′ = state);

internalAction (this : OId; activeUseCases : SUBSET(UseCase)) =̂ . . .;
END

Figure 7: Process Type BusinessTransaction.

conjunctions. Assume that O1 : BusinessTransaction is the cTLA process specifying
the example object O1 and CollO1O3 : CollaborationDiagramUnit the cTLA process
describing the operation call withdraw in which O1 is the caller and O3 the callee. Since
the operation call is triggered byO1 performing a callAction, the process actions callAction
of cTLA process O1 and operationCall of CollO1O3 are conjoined. Likewise, the process
actions returnAction in O1 and operationReturn in CollO1O3 are coupled. The action
internalAction of O1 does not correspond to any collaboration diagram transitions and
therefore is linked with a stuttering step of CollO1O3.

5 An example proof

Below we will outline the proof that the abstract system consisting of the business trans-
action object AO1 and the business account object AO2 is realized by a more detailed
system consisting of O1, O2, and an additional proxy O3. The UML collaboration di-
agrams and statecharts are transformed into cTLA specifications according to Sec. 4.
The proof utilizes the compositionality of cTLA. It can be decomposed into three sim-
pler proof steps. At first, we have to prove that the subsystem SO1/3 consisting of the
processes representing the statecharts of O1 and O3 (Fig. 4) composed with the process
CollO1O3 modelling the collaboration diagram unit connecting O1 with O3 (Fig. 3) ful-
fills the process representing the abstract business transaction object AO1. Secondly, we
prove that the process representing O2 implies that implementing AO2. Finally, we have
to verify that the process describing the collaboration between O3 and O2 realizes that

9

15

representing the collaboration between AO1 and AO2.
Here, we will sketch only the first proof corresponding to the verification of the impli-

cation SO1/3 ⇒ AO1 which is performed as a regular TLA refinement proof (cf. [17]). In
order to compare the two state spaces of SO1/3 and AO1, we define a mapping between
them, the so-called refinement mapping:

RM=̂O3.state = ”i”→ AO1.state = ”i”
O1.state = ”t”→ AO1.state = ”t”
otherwise→ AO1.state = ”withdrawCalled”

Instead of AO1 we use the equivalent process AO1 for the proof where the local variable
AO1.state is replaced by variables of O1 and O3 according to RM .
Firstly, we have to verify that all initial states of SO1/3 are also initial states of AO1.

Since in the initial states of both processes the equation O3.state = ”i” holds, this proof
is trivial. Secondly, we have to prove that each action of SO1/3 implies either an action
or a stuttering step in AO1. This proof, however, cannot be performed directly. Before,
we have to prove that the following formula I is an invariant of the subsystem SO1/3:

I=̂O1.state = ”i”⇒ O3.state = ”i” ∧O1.state = ”t”⇒ O3.state = ”t”∧
O3.state = ”waitingForReply”⇒ O1.state = ”withdrawCalled”∧
”withdraw” ∈ O3.qu⇒ (O1.state = ”withdrawCalled” ∧O3.state = ”i”)∧
”withdrawReturn” ∈ O1.qu⇒ (O1.state = ”withdrawCalled” ∧O3.state = ”t”)

The invariant proof is performed by checking that I holds initially and is preserved by all
actions of SO1/3.
Using the proven fact, that I holds before and after execution of any action in SO1/3,

we can now verify that the actions of SO1/3 correspond to actions or stuttering steps of
AO1. As an example we outline that the action T changing the state state of O1 from
withdrawCalled to t implies the action T of AO1 changing the state O1.state)= ”t” ∧
O3.state)= ”i” (AO1.state = ”withdrawCalled”) to O1.state = ”t”. T is a joint action
conjoining the actions receiveAction of O1 and operationReturn of the collaboration
between O1 and O3. It can only be executed if the message ”withdrawReturn” is in the
message queue O1.qu of O1. This implies that due to the last conjunct of I the condition
O1.state = ”withdrawCalled” ∧ O3.state = ”t” holds before executing T . Thus, the
enabling condition of T implies the enabling condition of T . After the execution the
condition O1.state = ”t” holds as well in SO1/3 as in AO1. Therefore, the effect of T
implies the effect of T , too, and T implies T as a whole. Likewise, all actions of SO1/3
are proven.

6 Verification with cTLA patterns

In this section we focus on the UML descriptions of properties of a software product
on different levels of abstraction and the correctness of these descriptions. Therefore we
introduce two models on different levels of abstraction which stem from the software life
cycle(requirements engineering, design) of a given product. These are:

10

16

• The abstract software model (ASM) serves as interface between application engi-
neering and software development. It models the structuring of the software parts
of the system into logical components. It is a result of analysis activities performed
during the requirements engineering of a software product which typically bases on
knowledge from previously performed domain engineering.

• The concrete software model (CSM) is a refinement of the ASM. It structures the
software into implementation-oriented components. It explicitly refers to distribu-
tion and network communication, to fault- tolerant mechanisms and performance
optimisation as well as to the allocation and management of resources.

Both models are described in terms of patterns which have currently a growing impact on
software development. On the one hand there are the well- known design patterns (e.g.
given in [8]). On the other hand, analysis patterns have to be defined for each individual
domain on their own applying techniques for domain engineering. Analysis patterns have
been applied by Fowler [7] who has found and applied them in several industrial projects.
Analysis patterns are described by the terms and concepts of an application domain.
Taking these concepts, it is obvious that analysis patterns are applied in the ASM while
design patterns are used in the CSM. Furthermore, some practitioners claim that there
exist relationships between collections of patterns which might be expressed in a so called
system of patterns [5].
Now we concentrate on the verification of a CSM-level specification against the ab-

stract requirements expressed by an ASM-level specification. We have to prove that the
CSM specification implements the relevant properties of the ASM specification. For that
purpose comprehensive and compatible formal models of the dynamic semantics of both,
the ASM and the CSM model, are needed. Moreover, one needs the formal inference
system TLA to perform these proofs. While cTLA is well-suited to the formal mod-
elling of highly structured systems, there is a very high complexity when ASM and CSM
specifications of practical systems are transformed to cTLA. As previously stated, the
statecharts are translated to process behaviour descriptions. The interaction diagrams
and the activity diagrams (used for the modelling of synchronisation aspects) are trans-
lated to configuration and process coupling descriptions. To model the dynamic creation
of objects, infinite state space structures (i.e., for each object type an infinite array of
object instances) are used which are accompanied with an explicit state representation
of the current existence of an object. In general, the operations of objects can be exe-
cuted concurrently and there is a wide spectrum of object interaction mechanisms and
synchronisation methods. Since state transition systems model behaviours by series of
atomic transitions, the wide spectrum of object interactions induces a very fine granu-
larity of atomicity. Thus, models with a very complex state space and with a very fine
transition structure are needed in general. We think that these models are too difficult-to-
understood to form a convenient basis of manageable formal verifications in practice. On
the other hand, we are aware that the complexity of the models does not result from cTLA
but is a direct consequence of the modelling power of UML-descriptions of object-oriented
systems. Therefore, the approach has to be enhanced by additional concepts.
In order to render possible manageable formal proofs of practical systems, we utilise

the proposed application of conceptual patterns in the ASM and of software design pat-

11

17

terns in the CSM for the verification, too. The benefits of patterns are twofold. On the
one hand, patterns restrict system structures, the interactions, the concurrency, and the
synchronisation of objects. The formal modelling recognises the restrictions and provides
for less complex models which are more easy-to-understand since they directly correspond
to application-oriented interaction schemes. On the other hand, there are logical relation-
ships between conceptual patterns and software design patterns since a design pattern
serves for the purpose of implementation of a conceptual pattern. This implementation
relation between patterns of a system of patterns are formally modelled by the refinement
relation of TLA, i.e., there exist valid implications from design patterns to conceptual pat-
terns. In connection with the modularity and the genericity features of cTLA, theorems
are stated which correspond directly to the logical relationships between patterns. E.g.
in the example proof listed in section 5 there is a theorem which states the refinement
relationship from a proxy pattern and a refined controller to the more abstract analysis
pattern controller. These theorems can easily be instantiated to represent the particular
refinement relations of a specific practical project.
In the domain of communication protocols comprehensive libraries of patterns and

theorems are already established [11] and the experience showed that even complex prac-
tical protocols can be verified by means of theorems only, i.e., in order to verify a protocol
it was not necessary to perform basic TLA deductions since all necessary implications of
the proofs were instantiated from theorems [12].

7 Conclusion

We reported on present work which aims to the establishment of domain-specific speci-
fication frameworks for the object-oriented and pattern-based design of concurrent and
distributed software systems. In particular, the frameworks will supply theorems which
describe patterns of correct refinements and facilitate formal verification enormously since
theorems can replace nearly all complex original proofs of verifications. Our report con-
centrated on the formal background of theorems which is given by transformations of
UML diagrams to modular cTLA specifications enabling the application of TLA-based
proof methods. According to this procedure the theorems of the specification frameworks
under development are proven. Besides of our former work supporting the cTLA-based
formal specification and verification of communication protocols, there is additional work
the specification framework approach is related to. So, meanwhile extensions of cTLA ex-
ist which support the handling of real-time and continuous properties. Under application
of these extensions already several hazard analysis and safety proofs for chemical plants
were accomplished.

References

[1] M. Abadi and L. Lamport. The Existence of Refinement Mappings. Theoretical Computer
Science, 82(2):253–284, May 1991.

[2] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming
Languages and Systems, 15(1):73–132, Jan. 1993.

12

18

[3] B. Alpern and F. B. Schneider. Defining liveness. Information Processing Letters, 21:181–
185, 1985.

[4] The CIP Language Group: The Munich Project CIP Volume I: The Wide Spectrum Lan-
guage CIP-L. Lecture Notes in Computer Science 183 : Springer 1985

[5] F. Buschmann, R. Meunier, H. Rohnert Pattern Oriented Software Architecture : A System
of Patterns. Addison-Wesley, 1996.

[6] R. J. R. Back and R. Kurki-Suonio. Decentralization of process nets with a centralized
control. Distributed Computing, (3):73-78, 1989.

[7] M. Fowler. Analysis Patterns : Reusable Object Models. Addison-Wesley, 1996.

[8] E. Gamma, R. Helm, R. Johnson, J. Vlissides. Design Patterns: Elements of Reusable
Object Oriented Software. Addison-Wesley, 1994.

[9] G. Graw, P. Herrmann, and H. Krumm. Constraint-Oriented Formal Modelling of OO-
Systems. To appear in: Second IFIP WG 6.1 International Working Conference on Dis-
tributed Applications and Interoperable Systems (DAIS 99), Helsinki, June 1999. Kluwer
Academic Publisher.

[10] P. Herrmann and H. Krumm. Compositional Specification and Verification of High-Speed
Transfer Protocols. In S. T. Vuong and S. T. Chanson, editors, Protocol Specification, Test-
ing, and Verification XIV, pages 339–346, Vancouver, B.C., Canada, 1994. IFIP, Chapman
& Hall.

[11] P. Herrmann and H. Krumm. Re-Usable Verification Elements for High-Speed Transfer
Protocol Configurations. In P. Dembiński and M. Średniawa, editors, Protocol Specification,
Testing, and Verification XV, pages 171–186, Warsaw, Poland, 1995. IFIP, Chapman &
Hall.

[12] P. Herrmann and H. Krumm. Modular Specification and Verification of XTP. Telecommu-
nication Systems 9(2):207-221, 1998.

[13] J. Hooman, S. Ramesh, and W.-P. de Roever. A compositional axiomatization of State-
charts. Theoretical Computer Science, 101:289–335, 1992.

[14] ISO. LOTOS: Language for the temporal ordering specification of observational behaviour,
International Standard ISO 8807 edition, 1989.

[15] R. Johnson and B. Foote. Designing reusable classes. The Journal of Object-Oriented
Programming, 1(2):22–35, 1988.

[16] K.C.Lano and A.S.Evans. Rigorous Development in UML. In ETAPS’99, FASE workshop.
LNCS, 1999.

[17] L. Lamport. The Temporal Logic of Actions. ACM Transactions on Programming Lan-
guages and Systems, 16(3):872–923, May 1994.

[18] A. Mester and H. Krumm. Composition and Refinement Mapping based Construction of
Distributed Applications. In Proceedings of the Workshop on Tools and Algorithms for the
Construction and Analysis of Systems, Aarhus, Denmark, 1995. BRICS.

13

19

[19] R. Milner. A Calculus for Communicating Systems. Number 92 in Lecture Notes in Com-
puter Science. Springer, Berlin, 1980.

[20] The pUML group. http://www.cs.york.ac.uk/puml/

[21] The UML Group, Rational Software Corporation. Santa Clara, CA-95051, USA. UML
Semantics. Version 1.1, July 1997.

[22] A. C. Uselton and S. A. Smolka. A Compositional Semantics for Statecharts using Labeled
Transition Systems. In B. Johnsson and J. Parrow, editors, CONCUR’94: Concurrency
Theory, number 836 in Lecture Notes in Computer Science, pages 2–17. Springer-Verlag,
1994.

[23] C. A. Vissers, G. Scollo, and M. van Sinderen. Architecture and specification style in
formal descriptions of distributed systems. In S. Agarwal and K. Sabnani, editors, Protocol
Specification, Testing and Verification, volume VIII, pages 189–204, Elesevier, 1988. IFIP.

14

20

Introduction

21

Strong substitutability proposals

22

Proposed refinements in the context of Coloured Petri Nets

Available

Borrow

Return

Pay Fine

On loanLoan expiresOverdue

b b b

(b,u)

(b,u) (b,u)

(b,u)
(b,u)

Colours:
C(Available) = Book
C(On loan) = Book x User
C(Overdue) = Book x User

C(Borrow) = Book x User
C(Return) = Book x User
C(Loan expires) = Book x User
C(Pay Fine) = Book x User

23

24

Irredeemable

Defer
Under repair Finish

For shelving

ShelveTo repair

Returned

OK

b b b b

b

b

b

bb

b

On Shelves

Colours:
the colour of all places and
all transitions of this subnet
is Book

25

Colours:
C(Available) = Book
C(On loan) = Book x User
C(Overdue) = Book x User
C(Reservation status) = Book x User

C(Borrow) = Book x User
C(Return) = Book x User
C(Loan expires) = Book x User
C(Pay Fine) = Book x User
C(Reserve) = Book x User

Available

Borrow

Return

Pay Fine

On loanLoan expires

b b b

(b,u)

(b,u) (b,u)

(b,u)
(b,u)

Reservation
status

Reserve

(b,u)

(b,-)

(b,u) or (b,-)(b,-)

Conclusions

Bibliography

26

27

28

1

Behavioural Types in CoOperative Objects.

N. Hameurlain1,2, C. Sibertin-Blanc2

1 University of Pau,
Avenue de l’Université 64012, Pau, France.

nabil.hameurlain@univ-pau.fr

2University of Toulouse I,
Place Anatole France 31042, Toulouse, France.

{nabil,sibertin}@univ-tlse1.fr

Abstract. Behavioural typing and subtyping has proved to be a very useful
concept for the support of incremental reuse in the area of object-oriented
(O-O) languages. With the emergence of formalisms integrating the O-O ap-
proach and Petri nets, the question arises how behavioural subtyping may be
supported by such formalisms. We present a formal framework for the defini-
tion of behavioural typing in CoOperative Objects, a concurrent Object Ori-
ented language, based upon Client/Server Petri nets. This framework i s
based upon the preorder and equivalence relations which are considered in
the study of concurrent systems, allowing to define various subtyping rela-
tions.

1.! Motivation

First of all, subtyping has to be distinguished from inheritance [Cook...94]. Inheri-
tance refers to the reuse of some (or all) elements of the definition of a class by an-
other one. Subtyping refers to the use of components, according to the substitution
principle enunciated by P. Wegner as follows [Wegner 88]: s is a subtype of t if an
instance of type s may be substituted when an instance of type t is expected. Inheri-
tance is a matter of structure sharing and it is mainly related to implementation issues,
while subtyping is a matter of semantics and it is mainly related to behaviour analysis
and validation. Since Petri nets (PN) are mainly used for analysis and validation pur-
poses, they are highly concerned by subtyping.

Subtyping is an essential concept of the object-oriented (O-O) approach as it is both
a cognitive tool to ease the understanding of complex systems, and a technical support
for software reuse and change. With the emergence of formalisms integrating the O-O
approach and the Petri net (PN) theory, the question arises how subtyping may be
supported by such formalisms, in order that they benefit from the advantages of this
concept. Subtyping has been originally introduced within the framework of data proc-
essing and sequential languages, while PN are mainly concerned with the behaviour of

29

2

concurrent processes. Moreover, it has been pointed out that subtyping within concur-
rent O-O languages entails the occurrence of many difficult problems or anomalies
[Matsuoka...93], [Aksit...94]. Thus, one may think that integrating the subtyping
concept within the PN theory also raises some difficulties.

Within concurrent O-O languages, two kinds of subtyping relations are distin-
guished. The weak, or interface subtyping requires that s is a subtype of t if an in-
stance of type s may be substituted when an instance of type t is expected and no type
error will occur [Wegner 88].

The strong, or behaviour form of subtyping requires that for a system S, s is a sub-
type of t if an instance of type s may be substituted when an instance of type t is
expected and the behaviour of S is unchanged [Wegner 88]. However, this definition is
problematic because the subtype relation between two components depends on the
considered context S; thus its use in another context S' needs a specific check, even if
S' is an incremental change of S. Such a relation is of a restricted practical interest: if
s is a subtype of t, we would like that this holds in any context.

In [Liskov…94], another requirement for the subtyping relation is proposed: Let
!(x) be a property provable about objects x of a type t. Then !(y) should be true for
objects y of type s where s is a subtype of t. Although this definition avoids the diffi-
culty of the Wegner's one, it raises another problem entailed by the properties that one
wish to be preserved by the subtype relation. Indeed, there are a great number of behav-
ioural properties, and the properties which are expected to be preserved depend on the
system under consideration. Using the type t in a context S may make desirable that a
property ! be preserved, while using t in a context S' makes desirable that not(!) be
preserved. Thus, the use of Liskov's definition in any context, and therefore for any
property, leads to the equivalence of s and t with regard to the properties under consid-
eration, while we are looking for a subtype relation which is a preorder.

This paper addresses the behavioural form of subtyping. It aims to provide a general
framework for behavioural subtyping relations in CoOperative Objects [Sibertin 98], a
concurrent Object Oriented language based upon Petri nets. For the simplicity, the data
processing aspect of CoOperative Objects is avoided and we consider only their behav-
ioural aspect, which is based upon Client/Server nets [Sibertin 93].

In the second chapter, Client/Server nets are informally introduced. Such nets com-
municate in an asynchronous way by channel places according to a request/reply proto-
col. In the third chapter we propose two requirements that any C/S nets subtyping
relation should satisfy in order to be quit easy to use in practice. The fourth chapter
shows that the language semantics defines a relation that satisfies these requirements.
An extended version of this paper may be found in [Sibertin...97].

2.! Client/Server Nets

A Client/Server net is a labelled Petri net which on the one hand makes some services
available to other nets and is capable of rendering these services, and on the other hand
can request services from other nets and needs these requests to be fulfilled. Each of-

30

3

fered service is associated to one or several transitions which may be requested by
other nets, and the service is available when one of these transitions is enabled. These
transitions are referred to as accept-transitions, and they constitute the interface of a
C/S net.

To request a service, a Client net includes two related transitions, one for issuing
the request (referred to as a request-transition) and another for retrieving the Server’s
reply (referred to as a get-transition). Moreover, these transitions are connected through
a waiting-place in such a way that the occurrence of a request-transition makes its
matching get-transition enabled. Thus there is a one-to-one correspondence between
transitions which request and get services: a service is requested iff it can be got.

A Server net is a C/S net which accepts at least one service, that is SA " #, where
SA is the set of Accepted Services; a Client net is a C/S net which requests at least
one service, that is SR " #, where SR is the set of Requested Services. This distinc-
tion allows to focus either upon the server side of a C/S net or its client side. For a
Server net S, the set La(S) $ SA*, called its Supply, is the set of service sequences
that S can accept to process. Symmetrically for a Client net C, Lr(C) = Lg(C) $ SR*,
called its Demand, is the set of service sequences that C can request or get. As we will
see, the Supply of a C/S net is a good picture of its server side and may be considered
as its specification, whereas its Demand is a good picture of its client side and may be
considered as its requirement.

Figure 1 shows two simple C/S nets. The net (b) is a buffer which provides the
push and pop services, and requests the copy service whenever it receives a push re-
quest (when the label of a transition is not empty, it is written inside its box). The net
(a) is a dinning philosopher. When the philosopher has no fork, the t2 transition
requiring the give service is enabled. Then t3 may occur to get forks. When there is a
token into the 2forks place, the eat transition is enabled as well as the t1 transition
which accepts the give service.

!"

#$%!"&'!"#$

()*)$+

•

!,

#-%!,&'%&'(

!.

#$%!.&'%&'(

#/%!0&'!"#$

!0

!.

#-%!.&'!"#$

"*)$+1

2/3!

4/!

!"

#/%!"&''&'

!0

#/%!0&'5')*+

2/3!

SA = {give} = SR SA ={push, pop}, SR = {copy}
(a) A Dinning Philosopher C/S net (b) A Buffer C/S net

Figure 1: Client/Server nets

31

4

A Client net C and a Server net S are composable if SRC $ SAS. Then they may
be composed into a C/S net CP = Cp(C, S), where Cp: Net × Net %& Net ' {unde-
fined} is the composition function which combines a couple of C/S nets into a third
one. When composing a Client net with a Server net, each accept-transition of this
latter is provided with an entry-place for receiving the requests and a result-place for
storing the replies. Then, the Client net is connected with the Server through these
communication places by an arc from each request-transition towards the suitable
entry-place and an arc from the suitable result-place towards each get-transition. Figure
2 shows the composition N = Cp(P2, P1) of two copies of the Philosopher C/S net of
Figure 1 with an appropriate initial marking. In the following, we will always assume
that nets which are composed are composable, without recalling the hypothesis SRC $
SAS.

4/!0
4/!"

60-3748$

60-3748/

2/3!0

()*)$+0

*)$+0

•

!"0

#$%!0"&'!"#$

!.0

#-%!0.&'!"#$

!00

#/%!"0&'!"#$

!0"

!."

!""

*)$+"

()*)$+"

•

2/3!"

SA = {give} = SR

Figure 2: The composition of two Philosophers, CP(P2, P1).

C/S nets communicate in an asynchronous way by channel places, according to a
request/reply protocol: when a Client net requests a service to a Server net, it puts a
token into a Server’s entry place for that service; then, the Server processes the request
and supplies a token in the result-place of the service; the communication completes
when the Client retrieves this result token. As a consequence, C/S nets obey the re-
quest/reply protocol and the encapsulation principle with regard to their behaviour, and
thus they benefit from their advantages. Thanks to the PN theory, they are also pro-
vided with formal semantics of intra and inter-object concurrency. Finally, C/S nets
communicate in an asynchronous mode and thus enjoy the expressiveness of Petri nets
composed by fusion of places. (The fusion of places consists in merging a set of
places into a single one surrounded by the arcs of the initial places). The request/reply
protocol allows to analyse the behaviour of a system in an incremental way as Petri
nets composed by fusion of transitions [Vogler 92]: the behaviour of a compound C/S
net may be deduced from the behaviour of its components [Hameurlain 98].

32

5

3.! Requirements for behavioural subtyping in C/S nets

Our proposal is to base subtyping relations on the preorder and equivalence relations
which have been introduced to compare the behaviour of concurrent systems, such as
the state, language, complete language, failure, readiness, deadlock, divergence, simu-
lation and bisimulation preorder and/or equivalence relations (see [Pomello...92],
[Glabbeek...89, 90], [Vogler 92] for a comparative study of these relations). Indeed,
these relations are defined on a formal basis, without regard for the peculiarities of a
given language, so that they are suitable for the study of the behavioural properties of
any concurrent system. Moreover, they have been extensively studied, and a lot of
results about their properties have been obtained. Summing up, such relations seem to
be the best theoretical framework to compare the behaviour of concurrent objects.

In C/S nets, a behavioural subtyping relation pH is a preorder satisfying the follow-
ing requirements, where N1, N2, and N are any C/S nets:

(I) N2 pH N1 () N, Cp(N, N2) pH Cp(N, N1)
(II) N2 pH N1 () N (Cp(N, N1) **1 N (Cp(N, N2) **2 Cp(N,

N1))
where **i are some behavioural equivalence relations.

Notice that N2 subtype of N1 is denoted N2 pH N1, in accordance with the idea that
N2 extends the capabilities of N1.

Requirement (I) asserts that pH is compositional for the net composition operation.
This property is necessary to ensure the compatibility of the subtyping relation with
the incremental design of systems; if it does not hold, there is no way to relate the
behaviour of Cp(S, Cp(N, N1)) and Cp(S, Cp(N, N2)) when N2 pH N1. The corre-
sponding requirement for the weak subtyping is that e. g. arrays of 64-bits integers are
a subtype of arrays of 32-bits integers if 64-bits integers are a subtype of 32-bits
integers.

In requirement (II), the consequence ‘‘Cp(N, N2) **2 Cp(N, N1)’’ formalises the
substitutability principle as the impossibility for N to distinguish between the behav-
iours of N1 and N2 with regard to the properties which are accounted for by the **2

relation. Indeed, the set of properties of Cp(N, N1) which can be preserved by Cp(N,
N2) depends on the way pH is defined; for instance, if pH is defined by an interleaving
semantics, it is not reasonable to require that Cp(N, N2) satisfies the same partial order
properties as Cp(N, N1). Requirement (II) asserts that N2 may be substituted for N1 if
N2 pH N1 and in addition the net N which is considered satisfies Cp(N, N1) **1 N.
Without such a restriction, the subtyping relation would be an equivalence relation,
since it certainly exists some trivial net N0 such that Cp(Ni, N0) **1 Ni for any net
Ni. In addition, it is of interest to know that Cp(N, N1) **2 Cp(N, N2) only if Cp(N,
N1) behaves properly; in the opposite case, nothing is gained by knowing that Cp(N,
N1) and Cp(N, N2) are both a wrong system! Now, the top-down approach leads to

33

6

consider that the correct behaviour of Cp(N, N1) is characterised by its relation with
the behaviour of N, which is formalised by the condition Cp(N, N1) **1 N.

Thus, to prove that a preorder relation is a subtyping relation for a composition op-
eration Cp, we just have to prove that (I) it is compositional for Cp and that (II) holds
for some couples of equivalence relations **1 and **2. Then, the practical use of a
subtyping relation is quite easy: once N2 pH N1 has been established, it is enough to
check whether Cp(N, N1) **1 N holds to be allowed to substitute N2 for N1 in a safe
way, whatever is the net N under consideration.

The first advantage of the above requirements for the behavioural subtyping is that
they have a wide range of applicability and suffer no ambiguity. They provide the
concept of subtype with a formal definition, and are based on a theory (the theory of
the behavioural preorder and equivalence relations) which is relevant for any concurrent
language supporting a composition mechanism. They extend Liskov's approach, since
requirement (II) automatically determines what are the properties of Cp(N, N1) which
are preserved by Cp(N, N2) when N2 is a subtype of N1, so that no specific verifica-
tion has to be done. Indeed, most of the p and * relations enjoy results of the follow-
ing kind, ! being some property:

if N2 p N1, then !(N1) (!(N2)
if N2 * N1, then !(N2) + !(N1)

A second advantage of the above requirements is that they do not define just one
subtyping relation but allow to define several such relations. Faced with a given sys-
tem, the designer may use the subtyping relation preserving the properties which are
of importance for that system.

4.! The semantics of compound C/S nets

In [Hameurlain 98], some semantics have been considered to define subtyping rela-
tions. Namely, we have shown that the language preorder, denoted pLa, where S2 pLa

S1 iff La(S1) $ La(S2), is a subtyping relation satisfying requirement (I), i.e. for
any Client net C, we have Cp(C, S2) pLa Cp(C, S1) as soon as S2 pLa S1; extending
the Supply of a Server net also extends the Supply of its composition with any Client
net. According to requirement (I) and the fact that for any Client C and Server S, C
pLa Cp(C, S) [Hameurlain 98], the pLa preorder is a subtyping relation for C/S nets,
and we have the following form of requirement (II):

S2 pLa S1 and Cp(C, S1) *La C (Cp(C, S2) *La Cp(C, S1).

As an example, consider the unbounded buffer Server net UB shown in Figure 3 (a)
and the 5-size bounded buffer Server net BB shown in Figure 3 (b). It is easy to prove
that UB pLa BB holds. Therefore, for any Client net C, if C and Cp(C, BB) have the

34

7

same behaviour when only the transitions of C are observed, then the same holds for
C and Cp(C, UB), so that Cp(C, BB) and Cp(C, UB) have the same behaviour on the
transitions of C. On the other hand, if the behaviour of Cp(C, BB) is more restricted
than the behaviour of C (C pLa Cp(C, BB)), we can only say that the behaviour of
Cp(C, UB) stands in between the behaviours of Cp(C, BB) and C (C pLa Cp(C, UB)
pLa Cp(C, BB)).

/7/39/:94
,1!)$4;

'&'

')*+')*+

1!)$4;

'&'

SA = {push, pop} SA = {push, pop}
(a) The unbounded buffer Server net UB (b) The bounded buffer Server net BB

Figure 3: UB subtype of BB.

In order to easily apply requirement (II), one needs a criterion to decide whether
Cp(C, S1) *La C holds where C is any C/S net. In [Sibertin97], we introduce behav-
ioural relationship between a Client net C and a Server net S which is compatibility:
S is compatible with C iff C and Cp(C, S) are trace equivalent on the transitions of C,
and then Cp(C, S1) *La C . In addition, we prove that S is compatible with C iff Lr
(C) = La(S); therefore, the Language subtyping relation is quite easy to use, since it is
enough to compute only once the Supply and the Demand of the involved C/S nets.
Then, the hypothesises of requirement (II) are established by comparing the Supply of
the Servers, and comparing the Demand of the Client with the Supply of the first
Server.

The Language semantics is often regarded as too weak for many applications be-
cause it is not able to express branching time and deadlock behaviour. Therefore, we
have addressed other semantics to define subtyping relations such as Simulation, Fail-
ure and Bisimulation semantics. In [Hameurlain 99] we show that Simulation and
Failure preorders, denoted pFa and psima, are subtyping relations for C/S nets. How-
ever, compatibility is not sufficient to decide whether Cp(C, S1) *H C holds where H
, {Fa, sima} and C is any C/S net, since it rests upon a linear time semantics. In the
case of the simulation subtyping relation, we show that Cp(C, S1) *sima C holds if C
on its Requested Services is similar to S1 on its Accepted Services, while for the
failure subtyping relation, we have introduced behaviour relationship between the
Client C and the Server S which is transparency: S is transparent for C iff C and

35

8

Cp(C, S) are bisimilar on the transitions of C, and prove that transparency constitutes
a criterion to decide whether Cp(C, S1) *Fa C holds.

The above requirements for subtyping relations give a greater place to Clients than
to Servers since they compare Cp(C, S) with C and not with S, where S is a Server
composable with the Client C. They are in accordance with a top-down approach
where Cp(C, S) is considered as a refinement of the net C: C is a specification of (a
part of) a system, while Cp(C, S) is one implementation. Since the client side of C
vanishes into Cp(C, S), only the server side of C can be compared with Cp(C, S), so
that the appropriate semantics are based upon the accept-transitions.

According to a bottom-up approach, Cp(C, S) would be considered as being an ex-
tension of the C/S net S, and we would be interested in comparing the behaviour of
Cp(C, S) with the one of S. In fact, adapting our requirements to this approach is just
achieved by focusing on the client side of C/S nets instead of their server side. For
instance, consider the pLr preorder, where C2 pLr C1 iff Lr(C1) $ Lr(C2). pLr satisfies
the following requirements, where C1, C2 and S are C/S nets:

Requirement (I') : C2 pLr C1 () S, Cp(C2, S) pLr Cp(C1, S).
Requirement (II') : C2 pLr C1 () S (Cp(C1, S) *Lr S (Cp(C1, S) *Lr Cp(C2,

S)).

The La and Lr subtyping relations are not exclusive and may be used together. In
this case, we can use the fact that La(S) = Lr(C) iff Cp(C, S) preserves both the server
side of C (Cp(C, S) *La C) and the client side of S (Cp(C, S) *Lr S). As an example,
consider the Philosopher C/S net introduced in chapter 2. Cp(P1, P2) is bisimilar both
to P1 on the transitions of P1 and to P2 on the transitions of P2.

5.! Discussion

This paper proposes a formal framework for the definition of behavioural subtyping
relations in CoOperative Objects, a concurrent Object Oriented language, based upon
Client/Server Petri nets. This framework consists of requirements that any subtyping
relation ought to satisfy, and it is based upon the preorder and equivalence relations
commonly considered in the study of concurrent systems. It is in accordance with the
principle of substitutability and extends Liskov’s approach.

The starting point of the presented approach are the ideas on behavioural inheritance
in O-O languages based upon Petri nets. In CLOWN, inheritance is defined as preorder
based upon a semantic accounting for observable places, in such a way that a derived
net class “extends the parents’ specification and specialises them in a restricted do-
main” [Battiston…95], but the consequences for net composition are not addressed.
[Biberstein…95] defines an inheritance relation in COOPN/2 which ensures that the
composed nets are bisimilar for a given net; this relation is based upon an Abstract
Data type semantics, and it seems to be difficult to verify; our approach is based upon
the preorder and equivalence relations which are considered in the study of concurrent

36

9

systems, and leads to define subtyping relations in CoOperative Objects that enjoy
nice properties.

References

[Aksit...94] M. Aksit, J. Bosch, W. van der Sterren, L. Bergmans
Real-time specification inheritance anomalies and real-time filter; In Proc. ECOOP’ 94,
M. Tokoro and R. Pareschi Eds, LNCS 821, Springer-Verlag.

[Battiston…93] E. Battiston, A. Chizzoni, F. De Cindio
 Inheritance and concurrency in CLOWN; in Proc. of the first Workshop on Object-
Oriented Programming and Model of Concurrency. G. Agha and F. De Cindio (eds.), Tu-
rin(I), June 27 1995.

[Biberstein…95] O. Biberstein, D. Buchs
Structured Algebraic Nets with Object-Orientation; in Proceedings of the first Work-
shop on Object-Oriented Programming and Models of Concurrency; Turin (I), June 27
1995.

[Cook...94] W.R. Cook, W.L. Hill, P.S. Canning
Inheritance is not Subtyping; in Theoretical Aspects of Object-Oriented Programming,
C.A. Gunter & J.C. Mitchel Eds., MIT Press, 1994.

[Glabbeek...89] R. Van Glabbeek, U. Goltz
Equivalence notions for concurrent systems and refinement of actions; MFCS 89, LNCS
379, Springer-Verlag 1989.

 [Hameurlain 98] N. Hameurlain
Behavioural Inheritance in Petri Nets; Ph.D Thesis, Toulouse I University (F), March
1998.

[Hameurlain 99] N. Hameurlain
Behavioural Inheritance in Client/Server Petri Nets; in proceedings of the IEEE 1999 In-
ternational Conference on Systems, Man and Cybernetics (IEEE/SMC’99), 12-15 Octo-
ber 1999, Tokyo, Japan.

 [Liskov 93] B. H. Liskov
A New Definition of the Subtype Relation; In Proc. 7th European Conf. on Object-
Oriented Programming, Kaiserlautern (G), Springer-Verlag 1993.

[Liskov...94] B. H. Liskov, J. M. Wing
A Behavioral Notion of Subtyping; in ACM Trans. on Programming Languages and Sys-
tems, Vol 16, n° 6, Nov. 1994.

[Matsuoka...93] S. Matsuoka, A. Yonezawa
Inheritance anomaly in Object-Oriented concurrent Programming Languages; in Re-
search Directions in Concurrent Object-Oriented Programming, G. Agha, P. Wegner and
A. Yonezawa Eds, MIT Press, 1993.

[Pomello...92] L. Pomello, G. Rozenberg, C. Simone
A Survey of Equivalence Notions for Net Based System; Advances in Petri Nets 1992; G.
Rozenberg Ed., LNCS 609, Springer-Verlag 1992.

 [Sibertin 93] C. Sibertin-Blanc
A Client-Server Protocol for the Composition of Petri Nets; in Proc 14th International
Conference on Applications and Theory of Petri Nets, Chicago (Il), June 1993, LNCS
691, Springer-Verlag.

37

10

[Sibertin.…97] C. Sibertin-Blanc, N. Hameurlain
Behavioural Inheritance in Petri Nets and Application to Client/Server Nets; Internal
Report of University Toulouse I (F), December 1997; ftp:\\www.univ-
tlse1.fr/local/syroco/paper.

[Sibertin 98] C. Sibertin-Blanc
CoOperative Objects: Principles, Use and Implementation. In Object Oriented Pro-
gramming and Models of Concurrency, G. Agha & F. De Cindio Eds., LNCS, Springer-
Verlag, to appear 1998.

[Vogler 92] W. Vogler
Modular Construction and Partial Order Semantics of Petri Nets; LNCS 625, Springer-
Verlag, 1992.

[Wegner 88] P. Wegner
Inheritance as an Incremental Modification Mechanism, or What Is and Isn’t Like; in
Proc ECOOP 88, Oslo (Norway), Springer-Verlag.

38

A Concurrent Object Calculus with Types that
Express Sequences∗

Christof Peter and Franz Puntigam
Technische Universität Wien, Institut für Computersprachen

Argentinierstraße 8, A-1040 Vienna, Austria
E-mail: {christof,franz}@complang.tuwien.ac.at

Abstract

Sequencing of messages specified by types of objects is desirable especially in
concurrent systems. Types in popular concurrent object calculi cannot support
sequencing of messages. We present a calculus that supports sequencing of messages
and compare it to the calculus of Vasconcelos and Honda. Type safety in our calculus
does not allow a certain kind of nondeterminism supported by other calculi.

1 Introduction

Objects in a concurrent system communicate by passing sequences of messages. The
set of acceptable messages may depend on previously received messages. Consider, for
example, a buffer object understanding “put” and “get”: If empty, the object accepts
only a “put” message; “get” may lead to an error. We expect that a type system ensures
statically that only acceptable messages are sent. This condition must hold even though
in distributed systems it is possible that new objects are added at run time. Especially
in concurrent systems it is important that the set of messages accepted by an object can
change dynamically, expressing synchronization conditions [8].
It is very difficult (if not impossible) to develop such type systems for process calculi

like the π-calculus [7]. For example, the type system developed by Pierce and Sangiorgi [9]
is quite powerful, but it cannot describe sequencing of values communicated along a
channel. A possibility to express sequences of communication in the π-calculus are graph
types [15]. But graph types are just an observation of the behavior of the whole system
and they are not able to express nondeterminism. The use of logical languages like the
modal µ-calculus to express sequences [4] results in a complex type checking system which
supports finite types only.
Types in the object-based process model of Vasconcelos and Honda [12, 13] also cannot

describe the sequencing of messages. The calculi proposed by Abadi and Cardelli [1] focus
on sequential object-oriented systems; hence, sequencing of messages is not even a topic
for these calculi. A concurrent version of one of these calculi is presented in [5], simply

∗This work was supported by the FWF, project “Static Process Types for Active Objects” (P12703-
INF).

1

39

by extending an imperative object calculus with primitives for parallel composition and
for synchronization via mutexes. This concurrent calculus even supports subtyping, but
acceptable message sequences cannot be expressed in types.
On the other side, process types [10] support sequencing of messages for a calculus

developed just for that purpose. What is the reason why sequencing of messages works for
this calculus, but not for the others? This is the question we want to answer in this paper.
We argue that the major difference is a certain kind of nondeterminism supported by the
other calculi, but not by our calculus: The sender of a message may not know which
receiver will deal with the message; hence, the sender cannot know how the receiver will
behave. We regard this kind of nondeterminism as rather unimportant for our purposes.

2 Our calculus

Our calculus is based on active objects behaving as in the actor model [2, 3]. Messages
are passed asynchronously; the sender is not blocked until the message is received. Each
object has a single identifier, a modifiable behavior and a single thread of execution.
Different from the actor model, our communication system ensures that all messages are
handled in the same (logical) ordering they were sent. A property of this communication
mechanism is that when the receipt of a message changes the receiver’s behavior (as
specified in the receiver’s type), the sender knows about the change already when sending
the message. This property1 is a precondition for process types [10].
Two infinite sets of names are considered given: X contains names (denoted by

a, b, c, . . . and also v, x, y . . .) used as object identifiers and parameters to be substituted
by object identifiers. A set C contains labels (l, . . .) with X ∩ C = ∅. Names are under-
lined if they occur at positions where object identifiers shall be substituted for them. An
underlined occurrence of a name binds all following free occurrences of this name.
For each meta-symbol e, a sequence e1, . . . , en can be abbreviated by ẽ if n is arbitrary.

Likewise, {ẽ} denotes the set containing e1, . . . , en, and |ẽ| the length of the sequence. For
each operator ◦, an expression ẽ◦ g̃ (with |ẽ| = |g̃|) stands for e1◦g1, . . . , ei ◦gn. All names
in an underlined parameter list, for example x̃, are pairwise different. The simultaneous
substitution of ei for all free occurrences of gi (with i = 1, . . . , |ẽ|) in f is denoted by
f [ẽ/g̃], where ẽ and g̃ are sequences of the same length, and g̃ is a list of pairwise different
names. The set of all names occurring free in any expression in {ẽ} is denoted by free(ẽ).
This is the syntax of objects:

P ::= a〈B/µ̃〉 µ ::= l(ṽ) M ::= l(x̃)B

B ::= {M̃} | a#µ.B | (a)@µ.B | @µ

An active object (or process, denoted by P,Q, . . .) of the form a〈B/µ̃〉 consists of an
object identifier a, a current behavior B and a queue of received and not yet handled
messages µ̃.
A message (µ, ν, ξ, . . .) of the form l(x̃) associates a message selector l with a (possibly

empty) list of names x̃ used as actual parameters.

1Other communication mechanisms like synchronous message passing, rendezvous, procedure calls,
etc. also have this property.

2

40

A method (M,N, . . .) of the form l(x̃)B specifies the behavior B preceded by a guard
defining a method name (or message selector) l and formal parameters x̃. There are two
kinds of methods: Globally visible creator methods are invoked when a new object is
created or an object changes its own behavior. A message-handling method (that belongs
to an object) is invokable if its guard matches the next message in the object’s message
queue. The invocation accepts a message sent to the object. The message used for
invoking a creator message is specified in the behavior (following @). After invocation,
the object behaves as B with the actual parameters substituted for the formal parameters.
A behavior (denoted byB,C, . . .) specifies if the object accepts a message and executes

the corresponding message-handling method, sends a message, creates a new object or
changes its behavior by invoking a creator method. An object behaving as {M̃} selects a
message-handling method in {M̃} for invocation, depending on the next message in the
queue. An object of behavior a#µ.B sends a message µ to the object with identifier a and
then behaves as B. One of behavior (a)@µ.B creates a new object (with a new object
identifier substituting a) before behaving as B. The new object initially behaves as @µ.
The behavior @µ equals the behavior of a creator method matching µ after substituting
actual parameters for formal parameters; this is, a creator method is invoked.
This is the syntax of types (denoted by π, ρ, σ, τ, . . .):

τ ::= {α̃}[r̃] | (t){α̃}[r̃] | τ1‖τ2 | t
α ::= l(τ̃)[r̃1][r̃2]

r ::= l | l∞

A type of the form {α̃}[r̃] consists of a set of message descriptors (each denoted by
α, β, γ, . . .) and a multi-set of tokens (r, s, . . .). We call {α̃} the static part and [r̃] the
dynamic part of the type. An object’s type changes dynamically by removing tokens from
and adding tokens to the type’s dynamic part when messages are accepted.
A token is either a label l or an infinite token l∞ standing for a very large (or infinite)

number of tokens l.
Message descriptors are of the form l(τ̃)[r̃][s̃], where l is the message selector and the

τ̃ are types of parameters. Message selector and parameter types together are considered
to be the signature of a message. The other parts of a message descriptor are the in-set
[r̃] and the out-set [s̃]. A message of the specified signature is acceptable (by an object
of a type containing the message descriptor in its static part) if each token in the in-set
occurs also in the dynamic part of the object’s type. When accepting the message, the
type is updated according to this message descriptor by removing all tokens contained in
the in-set from the type’s dynamic part and adding all tokens contained in the out-set to
the dynamic part.
A type of the form σ‖τ denotes the parallel composition of two types; σ‖τ can be split

into σ and τ .
A type of the form (t){α̃}[r̃] is a recursive version of the type. The type parameter t

can (recursively) occur in α̃. A type parameter can occur in each position where a type
can occur.
The static part of a window’s type can be expressed by:

Window
def
= {iconify()[displ][icon], uniconify()[icon][displ]}

3

41

When a window receives a message “iconify”, a token “displ” is removed from the type’s
dynamic part, and “icon” is added. When receiving “uniconify”, “icon” is removed and
“displ” added. An object of typeWindow[displ] first accepts “iconify”, then “uniconify”,
then “iconify” again, and so on.
We distinguish between the type of an object and the type of a reference to an object.

The type of an object describes all messages accepted by the object. The type of a
reference describes the messages that can be sent to the object via this reference. It may
contain only a part of the objects type information. The combination of the types of
all references to an object must keep the contract that the type of the object specifies.
This can be ensured with the mechanism of “type splitting”: When a new reference
(alias) is created, the type information is split in an old part (associated with an already
existing reference) and a new part (associated with the new reference). For example, a
reference’s type Window[displ] can be split into Window[displ] and Window[], but not
into Window[displ] and Window[displ] (because there is just a single token “displ”.
It is possible for a client to follow the changes of an object visible through a refer-

ence by keeping track of the messages that were sent via this reference. For example,
when a message is passed via a reference of typeWindow[displ], the reference will be up-
dated to Window[icon]. Type updating can be performed statically by means of abstract
interpretation.

3 Reduction Semantics

Now we formalize the semantics of our object calculus. We introduce congruence relations
on behaviors, methods, messages and objects. Each relation depends on a set of creator
methods; the set represents a program. Then, we define an execution relation on system
configurations; these are sets of objects reflecting snapshots of object systems.
First, we define structural equivalence of objects and their constituents: Two behav-

iors, methods, messages and objects are structurally equivalent if they can be made equal
by renaming bound parameters (α-conversion), and swapping and duplicating methods
in method collections of the form {M̃}.

Definition 1 The behavior congruence B ∼={M̃} C on behaviors, method congruence
N ∼={M̃} N ′ on methods, message congruence µ ∼={M̃} ν on messages and object congru-
ence P ∼={M̃} Q on objects, each relation depending on a set {M̃} of creator methods, are
the least congruences closed under structural equivalence and the following rules:

@l(ỹ) ∼={M̃} B[ỹ/x̃] (l(x̃)B ∈ {M̃}) (call∼=)

a〈{l(x̃)B, Ñ}/l(ỹ), µ̃〉 ∼={M̃} a〈B[ỹ/x̃]/µ̃〉 (select∼=)

a〈a#ξ.B/µ̃〉 ∼={M̃} a〈B/µ̃, ξ〉 (self send∼=)

The set {M̃} is used by (call∼=) to replace invocations of creator methods with the
corresponding behaviors. The rules (select∼=) and (self send∼=) on objects accept messages
and send messages to the objects themselves.
Sending messages to other objects and creating new objects are not dealt with by ob-

ject congruence: These actions are regarded as having effects that become visible outside

4

42

of objects. Object congruence relates objects that behave in the same way when viewed
from outside.
A system configuration η{M̃} is a set of objects with pairwise different object identifiers.

The creator method set {M̃} in the subscript specifies the program executed by the object
system the system configuration represents a snapshot of which.

Definition 2 The a-execution relation η{M̃}
a→ θ{M̃} on system configurations is the least

closure of these rules:

P̃ ∼={M̃} P̃ ′ η{M̃} ∪ {P̃ ′}
a→ η{M̃} ∪ {Q̃′} Q̃′ ∼={M̃} Q̃

η{M̃} ∪ {P̃}
a→ η{M̃} ∪ {Q̃}

(congr→)

η{M̃} ∪ {a〈b#ξ.B/µ̃〉, b〈C/ν̃〉}
a→ η{M̃} ∪ {a〈B/µ̃〉, b〈C/ν̃, ξ〉} (send→)

η{M̃} ∪ {a〈(x)@ξ.B/µ̃〉}
a→ η{M̃} ∪ {a〈B[b/x]/µ̃〉, b〈@ξ[b/x]/〉} (new→)

The execution relation η{M̃}
∗→ θ{M̃} is the least reflexive and transitive closure of all a-

execution relations η{M̃}
a→ θ{M̃} with a ∈ X.

Rule (congr→) states that object congruence can be applied before and after each
execution step. When an object sends a message to another object (send→), the message
is appended to the receiver’s message queue. A new object created using (new→) gets an
empty message queue and a fresh constant name as object identifier.

4 Comparing the expressiveness

Vasconcelos’ calculus [12], called TyCO, describes processes and agents using this gram-
mar:

P ::=a#l:ṽ | a.[l1:A1& · · ·&ln:An] | P,Q | |x|P |X(ṽ) | A(ṽ) | let X = A in P
A::=(x̃)P | rec X.A

The P are called processes; they are directly executable. The A are called agents;
they are a kind of templates from which processes can be instantiated. These agents can
be simply abstracted processes (x̃)P or recursively abstracted agents rec X.A.
We omit the specification of the equivalence relation ≡ over processes which covers

α-conversion, reordering of methods and recursion.
TyCO is based on objects of the form a.[l1:A1& · · ·&ln:An] where a is the location

and [l1:A1& · · ·&ln:An] an unordered collection of methods labeled by pairwise distinct
labels. In a method l:(ṽ)P , ṽ represents the formal parameters and P the body of the
method. A process sending a message is denoted by a#l:ṽ. The communication rule is

|w̃|(a#li:ṽ, a.[l1:A1& . . .&ln:An], Q̃)→ |w̃|([ṽ/w̃i]Pi, Q̃)

where Ai = (w̃i)Pi. The equivalence rules may be applied before and after reduction.
If a message is sent to an object, it may immediately be processed. There may be

several objects with the same identifier. The sender of the message never knows which
object handles the message. With this property we cannot guarantee an important pre-
condition for the use of process types because senders cannot keep track with changes of
the receivers’ state.

5

43

We think that it is not necessary (for a majority of applications) to support this kind
of nondeterminism. This nondeterminism may even make it difficult for programmers to
understand programs. Hence, we propose to eliminate this kind of nondeterminism. In
terms of Vasconcelos’ calculus, we allow just one process of the form a.[l1:A1& · · ·&ln:An]
for each location a.
We will now sketch how TyCO programs (with the restriction that there is just one

reading atomic process per location) can be mapped into our calculus. TyCO agents
correspond to our creator methods. TyCO processes are always executed concurrently
(denoted by P,Q, . . .). To create an object corresponding to a TyCO process, we have
to map its behavior to a creator method and create an object using this creator method.
We simply map agent variables X, Y, . . . of TyCO to labels in our calculus.
An instance A(ṽ) corresponds to the call of a creator method l(ṽ)3Q4 corresponding

to 3A4, where 3Q4 is the “behavior” of 3A4, and ṽ are the parameters of 3A4.
An applied agent-variableX(ṽ) must be bound by a recursive agent or a let declaration.

We create it when it is bound.
We map a process of the form 3letX = A in P4 by creating a new object (x)@l(ṽ).{}

using the creator method l(ṽ)3Q4, where 3Q4 is the behavior of A. The parameters must
correspond to the parameters specified by 3A4. Recursion via rec X.A is mapped to a
call of a creator method l(ṽ) . . .@l(x̃).
In general, we create a new concurrent object for each atomic process in TyCO. An

atomic process 3a.[l1:A1& · · ·&ln:An]4 is mapped to a〈{l1(x̃1)3A14, . . . , ln(x̃n)3An4}/〉;
the message queue is empty. We provide a creator method l(){l1(x̃1)3A14, . . . , ln(x̃n)3An4}
and create an object with (a)@l().{}. For each atomic process 3a#l:ṽ4 in TyCO, we
create a new object b〈a#l(ṽ).{}/〉. We map a restriction 3|x|P 4 to an object creation
(x)@l(ỹ).3P ′4, where l(ṽ){l1(x̃1)3A14, . . . , ln(x̃n)3An4} expresses the behavior of the single
object reading from x, and P ′ corresponds to P after removing this object from P .
Now we sketch the reverse encoding from our calculus to TyCO. An active object

a〈B/µ̃〉 corresponds to a TyCO object representing a and a further object sending mes-
sages to a if requested by a. The additional object represents the sequential message
queue in each object of our calculus. Creator methods l(ṽ)B correspond to (recursive)
agents 3(x̃)P 4 or 3rec X.A4. Method handling methods {l1(x̃1)3A14, . . . , ln(x̃n)3An4}
correspond to a.[l1:A1& · · ·&ln:An]. We translate message sending a#l(ṽ).3A4 (and the
following sequential behavior) to |b|a′#l:ṽb, b.[l′:A], where a′ is the location of the mes-
sage queue of object a, and l′ is the label of a message sent to b by the message queue
after putting the message into the queue. We translate object creation (a)@l(ṽ).3B4 to
|a||b|A(ṽ), A′, B, where a is a location corresponding to the new object, b a location cor-
responding to the object’s message queue, A an agent expressing the same behavior as
the creator method l, and A′ the implementation of the message queue.
The calculus of Vasconcelos and Honda can be encoded into the π-calculus and vice

versa [14]. Hence, all that has been said in this section also holds for the π-calculus.

5 Extensions of our Calculus

In our calculus it is also possible to introduce the kind of nondeterminism available in the
other calculi for the rare cases it may be needed. However, when the receiver of a message
is not known in advance, all possible receivers must have the same type. This type must

6

44

not depend on changeable states. A clear distinction between object identifiers with just
one reader and such with multiple readers is necessary. Such an extension might be useful
in systems where one of several autonomous agents offering the same services is selected
dynamically on its availability.
Types in our model support subtyping [10]. The expressiveness of types can be im-

proved by adding higher-level constructions to the calculus [11]. For example, the use
of genericity and if-then-else constructions (where the equality of object references or
subtyping relationships are used as conditions) improves the flexibility while still being
statically typed.

6 Conclusion

The π-calculus [7] and TyCO [12] allow that more than one agent reads from a channel.
The sender never knows which agent reads a message. This kind of nondeterminism makes
it impossible to use types like process types [10], where sequencing of messages can be
specified. When removing this (rarely needed) kind of nondeterminism, sequencing of
messages can be supported.
Unlike the untyped basic calculi, the expressiveness of statically typed calculi (using

process types) can be improved by using higher-level constructions (like conditional ex-
ecution). We think it is necessary to develop a process calculus together with its type
system to get a statically typed setting with sufficient expressiveness. A goal of our future
work is to further examine the interactions between process calculi and type systems to
improve the expressiveness of statically typed concurrent programs.

References

[1] Martin Abadi and Luca Cardelli, editors. A Theory of Objects. Springer-Verlag,
1996.

[2] Gul Agha. Actors: A Model of Concurrent Computation in Distributed Systems. The
MIT Press, 1986.

[3] Gul Agha, Ian A. Mason, Scott Smith, and Carolyn Talcott. Towards a theory of
actor computation. In Proceedings CONCUR’92, volume 630 of Lecture Notes in
Computer Science, pages 565–579. Springer-Verlag, 1992.

[4] R. Amadio and M. Dam. Toward a modal theory of types for the π-calculus. In Proc.
FTRTFT’96, Lecture Notes in Computer Science, 1135:347–365, 1996.

[5] Andrew D. Gordon and Paul D. Hankin. A concurrent object calculus: Reduction
and typing. In Proceedings HLCL ’98, September 1998.

[6] Carl Hewitt. Viewing control structures as patterns of passing messages. Journal of
Artificial Intelligence, 8(3), 1977.

[7] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).
Information and Computation, 100:1–77, 1992.

7

45

[8] Oscar Nierstrasz. Regular types for active objects. ACM SIGPLAN Notices,
28(10):1–15, October 1993. Proceedings OOPSLA’93.

[9] Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
In Proceedings LICS’93, 1993.

[10] Franz Puntigam. Coordination requirements expressed in types for active objects.
In ECOOP ’97, Lecture Notes in Computer Science, Jyväskylä, Finland, June 1997.
Springer-Verlag.

[11] Franz Puntigam. Dynamic type information in process types. In David Pritchard
and Jeff Reeve, editors, Proceedings EuroPar ’98, number 1470 in Lecture Notes in
Computer Science, Southampton, England, September 1998. Springer-Verlag.

[12] Vasco T. Vasconcelos. Typed concurrent objects. In Proceedings ECOOP’94, volume
821 of Lecture Notes in Computer Science, pages 100–117. Springer-Verlag, 1994.

[13] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic
π-calculus. In Proceedings CONCUR’93, July 1993.

[14] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of objects. In
1st International Symposium on Object Technologies for Advanced Software, volume
742 of Lecture Notes in Computer Science, pages 460–474. Springer-Verlag, 1993.

[15] Nobuko Yosihida. Graph types for monadic mobile processes. In 16th Conference
on Foundations of Software Technology and Theoretical Computer Science, volume
1180 of Lecture Notes in Computer Science, pages 371–386, Hyderabad, India, 1996.
Springer-Verlag.

8

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

Recent BRICS Notes Series Publications

NS-99-2 Hans Hüttel, Josva Kleist, Uwe Nestmann, and António
Ravara, editors. Proceedings of the Workshop on Semantics of
Objects As Processes, SOAP ’99, (Lisbon, Portugal, June 15,
1999), May 1999. iv+64 pp.

NS-99-1 Olivier Danvy, editor. ACM SIGPLAN Workshop on Par-
tial Evaluation and Semantics-Based Program Manipulation,
PEPM ’99, (San Antonio, Texas, USA, January 22–23, 1999),
January 1999.

NS-98-8 Olivier Danvy and Peter Dybjer, editors. Proceedings of
the 1998 APPSEM Workshop on Normalization by Evaluation,
NBE ’98 Proceedings, (Gothenburg, Sweden, May 8–9, 1998),
December 1998.

NS-98-7 John Power. 2-Categories. August 1998. 18 pp.
NS-98-6 Carsten Butz, Ulrich Kohlenbach, Søren Riis, and Glynn

Winskel, editors. Abstracts of the Workshop on Proof Theory
and Complexity, PTAC ’98, (Aarhus, Denmark, August 3–7,
1998), July 1998. vi+16 pp.

NS-98-5 Hans Hüttel and Uwe Nestmann, editors. Proceedings of the
Workshop on Semantics of Objects as Processes, SOAP ’98, (Aal-
borg, Denmark, July 18, 1998), June 1998. 50 pp.

NS-98-4 Tiziana Margaria and Bernhard Steffen, editors. Proceedings
of the International Workshop on Software Tools for Technol-
ogy Transfer, STTT ’98, (Aalborg, Denmark, July 12–13, 1998),
June 1998. 86 pp.

NS-98-3 Nils Klarlund and Anders Møller. MONA Version 1.2 — User
Manual. June 1998. 60 pp.

NS-98-2 Peter D. Mosses and Uffe H. Engberg, editors. Proceedings
of the Workshop on Applicability of Formal Methods, AFM ’98,
(Aarhus, Denmark, June 2, 1998), June 1998. 94 pp.

NS-98-1 Olivier Danvy and Peter Dybjer, editors. Preliminary Proceed-
ings of the 1998 APPSEM Workshop on Normalization by Eval-
uation, NBE ’98, (Gothenburg, Sweden, May 8–9, 1998), May
1998.

