
Electronic Notes in Theoretical Computer Science 85 No. 1 (2003)
URL: http://www.elsevier.nl/locate/entcs/volume85.html 19 pages

Lexically scoped distribution:
what you see is what you get

António Ravara a Ana G. Matos b Vasco T. Vasconcelos c

Lúıs Lopes d

a CLC and Dep. of Mathematics, IST, Technical University of Lisbon, Portugal.

b INRIA, Sophia-Antipolis, France.
c Dep. of Informatics, Faculty of Sciences, University of Lisbon, Portugal.

d Dep. of Computer Science, Faculty of Sciences, University of Porto, Portugal.

Abstract

We define a lexically scoped, asynchronous and distributed π-calculus, with local
communication and process migration. This calculus adopts the network-awareness
principle for distributed programming and follows a simple model of distribution
for mobile calculi: a lexical scope discipline combines static scoping with dynamic
linking, associating channels to a fixed site throughout computation. This discipline
provides for both remote invocation and process migration. A simple type system is
a straightforward extension of that of the π-calculus, adapted to take into account
the lexical scope of channels. An equivalence law captures the essence of this model:
a process behavior depends on the channels it uses, not on where it runs.

1 Introduction

Current hardware developments in network technology, namely high-band-
width, low-latency networks and wireless communication, has opened new
prospects for mobile computation, while at the same time introducing new
problems that need to be addressed at the software level. The fundamental
problem stems from the lack of a formal background on which to assert the
correctness of a given system specification. Thus, adequate theoretical mod-
eling of distributed mobile systems is required to produce provably correct
software specifications and to reason about distributed computations.

A natural and simple framework to study such systems is Dpi, the dis-
tributed π-calculus of Hennessy and Riely [4,3] that extends the π-calculus [6,7]
by distributing processes over a (flat) network of localities — named sites
where computation happens. Communication only takes place within local-
ities (to avoid global synchronization), but processes may migrate between
locations.

c©2003 Published by Elsevier Science B. V.

Ravara, Matos et al.

Lexically scoped programming. To motivate the importance of lexical
scope in programming languages in general, consider the following function
written in (a variant of) Pascal.

function f (): Integer;
var x: Integer := 1;
function g () : Integer;

begin g := x end;
begin f := x + g () end;

A programmer would write the body of function g knowing that x is global in
g, and would develop function f keeping in mind that x is local to f, and that
the x of g and that of f denote the same variable. Programmers have been
doing this kind of reasoning for decades, both in imperative (Algol, Pascal)
and in functional (ML, Haskell) languages. It is intuitive, and accumulated
experience has shown the concept to be right. Furthermore, an unoptimized
compiler would assign to variable x a memory location at the activation record
for function f. To evaluate expressions in the body of a function, the generated
code must read the value of x: if in f, it performs a local operation (reading
from the data for the current activation); if in g, it first finds where f’s
activation is.

The good news is that we do not need to abandon these ideas when moving
into a distributed setting, even in the presence of code migration. While in
the above example the pertinent question is “which function does this vari-
able belong to?”, in a distributed setting we will ask “which locality does this
channel belong to?”. Under a lexical scope regime, the answer must be clear
in the syntax. Therefore, we adhere to the lexical scope in a distributed context
of Obliq [2], which is here understood as the discipline under which the lo-
cality of channels is fixed throughout computation and can be determined by
straightforward code inspection. This principle must not be disturbed by com-
putation, in particular by code mobility and dynamic linking. The paradigm
allows us to a priori view channels as physical resources of sites, unlike Dpi

where channels are network-wide identifiers that only a posteriori (via a type
system) get located in sites.

Lexically scoped distributed π-calculus. lsdπ is a variant of Dpi where
channel location can be inferred from the syntax of networks. The lexical scope
discipline is obtained by the following simple rule: compound channels (such
as a@s) belong to the site where they are explicitly located (s); while simple
channels are (implicitly) located at the site where they occur. To accommodate
process mobility, (free) channels are renamed via a translation function that
adapts the syntax of the migrated process to its new location. A form of
dynamic linking (of a channel to a site) is obtained via a (ν a) binding, for
the site that will allocate channel a will only be known at runtime.

In lsdπ what you see is what you get, since the location of channels are
clear in the program text, and the syntax plainly expresses the location of the
resources used, even in presence of mobile code.

2

Ravara, Matos et al.

Dpi and lsdπ. Consider a network where we declare a channel x within
some site f, ask for the process x?()P to migrate to another site g, and in
parallel launch a receptor x?()Q located at f. In an untyped version of Dpi,
the network and the one obtained by a reduction step appear as follows.

f [new x new x@f
go g. x?()P | g [x?()P] |
x?()Q] f [x?()Q]

From the preceding discussion on the Pascal program, we are interested in
asking “where does channel x belong to?” (or “where is x to be allocated?”).
Analyzing the new x part, one would expect channel x to belong to site f, but
at the level of the subnetworks for g and for f we cannot conclude that. The
type system for Dpi identifies the receptor x at f with that at g, and, since x
is bound at f, rejects the network.

In general, as we have said, by inspecting the name of a free channel within
a site and name of the site, the physical location of a channel can be known
at all times. This is achieved by allowing both simple (a) and compound
(a@s) channels, which reflect two possible views: local (process-level), and
global (network-level). In lsdπ, the above left network is indeed typable, and
reduces to:

new x@f
g [x@f?()P’] |
f [x?()Q]

where it is clear (in each of the three lines) that channel x still belongs to
site f. Process P’ (obtained from P by a translation on names) reflects the fact
that P has migrated from f: a free simple channel y (implicitly located at f)
becomes attached to its site, denoted y@f; all the remaining channels remain
unchanged.

Explicitly located input/output processes (receptors x@f?(y)P and mes-
sages x@f!〈v〉), absent in every proposal of distributed process calculi to date,
obviate the need for a migration primitive like go (written go s.P in [1] and
in [4]). It suffices to attach to such processes the behavior “migrate toward the
home site”: a remote message or receptor at channel x@f migrate to f, in this
way obtaining the required “local status”. Hence, an input/output process
can perform two types of reduction, depending on the format of the prefix: it
either communicates locally, or it migrates to the site where it is located.

Contributions. The lexical scope discipline allows for a straightforward ex-
tension of the simple type system of the π-calculus, assigning the usual channel
types to channels, and record types (maps from channels to channel types) to
sites, guarantying the absence of arity mismatches in input/output.

From the standard notion of asynchronous bisimulation, this discipline
yields a simple equivalence law, whereby a process behavior depends only on
the names it uses (and not on where it runs).

3

Ravara, Matos et al.

Specifically, our contributions are: (1) a distributed asynchronous π-calcu-
lus that provides for local communication, remote invocation, and weak mo-
bility, in a lexical scope regime; (2) a precise syntactic treatment of channels
as resources of sites, which ensures that each channel belongs to a unique, lex-
ically defined, site; (3) a simple type system revealing the site of each channel;
and (4) a notion of equivalence, inducing a fundamental law.

Related work. Dpi is an explicitly typed calculus. The processes accepted by
the type system are similar in many respects to lsdπ processes. Our conjecture
is that what Dpi achieves with a type system, what we guarantee with our
semantics. Free names and substitution in Dpi are just like in π (hence the
channels are global), but the type system is quite elaborate, being difficult to
recognize what is a well-typed process. The semantics of lsdπ is more complex
than that of π (to get channels as resources of sites), but the type system is
fairly simple.

Klaim [8,9] is a formalism combining asynchronous higher-order process
calculus with the Linda coordination paradigm. It supports process mobility
and distribution and provides mechanisms for security. Although communica-
tion is not channel-based (else via distributed tuple spaces), in what respects
the scoping discipline, lsdπ is similar to Klaim: both use static scoping to
uniquely resolve identifiers at communication-time, and both support dynamic
linking at migration-time.

Outline. The next two sections introduce the syntax and the operational
semantics of the calculus. Section 4 presents the type system, and Section 5
the behavioral equivalence. Section 6 concludes the paper.

2 Syntax

Consider a countable set C of simple channels a, b, c, x, y, z, and a countable
set S of sites s, r, t, such that the two sets are disjoint. Compound channels
— pairs channel-site, like a@s — form located channels, designating a channel

a at site s, belonging to the set C@S
def
= {a@s | a ∈ C ∧ s ∈ S}. Sets a@S and

C@s are defined analogously as {a@s | s ∈ S} and {a@s | a ∈ C}.

Let u, v, . . . stand for both simple and located channels, henceforth col-
lectively called channels. Take x̃ as a sequence of pairwise distinct simple
channels, and ṽ as a sequence of channels. Let |ṽ| denote the length of the
sequence ṽ, and let {ṽ} denote the set of the elements in the sequence ṽ.
Furthermore, let n, m stand for both sites and for channels, henceforth col-

lectively called names, and belonging to the set N
def
= C ∪ S ∪ C@S. Finally,

let g, h stand for both sites and compound channels, henceforth collectively
called global names.

The grammars in Figure 1 define the languages of names, of processes, and
of networks. Receptors, u?(x̃)P , and messages, u!〈ṽ〉, are the basic processes
in the calculus. A receptor is an input-guarded process. A message targets

4

Ravara, Matos et al.

Simple channels, a, b, c, x, y, z ∈ C Sites, r, s, t ∈ S

Channels, u, v ::= a | a@s

Globals, g, h ::= a@s | s

Names, n, m ::= a | a@s | s

Processes, P, Q ::= 0 | (P | Q) | (ν n) P | u!〈ṽ〉

| u?(x̃)P | u?∗(x̃)P

Networks, N, M ::= 0 | (N | M) | (ν g) N | s[P]

Entities, X, Y, Z ::= P | N

Fig. 1. Syntax of lsdπ

a name u and carries a sequence of channels ṽ. Prefixes of receptors and of
messages, may occur as compound channels, but this is just a consequence
of the local/remote form that all channels might exhibit. As to the objects
of communication, notice that although parameters are simple channels only,
arguments can be channels. We call this global substitution: channels are to
be seen as identifiers, while parameters are “blind” to the structure of the
value they receive.

The remaining constructors are fairly standard in name-passing process
calculi: u?∗(x̃)P denotes a persistent receptor; inaction 0, denotes the ter-
minated process; (P | Q) denotes the parallel composition of processes; and
(ν n) P denotes the restriction of the scope of the name n to the process P .

The basic unit of networks is a process running at a given site, s[P]. Again,
the remaining constructors are standard: inaction denotes the empty network;
the parallel composition of networks, (N | M), denotes a merge of networks;
and (ν g) N represents the restriction of the scope of a global to a network.
Name restriction is limited to globals at network level, for local channels make
no sense outside the scope of a site in a lexical scope regime. Furthermore,
if channels are to be understood as resources of sites, it is reasonable to limit
the creation of local channels to within sites.

We will generally refer to processes and networks as entities; let X denote
the set of all entities, ranged over by X, Y, Z. As usual in process calculi, for
some m≥0, we abbreviate (ν n1) · · · (ν nm) P to (ν ñ) P and (ν g1) · · · (ν gm) N
to (ν g̃) N , and consider that the operator ‘ν’ binds tighter than the operator
‘|’. Furthermore, in (X |Y) we omit the parenthesis when the meaning is clear.

Finally, we do not allow the communication of site names. We believe this
restriction does not result in any loss of expressive power.

5

Ravara, Matos et al.

X fn(X) n subj(n) obj(n)

0 {} a {a} {a}

(X | Y) fn(X) ∪ fn(Y) a@s {a@s} {a@s, s}

(ν n) X (fn(X) ∪ obj(n)) \ subj(n) s C@s ∪ {s} {s}

u?(x̃)P fn(P) \ {x̃} ∪ obj(u)

u!〈ṽ〉 obj(uṽ)

s[P] fn(P)@s ∪ {s}

Fig. 2. Subjects, objects and free names

3 Operational semantics

This section describes the reduction semantics of lsdπ, starting from the def-
inition of the free names, substitution, through structural congruence, ending
in reduction.

Free names in networks and in processes. The definition of free names
establishes the basic principles of the lexical scope discipline. Presence of
compound channels inherently introduces binding subtleties, and to implement
a lexical scope regime on names, we cannot rely on the definition of free names
used in Dpi.

It becomes useful to distinguish two central concepts regarding name bind-
ings: subjects of a name n, subj(n), those that are caught by a restriction on
n; and objects of a name n, obj(n), those which can catch n by restriction. In
calculi with simple names only we find that subj(n) = {n}= obj(n). Here, the
definition must be refined.

The rules in the right table in Figure 2 inductively define the sets of subjects
and of objects of names, extended to sets and to sequences of names in the
expected way. Subjects and objects are just two sides of the same binding
relation. We should be able to say interchangeably that m is bound by n, or
that m is a subject of n, that is n is an object of m. In fact, m ∈ subj(n) ⇔
n ∈ obj(m). This property allows us to say n binds m, n↪→m, if m ∈ subj(n),
or equivalently, if n ∈ obj(m).

The rules in the left table in Figure 2 inductively define fn(X), the set of
free names in processes and in networks, considering n@s to be n if n = g,
and assuming that this operator extends to sequences and to sets of names.
The case of the persistent receptor is, in many ways, analogous to the simple
receptor. Hereafter, we omit the treatment of this case when it is analogous
to that of the simple receptor.

Substitution. Channels and sites occupy different positions in structured
names, so substitution is not a total function on names. We are mainly in-
terested in its application to the operations performed within the calculus,

6

Ravara, Matos et al.

restricting our attention to three kinds of substitutions of m by n: name re-
placement, for change of bound names, if either m, n∈C, m, n∈S, or m, n∈C@s
for some s; name instantiation, for communication, if m∈C and n∈ (C ∪C@S);
name translation, for migration, if m ∈ C and n ∈ m@S.

Name substitution must be defined in such a way that when applied to
processes or to networks, the correspondence between their binders and bound
names does not change. However, some binder properties which are true in
calculi like λ or π — as subj(n)={n}=obj(n) — no longer stand in this setting,
so one must generalize the old intuitions: (1) A binder on a name n binds,
in a process within its scope, the free occurrences of that name n. But a@s is
bound in (ν s) a@s!〈〉, so we say more generally that the set of names bound
by n is subj(n). (2) If name n is changed by a substitution {m2/m1} then
n = m1 and the result is m2. But s is free in a@s!〈〉, so we say more generally
that n is changed by {m2/m1} if it is a subject of m1, and the change affects
components of n, namely elements of obj(n).

Substitution may be defined for lsdπ in the usual way if these generaliza-
tions are taken into account. Following Hindley and Seldin [5], a substitution
on names and entities is a partial function X{N /N} 7→ X , inductively de-
fined by the rules in Figure 3.

The case s[P]{b@s/a@s} incorporates the fact that while outsiders see free
channels as being uniformly remote, locally they might take both the com-
pound or the simple form. Therefore, when crossing the site boundary, this
substitution must be unfolded in two. Let {ṽ/x̃} denote a set of simultaneous
substitutions, defined as usual.

Structural congruence. We define a static binary relation on processes
and networks — structural congruence — as the least congruence relation
containing the rules in Figure 4.

Rule S-ALPHA uses an alpha-congruence relation, denoted ≡α, defined
in the usual way from the definition of substitution.

The rules in the top of Figure 4 (down to SP-GC are adapted from the
standard rules of the π-calculus [6,7]. Differences reside mainly in the side
conditions, resulting directly from the fact that name creation introduces free
names, which are themselves subject to bindings. Rule SN-GC garbage col-
lects inactive sites and channel restrictions. The same is true for SP-GC,
which is intended for processes. Rule S-RESO controls the capture of sites in
compound channel creations by site restrictions. However, two channel name
creations may always commute.

The rules S-ROUT and S-SCOS) are inspired on those proposed by Hen-
nessy and Riely for Dpi [4], but are adapted to a lexical scope regime: Rule
SN-ROUT describes how processes within a site may be split or aggregated.
Rule SN-SCOS depicts how a site boundary affects the view over a name re-
striction: outsiders always see channel creations as remote, so their compound
and simple forms are indistinguishable (up to name capture) to them, while
local viewers differentiate those two forms of local channel creation.

7

Ravara, Matos et al.

(n){m2/m1}
def
=

m2 if n = m1

a@m2 if n = a@m1

n if m1 6↪→n

0{m2/m1}
def
= 0

(X | Y){m2/m1}
def
= X{m2/m1} | Y {m2/m1}

((ν n) X){m2/m1}
def
=

(ν n) X if (1)

(ν n{m2/m1})X{m2/m1} if ¬(1) ∧ (2)

(ν n′)X{n′/n}{m2/m1} if ¬(1) ∧ ¬(2) ∧ (3)

(u?(x̃)P){m2/m1}
def
=

u{m2/m1}?(x̃)P if (4)

u{m2/m1}?(x̃)P{m2/m1} if ¬(4) ∧ (5)

u{m2/m1}?(x̃′)P{y/xi}{n/m} if ¬(4) ∧ ¬(5) ∧ (6)

(u!〈v1 . . . vn〉){m2/m1}
def
= u{m2/m1}!〈v1{m2/m1} . . . vn{m2/m1}〉

(s[P]){m2/m1}
def
=

s[P{b/a}{b@s/a@s}] if m1 = a@s ∧ m2 = b@s

s{m2/m1}[P{m2/m1}] otherwise

1. n↪→m1 2. n6↪→m2 ∨ m1 /∈ fn(X) 3. n′ is fresh

4. ∃xi∈{x̃}.xi↪→m1 5. (∀xi∈{x̃}.xi 6↪→m2) ∨ m1 /∈ fn(P) 6. y is fresh and

∃xi∈{x̃}.x̃
′ = x̃{y/xi}

Fig. 3. Substitution on names, processes and networks

The rules SN-MIGO, SN-MIGI and SN-RMIGI are specific to a lexical
scope regime of channels. They make use of the fact that a channel which is
explicitly located in the site where it occurs is in fact a local channel, and so it
might as well take its simple format. This law is only needed at communication
time 1 , so it regards only channels which appear in the top-level of a process.

Name translation. When migrating a process P previously running in r, the
simple channels of P (which were once local) will become remote references.
Therefore, they must be located accordingly — they become explicitly located
at r — while all other channels remain unchanged.

1 See rule RP-COMM in Figure 5.

8

Ravara, Matos et al.

[S-ALPHA] X ≡ Y if X ≡α Y

[S-ASSO] ((X | Y) | Z) ≡ (X | (Y | Z))

[S-COMM] (X | Y) ≡ (Y | X)

[S-NEUT] (X | 0) ≡ X

[S-SCOP] ((ν n) X) | Y ≡ (ν n) (X | Y) if subj(n) ∩ fn(Y) = ∅

[S-RESO] (ν n) (ν m) X ≡ (ν m) (ν n) X if n6↪→m and m 6↪→n

[SP-GC] (ν ñ) 0 ≡ 0 if fn((ν ñ) 0) = ∅

[SN-GC] (ν ñ) s[0] ≡ 0 if fn((ν ñ) s[0]) = ∅

[SN-ROUT] (s[P] | s[Q]) ≡ s[(P | Q)]

[SN-SCOS1] (ν g) s[P] ≡ s[(ν g) P] if g 6↪→s ∧ g /∈ C@s

[SN-SCOS2] (ν a@s) s[P] ≡ s[(ν a@s) P] if a /∈ fn(P)

[SN-SCOS3] (ν a@s) s[P] ≡ s[(ν a) P] if a@s /∈ fn(P)

[SN-MIGO] s[a@s!〈ṽ〉] ≡ s[a!〈ṽ〉]

[SN-MIGI] s[a@s?(x̃)P] ≡ s[a?(x̃)P]

[SN-MIGR] s[a@s?∗(x̃)P] ≡ s[a?∗(x̃)P]

Fig. 4. Structural congruence on processes and networks

It should be clear that some compound channels will become local af-
ter migration. Their simplification to simple channels is only necessary at
communication time, and is dealt with by the already mentioned structural
congruence rules SN-MIGO, SN-MIGI and SN-RMIGI.

Reduction. The rules in Figure 5 inductively define the reduction relation
on processes and networks.

Axiom RP-COMM, standard in the π-calculus [6,7], only applies to simple
communication channels, i.e., local ones. Whichever the site the process occurs
in, we know that it has allocated the communication channel. This is why we
can say communication is local. Rule RP-RCOMM reveals that a replicated
input is a persistent resource.

The axioms RN-MIGO and RN-MIGI, to which we add RN-RMIGI,
are those proposed by Vasconcelos et al. for DiTyCO [13], and only make sense
in a lexical scope setting. Whenever an output/input process is prefixed over a
remote channel, we know it requires a remote resource to perform its commu-
nication. Therefore, in order to obtain the status of “local”, the code simply

9

Ravara, Matos et al.

[RP-COMM] a?(x̃)P | a!〈ṽ〉 → P{ṽ/x̃}

[RP-RCOMM] a?∗(x̃)P | a!〈ṽ〉 → a?∗(x̃)P | P{ṽ/x̃}

[RN-MIGO] r[a@s!〈ṽ〉] → s[(a@s!〈ṽ〉)σr] r 6= s

[RN-MIGI] r[a@s?(x̃)P] → s[(a@s?(x̃)P)σr] r 6= s

[RN-RMIGI] r[a@s?∗(x̃)P] → s[(a@s?∗(x̃)P)σr] r 6= s

[RN-SITE]
P → Q

s[P] → s[Q]

[R-CONT]
X → Y

E[X] → E[Y]

[R-STR]
X ≡ X ′ X ′ → Y ′ Y ′ ≡ Y

X → Y

E ::= [] | (E | X) | (ν n) E

Pσr

def
= P{a1@r/a1, . . . , an@r/an} where fn(P) ∩ C = {a1, . . . , an}

Fig. 5. Reduction rules

migrates to the site the communication channel belongs to (which is explicit
in the name of the channel). A name translation is then performed upon the
code by means of σr, so as to reflect the new site where it is running: channels
that previously were simple (thus implicitly located) are now composed with
the site from where the code came from.

It is important to notice that no new free name is created during reduction.

Proposition 3.1 (Reduction preserves free names) If X → Y , then
fn(X) ⊇ fn(Y).

Dynamic linking. A channel which is created under an input prefix cannot
be used until that input has been “consumed”. In particular, the site where
local channels are to be created may result from some computation 2 . We
support this view with an example that shows how to create local channels
“anywhere” in the network by using dynamic linking. Consider a server with
address a at site s providing some application, while requiring some resources
(say a new channel b). It is possible to define these resources as being local to

2 Notice though, that once the local channel is created, the site it is associated to will
remain fixed.

10

Ravara, Matos et al.

TS-Chl Γ` a@s:Γ(s)(a) TS-Chs Γ` a:Γ(~)(a) TS-Uni
Γ` ṽ1:γ1 Γ` ṽ2:γ2

Γ` ˜v1v2:γ1γ2

TP-Out
Γ` ṽ:γ Γ`u:Ch(γ̃)

Γ`u!〈ṽ〉
TP-Inp

Γ` x̃:γ Γ`u:Ch(γ̃) Γ`P

Γ \ x̃@~` u?(x̃)P

TP-Ress
Γ`P

Γ \ a@~` (ν a) P
T-Resl

Γ`X

Γ \ a@s` (ν a@s) X

T-Resn
Γ`X

Γ \ s` (ν s) X
T-Par

Γ`X Γ`Y

Γ` (X | Y)

TN-Net
Γ`P

Γ{s/~}` s[P]
T-Nil Γ`0

Fig. 6. Typing names, processes and networks

the site that downloads the application:

s[a?(x)x?()((ν b) P)] | r[a@s!〈c〉 | c!〈〉)] | t[a@s!〈c〉 | c!〈〉)] .

In fact, the above process can reduce both to r[(ν b) P] or to t[(ν b) P] (if
x 6∈ fn(P)). By maintaining both simple and located forms of channels, we are
able to express the creation of a local name (the above b) in a site which will
be determined only at run time.

4 The type system

This section presents a type system for lsdπ. The system is a straightforward
extension of that for the simply typed π-calculus [12] and it is a simplified
form of the one in Amadio et al. for dπr

1 [1], adapted to deal with the lexical
scope of channels. The main result of this section ensures the preservation of
typability by reduction, a property usually know as subject reduction. From
there it is simple to prove a type safety corollary, ensuring the absence of arity
mismatch in communication.

Types for channels are those of the simply typed π-calculus, Ch(γ1, . . . , γn),
describing a channel capable of carrying a series of channels of types γ1, . . . , γn.
Types for sites only capture the types of its free channels: if a1 to an of types
γ1 to γn are the free channels of site s, then we assign to site s the type
{a1:γ1, . . . , an:γn}.

11

Ravara, Matos et al.

The types of lsdπ are a subset of those of dπr

1: simply remove the lo-
cated type — a form of existential type — unnecessary in this setting due
to name instantiation. The type system of lsdπ is syntax-oriented, though
it considers a special site — ~, for “here” — which designates the current
site when typing the occurrences of simple channels in processes. Due to the
motto ‘simple channels are local, “here” corresponds always to the same site.
The “site variable” is instantiated at the network level, or disposed of if the
simple channels is bound. At the end of the typing procedure, all channels
are explicitly associated to one site.

Definition 4.1 (Types) Consider the finite sets {s1, . . . , sn} ⊆ S] {~} and
{a1, . . . , an} ⊆ C , with n ≥ 0 and where the designated elements of each sets
are pairwise distinct.

Channel types, γ ::= Ch(γ1, . . . , γn)

Site types, ϕ ::= {a1:γ1, . . . , an:γn}

Typings, Γ ::= {s1:ϕ1, . . . , sn:ϕn}

A site type is a map from channels into channel types; a typing is a map from
sites into site types. If Γ is a typing, then Γ \ s removes s from the domain of
Γ; Γ \ a@s removes a from the domain of Γ(s); and Γ{s/t} replaces s by t in
the domain of Γ, provided that channels common to t and to s have the same
types. The union of typing assumptions Γ + ∆ is defined pointwise, if for all
s ∈ dom(Γ) and for all a ∈ Γ(s) ∩ ∆(s) we have Γ(s)(a) = ∆(s)(a), as:

(Γ + ∆)(s)
def
=

Γ(s), if s ∈ dom(Γ) \ dom(∆) or Γ(s) = ∆(s),

Γ(s) ∪ ∆(s), if s ∈ dom(Γ) ∩ dom(∆) and Γ(s)(a) = ∆(s)(a),

∆(s), if s ∈ dom(∆) \ dom(Γ).

Γ{s/t}
def
= Γ \ t + {s:Γ(t)}

The rules in Figure 6 inductively define the type system of lsdπ. It uses
two kinds of judgments: Γ` ṽ:γ asserts that Γ types (simple and located)
channels ṽ with types γ̃, according to the typing assumption Γ; Γ`X says
that process or network X conforms to the typing assumption Γ.

The special site ~ plays a very important role: it allows delaying decisions
when typing processes. If in a process a channel with subject a occurs both in
a simple and in a compound form, we assume the simple one located “here”
(at ~), and the compound one located at s. Dpi type systems ([1,4]) commit
too soon, assuming the same site. For instance, the following judgments hold.

∅ `s (ν a@s) a!〈〉 and ∅ `s (ν a) a@s!〈〉

12

Ravara, Matos et al.

These judgments, however, should not hold in our type system, since,
contrary to what happens in Dpi, the binders do not capture the channel
subject of the process. Therefore, the valid judgments are:

{~:{a:Ch()}} ` (ν a@s) a!〈〉 and {s:{a:Ch()}} ` (ν a) a@s!〈〉

This distinction is also useful when deciding if a process should be rejected:
is a@s?()P | a!〈v〉 a communication error? it depends on the site where the
process is running and on the channels being the same. Thus, a process like
(ν a@s) (a@s?()P | a!〈v〉) is well behaved, and our type system accepts it 3 . In
short, the special site ~ is the key for a lexically scoped type system.

The type system enjoys subject-reduction, a result which depends on the
preservation of typability by appropriate substitutions.

Lemma 4.2 (Substitution lemma) Let Υ be a sequence of name replace-
ments or name instantiations. Then, Γ`X implies ΓΥ`XΥ.

Proof. By induction on the derivation of Γ`X. It is useful to prove that

Γ` ṽ:γ implies ΓΥ` ṽΥ:γ by using induction on the length of Υ and ṽ, and a
case analysis on names. 2

We show now that the type system enjoys subject-reduction. Recall that we
omit the treatment of the replicated input, as it is very similar to the case of
the simple input.

Theorem 4.3 (Subject reduction) If Γ`X and X → Y , then Γ`Y .

Proof. The proof consists of inductions on the derivations of the reduction
step. As usual, we use a lemma stating that alpha and structural congruence
also preserve typability. The base cases in the derivation of P → Q are
the process axioms, for which we use Lemma 4.2 and typing rules T-PAR,
TP-INPS, TP-OUTS and TP-RINPS. The base cases for the derivation of
X → Y are the migration axioms. We use the result for processes, Lemma 4.2,
the definition of the translation function, as well as typing rules TN-NET,
TP-INPL, TP-OUTL and TP-RINP. The cases of the induction steps are
straightforward. 2

Type safety follows.

Theorem 4.4 (Type Safety) If N ≡ s[a!〈ṽ〉 | a?(x̃)P | M] and Γ`N , then
|ṽ| = |x̃|, and similarly for the replicated input.

5 Behavioral equivalence

The aim of this section is the behavioral characterization of a lexically scoped
approach to distributed mobile calculi. We present a standard (early) la-
beled transition system, and based on it we define a standard asynchronous

3 Dpi type systems reject it since the channel is the same.

13

Ravara, Matos et al.

α fn(α) bn(α)

τ ∅ ∅

u?〈ṽ〉 {u, ṽ} ∅

(ν ñ) u!〈ṽ〉 {u} ∪ {ṽ} \ subj(ñ) subj(ñ)

Fig. 7. Free and bound names in actions

bisimulation. We then prove an important law of lexically scoped distributed
settings: a process behavior depends on the names it uses, not on where it
runs. Using it, we show how to simulate a general go primitive, and a code
optimization for process migration.

Labeled transition system. Consider two kinds of actions: those of pro-
cesses, which are naturally like π-process actions; and those of networks, ob-
tained from processes’ actions by explicitly locating all its channels. The
following grammar defines the set of actions, considering ∀n ∈ {ñ}.n6↪→u.

α ::= τ | u?〈ṽ〉 | (ν ñ) u!〈ṽ〉

The subject of an action, subj(α), is a partial function that uses the homonym
notion over names, defined in Figure 2:

subj(u?〈ṽ〉) = subj((ν ñ) u!〈ṽ〉)
def
= subj(u) .

Extending this notion to sequences of names in the expected way, the rules
in the Figure 7 inductively define the sets of free names, fn(α), and of bound

names, bn(α), in a action α. Let names(α)
def
= fn(α) ∪ bn(α).

The channel translation function σs used in the migration axioms of the
reduction relation is also used to locate all channels of an action.

ασs

def
=

τ, if α = τ ;

u@s?〈ṽ@s〉, if α = u?〈ṽ〉 ;

(ν ñ@s) u@s!〈ṽ@s〉, if α = (ν ñ) u!〈ṽ〉 .

The rules in the Figure 8, together with rules symmetric to R-PAR and
RP-COM, inductively define an early labeled transition system for lsdπ. The
system is standard, apart from rule RN-SITE that makes the location of all
channels explicit for the network level.

Asynchronous bisimulation. We adapt the standard definition of an asyn-
chronous bisimulation to lsdπ networks (cf. Sangiorgi and Walker [11]).

Definition 5.1 (Asynchronous bisimulation) A symmetric binary rela-
tion R on networks is a strong bisimulation, or simply a bisimulation if,
whenever NRM :

14

Ravara, Matos et al.

[LRP-OUT] a!〈ṽ〉
a!〈ṽ〉
−−→ 0

[LRP-INP] a?(x̃)P
a?〈ṽ〉
−−−→ P{ṽ/x̃}

[LRN-MIGO] r[a@s!〈ṽ〉]
τ

−→ s[(a@s!〈ṽ〉)σr] r 6= s

[LRN-MIGI] r[a@s?(x̃)P]
τ

−→ s[(a@s?(x̃)P)σr] r 6= s

[LRN-RMIGI] r[a@s?∗(x̃)P]
τ

−→ s[(a@s?∗(x̃)P)σr] r 6= s

[LRP-RCOMM]
a?(x̃)P

α

−→ Q

a?∗(x̃)P
α

−→ a?∗(x̃)P | Q

[LRP-COMM]
P

(ν en) a!〈ṽ〉
−−−−−→ P ′ Q

a?〈ṽ〉
−−−→ Q′

P | Q
τ

−→ (ν ñ) (P ′ | Q′)
subj(ñ) ∩ fn(Q) = ∅

[LR-RES]
X

α

−→ X ′

(ν n) X
α

−→ (ν n) X ′
subj(n) 6∈ names(α)

[LR-EXT]
X

α

−→ X ′

(ν n) X
(ν n) α

−−−→ X ′
subj(n) ∈ fn(α) \ subj(α)

[LR-PAR]
X

α

−→ X ′

X | Y
α

−→ X ′ | Y
bn(α) ∩ fn(Y) = ∅

[LR-ALPHA]
X ≡α X ′ X ′ α

−→ Y ′ Y ′ ≡α Y

X
α

−→ Y
[LRN-SITE]

P
α

−→ Q

s[P]
ασs−−→ s[Q]

Fig. 8. Early labeled transition system of lsdπ

(i) N
τ

−→ N ′ implies ∃M ′ (M
τ

−→ M ′ and N ′RM ′).

(ii) N
((ν en) u!〈ṽ〉)σs

−−−−−−−−→ N ′ with subj(ñσs) ∩ fn(M) = ∅ implies

∃M ′ (M
((ν en) u!〈ṽ〉)σs

−−−−−−−−→ M ′ ∧ N ′RM ′).

(iii) N
(u?〈ṽ〉)σs

−−−−−→ N ′ implies ∃M ′ ((M
(u?〈ṽ〉)σs

−−−−−→ M ′ and N ′RM ′)∨ (M
τ

−→ M ′∧
N ′R(M ′ | s[u!〈ṽ〉])).

We denote by ∼ the largest bisimulation. Two networks N and M are strongly
bisimilar, if there is a strong bisimulation R such that NRM .

The following proposition is a basic property of a bisimilarity relation.

Proposition 5.2 Strong bisimilarity contains the structural congruence rela-
tion and is a congruence relation.

The lexical scoping law. The main result of this section is an equivalence
law capturing the lexical scope nature of lsdπ: a process behaves similarly
when running at site s or at site r, as long as simple channels are instantiated

15

Ravara, Matos et al.

according to the environment they were meant for: that is the purpose of the
translation function σs.

We say that P is absolute if fn(P) ∩ C = ∅, i.e., if P has only located
channels. A simple channel is relative to the site where it appears. Note that
Pσs is an absolute process, irrespective of s. The following result says that the
name translation that occurs at migration time does not change the behavior
of the network, for it merely instantiates the simple local channels, which are
relative to the site they appear in.

Proposition 5.3 s[P] ∼ s[Pσs].

This law lies at the basis of several properties of lsdπ networks. To show
some of those properties, we introduce a weak form of bisimulation. Let a

weak transition be
α

⇒
abv
=

τ

−→
∗ α

−→
τ

−→
∗
, if α 6= τ , and let

τ

⇒
abv
=

τ

−→
∗
. Replacing

everywhere in the Definition 5.1, strong transitions with weak transitions, one
gets the notion of weak bisimulation. The largest weak bisimulation is weak
bisimilarity, denoted by ≈, which is also a congruence.

The behavior of an absolute process depends on the names it uses, not on
where it runs.

Theorem 5.4 If P is absolute, then s[P] ≈ r[P].

Migration does not change the behavior of the process; it simply advances
computation.

Corollary 5.5 s[P] ≈ r[Pσs]

Assume a new production go r.P in the grammar of processes, which migrates
a process P from site s to site r, according to the axiom.

s[go r.P]
τ

−→ r[Pσs]

The results below are easy to establish using the previous laws.

Proposition 5.6

(i) s[go r.P] ≈ s[(ν a@r) (a@r!〈〉 | a@r?()P)], where a@r 6∈ fn(P).

(ii) s[a@r?(x̃)P]≈s[(ν c) (a@r?(x̃)c!〈x̃〉 | c?(ỹ)P)], where |x̃|=|ỹ| and c 6∈fn(P).

These last properties are examples of possible applications of the basic law in
proving the correctness of encodings or of code optimizations.

6 Conclusions and future work

This paper presents lsdπ, a calculus for distribution and mobility which pro-
poses a lexical scope discipline for channels as an alternative to the established
approach that assumes all channels as global. We have contributed with the
theoretical treatment, stemming from the general lexical scope principles. It
was not a trivial work, since basic aspects like binder properties, ranging from
the definition of free names to its coherence with the operational semantics,

16

Ravara, Matos et al.

had to be reconsidered and redesigned. The result of this task is presented in
a technical report [10], but here we have simplified the technicalities signifi-
cantly: the withdrawal of syntactic restrictions and the pruning of the name
translation associated to the migration primitive introduced in [13].

We have shown that the premise under which channels are the resources
of sites is tightly weaved in the semantics of the language, and hope to have
given elucidative examples and intuitions. Finally, a further evidence of the
potentialities of the calculus is an equivalence law stating that a process be-
havior depends on the names it uses, not on where it runs. We foresee a
wide range of applications of the law, but herein show only two of them: on
comparing the expressive power of distributed calculi; and on designing code
optimizations.

We find three main areas of future work to elaborate on the foundations
presented here.

(i) To carry on work on the comparison between a lexical scope approach
and an approach that considers channels as global network resources. The
closest calculus to lsdπ is dπr

1 (an asynchronous and receptive version of
Dpi), but still several differences in the design choices of the calculi lead
to technical difficulties in obtaining an absolute comparison. Therefore,
we aim at comparing the consequences of adopting one scheme or another,
on two of which we have ongoing work.

Sites as first class citizens. We have confronted ourselves with the
question Why pass sites?, for it seems that lexical scope obviates the
need of introducing such feature — instead of revealing the name of a
site, giving in fact access to all of its resources (current and future), one
can send the subset of its channels, to whom one intends to give access
(like Dpi does via typing). We believe this choice does not result in
serious loss of expressiveness, and is a research topic to pursue.

Migration mechanisms. While Dpi uses an explicit migration prim-
itive, in lsdπ migration is triggered by the necessity of using a remote
channel. We have presented a simulation of the migration primitive in
lsdπ, although the other direction has not yet been studied.

(ii) We believe lexically scoped distribution can be further shown worthwhile
in various crucial subjects like implementation, security, and program-
ming design. In particular, we envisage to control unrestricted migration
(cf. [4]), and are currently working on a type system for doing that. We
intend to investigate the security advantages of not passing sites, for we
expect this choice to allow us to obtain granularity in the control of the
information disclosed by a site at the language level.

(iii) At a time where effort is being put in the establishment of a common core
programming model for global computation, we do not seek to present
a complete calculus that would satisfy all the desirable requirements for
such a challenging goal. Instead, we aim at a simple calculus which con-

17

Ravara, Matos et al.

centrates on the study of the name restriction discipline, arguing that
lexically scoped distribution is a good option, since it allows to treat
channels as the resources of locations. The work in this paper can con-
stitute a foundation for generalizations and variations of the language,
paving the way for further research making use of this discipline.

Acknowledgement

This work was partially supported by the EU FEDER and by the Portuguese
Fundação para a Ciência e a Tecnologia (via CLC, the project MIMO, POSI/-
CHS/39789/2001, and scholarships POCTI/SFRH/BPD/6782/2001 and PO-
SI/SFRH/BD/7100/20∅1). The EU IST proactive initiative FET-Global Com-
puting (via projects Mikado, IST–2001–32222, and Profundis, IST–2001–3310-
0) was another source of finantial support.

We thank Gérard Boudol, Ilaria Castellani, Matthew Hennessy and Fran-
cisco Martins, as well as the anonymous referees, for their comments.

References

[1] Roberto M. Amadio, Gérard Boudol, and Cédric Lhoussaine. The receptive
distributed π-calculus. Rapport de Recherche 4080, INRIA Sophia-Antipolis,
2000.

[2] Luca Cardelli. A language with distributed scope. In ACM, editor, POPL’95:
22nd Annual ACM Symposium on Principles of Programming Languages (San
Francisco, CA, U.S.A.), pages 286–297. ACM Press, 1995.

[3] Matthew Hennessy, Massimo Merro, and Julian Rathke. Towards a behavioural
theory of access and mobility control in distributed systems. In Andrew Gordon,
editor, FOSSACS’03: 6th International Conference on Foundations of Software
Science and Computation Structures (Warsaw, Poland), volume 2620 of Lecture
Notes in Computer Science, pages 282–298. Springer-Verlag, 2003. Available as
Technical Report COGS 2002:1, University of Sussex, U. K., 2002.

[4] Matthew Hennessy and James Riely. Resource access control in systems of
mobile agents. Journal of Information and Computation, 173:82–120, 2002.

[5] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and
λ-Calculus. Cambridge University Press, 1986.

[6] Robin Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra
of Specification, volume 94 of Series F. Springer-Verlag, 1993. Available as
Technical Report ECS-LFCS-91-180, University of Edinburgh, U. K., 1991.

[7] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile
processes, part I/II. Journal of Information and Computation, 100:1–77,
1992. Available as Technical Reports ECS-LFCS-89-85 and ECS-LFCS-89-86,
University of Edinburgh, U. K., 1989.

18

Ravara, Matos et al.

[8] Rocco De Nicola, Gian Luigi Ferrari, and Rosario Pugliese. KLAIM: A kernel
language for agents interaction and mobility. IEEE Transactions on Software
Engineering, 24(5):315–330, 1998.

[9] Rocco De Nicola, GianLuigi Ferrari, Rosario Pugliese, and Betti Veneri. Types
for access control. Theoretical Computer Science, 240(1):215–254, 2000.

[10] António Ravara, Ana G. Matos, Vasco T. Vasconcelos, and Lúıs Lopes. A
lexically scoped distributed π-calculus. DI/FCUL TR 02–4, Department of
Computer Science, University of Lisbon, 2002.

[11] Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile
Processes. Cambridge University Press, 2001.

[12] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic
π-calculus. In Eike Best, editor, Proceedings of CONCUR ’93, volume 715 of
Lecture Notes in Computer Science, pages 524–538. Springer-Verlag, 1993.

[13] Vasco T. Vasconcelos, Lúıs Lopes, and Fernando Silva. Distribution and
mobility with lexical scoping in process calculi. In HLCL’98, volume 16 (3) of
Electronic Notes in Theoretical Computer Science. Elsevier Science Publishers,
1998.

19

	Introduction
	Syntax
	Operational semantics
	The type system
	Behavioral equivalence
	Conclusions and future work
	Acknowledgement
	References

