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1 Introduction

Communication in distributed systems is typically structured around protocols
which specify the sequence and form of messages passing over communication
channels. Correctness of such systems implies that protocols are obeyed.

Systems programming is traditionally performed in the C programming lan-
guage. It thus comes as no surprise that many attempts to statically check pro-
tocols are based on this language: safe control of stateful resources is achieved
via type systems that either run on annotated C programs [8, 13], or on pro-
grams written in a type-safe variant of C [18, 19]. Another approach to proving
properties of protocols or their correct implementation comes from the general
setting of the π-calculus [26, 32], and includes type and effect systems to check
correspondence assertions [2, 3, 17], the approximation of the behaviour of π-
processes by CCS terms [6, 23, 30], and session types to describe structured
communication programming [14, 15, 20, 21, 33, 40].

Session types allow the specification of a protocol to be expressed as a type;
when a communication channel is created, a session type is associated with
it. Such a type specifies not only the data types of individual messages, but
also the state transitions of the protocol and hence the allowable sequences of
messages. By extending the standard methodology of static typechecking for
conventional languages, it becomes possible to verify, at compile-time, that an
agent using the channel does so in accordance with the protocol. Further prop-
erties, like authentication or data integrity and correct propagation, may be
statically checked by combining session types with correspondence assertions.

The theory of session types has been developed in the context of the π-calculus,
but until now, has not been studied theoretically in the context of a standard
language paradigm, despite a few contributions which bridge session types
and conventional languages. Session types have been used to add behavioural
information to the interfaces of CORBA objects [34, 35] using Gay and Hole’s
theory of subtyping [14, 15] to formalise compatibility and substitutability of
components. Session types have also been encoded in the Haskell programming
language [27]. The former does not link the improved CORBA interfaces to ac-
tual programming languages; the latter does not address the correspondence
between a session-based programming language and Haskell. Very recently,
Dezani-Ciancaglini et al. [9, 10] have proposed a minimal object-oriented lan-
guage with session types.

Our contribution to the problem of structured communication-based program-
ming in general, and the verification of protocols in particular, is to transfer
the concept of session types from the π-calculus to a multi-threaded functional
language with side-effecting input/output operations. More precisely, we pro-
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vide a static, decidable, discipline to ensure that a protocol implementation —
code in a programming language — is correct with respect to its specification
as a (set of) session type(s).

This shows that static checking of session types could be added to a language
such as Concurrent ML [31] (at least without imperative features) or Con-
current Haskell [28] (cf. [27]). More generally, it is our view that by starting
with typing concepts which are well-understood in the context of a theoretical
calculus, and transferring them to a language which is closer to mainstream
programming practice, we can achieve a powerful type system which is suited
to practical programming while retaining the benefits of a sound foundation.

The key technical steps which we have undertaken, in order to address the
differences between a conventional programming style and the programming
notation of the π-calculus, are as follows:

• The operations on channels are independent terms, rather than prefixes of
processes, so we have introduced a new form of typing judgement which
describes the effect of a term on the channel environment (that is, the
collection of channel names and their types).

• We have separated naming and creation of channels, and because this in-
troduces the possibility of aliasing, we represent the types of channels by
indirection from the main type environment to the channel environment.

In previous work [16], we have presented a language supporting typed func-
tional programming with inter-process communication channels, but we only
considered individual processes in isolation. In [36], we addressed collections of
functional threads communicating via (session) channels created from shared
names. Since we considered a concurrent scenario, the type system, compared
with the previous one, is more complex.

Here we introduce a type checking algorithm for the language, and present
the proofs for subject reduction and type safety.

The structure of the paper is as follows. In Section 2, we explain session types
in connection with a progressively more sophisticated example. Sections 3 to 5
define the syntax, operational semantics, and type system of our language. In
Section 6, we present the runtime safety result. In Sections 7 and 8, we discuss
related and future work. The appendices contain the proofs of all the results
in the paper.
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2 Session Types and the Maths Server

Input, Output, and Sequencing Types. First consider a server which
provides a single operation: addition of integers. A suitable protocol can be
defined as follows.

The client sends two integers. The server sends an integer which is their
sum, then closes the connection.

The corresponding session type, from the server’s point of view, is

S =?Int.?Int.!Int.End

in which ? means receive, ! means send, dot (.) is sequencing, and End indicates
the end of the session. Note that the type does not correspond precisely to
the specification, because it does not state that the server calculates the sum.
We only use typechecking to verify observance of the protocol, not functional
correctness. The server communicates with a client on a channel called u; we
think of the client engaging in a session with the server, using the channel u
for communication. In our language, the server looks like this:

server u = let x = receive u in

let y = receive u in

send x + y on u

or more concisely: send ((receive u) + (receive u)) on u.

Interchanging ? and ! yields the type describing the client side of the protocol:

S =!Int.!Int.?Int.End

and a client implementation uses the server to add two particular integers; the
code may use x but cannot use the channel u except for closing it.

client u = send 2 on u

send 3 on u

let x = receive u in code

Branching Types. Now let us modify the protocol and add a negation
operation to the server.

The client selects one of two commands: add or neg . In the case of add the
client then sends two integers and the server replies with an integer which is
their sum. In the case of neg the client then sends an integer and the server
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replies with an integer which is its negation. In either case, the server then
closes the connection.

The corresponding session type, for the server side, uses the constructor &
(branch) to indicate that a choice is offered.

S = &〈add : ?Int.?Int.!Int.End, neg : ?Int.!Int.End〉

Both services must be implemented. We introduce a case construct:

server u = case u of {
add ⇒ send (receive u) + (receive u) on u

neg ⇒ send −(receive u) on u }

The type of the client side uses the dual constructor ⊕ (choice) to indicate
that a choice is made.

S = ⊕〈add : !Int.!Int.?Int.End, neg : !Int.?Int.End〉

A client implementation makes a particular choice, for example:

addClient u = select add on u negClient u = select neg on u

send 2 on u send 7 on u

send 3 on u let x = receive u in

let x = receive u in code

code

Note that the type of the subsequent interaction depends on the label which
is selected. In order for typechecking to be decidable, it is essential that the
label add or neg appears as a literal name in the program; labels cannot result
from computations.

If we add a square root operation, sqrt , then as well as specifying that the
argument and result have type Real, we must allow for the possibility of an
error (resulting in the end of the session) if the client asks for the square root of
a negative number. This is done by using the ⊕ constructor on the server side,
with options ok and error . The complete English description of the protocol
is starting to become lengthy, so we will omit it and simply show the type of
the server side.

S = &〈add : ?Int.?Int.!Int.End,

neg : ?Int.!Int.End,

sqrt : ?Real .⊕〈ok : !Real.End, error : End〉〉
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This example shows that session types allow the description of protocols which
cannot easily be accommodated with objects: a server invoking a method (ok
or error) on the client, as opposed to the traditional sequence select a method;
send the arguments; receive the result.

Recursive Types. A more realistic server would allow a session to consist
of a sequence of commands and responses. The corresponding type must be
defined recursively, and it is useful to include a quit command. Here is the
type of the server side:

S = &〈add : ?Int.?Int.!Int.S,

neg : ?Int.!Int.S,

sqrt : ?Real.⊕〈ok : !Real.S, error : S〉,
quit : End〉

The server is now implemented by a recursive function, in which the positions
of the recursive calls correspond to the recursive occurrences of S in the type
definition. To simplify the theory we decided not to include recursive types in
this paper; the interested reader may refer to report [16].

Function Types. We have not mentioned the type of the server itself.
Clearly, it accepts a channel and returns nothing. If c is the name of the
channel, the input/output behaviour of the function is described by Chan c →
Unit. When control enters the function, channel c is in a state where it offers
add and neg services. The function then “consumes” the channel, leaving it
in a state ready to be closed. In order to correctly control channel usage, we
annotate function types with the initial and the final type of all the channels
used by the function. If c is the (runtime) channel denoted by the (program)
variable u, we may assign the following type to server.

server :: (c : &〈add : . . ., neg : . . .〉; Chan c → Unit; c : End)

server u = case u of {add ⇒ . . . , neg ⇒ . . . }

Note how the function type describes not only the type of the parameter and
that of the result, but also its effect on channel c. It can also be useful to send
functions on channels. For example we could add the component 1

eval : ?(Int → Bool).?Int.!Bool.End

1 We often omit the empty channel environment on each side of the arrow, so that
Int → Bool is short for ∅; Int → Bool; ∅.
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to the branch type of the server, with corresponding server code, to be placed
within the server’s case above.

eval ⇒ send (receive u)(receive u) on u

A client which requires a primality test service (perhaps the server has fast
hardware) can be written as follows.

primeClient :: (c : ⊕ 〈add : . . ., neg : . . ., eval : . . .〉; Chan c → Unit; c : End)

primeClient u = select eval on u

send isPrime on u

send bigNumber on u

let x = receive u in code

Establishing a Connection. How do the client and the server reach a
state in which they both know about channel u? We follow Takeuchi, Kubo
and Honda [33], and propose a pair of constructs: request v for use by clients,
and accept v for use by servers. In use, request and accept occur in separate
threads, and interact with each other to create a new channel. The value v in
both request and accept, denotes the common knowledge of the two threads:
a shared name used solely for the creation of new channels. If S is the type
of a channel, the type of a name used to create channels of type S is de-
noted by [S]. Functions server and negClient now receive a name of type
[&〈add : . . ., neg : . . ., eval : . . .〉], as shown in the following piece of code.

server ′ :: [&〈add : . . ., neg : . . ., eval : . . .〉] → Unit

server ′ x = let u = accept x in (server u; close u)

negClient ′ :: [&〈add : . . ., neg : . . ., eval : . . .〉] → Unit

negClient ′ x = let u = request x in (negClient u; close u)

Note that the same type for the shared name x is used both for the server and
for the client; it is the accept/request construct that distinguishes one from
the other. This is also where we introduce the operation to close a channel:
accept/request creates a channel; close destroys it.

Sharing Names. In order for a name to become known by a client and a
server, it must be created somewhere and distributed to both. To create a
new, potentially shared, name of type [S], we write new S. To distribute it to
a second thread, we fork a new thread, in whose code the name occurs. 2 Our

2 Alternatively, we may send the name on an existing channel.
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complete system creates a name x and launches three threads (a server and
two clients), all sharing the newly created name.

system :: Unit

system = let x = new &〈add : . . ., neg : . . ., eval : . . .〉 in

fork negClient x; fork addClient x; fork server x

Given the above implementation of server , one of the clients will be forever
requesting x. Fortunately, it is easy to extend the server to accept more than
one connection in its life time.

server :: [&〈add : . . ., neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in

fork (case u of . . .; close u); server x

Sending Channels on Channels. Imagine two clients which need to coop-
erate in their interaction with the server: one client establishes a connection,
selects the neg operation, and sends the argument; the second client receives
the result. After selecting neg and sending the argument, the first client must
provide the second with the channel to the server. In order to do so, both
clients must share a name of type ?(?Int.End).End (called S below) and estab-
lish a connection for the sole purpose of transmitting the server channel.

askNeg :: [〈add : . . .〉] → [S] → Unit getNeg :: [S] → Unit

askNeg x y = let u = request x in getNeg y = let w = accept y in

select neg on u; send 7 on u let u = receive w in

let w = request y in let i = receive u in

send u on w; close w close u; close w; code

It is instructive to follow the evolution of the state (the type) of channels c
and d, connected to variables u and w, respectively. After the execution of the
first line of getNeg, d has type S =?(?Int.End).End; after the second line, d is
reduced to End, but c shows up with type ?Int.End; after the third line both
channels are of type End, that is, ready to be closed. By the end of the fourth
line, we gather no more information on channels c and d, for they are now
closed. That is the sort of analysis our type system performs.

After sending a channel, no further interaction on the channel is possible. Note
that askNeg cannot close u, for otherwise the channel’s client side would be
closed twice (in askNeg and in getNeg). On the other hand, channel w must
be closed at both its ends, by askNeg and by getNeg.
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The remainder of this section deals with further issues arising from the inter-
action between types and programming.

Channel Aliasing. As soon as we separate creation and naming of channels,
aliasing becomes an issue. Consider the function below.

sendSend u v = send 1 on u; send 2 on v

Function sendSend can be used in a number of different ways, including the
one where u and v become aliases for a single underlying channel.

sendTwice :: c : !Int.!Int.End; Chan c → Unit; c : End

sendTwice w = sendSend w w

Clearly our type system must track aliases in order to be able to correctly
typecheck programs such as this. Our approach is to introduce indirection
into type environments. In the body of function sendSend, the types of u and
v are both Chan c. The state of c, initially !Int.!Int.End, is recorded separately.

Free Variables in Functions. If we write

sendFree v = send 1 on u; send 2 on v

then function sendSend becomes λu.sendFree. In order to type sendTwice,
thus effectively aliasing u and v in sendSend, we must have 3

sendFree :: c : !Int.!Int.End; Chan c → Unit; c : End

sendSend :: c : !Int.!Int.End; Chan c → Chan c → Unit; c : End

in a typing environment associating the type Chan c to the free variable u of
sendFree. However, if we do not want to alias u and v, then we must have

sendFree :: c : !Int.End, d : !Int.End; Chan c → Unit; c : End, d : End

sendSend :: c : !Int.End, d : !Int.End; Chan c → Chan d → Unit; c : End, d : End

in a typing environment containing u : Chan d. Note how the above type for
sendFree captures changes to channels that are parameters (c) and to channels
that occur free (d).

3 We abbreviate Σ;T → (Σ; U → V ; Σ′); Σ′ to Σ;T → U → V ; Σ′.
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C ::= 〈t〉 | (C | C) | (νx : [S])C | (νγ)C

t ::= v | let x = e in t | fork t; t

e ::= t | vv | new S | accept v | request v | send v on v | receive v |
case v of {li ⇒ ei}i∈I | select l on v | close v

v ::= α | λ(Σ; x : T ).e | rec (x : T ).v | unit

α ::= x | γp

p ::= + | −
T ::= D | Chan α

D ::= [S] | Σ; T → T ; Σ | Unit

S ::= ?D.S | !D.S | ?S.S | !S.S | &〈li : Si〉i∈I | ⊕ 〈li : Si〉i∈I | End

Σ ::= ∅ | Σ, α : S (α : S ′ not in Σ)

Γ ::= ∅ | Γ, x : T (x : T ′ not in Γ)

Fig. 1. Syntax

Polymorphism. We have seen that sendFree admits at least two different
types, a share/not-share kind of polymorphism. Other forms include channel
polymorphism and session polymorphism. For an example of channel polymor-
phism, consider

sendTwiceSendTwice :: c : S, d : S; Chan c → Chan d → Unit; c : End, d : End

sendTwiceSendTwice x y = sendTwice x; sendTwice y

where S is !Int.!Int.End. Here sendTwice must be typed once with channel c,
and another with channel d. For an example of session polymorphism (indeed
a variant of sharing polymorphism identified in the previous paragraph), we
have:

sendQuad :: c : !Int.!Int.!Int.!Int.End; Chan c → Unit; c : End

sendQuad x = sendTwice x; sendTwice x

where sendTwice must be typed once with c : !Int.!Int.!Int.!Int.End, and a sec-
ond time with c : !Int.!Int.End. For simplicity we decided not to incorporate
any form of polymorphism in our type system.

3 Syntax

One aspect of the syntax of our language has not been illustrated by the
examples in Section 2. Channels are runtime entities, created when a request
meets an accept. In order to define the operational semantics (Section 4) it
is necessary to distinguish between the two ends of a channel, represented by
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polarities. If γ is a channel, its two ends are written γ+ and γ−. Channels are
not supposed to occur in a top-level program. When writing programs such as
those in Section 2, we use conventional program variables to denote channels.
Such variables may then be replaced by actual channels.

The syntax of our language is defined formally by the grammar in Figure 1. We
use term variables x, . . ., labels l, . . ., and channels γ, . . . , and define configu-
rations C, threads t, expressions e, and values v. We write γp for a polarized
channel, where p represents the polarity. Duality on polarities, written p, ex-
changes + and −. The dual polarities γ+ and γ− represent the opposite ends
of channel γ.

Most of the syntactic constructs for expressions have been illustrated in Sec-
tion 2. Threads comprise stacks of expressions waiting for evaluation (cf. [24]),
possibly with occurrences of the fork primitive. Threads establish new sessions
(create new channels γ) by synchronising, via accept/request, on shared names.
Shared names are no different from ordinary term variables, but we usually use
the letter n when referring to them. Configurations have four forms: a single
thread, 〈t〉; a parallel collection of threads, (C1 | C2) (we consider the paral-
lel composition left-associative, and usually omit parentheses); declaration of
a typed name, (νx : [S])C; and declaration of a channel, (νγ)C. To support
typechecking, we annotate name declaration with its type, and λ-abstractions
with a channel environment as well as a typed argument. A conditional ex-
pression, if v then e else e, together with its corresponding values true, false,
and datatype, Bool, could be easily added.

Declaration of a typed name has not been illustrated yet. It shows up during
reduction of new expressions, and can also be used at the top level to give a
more realistic model of the example on page 7:

systemConf = (νn : [&〈add : . . ., neg : . . ., eval : . . .〉])
(〈negClient n〉 | 〈negClient n〉 | 〈server n〉)

This configuration arises during reduction of the thread 〈system〉 defined on
page 7, but defining it in this form, at the top level, represents a situation in
which the clients and server are defined as separate components which already
share the name n.

The syntax of types is also described in Figure 1. We define term types T ,
data types D, session types S, and channel environments Σ. The type Chan α
represents the type of the channel with identity α; the session type associated
with α is recorded separately in a channel environment Σ. In the process of
reduction, program variables may be replaced by (runtime) channels, imply-
ing that type Chan c may become, say, Chan γ+. Among datatypes we have
channel-state annotated functional types Σ; T → T ; Σ, and types for names
[S] capable of establishing sessions of type S.
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(C, |, 〈unit〉) is a commutative monoid (S-Monoid)

(νx : T )C1 | C2 ≡ (νx : T )(C1 | C2) if x not free in C2 (S-ScopeN)

(νγ)C1 | C2 ≡ (νγ)(C1 | C2) if γ not free in C2 (S-ScopeC)

(νγ)(νx : T )C ≡ (νx : T )(νγ)C if γ not free in T (S-ScopeCN)

Fig. 2. Structural congruence

In Section 2 we used several derived constructors. An expression e; t (some-
times implied in our examples by the indentation) is an abbreviation for
let y = e in t, for y a fresh variable. Idioms like send (receive c)(receive c) on c
need appropriate de-sugaring into consecutive lets, making the evaluation or-
der explicit. We sometimes “terminate” threads with an expression rather than
a value: a thread e is short for let x = e in unit. Recursive function definitions
must be made explicit with rec.

4 Operational Semantics

The binding occurrences are the variable x in λ(Σ; x : T ).e, in rec (x : T ).e, in
let x = e in t, and in (νx : T )C, and the channel γ in (νγ)C. Free and bound
identifiers are defined as usual and we work up to α-equivalence. We define
a reduction semantics on configurations (Figure 3), making use of a simple
structural congruence relation [26] (Figure 2), allowing for the rearrangement
of threads in a configuration, so that reduction may happen. Substitution of
values for variables is defined as expected.

R-Init synchronises two threads on a shared name n, creating a new channel γ
known to both threads. One thread gets γ+ and the other gets γ−, representing
the opposite ends of the channel. Rules R-Com, R-Branch, and R-Close
synchronise two threads on a channel γ: R-Com transmits a value v from one
thread to the other; R-Branch, rather than transmitting a value, chooses
one of the branches in the case thread; and R-Close closes a channel in
both threads simultaneously. In each case, one thread has γ+ and the other
has γ−. R-New creates a new name n, and records the fact that the name
is potentially shared, by means of a (νn : [S]) in the resulting configuration.
The last four rules allow reduction to happen underneath restriction, parallel
composition, and structural congruence.

Unlike other thread models, the value a thread reduces to is not communicated
back to its parent thread (the one that forked the terminating thread). Such
behaviour would have to be explicitly programmed by arranging for both
threads to share a channel and explicitly sending the result back to the parent.
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〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νγ)(〈let x = γ+ in t1〉 | 〈let y = γ− in t2〉) (R-Init)

〈let x = receive γp in t1〉〈let y = send v on γp in t2〉 →
〈let x = v in t1〉 | 〈let y = unit in t2〉 (R-Com)

〈let x = case γp of {li ⇒ ei}i∈I in t1〉 | 〈let y = select lj on γp in t2〉 →
〈let x = ej in t1〉 | 〈let y = unit in t2〉 (R-Branch)

〈let x = close γp in t1〉 | 〈let y = close γp in t2〉 →
〈let x = unit in t1〉 | 〈let y = unit in t2〉 (R-Close)

〈let x = new S in t〉 → (νn : [S])〈let x = n in t〉 (R-New)

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉 (R-Fork)

〈let x = (λ(Σ; y : T ).e)v in t〉 → 〈let x = e{v/y} in t〉 (R-App)

〈let x = (rec (y : T ).v)u in t〉 → 〈let x = (v{rec (y : T ).v/y})u in t〉
(R-Rec)

〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉 (R-Let)

〈let x = v in t〉 → 〈t{v/x}〉 (R-Beta)

C → C ′

(νγ)C → (νγ)C ′ (R-NewC)

C → C ′

(νn : T )C → (νn : T )C ′ (R-NewN)

C → C ′

C | C ′′ → C ′ | C ′′ (R-Par)

C ≡ → ≡ C ′

C → C ′ (R-Cong)

In R-Init, γ is not free in t1, t2; in R-New, n is not free in t.

Fig. 3. Reduction rules

Example 1 We follow the execution of thread 〈system〉 on page 7. Types play
no role in reduction; we omit them.

〈system〉 (1)

→∗ (νn) 〈fork negClient n; fork addClient n; fork server n〉 (2)

→∗ (νn)( 〈let u = request n in . . .〉 |

〈let u = request n in . . .〉 | 〈let u = accept n in . . .〉) (3)

→∗ (νn)( 〈let u = request n in . . .〉 |

(νγ)(〈select neg on γ+; . . .〉 | 〈case γ− of . . .〉)) (4)

→∗ (νn)( 〈let u = request n in . . .〉 | (νγ)(〈close γ+〉 | 〈close γ−〉)) (5)

→∗ (νn) 〈let u = request n in . . .〉 (6)
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End = End ?D.S =!D.S ?S ′.S =!S ′.S !D.S =?D.S !S ′.S =?S ′.S

&〈li : Si〉i∈I = ⊕〈li : Si〉i∈I ⊕〈li : Si〉i∈I = &〈li : Si〉i∈I

Fig. 4. Duality on session types

In line (3) we have two threads competing for requesting a session on name n.
We have chosen the negClient to go ahead; a new channel γ, known only to
the negClient and to the server, is created. The client gets γ+ and the server
gets γ−. In line (4) we have a typical interaction between two threads on a
common channel. Similar interactions continue until both ends of the channel
are ready to be closed, in line (5). Once closed, structural congruence allows to
get rid of the terminated threads. The run ends in line (6) with the addClient
still waiting for a server which will never come.

5 Typing

The type system is presented in Figures 5–7, where Σ, Σ′ is the pointwise ex-
tension of Σ, α : S, as defined in Figure 1. Typing judgements for constants
are of the form Γ; v 7→ T , where Γ is a map from variables to types. Value
judgements do not mention channel environments, for values, having no be-
haviour, do not change channels. Judgements for expressions are of the form
Γ; Σ; e 7→ Σ′; T ; Σ′′, where channel environment Σ′ describes the unused part
of Σ, whereas Σ′′ represents the final types of the channels which are used by
expression e. Channels which are created by e appear in Σ′′. If c : S ∈ Σ then
we will have either c : S ∈ Σ′ if e does not use c, or c : S ′ ∈ Σ′′ if e uses c and
leaves it with type S ′, or neither if S = End and e closes c. For example

x : Chan c; c : ?Int.End, d : !Int.End; receive x 7→ d : !Int.End; Int; c : End.

Finally, judgements for configurations are of the form ∆; Σ; C 7→ Σ′ where Σ′

describes the unused part of Σ.

The typing rules can be interpreted directly as a typechecking algorithm,
by reading sequents X 7→ Y as the description of a function that performs
a pattern matching on input configuration, expression, or value in X, and
outputs Y . We restrict the type checking algorithm to top level programs,
containing no channel values, hence no channel bindings (νγ)C. For these
programs, a straightforward analysis of the rules reveals that no backtracking
is needed.

The splitting of the input channel environment in X (in most of the rules)
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Γ; unit 7→ Unit (C-Const)

Γ; γp 7→ Chan γp (C-Chan)

Γ, x : T ; x 7→ T (C-Var)

Γ, x : T ; Σ; e 7→ Σ1; U ; Σ2

Γ; λ(Σ; x : T ).e 7→ (Σ; T → U ; Σ1, Σ2)
(C-Abs)

Γ, x : T ; v 7→ T T = (Σ; U → U ′; Σ′)

Γ; rec (x : T ).v 7→ T
(C-Rec)

Fig. 5. Type checking values

should only be performed after the auxiliary calls have been made. For exam-
ple, for a goal of the form (Γ; Σ; receive v), we call the function on (Γ; v), check
that the output is of form Chan α. Then, we split Σ if possible, and terminate
as prescribed by C-ReceiveD or C-ReceiveS, according to the type of α
in Σ.

The algorithm relies on the ability to create new identifiers (rules C-Accept,
C-Request, and C-ReceiveS), as well as to build a type S from type S (rule
C-Request). The latter operation is straightforward from the definition in
Figure 4.

The presentation of the typechecking algorithm, in the form of inference rules,
follows a general pattern for type systems involving linear types [38].

Type Checking Values (Figure 5). C-Chan says that a polarized chan-
nel γp has type Chan γp. The actual type (or state) of channel γp is to be
found in a channel environment Σ, in the rules for expressions. In C-Abs, the
initial and final channel environments of the function body are recorded in the
function type.

Lemma 4.2 (page 26) guarantees that, in judgement Γ; Σ; e 7→ Σ1; T ; Σ2,
Σ1 and Σ2 have disjoint domains, so that Σ1, Σ2 is defined and the over-
all transformation of channel types can be described by the function type
Σ; T → U ; Σ1, Σ2.

Type Checking Expressions (Figure 6). Channels allow for the trans-
mission of different kinds of values: for the purpose of type checking, we distin-
guish between sending/receiving channels, and sending/receiving the remain-
ing values (constants and functions). As such, we find in Figure 6 two rules for
receive and two rules for send, that can be selected based on the type for α.
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Γ; v 7→ Chan α

Γ; Σ, α : ?D.S; receive v 7→ Σ; D; α : S
(C-ReceiveD)

Γ; v 7→ Chan α c fresh

Γ; Σ, α : ?S ′.S; receive v 7→ Σ; Chan c; c : S ′, α : S
(C-ReceiveS)

Γ; v 7→ D Γ; v′ 7→ Chan α

Γ; Σ, α : !D.S; send v on v′ 7→ Σ; Unit; α : S
(C-SendD)

Γ; v 7→ Chan β Γ; v′ 7→ Chan α

Γ; Σ, α : !S ′.S, β : S ′; send v on v′ 7→ Σ; Unit; α : S
(C-SendS)

Γ; v 7→ Chan α j ∈ I

Γ; Σ, α : ⊕〈li : Si〉i∈I ; select lj on v 7→ Σ; Unit; α : Sj

(C-Select)

Γ; v 7→ Chan α ∀j ∈ I.(Γ; Σ, α : Sj; ej 7→ Σ1; T ; Σ2)

Γ; Σ, α : &〈li : Si〉i∈I ; case v of {li ⇒ ei}i∈I 7→ Σ1; T ; Σ2

(C-Case)

Γ; v 7→ Chan α

Γ; Σ, α : End; close v 7→ Σ; Unit; ∅
(C-Close)

Γ; v 7→ [S] c fresh

Γ; Σ; accept v 7→ Σ; Chan c; c : S
(C-Accept)

Γ; v 7→ [S] c fresh

Γ; Σ; request v 7→ Σ; Chan c; c : S
(C-Request)

Γ; v 7→ T

Γ; Σ; v 7→ Σ; T ; ∅
(C-Val)

Γ; v 7→ (Σ; T → U ; Σ′) Γ; v′ 7→ T

Γ; Σ, Σ′′; vv′ 7→ Σ′′; U ; Σ′ (C-App)

Γ; Σ; new S 7→ Σ; [S]; ∅ (C-New)

Γ; Σ; e 7→ Σ1; T1; Σ
′
1 Γ, x : T1; Σ1, Σ

′
1; t 7→ Σ2; T2; Σ

′
2

Γ; Σ; let x = e in t 7→ Σ1 ∩ Σ2; T2; (Σ′
1 ∩ Σ2), Σ′

2

(C-Let)

Γ; Σ; t1 7→ Σ1; T1; ∅ Γ; Σ1; t2 7→ Σ2; T2; ∅
Γ; Σ; (fork t1; t2) 7→ Σ2; T2; ∅

(C-Fork)

Fig. 6. Type checking expressions

In C-ReceiveD, the prefix ?D, of the type for channel α, is consumed, pro-
vided that we are receiving on a value aliased to α (that is a value of type
Chan α). In C-ReceiveS, we receive a channel, that we decided to call c;
the type of the expression is Chan c, and we add a new entry to the final
channel environment, where we record the type for c. The rules C-SendS and
C-SendD, for sending channels and the remaining values, are similar.

In C-Select, the type for α in the final channel environment is that of branch
lj in the type for α in the source channel environment. In C-Case, all branches
must produce the same final channel environment. This enables us to know the
environment for any code following the case, independently of which branch is
chosen at runtime. The same would apply to the two branches of a conditional
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expression. Rule C-Close requires that the channel must be ready to be
closed (of type End). We remove the closed channel from the environment.

Rules C-Request and C-Accept both introduce a new channel c in the
channel environment, of dual types [14, 20, 21, 33, 35, 40]. At runtime the two
occurrences of c are instantiated by the opposite ends (γ+, γ−) of some new
channel γ. The dual of a session type S, denoted S, is defined for all session
types, and is obtained by interchanging output ! and input ?, and by inter-
changing branching & and selection ⊕, and leaving S otherwise unchanged.
The inductive definition of duality is in Figure 4.

Rule C-Val says that constants do not affect the state of channels. In C-
App, the initial environment in the type of the function must be present in
the overall environment, and is replaced by the final environment from the
function type. Rule C-New specifies that the expression new S has type [S],
denoting a name which, when shared by two threads, is able to produce (via
accept/request) new channels of type S.

The most complex type checking rule is C-Let. The channel environment
Σ1, Σ

′
1 which is used when typechecking t consists of the channels (Σ1) which

are not used by e and the updated types (Σ′
1) of the channels which are

used by e. In the conclusion, the unmodified channel environment Σ1 ∩ Σ2

consists of the channels which are used by neither e nor t. The modified channel
environment, (Σ′

1 ∩ Σ2), Σ
′
2, consists of channels which are modified by e but

not by t (Σ′
1 ∩ Σ2) and channels which are modified by t (Σ′

2).

Rule C-Fork requires that t1 and t2 fully consume all of the channels that
they use, either by using them completely and closing them, or by sending
them to other threads. Of the initial channels in Σ, some are consumed by
t1 and the remainder, Σ1, are used to typecheck t2. Any channels remaining
after typechecking t2, i.e. Σ2, are returned as the channels which are not used
by the fork expression.

Typing Configurations (Figure 7). Rule C-Thread requires threads to
consume their channels, similarly to C-Fork. The rule requires, via a type
environment of the form ~x : [~S], that the only free variables in a thread are
those standing for names, used to initiate new sessions via accept and request.
Type safety (Theorem 3) relies on this guarantee.

In rule C-Par, we type check C1 and feed the output Σ1, the unused part
of Σ, into another call, this time for C2. The output Σ2 of the second call is
the unused channel environment of the parallel composition C1 | C2 (cf. rule
C-Fork in Figure 6).

C-NewN discards information on the bound name. There are two rules for
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~x : [~S]; Σ; t 7→ Σ′; T ; ∅
~x : [~S]; Σ; 〈t〉 7→ Σ′

(C-Thread)

Γ; Σ; C1 7→ Σ1 Γ; Σ1; C2 7→ Σ2

Γ; Σ; C1 | C2 7→ Σ2

(C-Par)

Γ, n : T ; Σ; C 7→ Σ′

Γ; Σ; (νn : T )C 7→ Σ′ (C-NewN)

Γ; Σ, γ+ : S, γ− : S; C 7→ Σ′ γ not in Γ, Σ, Σ′

Γ; Σ; (νγ)C 7→ Σ′ (C-NewB)

Γ; Σ; C 7→ Σ′ γ not in Γ, Σ, Σ′

Γ; Σ; (νγ)C 7→ Σ′ (C-NewC)

Fig. 7. Type checking configurations

channel creation. Rule C-NewB says that both ends of a newly created chan-
nel must be used with dual types. Rule C-NewC means that a configuration
remains typable if, during reduction, one of its channels is consumed (cf. [40]
and the absence of the bottom rule).

Typability over arbitrary channel environments is not closed under reduction.
For example, the configuration

〈send unit on γ+〉 | 〈(receive γ−)unit〉

is typable with Σ = γ+ : !Unit.End, γ− : ?(Unit → Unit).End, yet, it reduces
to a configuration (〈unit〉 | 〈unit unit〉) that is not typable under any channel
environment. Notice however that if C is the first configuration above, then
(νγ)C is not typable because the types for γ+ and γ− are not dual.

This observation leads us to consider only channel environments where the two
ends of a channel are of dual types. We call such environments balanced [15].
A channel environment Σ is balanced if whenever γ+ : S, γ− : S ′ ∈ Σ, then
S = S

′
. The main result of this section says that typability under balanced

environments is preserved by reduction; the proof is in Appendix A, page 26.

Theorem 2 (Subject Reduction) If ∆; Σ; C 7→ Σ′ with Σ balanced, and
C → C ′, then there is a Σ′′ such that ∆; Σ′′; C ′ 7→ Σ′, and Σ′′ is balanced.

A previous work of ours [36] does not enjoy the Subject Reduction property,
as pointed out in [9]. The problem occurs when a thread is sent one end of
channel while already possessing the second end. The system in this paper
fixes the problem by working with polarised channels, allowing two distinct
entries (γ+, γ−) for the same channel γ in a channel environment.

18



6 Type Safety

In our language of functional communicating threads different sorts of prob-
lems may occur at runtime, ranging from the traditional error of trying to
apply a value to something that is not a function; through applying close to
a value that is not a channel; to the most relevant to our work: having one
thread trying to send on a given channel, and another trying to select on the
same channel, or having three or more threads trying to synchronize on the
same channel.

In order to define what we mean by a faulty configuration, we start by calling
a γ-thread any thread ready to perform an operation on channel γp, that
is a thread of the form 〈let x = receive γp in t〉, and similarly for send, case,
select, and close. A γ-redex is the parallel composition of two threads ready
to communicate on channel γ, i.e.

〈let x = send v on γp in t1〉 | 〈let y = receive γp in t2〉

and similarly for case/select, close/close. A configuration C is faulty when

C ≡ (ν~x : ~T )(ν~γ)(C1 | C2) and C1 is

(1) the thread 〈let x = vv′ in t〉, where v 6= λy.e and v 6= rec (y : T ). ; or is
(2) the thread 〈let x = accept/request v in t〉, where v is not a variable; or is
(3) the thread 〈let x = e in t〉, where e is i) receive/close v, or ii) send on v,

or iii) case v of , or iv) select on v, with v not a channel; or is
(4) the parallel composition of two γ-threads that do not form a γ-redex; or

is
(5) the parallel composition of three or more γ-threads.

Typability, per se, does not guarantee type safety. A configuration containing
one thread trying to send on a given channel, and another trying to select
on the same channel, can be typable. For example, the following sequent is
derivable with Σ = γ+ : !Unit.End, γ− : ⊕ 〈l : End〉.

∅; Σ; 〈send unit on γ+; close γ+〉 | 〈select l on γ−; close γ−〉 7→ ∅

Notice however that if C is the above configuration, then (νγ)C is not typable
because the types for γ+ and γ− are not dual.

Similarly to Subject Reduction, we consider balanced channel environments
only. The main property of this section says that configurations typable in
balanced environments are not faulty; the proof is in Appendix B, page 37.

Theorem 3 (Type Safety) If Γ; Σ; C 7→ Σ′ with Σ balanced, then C is not
faulty.
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7 Related Work

Cyclone [19] is a C-like type-safe polymorphic imperative language. It features
region-based memory management, and more recently threads and locks [18],
via a sophisticated type system. The multithreaded version requires “a lock
name for every pointer and lock type, and an effect for every function”. Our
locks are channels; but more than mutual exclusion, channels also allow a pre-
cise description of the protocol “between” acquiring and releasing the lock. In
Cyclone a thread acquires a lock for a resource, uses the resource in whichever
way it needs, and then releases the lock. Using our language a thread acquires
the lock via a request operation, and then follows a specified protocol for the
resource, before closing the channel obtained with request.

In the Vault system [8] annotations are added to C programs, in order to
describe protocols that a compiler can statically enforce. Similarly to our ap-
proach, individual runtime objects are tracked by associating keys (channels,
in our terminology) with resources, and function types describe the effect of
the function on the keys. Although incorporating a form of selection (⊕), the
type system describes protocols in less detail than we can achieve with session
types. “Adoption and Focus” [11], by the same authors, is a type system able
to track changes in the state of objects; the system handles aliasing, and in-
cludes a form of polymorphism in functions. In contrast, our system checks the
types of individual messages, as well as tracking the state of the channel. Our
system is more specialized, but the specialization allows more type checking
in the situation that we handle.

Type and effect systems can be used to prove properties of protocols. Gor-
don and Jeffrey [17] use one such system to prove progress properties of
communication protocols written in the π-calculus. Bonelli, Compagnoni, and
Gunter [2, 3] combine the language of Honda, Vasconcelos and Kubo [21] with
the correspondence assertions of Gordon and Jeffrey, thus obtaining a setting
where further properties can be proved about programs. Adding correspon-
dence assertions to session types increases the expressiveness of the system
in two ways. Although session types only specify the structure of interac-
tions between pairs of participants of a possibly multiparty protocol, the new
setting makes it possible to specify and check that the interactions between
participants in different pairs respect the overall protocol. Furthermore, the
integrity and correct propagation of data is also verifiable. However, this is a
different kind of extension of session types than our work; their language does
not include function types.

Rajamani et al.’s Behave [6, 30] uses CCS to describe properties of π-calculus
programs, verified via a combination of type and model checking. Since our sys-
tem is purely type checking (not model checking) verification is more efficient
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and easier to implement. Igarashi and Kobayashi have developed a generic
framework in which a range of π-calculus type systems can be defined [23].
Although able to express sequencing of input and output types similarly to
session types, it cannot express branching types.

A somewhat related line of research addresses resource access in general.
Walker, Crary, and Morrisett [39] present a language to describe region-based
memory management together with a provably safe type system. Igarashi and
Kobayashi [22] present a general framework comprising a language with prim-
itives for creating and accessing resources, and a type inference algorithm that
checks whether programs access resources in a disciplined manner. Although
types for resources in this latter work are similar in spirit to session types, we
work in a much simpler setting.

Neubauer and Thiemann encoded a version of session types in the Haskell
programming language, and proved that the embedding preserves typings [27],
but the results are limited to type soundness.

More recently, Dezani-Ciancaglini et al. [10] proposed a minimal distributed
object-oriented language with session types, where higher-order channels are
not allowed. This problem is overcome in [9], whose type system also enjoys a
progress property, whereby well-typed programs do not starve at communica-
tion points, once a session is established. The price to pay is the impossibility
of interleaving communications on different channels, by the same thread.

The language in [9] extends a conventional class based language with session
primitives (including an interesting receive-while primitive), rather than try-
ing to integrate session primitives within the conventional OO constructs. To
ensure type preservation, the language presents strong syntactic restrictions
so as not to allow channel aliasing, as opposed to our system where aliasing
is allowed, albeit in a (type controlled) restricted form.

8 Future Work

We outline some of the issues involved in extending our language to include a
wider range of standard features.

Recursive Session Types. Recursive session types have been used in a
variety of works [16, 21, 40]. We feel its incorporation in the present setting
would not present major difficulties.
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Polymorphism. The last part of Section 2 presents examples of polymor-
phic functions. A previous work of ours [36] addresses polymorphism by using
an untyped syntax and separately typing different copies of the polymorphic
value as proposed in [29, Chapter 22]. For type-checking purposes, we use in
this paper a typed syntax, hence a new approach is needed. Channel poly-
morphism is easy to handle with a standard Damas-Milner (ML-style, or let-
polymorphism) approach [25]. Session polymorphism remains an interesting
challenge.

Web services. Our work opens up the possibility of an application of ses-
sion types to verification of web service implementations [7, 37]. Web services
require a model for business interactions, which typically assume the form
of sequences of peer-to-peer message exchanges, both synchronous and asyn-
chronous, within stateful, long-running interactions involving two or more par-
ties. Although some rigorous semantics have been developed (eg. [4]), there
is still little assistance with the verification of the correctness of the protocol
descriptions and their composition (eg. [5, 12]). Session types may provide a
useful static analysis tool.

ML-style references and assignment. This would introduce further is-
sues of aliasing. We do not yet know whether our present infrastructure for
typechecking in the presence of aliasing would be sufficient for this extension.
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A Proof of Theorem 2, Subject Reduction

We start with a few auxiliary results; the proof of Subject Reduction is on
page 31. To simplify the proofs, we make use of the variable convention [1],
allowing, for example, to assume that, in sequent ∆ ` Σ . (νγ)C, channel γ
does not occur in either ∆ or Σ, in any form, γ+ or γ−. Relatedly, when we
say that α does not occur in C, we mean that it does not occur free in C and,
by the variable convention, that it does not occur bound either, again in any
c, γ+, γ− form.

We start with a basic result used in the proofs of both Subject Reduction (on
page 31) and Type Safety (on page 37).

Lemma 4 (1) If Γ; Σ; C 7→ Σ′ then Σ′ ⊆ Σ.
(2) If Γ; Σ; e 7→ Σ1; T ; Σ2 then Σ1 ⊆ Σ and dom(Σ1) ∩ dom(Σ2) = ∅.

PROOF. The proof of the first clause is by induction on the derivation of the
judgement, using the result for expressions (clause 2). The proof of the second
clause is by a straightforward induction on the derivation of the judgement.

The following easy results allow to grow and shrink the variable environment
of an expression. Weakening is used in Subject Reduction (rule R-Let) and
narrowing in the Substitution Lemma 13. 4

Lemma 5 (Variable Weakening) Suppose that x does not occur in C, e, v.

(1) If Γ; Σ; C 7→ Σ′, then Γ, x : T ; Σ; C 7→ Σ′.
(2) If Γ; Σ; e 7→ Σ1; U ; Σ2, then Γ, x : T ; Σ; e 7→ Σ1; U ; Σ2.
(3) If Γ; v 7→ U , then Γ, x : T ; v 7→ U .

PROOF. The proof of the first clause is by induction on the derivation of the
judgement, using the result for expressions (clause 2). The proofs of the second
and third clauses, by mutual induction on the derivation of the judgements,
are straightforward.

Lemma 6 (Variable Narrowing) Suppose that x does not occur in C, e, v.

(1) If Γ, x : T ; Σ; C 7→ Σ′, then Γ; Σ; C 7→ Σ′.
(2) If Γ, x : T ; Σ; e 7→ Σ1; U ; Σ2, then Γ; Σ; e 7→ Σ1; U ; Σ2.

4 In the formulation of the lemma, we have omitted the hypothesis that x is not in
the domain of Γ (for otherwise Γ, x : T would not be defined in the conclusion). We
henceforth follow this convention for all sorts of environments.
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(3) If Γ, x : T ; v 7→ U , then Γ; v 7→ U .

PROOF. The proofs follow the pattern of the ones above.

We repeat the above exercise, this time for channel enviroments rather than
variables.

Lemma 7 (Channel Environment Narrowing)

(1) If Γ; Σ, Σ′; C 7→ Σ′′, Σ′ then Γ; Σ; C 7→ Σ′′.
(2) If Γ; Σ, Σ′; e 7→ Σ1, Σ

′; T ; Σ2 then Γ; Σ; e 7→ Σ1; T ; Σ2.

PROOF. The proof of the first clause is by induction on the derivation of the
judgement, using the result for expressions (clause 2). The proof of the second
clause is by a straightforward induction on the derivation of the judgement.

Lemma 8 (Channel Environment Weakening)

(1) If Γ; Σ; C 7→ Σ′ then Γ; Σ, Σ′′; C 7→ Σ′, Σ′′.
(2) If Γ; Σ; e 7→ Σ1; T ; Σ2 then Γ; Σ, Σ′; e 7→ Σ1, Σ

′; T ; Σ2.

PROOF. The proofs follow the pattern of the ones above.

The following two results allow to conclude that channels in the domain of
a channel environment occur free in a configuration. It is needed in Subject
Congruence (channel extrusion using rule C-NewB).

Lemma 9 (Free channels in expressions)

(1) If Γ; Σ; e 7→ Σ1; Chan γp; Σ2 and Γ does not contain Chan γp then γp

occurs free in e.
(2) If Γ; Σ, γp : S; e 7→ Σ1; T ; Σ2 and Γ does not contain Chan γp and γp : S 6∈

Σ1 then γp occurs free in e.

PROOF. Straightforward induction on the derivation of the judgements.
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Lemma 10 (Free channels in configurations)
If Γ; Σ, γp : S; C 7→ Σ′ and Γ does not contain Chan γp and γp : S 6∈ Σ′ then
γp occurs free in C.

PROOF. Straightforward induction on the derivation of the judgement, us-
ing Lemma 9 for the case of C-Thread.

Congruent configurations share the same typings. This result is used in the
proof of Subject Reduction, rule R-Conf.

Lemma 11 (Subject Congruence) If Γ; Σ; C 7→ Σ′ and C ≡ C ′, then
Γ; Σ; C ′ 7→ Σ′.

PROOF. The proof proceeds by induction on the derivation of C ≡ C ′. The
inductive cases (the congruence rules) are straightforward. We now consider
the base cases.

Commutative monoid rules. There are three cases to consider.

• C ′ = C | 〈unit〉. From Γ; Σ; C 7→ Σ′ we can build the derivation

Γ; Σ; C 7→ Σ′

C-Const
Γ; Σ′; unit 7→ Σ′; Unit; ∅

C-Thread
Γ; Σ′; 〈unit〉 7→ Σ′

C-Par
Γ; Σ; C | 〈unit〉 7→ Σ′

The case C = C ′ | 〈unit〉 is direct from the above derivation tree.
• C = C1 | C2, and C ′ = C2 | C1. Assume the derivation

Γ; Σ; C1 7→ Σ1 Γ; Σ1; C2 7→ Σ′

C-Par
Γ; Σ; C1 | C2 7→ Σ′

From Γ; Σ; C1 7→ Σ1, Lemma 4 gives Σ1 ⊆ Σ, so that Σ = Σ1, Σ
′
1 for some

Σ′
1; Lemma 7 gives Γ; Σ′

1; C1 7→ ∅; Lemma 8 gives Γ; Σ′, Σ′
1; C1 7→ Σ′. From

Γ; Σ1; C2 7→ Σ′, Lemma 8 gives Γ; Σ1, Σ
′
1; C2 7→ Σ′, Σ′

1, i.e. Γ; Σ; C2 7→ Σ′, Σ′
1.

Finally rule C-Par gives Γ; Σ; C2 | C1 7→ Σ′.
• C = (C1 |C2) |C3, and C ′ = C1 | (C2 |C3). The assumptions in a derivation

of Γ; Σ; C 7→ Σ′ are easily rearranged to give a derivation of Γ; Σ; C ′ 7→ Σ′,
and vice-versa.

For the scope extrusion rules (S-ScopeN, S-ScopeC, and S-ScopeCN) we
must consider each rule in both directions; for S-ScopeC we must further
consider two cases, depending on whether the typing derivation uses C-NewB
or C-NewC.
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S-ScopeN. When reading the rule left-to-right we use variable weakening
(Lemma 5). In the other direction we use variable narrowing (Lemma 6). In
both cases, we use the hypothesis (in the congruence rule) that x is not free
in C2.

S-ScopeC, left-to-right, C-NewB. By hypothesis, we have

Γ; Σ, γ+ : S, γ− : S; C1 7→ Σ1 γ not in Γ, Σ, Σ1
C-NewB

Γ; Σ; (νγ)C1 7→ Σ1 Γ; Σ1; C2 7→ Σ′

C-Par
Γ; Σ; (νγ)C1 | C2 7→ Σ′

From the assumptions in the above tree, we build the following derivation.
Because γ is not in Σ1, Lemma 4 guarantees that it is not in Σ′.

Γ; Σ, γ+ : S, γ− : S; C1 7→ Σ1 Γ; Σ1; C2 7→ Σ′

C-Par
Γ; Σ, γ+ : S, γ− : S; C1 | C2 7→ Σ′ γ not in Γ, Σ, Σ′

C-NewB
Γ; Σ; (νγ)(C1 | C2) 7→ Σ′

S-ScopeC, left-to-right, C-NewC. Similar to the previous case.

S-ScopeC, right-to-left, C-NewB. By hypothesis, we have a proof tree of
the form:

Γ; Σ, γ+ : S, γ− : S; C1 7→ Σ1 Γ; Σ1; C2 7→ Σ′

C-Par
Γ; Σ, γ+ : S, γ− : S; C1 | C2 7→ Σ′ γ not in Γ, Σ, Σ′

C-NewB
Γ; Σ; (νγ)(C1 | C2) 7→ Σ′

We analyse the possibilities for whether or not γ+ and γ− are in Σ1. There
are three cases.

(1) γ+, γ− 6∈ Σ1.
(2) γ+, γ− ∈ Σ1.
(3) γ+ ∈ Σ1, γ− 6∈ Σ1 (or symmetrically with the polarities exchanged).

In case 1 we build the following derivation.

Γ; Σ, γ+ : S, γ− : S; C1 7→ Σ1 γ not in Γ, Σ, Σ1
C-NewB

Γ; Σ; (νγ)C1 7→ Σ1 Γ; Σ1; C2 7→ Σ′

C-Par
Γ; Σ; (νγ)C1 | C2 7→ Σ′
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In case 2 we have Σ1 = Σ′
1, γ

+ : S, γ− : S and Γ; Σ′
1, γ

+ : S, γ− : S; C2 7→ Σ′.
Because γ is not in Σ′, Lemma 10 implies that γ+ and γ− occur free in C2,
contradicting the conditions of S-ScopeC. Therefore this case cannot arise.

In case 3, a similar analysis to case 2, with γ+ only, shows that the case cannot
arise.

S-ScopeC, right-to-left, C-NewC. Similar to case 1 of the previous argu-
ment.

S-ScopeCN. Straightforward.

The following result allows to replace a given channel with another one,
throughout a derivation tree. We use it in Subject Reduction, for rule R-
Init, to unify the two fresh channels in the hypothesis, and for rule R-Com,
to unify the sent channel with its name in the receiver.

Lemma 12 (Channel replacement) Suppose that γp does not occur in any
of Γ, Σ, Σ1, Σ2, T, e, v, and that c does not occur in Γ.

(1) If Γ, x : Chan c; Σ, c : S; e 7→ Σ1; T ; Σ2 then
Γ, x : Chan γp; Σ, γp : S; e{γp/c} 7→ Σ1{γp/c}; T{γp/c}; Σ2{γp/c}.

(2) If Γ, x : Chan c; v 7→ T , then Γ, x : Chan γp; v{γp/c} 7→ T{γp/c}.

PROOF. The proof of the two results, by mutual induction on the derivation
of the judgements, is straightforward.

The following lemma accounts for all cases in Subject Reduction where sub-
stitution is needed, namely, in rules R-App, R-Rec, and R-Beta.

Lemma 13 (Substitution) Suppose that Γ; v 7→ T .

(1) If Γ, x : T ; Σ; e 7→ Σ1; U ; Σ2 then Γ; Σ; e{v/x} 7→ Σ1; U ; Σ2.
(2) If Γ, x : T ; u 7→ U then Γ; u{v/x} 7→ U .

PROOF. The proof of the two results is by mutual induction on the deriva-
tion of the judgement.

1. Expressions. The result follows easily using the result for values and
induction.

2. Values. The cases of rules C-Const, C-Chan, and follow easily, observing
that x does not occur in u, and applying Lemma 6. The case of rule C-
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Var follows trivially, as u = x. The case of rule C-Abs uses the result for
expressions, and that of rule C-Rec follows by induction.

We are finally in a position to prove Subject Reduction.

PROOF. [Theorem 2, page 18] The proof proceeds by induction on the
derivation of C → C ′. We analyse each reduction rule in Figure 3, page 13, in
turn.

R-Init. By hypothesis, we have

〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νγ)(〈let x = γ+ in t1〉 | 〈let y = γ− in t2〉)

where γ is not free in t1, t2, and

Γ ` Σ . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉.

The only proof tree for this sequent is of the form

(1) (2)
C-Par

Γ; Σ; 〈let x = request n in t1〉 | 〈let y = accept n in t2〉 7→ Σ0

where (1) is the tree

Γ; n 7→ [S] d1 fresh

Γ; Σ; request n 7→ Σ; Chan d1; d1 : S Γ, x : Chan d1; Σ, d1 : S; t1 7→ Σ2; T1; Σ
′
2

Γ; Σ; let x = request n in t1 7→ Σ1; T1; ∅
C-Thread

Γ; Σ; 〈let x = request n in t1〉 7→ Σ1

and (2) is the tree

Γ; n 7→ [S] d2 fresh

Γ; Σ1; accept n 7→ Σ1; Chan d2; d2 : S Γ, y : Chan d2; Σ1, d2 : S; t2 7→ Σ3; T2; Σ
′
3

Γ; Σ1; let y = accept n in t2 7→ Σ0; T2; ∅
C-Thread

Γ; Σ1; 〈let y = accept n in t2〉 7→ Σ0

By examining the environments in the instances of C-Let in the above deriva-
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tions, we obtain

Σ1 = Σ ∩ Σ2

(d1 : S ∩ Σ2), Σ
′
2 = ∅

Σ0 = Σ1 ∩ Σ3

(d2 : S ∩ Σ3), Σ
′
3 = ∅

and hence Σ′
2 = ∅, Σ′

3 = ∅, d1 6∈ Σ2 and d2 6∈ Σ3.

From the hypothesis Γ, x : Chan d1; Σ, d1 : S; t1 7→ Σ2; T1; Σ
′
2 in (1) we use

Lemma 12 to replace d1 by γ+, and then weaken (Lemma 8) with γ− to
obtain

Γ, x : Chan γ+; Σ, γ+ : S, γ− : S; t1 7→ Σ2, γ
− : S; T1; ∅

and so we can construct the derivation (1*) as follows, where we let Σ′ =
Σ, γ+ : S, γ− : S, and Σ′

1 = Σ1, γ
− : S:

C-Chan,C-Val

Γ; Σ′; γ+ 7→ Σ′; Chan γ+; ∅ Γ, x : Chan γ+; Σ′; t1 7→ Σ2, γ
− : S; T1; ∅

Γ; Σ′; let x = γ+ in t1 7→ Σ′
1; T1; ∅

C-Thread
Γ; Σ′; 〈let x = γ+ in t1〉 7→ Σ′

1

From the hypothesis Γ, y : Chan d2; Σ1, d2 : S; t2 7→ Σ3; T2; Σ
′
3 in (1) we use

Lemma 12 to replace d2 by γ− to obtain

Γ, y : Chan γ−; Σ1, γ
− : S; t2 7→ Σ3; T2; ∅

and so we can construct the derivation (2*) as follows:

C-Chan,C-Val

Γ; Σ′
1; γ

− 7→ Σ′
1; Chan γ−; ∅ Γ, y : Chan γ−; Σ, γ− : S; t2 7→ Σ3; T2; ∅

Γ; Σ′
1; let y = γ− in t2 7→ Σ0; T2; ∅

C-Thread
Γ; Σ′

1; 〈let y = γ− in t2〉 7→ Σ0

The following derivation completes this case:

(1*) (2*)
C-Par

Γ; Σ, γ+ : S, γ− : S; 〈let x = γ+ in t1〉 | 〈let y = γ− in t2〉 7→ Σ0
C-NewB

Γ; Σ; (νγ)(〈let x = γ+ in t1〉 | 〈let y = γ− in t2〉) 7→ Σ0
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R-Com, sending a channel. By hypothesis, we have

〈let x = receive γp in t1〉 | 〈let y = send β on γp in t2〉 →
〈let x = β in t1〉 | 〈let y = unit in t2〉

The typing derivation is as follows:

(1) (2)
C-Par

Γ; Σ; 〈let x = receive γp in t1〉 | 〈let y = send β on γp in t2〉 7→ Σ0

where (1) is the tree

C-Chan
Γ ` γp : Chan γp

Γ; Σ; receive γp 7→ Σ2; Chan d; Σ3 Γ, x : Chan d; Σ2, Σ3; t1 7→ Σ4; T1; Σ5

Γ; Σ; let x = receive γp in t1 7→ Σ1; T1; ∅
C-Thread

Γ; Σ; 〈let x = receive γp in t1〉 7→ Σ1

and (2) is the tree

Γ; β 7→ Chan β Γ; γp 7→ Chan γp

Γ; Σ1; send β on γp 7→ Σ6; Unit; Σ7 Γ, y : Unit; Σ6, Σ7; t2 7→ Σ8; T2; Σ9

Γ; Σ1; let y = send β on γp in t2 7→ Σ0; T2; ∅
C-Thread

Γ; Σ1; 〈let y = send β on γp in t2〉 7→ Σ0

By analysing the rules used in (1) and (2), we can deduce more about the
structure of the channel environments.

C-ReceiveS in (1) implies

Σ = Σ′, γp : ?S.S1

Σ2 = Σ′

Σ3 = γp : S1, d : S

C-Let in (1) implies

Σ1 = Σ2 ∩ Σ4

(Σ3 ∩ Σ4), Σ5 = ∅

from which we conclude that Σ5 = ∅ and Σ3 ∩Σ4 = ∅, and hence γp 6∈ Σ4 and
d 6∈ Σ4. By Lemma 4, Σ4 ⊆ (Σ2, Σ3), so Σ4 ⊆ Σ2 and Σ1 = Σ4.
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C-SendS in (2), together with the fact that Σ is balanced, implies

Σ1 = Σ′
1, γ

p : !S.S1, β : S

Σ6 = Σ′
1

Σ7 = γp : S1

C-Let in (2) implies

Σ0 = Σ6 ∩ Σ8

(Σ7 ∩ Σ8), Σ9 = ∅

from which we conclude that Σ9 = ∅ and Σ7 ∩Σ8 = ∅, and hence γp 6∈ Σ8. By
Lemma 4, Σ8 ⊆ (Σ6, Σ7), so Σ8 ⊆ Σ6 and Σ0 = Σ8.

Since d is fresh, it is not in t1. Hence we can construct the derivation (1*),
with the following instance of C-Let, where we let Σ′′

1 = Σ′
1, γ

p : S1:

C-Chan,C-Val

Γ; Σ1; β 7→ Σ1; Chan β; ∅ Γ, x : Chan β; Σ1; t1 7→ Σ′′
1; T1{β/d}; ∅

Γ; Σ1; let x = β in t1 7→ Σ′′
1; T1{β/d}; ∅

Also we can construct the derivation (2*) with the following instance of C-
Let:

C-Const,C-Val

Γ; Σ′′
1; unit 7→ Σ′′

1; Unit; ∅ Γ, y : Unit; Σ′′
1; t2 7→ Σ0; T2; ∅

Γ; Σ′′
1; let y = unit in t2 7→ Σ0; T2; ∅

From (1*) and (2*) we can construct a derivation of

Γ; Σ1; 〈let x = β in t1〉 | 〈let y = unit in t2〉 7→ Σ0

as required.

R-Com, sending a non-channel. Follows a pattern similar to, but simpler
than, the one above.

R-Close. Similar to R-Com (non-channel).

R-New. By hypothesis, we have

〈let x = new S in t〉 → (νn : [S])〈let x = n in t〉
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and

C-New
Γ; Σ; new S 7→ Σ; [S]; ∅ Γ, x : [S]; Σ; t 7→ Σ′; T ; ∅

C-Let
Γ; Σ; let x = new S in t 7→ Σ′; T ; ∅

C-Thread
Γ; Σ; 〈let x = new S in t〉 7→ Σ′

From the hypothesis in the above tree, we build a tree to complete the proof.
Notice that, by the hypothesis of rule R-New, n is not free in t. Thus, Lemma 5
is applicable to the premise of rule C-Let above, and hence,

C-Var,C-Val

Γ, n : [S]; Σ; n 7→ Σ; [S]; ∅

Γ, x : [S]; Σ; t 7→ Σ′; T ; ∅
Lemma 5

Γ, n : [S], x : [S]; Σ; t 7→ Σ′; T ; ∅
C-Let

Γ, n : [S]; Σ; let x = n in t 7→ Σ′; T ; ∅
C-Thread

Γ, n : [S]; Σ; 〈let x = n in t〉 7→ Σ′

C-NewN
Γ; Σ; (νn : [S])〈let x = n in t〉 7→ Σ′

R-Fork. By hypothesis, we have

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉

and

Γ; Σ; t 7→ Σ1; T1; ∅ Γ; Σ1; t
′ 7→ Σ′; T2; ∅

C-Fork
Γ; Σ; fork t; t′ 7→ Σ′; T2; ∅

C-Thread
Γ; Σ; 〈fork t; t′〉 7→ Σ′

¿From the hypotheses in the above tree, we build a tree to complete the proof.

Γ; Σ; t 7→ Σ1; T1; ∅
C-Thread

Γ; Σ; 〈t〉 7→ Σ1

Γ; Σ1; t
′ 7→ Σ′; T2; ∅

C-Thread
Γ; Σ1; 〈t′〉 7→ Σ′

C-Par
Γ; Σ; 〈t〉 | 〈t′〉 7→ Σ′

R-App. By hypothesis, we have

〈let x = (λ(Σ; y : T ).e)v in t〉 → 〈let x = e{v/y} in t〉
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and

Γ, y : T ; Σ; e 7→ Σ1; U ; Σ2
C-Abs

Γ; λ(Σ; y : T ).e 7→ (Σ; T → U ; Σ1, Σ2) Γ; v 7→ T
C-App

Γ; Σ, Σ′; (λ(Σ; y : T ).e)v 7→ Σ′; U ; Σ1, Σ2 (1)
C-Let

Γ; Σ, Σ′; let x = (λ(Σ; y : T ).e)v in t 7→ Σ′ ∩ Σ3; T
′; ∅

C-Thread
Γ; Σ, Σ′; 〈let x = (λ(Σ; y : T ).e)v in t〉 7→ Σ′ ∩ Σ3

where (1) is the sequent Γ, x : U ; Σ′, Σ1, Σ2; t 7→ Σ3; T
′; ∅. Note that (Σ1, Σ2)∩

Σ3 must be ∅, and so Σ1∩Σ3 = ∅. Then, one may build the following derivation
to complete the proof.

Γ; v 7→ T

Γ, y : T ; Σ; e 7→ Σ1; U ; Σ2
Lemma 8

Γ, y : T ; Σ, Σ′; e 7→ Σ′, Σ1; U ; Σ2
Lemma 13

Γ; Σ, Σ′; e{v/y} 7→ Σ′, Σ1; U ; Σ2 (1)
C-Let

Γ; Σ, Σ′; let x = e{v/y} in t 7→ (Σ′, Σ1) ∩ Σ3; T
′; ∅

C-Thread
∆; Σ, Σ′; 〈let x = e{v/y} in t〉 7→ Σ′ ∩ Σ3

R-Rec. By hypothesis, we have

〈let x = (rec (y : T ).v)u in t〉 → 〈let x = (v{rec (y : T ).v/y})u in t〉

and making T = (Σ; T ′ → U ; Σ′), we also have

Γ, y : T ; v 7→ T
C-Rec

Γ; rec (y : T ).v 7→ T Γ; u 7→ T ′

C-App
Γ; Σ, Σ′′; (rec (y : T ).v)u 7→ Σ′′; U ; Σ′ (1)

C-Let
Γ; Σ, Σ′′; let x = (rec (y : T ).v)u in t 7→ Σ′′ ∩ Σ1; T ; ∅

C-Thread
Γ; Σ, Σ′′; 〈let x = (rec (y : T ).v)u in t〉 7→ Σ′′ ∩ Σ1

where (1) is Γ, x : U ; Σ′′, Σ′; t 7→ Σ1; T ; ∅. Then, one may build the following
derivation to complete the proof.

Γ, y : T ; v 7→ T
C-Rec

Γ; rec (y : T ).v 7→ T
Lemma 13

Γ; v{rec (y : T ).v/y} 7→ T Γ; u 7→ T ′

C-App
Γ; Σ, Σ′′; (v{rec (y : T ).v/y})u 7→ Σ′′; U ; Σ′ (1)

C-Let
Γ; Σ, Σ′′; let x = (v{rec (y : T ).v/y})u in t 7→ , Σ′′ ∩ Σ1; T ; ∅

C-Thread
Γ; Σ, Σ′′; 〈let x = (v{rec (y : T ).v/y})u in t〉 7→ , Σ′′ ∩ Σ1
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R-Beta. By hypothesis, we have

〈let x = v in t〉 → 〈t{v/x}〉.

and
Γ; v 7→ T1

C-Val
Γ; Σ; v 7→ Σ; T1; ∅ Γ, x : T1; Σ; t 7→ Σ1; T2; ∅

C-Let
Γ; Σ; let x = v in t 7→ Σ1; T2; ∅

C-Thread
Γ; Σ; 〈let x = v in t〉 7→ Σ1

¿From the hypotheses of this derivation, Lemma 13 gives Γ; Σ; t{v/x} 7→
Σ1; T2; ∅ and C-Thread gives Γ; Σ; 〈t{v/x}〉 7→ Σ1 as required.

R-Let. A straightforward rearrangement of the derivation tree.

R-Branch. Follows the pattern in all the above cases.

R-NewC, R-NewN, R-Par, R-Cong. These cases follow directly by in-
duction. For R-Cong, we use Lemma 11.

B Proof of Theorem 3, Type Safety

We start with three easy results.

Lemma 14 Suppose that ∆; Σ; C 7→ Σ′. Then,

(1) ∆ is of the form ~x : [~S];
(2) If C is a γ-redex, then γ+ : S and γ− : S are in Σ but not in Σ′ .
(3) If C is a γ-thread, then for some p, γp is in the domain of Σ;

PROOF. 1. Simple induction on the derivation tree of the sequent.
2. A simple analysis of the possible derivation trees for the three possible γ-
redex cases.
3. A simple analysis of the conclusions of the last rule applied in the derivation
of the sequent for γ-threads, namely C-SendD, C-SendS, C-ReceiveD, C-
ReceiveS, C-Case, C-Select, and C-Close.

Then, for the main result of this section.

PROOF. [Theorem 3, page 19] By contradiction, assuming faulty configu-
rations typable and performing a case analysis on the possible forms of the
faulty configurations.
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Assume that C ≡ (ν~x : ~T )(ν~γ)(C1 | C2), and that ∆; Σ; C 7→ Σ′ with Σ
balanced. Build the only possible proof tree for the above sequent, first using
rule C-NewN as many times as there are variables in ~x, then proceeding
similarly with rules C-NewB or C-NewC as many times as there are channels
in ~γ, and finally with rule C-Par, to obtain a subtree ending with the following
sequent.

∆′; Σ′; C1 7→ (B.1)

where ∆′ = ∆, ~x : ~T , and Σ′ is Σ, γ+
1 : S1, γ

−
1 : S1, . . . , γ

+
r : Sr, γ

−
r : Sr, and chan-

nels γ1, . . . γr are part of ~γ, introduced by rule C-NewB. Notice that ∆ is of
the form ~x : [~S], by Lemma 14. Also notice that Σ′ is balanced, since Σ is
balanced by hypothesis.

We now analyse each of the five possible classes of faulty configurations defined
in Section 6.

1. The three cases are similar. We analyse application. The only derivation
tree for sequent (B.1) above is of the form below.

∆′; v 7→ (Σ1; T1 → T2; Σ2) · · ·
C-App

∆′; Σ′; v 7→ ; ; · · ·
C-Let

∆′; Σ′; let x = v in t 7→ ; ;
C-Thread

∆′; Σ′; 〈let x = v in t〉 7→

Analysing the rules for values (Figure 5, page 15), one realises that v can only
be an abstraction or a recursive expression, for the C-Var does not apply
given the form of ∆, and the type in the conclusion of the remaining rules
(C-Const, C-Chan) is not a functional type.

2. As above, analyse the lower part of the only proof tree for, say,

∆′; Σ′; 〈let x = accept v in t〉 7→

to obtain a tree for

∆′; v 7→ [S].

Given the form of the type for v, among the rules for values, only C-Var
applies. Hence, v is a variable.

3. As above, analyse the lower part of the only proof tree for, say,

∆′; Σ′; 〈let x = receive v in t〉 7→

to obtain a tree for

∆′; v 7→ Chan γp.
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Once again, given the form of ∆′, among the rules for values, only C-Chan
applies. Then v can only be γp.

4. There are several cases to check in this point; they are all similar. Pick, for
example, the pair select/close, and expand the lower part of the proof tree,
until obtaining subtrees for the following two sequents,

∆′; Σ′; select l on γp 7→ Σ′′; ; ∆′; Σ′′; close γq 7→ ; ;

Analysing the rule for select, one finds that γp : ⊕ 〈l : S〉 must be in Σ′. Sim-
ilarly, analysing the rule for close one realises that γq : End must be in Σ′′.
From Lemma 4, we know that Σ′′ ⊆ Σ′, hence that γp : ⊕ 〈l : S〉, γq : End is in
Σ′. Then it must be the case that q = p. But Σ′ is balanced (and ⊕〈l : S〉 is

not the dual of End), hence (ν~x : ~T )(ν~γ)(C1 | C2) is not typable.

5. We check the case for three γ-threads (〈t1〉 | 〈t2〉) | 〈t3〉, the others reduce
to this. We have:

∆′; Σ′; 〈t1〉 | 〈t2〉 7→ Σ′′ ∆′; Σ′′; 〈t3〉 7→
C-Par

∆′; Σ′; (〈t1〉 | 〈t2〉) | 〈t3〉 7→
If 〈t1〉 | 〈t2〉 is not a γ-redex, then we use case 4. Otherwise, by Lemma 14(2),
it must be the case that γ+ : S and γ− : S are in Σ′ but not in Σ′′. With
Lemma 14(3), this contradicts the assumption that 〈t3〉 is a γ-thread.
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