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Abstract We thoroughly study the behavioural theory of epi, a π-calculus extended with
polyadic synchronisation. We show that the natural contextual equivalence, barbed con-
gruence, coincides with early bisimilarity, which is thus its co-inductive characterisation.
Moreover, we relate early bisimilarity with the other usual notions, ground, late and open,
obtaining a lattice of equivalence relations that clarifies the relationship among the “stan-
dard” bisimilarities.

Furthermore, we apply the theory developed to obtain an expressiveness result: epi ex-
tended with key encryption primitives may be fully abstractly encoded in the original epi
calculus. The proposed encoding is sound and complete with respect to barbed congruence;
hence, cryptographic epi (crypto-epi) gets behavioural theory for free, what contrasts with
other process languages with cryptographic constructs that usually require a big effort to
develop such theory.

Therefore, it is thus possible to use crypto-epi to analyse and to verify properties of se-
curity protocols using equational reasoning. To illustrate this claim, we prove the symmetric
and asymmetric cryptographic system laws, and the correctness of a protocol of secure mes-
sage exchange.

Keywords Barbed Congruence · (Early) Bisimulation · Cryptographic Primitives · Fully
Abstract Encoding · π-calculus · Polyadic Synchronisation

Joana Martinho
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Av. Rovisco Pais 1049-001, Lisboa, Portugal
E-mail: joana dk@portugalmail.pt
Affiliation while developing a preliminary version of this work

António Ravara
Center for Informatics and Information Technologies (CITI), and
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1 Introduction

We study herein the behavioural theory of a π-calculus where, instead of on simple names,
processes synchronise in vectors of names (epi, acronym standing for extended π-calculus).
To illustrate the expressive power of the calculus and a possible application area, we show
that some cryptographic primitives are derivable in epi. Therefore, if one adds such primi-
tives to the calculus, the resulting process language enjoys the same theory of the original
language, and thus one may use it to prove properties of security protocols.

Extended π-calculus. The π-calculus with polyadic synchronisation (epi), proposed by Car-
bone and Maffeis [CM03] is an extension of the π-calculus of Milner, Parrow, and Walker
[MPW92,SW01] that generalises the synchronisation mechanism, based on handshaking,
i.e., the simultaneous execution of input/output actions, by allowing channel names to be
composite.

The fact that in epi communication is only established if the channel vectors match
element-wise, enhances its expressive power with respect to the π-calculus. In particular,
Carbone and Maffeis show that the matching construct1 can be encoded in the π-calculus
with polyadic synchronisation but not in the π-calculus. In addition, they also prove that the
higher the degree of synchronisation (i.e. the maximum length of the channel vectors), the
higher the expressive power of the calculus.

Carbone and Maffeis did not fully develop the behavioural theory of the process lan-
guage they proposed. Defining a grammar and an operational semantics yields a description
language and a rigorous definition of its computational behaviour, but a calculus (in the
logical sense) requires a theory to equate terms. A process calculus is achieved either by
axiomatically, inductively, or co-inductively defining a behavioural equivalence (ideally a
congruence).

Goals and contributions. The aim of this paper is twofold: to develop the behavioural theory
of epi, defining a contextual equivalence and looking for its co-inductive characterisation;
and to use this theory to show how to define cryptographic primitives preserving it, thus
allowing the calculus extended with such primitives to be used to analyse and to verify
security protocols.

The first goal is hence to study in detail the behavioural semantics of epi: (1) defin-
ing an operational semantics (a late labelled transition system semantics); (2) defining the
usual equivalence notions (in the context of mobile calculi): contextual and co-inductive
(ground, late, early and open bisimilarities); and (3) extending results from the π-calculus to
epi, namely obtaining congruence results, finding which (if any) bisimilarity coincides with
the contextual equivalence, and establishing a lattice of inter-relations between the various
equivalence relations. We find that, in epi, like in π, barbed congruence coincides with early
congruence (early bisimilarity closed for all substitutions), and thus, we have a co-inductive
characterisation of the “natural” contextual equivalence of the calculus. Moreover, we re-
late all these “standard” notions of co-inductive equivalences, ground, late, early, and open,
bisimilarities and congruences, obtaining a lattice of equivalence relations that clarifies the
relationship among them.2 To our knowledge, this is original work, and provides to epi the
basic behavioural theory of a mobile calculus.

1 The matching construct is the process if x = y then P ; it compares names x and y and, if they coincide,
behaves like process P ; otherwise does nothing. It is fully abstractly encoded in epi (assuming no matching
in P ) as the process (νz)(z · x〈〉 | z · y().P ).

2 The result is a lattice similar to that of the π-calculus.
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The second goal is to use the theory developed to show that epi extended with key en-
cryption primitives may be used to analyse and to verify security protocols. To explore this
possible application area, and to further show the expressive power of epi, we define a new
calculus, the cryptographic π-calculus with polyadic synchronisation (crypto-epi), an ex-
tension of epi with the referred cryptographic primitives (in the spirit of the spi-calculus
of Abadi and Gordon [AG97] — itself an extension of the π-calculus with constructs that
allow for encryption and decryption of messages — or of the applied π-calculus of Abadi
and Fournet [AF01] — another extension of the π-calculus with a term algebra). These two
primitives are suggested by Carbone and Maffeis in the introduction of their paper [CM03]
as another argument to support the expressiveness of the calculus they propose — epi. As a
first contribution, we prove, using those primitives, the symmetric and asymmetric crypto-
graphic system laws. Since Carbone and Maffeis did not define nor study the extension of
the calculus with such primitives, herein, we formally define crypto-epi: (1) adding to the
grammar of epi primitives for (symmetrically) encoding and decoding names; (2) provid-
ing transition rules to deal with these constructs, enriching the labelled transition system of
epi; (3) extending results from epi to crypto-epi, namely showing that the new constructs
preserve early bisimilarity. Then we show that crypto-epi is fully abstractly encoded, with
respect to barbed congruence, in the original π-calculus with polyadic synchronisation, thus
reflecting the behavioural theory of epi back to crypto-epi, and allowing the usual reasoning
principles using behavioural equivalences to be used in the latter.

The encoding is also proposed by Carbone and Maffeis in the introduction of their pa-
per, but they do not study its properties. To our knowledge, our result is original: not only it
shows that these cryptographic primitives may be defined in epi as programming constructs
and do not need to be primitive, re-enforcing the expressive power of epi, but also it provides
standard behavioural theory to a cryptographic mobile process calculus. Moreover, since the
results closely follow those of the pi-calculus, it should be straightforward to adapt tools like
the Mobility Workbench [Vic94,VM94] to epi and crypto-epi, achieving a powerful tool to
prove by equational reasoning properties of security protocols. Note that other cryptographic
calculi like the spi-calculus or the applied pi-calculus have a more evolved and sometimes
cumbersome behavioural theory. The extra structure for data handling severely complicates
equational reasoning: naı̈ve adaptation of bisimulations are not adequate; new notions de-
veloped are “heavy”, and difficult to automate [AF01,AG97,BAF07,BNP02,BN05]. To il-
lustrate the use of the theory developed, we prove the correctness of a protocol of secure
message exchange.

Structure of the paper. We structure the presentation of our work in the following manner:

– In Section 2 we introduce the syntax and a late labelled transition semantics of the π-
calculus with polyadic synchronisation, epi, as first proposed by Carbone and Maffeis.

– In Section 3 we define the four usual co-inductive notions of equivalence (ground, late,
early and open bisimilarity), and compare these notions, concluding that they relate to
each other just as in the π-calculus. We further introduce the notions of barbed bisimi-
larity, equivalence and congruence, and conclude the latter coincides with early congru-
ence. Although relying on a similar result obtained for the π-calculus [San92], the proof
of the coincidence of the notions in epi requires several adjustments.

– In Section 4 we extend epi with the cryptographic primitives proposed by Carbone and
Maffeis [CM03]. In addition to their work, we give an operational semantics to the new
calculus, adding new rules to the original labelled transition system, and moreover, we
analyse in detail a simple cryptographic protocol, proving it correct.
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P ::= processes π ::= prefixes
0 inaction τ internal action
|π.P prefix |x1 · ... · xk(y) input
| !P replication |x1 · ... · xk〈y〉 output
| (νx)P restriction
| (P | P ) parallel composition
| (P + P ) choice

Fig. 1 crypto-epi syntax

– In Section 5 we prove fully abstract (with respect to barbed congruence) the encoding
of the cryptographic constructs in epi.

– Section 6 concludes the paper, listing our contributions and giving directions for future
research.

– The proofs that are technically more elaborate are presented in appendices.

A preliminary version of this work was presented at the International Conference on
Theoretical and Mathematical Foundations of Computer Science (TMFCS ’08) [MR08].

2 epi: π-calculus with Polyadic Synchronisation

The π-calculus with polyadic synchronisation, epi, is a variant of the π-calculus where the
channels can consist of sequences of names and communication is established if and only if
the channel vectors match element-wise.3

2.1 Syntax

We introduce the syntax of the calculus in detail and also mention some of the main differ-
ences between this and the π-calculus. These differences will be explained in further detail
in subsequent parts throughout this section.

Definition 1 Processes
Let N be a countable set of names and x, x1, ..., xk, y range over N for some k ∈ N. The
grammar in Figure 1 defines the class of processes PS , ranged over by P , Q.

The decreasing order of precedence of operators follows that of the definition, where the
prefix operator has the highest precedence. In what follows we use the notation π for π.0 ,
and (νz, w)P for (νz)(νw)P .

All operators used here are also present in the π-calculus and their behavior is as ex-
pected. Nonetheless, note that restriction is made on names as in the π-calculus and not on
composite channels: this allows for partial restriction.

One should also note that in the π-calculus with polyadic synchronization it is not nec-
essary to include the match operator since it can be encoded in the calculus. This is not
possible in a ‘sensible’ manner using the original π-calculus that, therefore, takes the match
operator as a primitive. This important separation result between the two calculi was ob-
tained by Carbone and Maffeis [CM03], and it is the central expressiveness result about
epi.

3 We call π-calculus with biadic synchronisation the particular case of the π-calculus with polyadic syn-
chronisation where the composite channels have at most two names.
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Action Description fn(α) bn(α) nm(α)
τ internal action ∅ ∅ ∅

u〈y〉 free output nm(u) ∪ {y} ∅ nm(u) ∪ {y}
u(y) bound output nm(u) {y} nm(u) ∪ {y}
u(y) input nm(u) {y} nm(u) ∪ {y}

Table 1 Actions

Process Description fn(P ) bn(P ) nm(P )
0 inaction ∅ ∅ ∅
π.Q prefix fn(π) ∪ (fn(Q)\ bn(π)) bn(π) ∪ bn(Q) nm(π) ∪ nm(Q)
!Q replication fn(Q) bn(Q) nm(Q)

(νy)Q restriction fn(Q)\{y} {y} ∪ bn(Q) {y} ∪ nm(Q)
(Q1|Q2) parallel composition fn(Q1, Q2) bn(Q1, Q2) nm(Q1, Q2)

(Q1 +Q2) choice fn(Q1, Q2) bn(Q1, Q2) nm(Q1, Q2)

Table 2 Names in Processes

Consider u = x1 · ... · xk and u = x1 · ... · xk, where k ∈ N, represent respectively
the input and output channel vectors. Then, nm(u) = nm(u) = {x1, ..., xk}. As in the π-
calculus, there are four possible kinds of actions α in the present calculus, as seen in Table
1. Let bn(α) denote the set of bound names in α, fn(α) the set of free names in α and
nm(α) the set of all names in α (the union of the previous two sets). The respective notions
for prefixes, i.e., fn(π), bn(π), and nm(π), are defined similarly. Furthermore, the notions
of bound and free names in a process P , denoted by bn(P ) and fn(P ) respectively, follow
from those of the π-calculus. Table 2 presents the rigorous definition of these notions, where
nm(P ) denotes the names in the process P . Let fn(P1, P2) = fn(P1)∪ fn(P2), and consider
similar definitions for bn(P1, P2) and nm(P1, P2).

Note that we sometimes use polyadic CCS-like prefixes a · w and a · y where no item
is being sent or expected to be received. We do this to highlight the fact that what could be
transmitted is irrelevant, the problem lies in the synchronization of the composite channels.
In general, u.P will be used as shorthand for u〈y〉 .P for some y, and u.P will be used as
shorthand for u(y).P where y 6∈ fn(P ).

Substitution and α-convertibility are defined as in the π-calculus [SW01], though we
now require that the latter takes into account the possibility of composite channels. For the
sake of clarity, we provide the formal definitions next.

Definition 2 Substitution
Let w 6∈ bn(P ) where P ∈ PS .

1. The result of applying the substitution σ = {w/z} to process P , written Pσ or P{w/z},
is the process obtained by replacing each free occurrence of z in P by w.

2. The result of applying the simultaneous substitution σ = {w1, ..., wn/x1, ..., xn}, for
distinct xi, to process P where w1, ..., wn 6∈ bn(P ), also written Pσ, is the process
obtained by simultaneously replacing each free occurrence of xi in P by wi where
1 ≤ i ≤ n and n ∈ N.

Note that given a substitution σ = {w/z}we denote the result of applying σ to z as σ(z).
In this case, we then have that σ(z) = w. Moreover, substitution may imply the renaming
via α-conversion of bound actions to avoid unwanted captures of free names. The definition
of this notion follows.
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Definition 3 α-convertibility
Let u = x1 · ... · xk where k ∈ N.

1. A change of bound names in a process P is the replacement of a subterm u(z).Q of P
by u(w).Q{w/z} or the replacement of a subterm (νz)Q of P by (νw)Q{w/z} where
in each case w does not occur (at all) in Q.

2. Two processes P and Q are α-convertible, written P =α Q, if Q can be obtained from
P by a finite number of changes of bound names.

2.2 Late Labelled Transition Semantics

We propose herein a late labelled transition semantics of the π-calculus with polyadic syn-
chronisation. In addition, we provide some examples that reflect the differences between
this and the π-calculus.

Definition 4 Late labelled transition relation
Let u = x1 · ... · xk, where k ∈ N. The late labelled transition relation α−→⊆ PS × PS ,
where α is a possible action, is the smallest relation generated by the set of rules in Figure 2
(page 7).4

The rules follow in a straightforward manner those of the π-calculus where we now
consider vectors of names as channels. The rules follow in a straightforward manner those
of the π-calculus, considering now vectors of names as channels. Note once again that the
restriction rule, RES, considers singular and not composite names, i.e., restriction is partial.
Nevertheless, we enforce an all-or-nothing behavior, that is, we require the match of all the
names in the vector channel to allow synchronization. The following example reflects the
consequences of this type of restriction.

Example 1 Let P = (νx1)x1 · x2〈y〉 and Q = x1 · x2〈y〉 . Then, P cannot perform the
input action because of the restriction in one of its channel names, while Q can. Consider
now P = x(y)y · z〈v〉 | x〈w〉 . Its reduction performs a substitution in (only) one of the
channel names, yielding w · z〈v〉 .

Now that we have introduced the labelled transition relation for processes in the π-
calculus with polyadic synchronisation, we can reflect on the importance of α-convertibility.
The following example accounts for the relevance of this operation.

Example 2 Let P = (S |Q) |R where S = x · z(y).y(b), Q = z · y(b) and R = x · z〈c〉 . We
expect S to synchronise with R in such a way that P τ−→ (c(b) | z · w(b)) | 0 , but in order
for this to be achievable we need to perform an α-conversion, else the side condition of the
PAR1 rule is not satisfied.

−−

x · z(a).a(b)
x·z(a)
−→ a(b)

PREFIX

x · z(y).y(b)
x·z(a)
−→ a(b)

CONV

x · z(y).y(b) | z · y(b)
x·z(a)
−→ a(b) | z · y(b)

PAR1
−−

x · z〈c〉
x·z〈c〉
−→ 0

PREFIX

P
τ−→ (c(b)) | z · w(b)) | 0

COMM

4 Note that not included in the figure are four rules: the symmetric form CH2 of CH1 which has Q + P
instead of P + Q, and the symmetric forms PAR2, COMM2 and CLOSE2 of PAR1, COMM1, CLOSE1 in
which the roles of the left and right components are swapped.
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(PREFIX)
−

α.P
α−→ P

(CH1)
P

α−→ P ′

P +Q
α−→ P ′

(PAR1)
P

α−→ P ′

P |Q α−→ P ′|Q
where bn(α) ∩ fn(Q) = ∅

(RES)
P

α−→ P ′

(νx)P
α−→ (νx)P ′

where x 6∈ nm(α)

(REP-ACT)
P

α−→ P ′

!P
α−→ P ′|!P

(REP-COMM) P
u〈x〉−→ P ′ P

u(z)−→ P ′′

!P
τ−→ (P ′|P ′′{x/z})|!P

(REP-CLOSE) P
u(x)−→ P ′ P

u(x)−→ P ′′

!P
τ−→ (νx)(P ′|P ′′)|!P

where x 6∈ fn(P )

(OPEN)
P
u〈x〉−→ P ′

(νy)P
u(x)−→ P ′

where x 6∈ nm(u)

(CLOSE1) P
u(x)−→ P ′ Q

u(x)−→ Q′

P |Q τ−→ (νx)(P ′|Q′)

(COMM1) P
u〈x〉−→ P ′ Q

u(z)−→ Q′

P |Q τ−→ P ′|Q′{x/z}

(CONV)
P

α−→ P ′

Q
α−→ P ′

if Q =α P

Fig. 2 Late transition rules.

Note that if we had not performed the α-conversion and had disrespected the side con-
dition of the PAR1 rule then P would have evolved through a τ action into c(b) | z · c(b).

3 Observational Semantics

In this section we develop the behavioural theory of epi. In short, we define a contextual
equivalence for epi—barbed congruence—and find its co-inductive characterisation. Fol-
lowing the literature of the π-calculus [MPW92,San96], with the necessary adjustments we
introduce the “standard” notions of bisimilarity: ground, late, early, and open. Then study
their preservation by the operators of epi and inter-relate these notions, getting a lattice of
discriminating power. Finally, we show that early congruence (early bisimilarity closed for
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all substitutions) coincides with barbed congruence, being thus its co-inductive characteri-
sation.

Although not surprising, these results are technically difficult, and some proofs deviate
from those in the π-calculus. This work is necessary to provide to epi behavioural theory.
Appendix A contains the more complex proofs of the results presented in this section.

3.1 A Contextual Equivalence

Definitions. We define first an equivalence notion.

Definition 5 Barbs
The predicate ‘P exhibits barb β’, written P ↓β , is defined by:

- P ↓u if P can perform an input action on channel u
- P ↓u if P can perform an output action on channel u

A barb is an input or output channel identifier. Note that the predicate just defined con-
cerns only visible and immediate possible action.

Example 3 Let P = (x·y(a)|x · y〈b〉 ).z〈c〉+w · x〈c〉 andQ = (νx)(x·y(a)|x · y〈b〉 ).z〈c〉 ,
where all names are distinct. Then, P ↓x·y , P ↓x·y , and P ↓w·x, but P 6↓z . Furthermore, Q
exhibits no barbs.

We now introduce the notion of barbed bisimilarity as proposed by Milner and San-
giorgi [MS92]. It is an equivalence relation on processes based on their observable be-
haviour.

Definition 6 Barbed bisimilarity

1. A binary symmetric relation S is a barbed bisimulation if PSQ implies:
- if P ↓β then Q ↓β for each barb β
- if P τ−→ P ′ then there exists a Q′ such that Q τ−→ Q′ and P ′SQ′

2. Processes P and Q are barbed bisimilar if PSQ for some barbed bisimulation S.
3. Barbed bisimilarity, written ∼b, is the greatest barbed bisimulation.

Properties. Note that barbed bisimilarity is not a congruence since it is not preserved by
parallel composition, nor by replication, nor by substitution, as seen in the following exam-
ples.5

Example 4 Let P = m〈n〉 .m〈n〉 , Q = m〈n〉 and R = m(x). As seen in the previous
example P ∼b Q, and trivially R ∼b R. Nonetheless, P |R 6∼b Q |R since P |R τ−→ P ′ =
m〈n〉 and P ′ ↓m but Q |R τ−→ 0 .

Example 5 Let P = m〈n〉 .a〈b〉 + m(x), Q = m〈n〉 .b〈a〉 + m(x) and a, b be distinct
names. Then, P andQ are barbed bisimilar since they exhibit exactly the same barbs:m and
m. Nonetheless, !P and !Q are not barbed bisimilar since two copies of P and two copies of
Q can synchronise, but the resulting processes do not exhibit the same barb, i.e., !P τ−→ P ′

and P ′ ↓a but !Q τ−→ Q′ and Q′ ↓b.

5 Example 6 is an exercise proposed in reference [SW01].
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Example 6 Let P = m | n and Q = m.n+ n.m. Then, P and Q are barbed bisimilar since
they have the same barbs. We only analyse the case when P starts: if P ↓m then Q ↓m and
if P ↓n then Q ↓n. However, if we consider the substitution σ = {n/m}, we have that Pσ

and Qσ are not barbed bisimilar, since Pσ τ−→ but Qσ
τ
6−→.

Nonetheless, barbed bisimilarity is preserved by the remaining operators.

Proposition 1 The relation ∼b is preserved by prefixing, restriction and choice operators.

Proof In Appendix A.

Closing barbed bisimilarity for parallel composition yields an equivalence notion.

Definition 7 Barbed equivalence
Two processes P and Q are barbed equivalent, written ∼beq , if P | R ∼b Q | R for every
process R.

In order to define barbed congruence we must first introduce the notion of context. Con-
texts are processes with a “hole”.

Definition 8 Barbed congruence

1. A context is obtained when a ‘hole’ [·] replaces a process P ∈ PS .
2. The process obtained by replacing [·] in C by P ∈ PS , where C is a context, is denoted

by C[P ].
3. Two processes P and Q are barbed congruent, written 'b, if C[P ] ∼b C[Q] for every

context C[·].

We now extend to epi the result that establishes an alternative definition of barbed con-
gruence in the π-calculus, as done by Sangiorgi and Walker [SW01]: closing barbed equiv-
alence for substitution yields barbed congruence.

Lemma 1 P 'b Q if and only if Pσ ∼beq Qσ for any substitution σ

Proof In Appendix A.

3.2 Four Notions of Bisimilarity

Seeking for a co-inductive characterisation of barbed congruence, we define the usual no-
tions of bisimilarity, and inter-relate them.

Ground Bisimilarity. The first notion we will consider is that of ground bisimilarity, where
there is no name instantiation.

Definition 9 Ground bisimilarity

1. A binary symmetric relation S is a ground bisimulation if PSQ implies:
if P α−→ P ′ where bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that Q α−→ Q′ and
P ′SQ′.

2. Processes P and Q are ground bisimilar if PSQ for some ground bisimulation S.
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3. Ground bisimilarity, written ∼g , is the largest ground bisimulation.6

The notion of ground bisimilarity is very simple since a process merely has to imitate
the other in its possible transitions and vice versa without considering name instantiation.
Unfortunately, as in the π-calculus, a consequence of this is that ground bisimilarity is not
preserved by the parallel composition operator, as the following example shows.

Example 7 Let P = (νa)(z(w).a · w〈c〉 | a · y(b)) and Q = z(w). Then both P and Q are
ground bisimilar since after performing the input action they both become inactive. Con-
versely,

P ′ = P | z〈y〉 τ−→ (νa)(a · y〈c〉 | a · y(b)),

which can also perform an internal action, whileQ′ = Q|z〈y〉 can only perform one internal
action and then becomes inactive. We can then conclude that although P and Q are ground
bisimilar, P ′ and Q′ are not ground bisimilar.

Ground bisimilarity is not preserved by replication either, as the following example il-
lustrates. Note that in the definition of P we use polyadic CCS-like prefixes a · w and a · y
where no item is being sent or expected to be received. We do this to highlight the fact that
what could be transmitted is irrelevant, the problem lies in the synchronisation of the com-
posite channels. In general, u.P will be used as shorthand for u〈y〉 .P for some y, and u.P
will be used as shorthand for u(y).P where y 6∈ fn(P ).

Example 8 Let P = (νa)(z(w).a · w|a · y).z〈x〉 + z〈y〉 and Q = z(w) + z〈y〉 , where w
and y are distinct. Then P ∼g Q, but !P 6∼g!Q since two copies of P and two copies of Q

can synchronise and the resulting processes are not bisimilar. In detail, !P τ−→ τ−→
z〈x〉
−→ P ′,

but no descendant of !Q can ever perform an output action z〈x〉 .

Nonetheless, ground bisimilarity is preserved, just like in the π-calculus, by the remain-
ing operators.

Lemma 2 The relation ∼g is preserved by prefixing, restriction and choice operators.

Proof In Appendix A.

Late and Early Bisimilarity. We now introduce the notions of late and early bisimilarity,
which differ in their treatment of name instantiation for input actions. The definitions of
these notions are standard. In late bisimilarity we require that the derivative of a process
simulates the derivative of the other process (and vice versa) for all possible instantiations
of the bound parameter. It is called late because the choice of the name instantiation is made
after the choice of the derivative.

Definition 10 Late bisimilarity
Let u = x1 · ... · xk where k ∈ N.

1. A binary symmetric relation S is a late bisimulation if PSQ implies:
- if P α−→ P ′ where α = u〈y〉 , u(y) or τ and bn(α)∩ fn(P,Q) = ∅ then there is a Q′

such that Q α−→ Q′ and P ′SQ′.

6 The existence and uniqueness of a largest bisimulation is a direct consequence of the Knäster-Tarski’s
Fixed Point Theorem.
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- if P
u(y)
−→ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that Q

u(y)
−→ Q′ and for each

w, P ′{w/y}SQ′{w/y}.
2. Two processes P and Q are late bisimilar if PSQ for some late bisimulation S.
3. Late bisimilarity, written ∼l, is the largest late bisimulation.

In early bisimilarity we require that under the same possible name instantiation there is
a derivative of each of the processes that simulates the other and vice versa. It is named early
because the choice of the name instantiation is made before the choice of the derivative.

Definition 11 Early bisimilarity
Let u = x1 · ... · xk where k ∈ N.

1. A binary symmetric relation S is an early bisimulation if PSQ implies:
- if P α−→ P ′ where α = u〈y〉 , u(y) or τ and bn(α)∩ fn(P,Q) = ∅ then there is a Q′

such that Q α−→ Q′ and P ′SQ′.
- if P

u(y)
−→ P ′ where y 6∈ fn(P,Q) then for each w there is a Q′ such that Q

u(y)
−→ Q′

and P ′{w/y}SQ′{w/y}.
2. Two processes P and Q are early bisimilar if PSQ for some early bisimulation S.
3. Early bisimilarity, written ∼e, is the largest early bisimulation.

Similarly to what happens in the π-calculus, in the π-calculus with polyadic synchroni-
sation both late and early bisimilarity are not preserved by input prefixing. This is evidenced
by the following example where we consider processes in the π-calculus with biadic syn-
chronisation.

Example 9 Let P = (νa)(a · z〈c〉 |a · y(b)) and Q = 0 . Since both P and Q are unable to
perform any action, we have that P and Q are late and early bisimilar. Now consider the

processes P ′ = z(y).P and Q′ = z(y).0 . Then P ′
z(y)
−→ P and Q′

z(y)
−→ 0 , but we have that

P{z/y} τ−→ while 0
τ
6−→. Thus, P ′ and Q′ are neither early nor late bisimilar.

Again, as in the π-calculus, both late and early bisimilarity are preserved by all other
operators.

Proposition 2 The relations ∼l and ∼e are preserved by all operators except input prefix-
ing.

Proof The proof follows that for the π-calculus by Milner et al. for the output prefixing,
choice and parallel composition operators [MPW92] and that by Milner for the replication
operator [Mil93]. Example 9 proves that neither ∼l nor ∼e are preserved by input prefixing.

Moreover, as in the original π-calculus, congruences for late and early bisimilarity, 'l
and'e, are achieved by closing the equivalences over all name substitutions [MPW92]. The
relation between the notions of late bisimilarity and late congruence, and of early bisimilar-
ity and early congruence, are shown in the following proposition.

Proposition 3 'l⊂∼l and 'e⊂∼e.

Proof The inclusion follows directly from the definitions of late bisimilarity and late con-
gruence because for P , Q ∈ PS , if P 'l Q then for all substitutions σ we have that
Pσ ∼l Qσ. In particular, this is true for the identity substitution, that is, P ∼l Q.

The following example is evidence of the strictness of the inclusion. Let P , Q ∈ PS and
consider distinct x, y, z, w ∈ N . If P = (νw)(w · x〈a〉 |w ·y(b)) and Q = (νw)(w · x〈a〉 |w ·
z(b)), then P ∼l Q since both processes are inactive. Nonetheless, for σ = {y/x}, Pσ can
perform a τ action, but Qσ remains inactive. Thus, Pσ 6∼l Qσ, and so P 6'l Q.
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Proposition 4 'e⊂∼e

Proof The inclusion follows directly from the definitions of early bisimilarity and early
congruence and is similar to that of Proposition 3. The same example given in Proposition
3 can be used to prove the strictness of the inclusion, since P ∼e Q but P 6'e Q.

Open Bisimilarity. The notion of open bisimilarity was introduced by Sangiorgi and proved
to be a congruence relation in the π-calculus [San96]. That is also the case here: in epi, open
bisimilarity is a congruence.

Definition 12 Open bisimilarity

1. A binary symmetric relation S is an open bisimulation if PSQ implies for every substi-
tution σ:
If Pσ α−→ P ′ where bn(α) ∩ fn(Pσ,Qσ) = ∅ then there is a Q′ such that Qσ α−→ Q′

and P ′SQ′.
2. Two processes P and Q are open bisimilar if PSQ for some open bisimulation S.
3. Open bisimilarity, written ∼o, is the largest open bisimulation.

As expected, open bisimilarity is a congruence.

Proposition 5 The relation ∼o is preserved by all operators.

Proof The proof follows that in [San96].

3.3 Expressiveness Results

The congruence properties appear to stem directly from those of the π-calculus. However,
ground bisimilarity is a full congruence in the asynchronous π-calculus without match
[San00] (and a similar result holds for late and for early bisimilarity [HHK95]), but this
result does not hold if we consider the asynchronous π-calculus with polyadic synchroni-
sation, as seen in Example 7. Matching does not need to be considered as a primitive in
the π-calculus with polyadic synchronisation (synchronous or asynchronous) since it can
be derived. Therefore, ground, late and early bisimilarities are not congruences in the asyn-
chronous π-calculus with polyadic synchronisation (without match).

We now analyse the relationships between the bisimilarity relations previously defined
and present a general diagram that summarises these results in Corollary 1. The results and
proofs are similar to those presented for the π-calculus [MPW92,Qua99]. The largest open
bisimulation is itself a late bisimulation, and it is also included in late congruence.

Proposition 6 ∼o⊂∼l and ∼o⊂'l.

Late bisimilarity is itself an early bisimulation, although the reverse does not hold. The
same result holds if we consider the notions of late and early congruences instead of late
and early bisimilarity.

Proposition 7 ∼l⊂∼e and 'l⊂'e.

Our last result shows that if two processes are early bisimilar then they are also ground
bisimilar, although the reverse does not hold.
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Proposition 8 ∼e⊂∼g .

Barbed bisimilarity is a much coarser relation than the bisimilarities introduced so far.
The following example illustrates the difference between barbed bisimilarity and those no-
tions of bisimilarity.

Example 10 Let P = m〈n〉 .m〈n〉 and Q = m〈n〉 . Then, P and Q are barbed bisimilar
since their only barb is m. However, P and Q are not ground, nor late, nor early nor open

bisimilar since P
m〈n〉
−→ m〈n〉 and Q

m〈n〉
−→ 0 , which are obviously not bisimilar.

We now summarise the results presented in the following diagram where→ stands for
strict inclusion ⊂.

Corollary 1

∼o → ∼l → ∼e → ∼g
↘ ↑ ↑ ↗

'l → 'e

A co-inductive characterisation of barbed congruence. We finally prove that the “natural”
contextual equivalence—barbed congruence—coincides with early bisimilarity, which is
thus a co-inductive characterisation of the latter. Sangiorgi obtained a characterisation of
barbed equivalence by proving it coincided with early bisimilarity [San92]. We extend that
result for the π-calculus with polyadic synchronisation, completing the behavioural theory.

Theorem 1 ∼e=∼beq

Proof In Appendix A.

Corollary 2 'e='b

Proof Let P , Q ∈ PS .

(⇒) If P 'e Q then by definition of early congruence, Pσ ∼e Qσ for any substitution σ. By
Theorem 1 we know that Pσ ∼beq Qσ, and by Lemma 1 P 'b Q.

(⇐) If P 'b Q then by Lemma 1 we know that Pσ ∼beq Qσ for any substitution σ. By
Theorem 1 we have that Pσ ∼e Qσ, and therefore P 'e Q.

4 Encoding Cryptographic Primitives

To model an encryption system one needs to consider primitives to encrypt and decrypt
information using keys. In symmetric cryptography these primitives should respect the fol-
lowing equation, where m is the information to be encoded and k is the shared key.

decrypt(encrypt(m, k), k) = m (1)

In asymmetric cryptography, one needs an extra primitive (e.g., pubk) to obtain a public
key from a private one. The equation defining the intended system’ behaviour, considering
now k to be a private key, is as follows.

decrypt(encrypt(m, pubk(k)), k) = m (2)
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4.1 Cryptographic Primitives in Process Calculi

To our knowledge, the first mention of a possible encoding of a calculus with (symmetric)
cryptographic primitives into a calculus with polyadic synchronisation was put forth by
Abadi and Gordon [AG97]. The idea can be summarised in the following way: the sending
of a message m encrypted under a key k over a channel a can be seen as a · k〈m〉 .P . In
order to receive this message, the other party needs to know the channel where the message
is being transmitted and the key, which could be represented as a · k(m).P .

An encoding of key encryption primitives into π-calculus with polyadic synchronisation
is proposed by Carbone and Maffeis in the introduction of their paper to further illustrate its
expressive power [CM03].

[| encryptm#k x inP |] def= (νx)(!x · k〈m〉 | [|P |])

[| decryptx#k m inP |] def= x · k(m).[|P |]

With this definitions, the symmetric cryptography law (Equation 1 above), translated to this
new language, is very easy to prove: the decryption of the encrypted text m (with the shared
key k) should be equal to m. In that case, m is made available (as an input process).7

Proposition 9

[| encryptm#k x in (decryptx#k y in (if m = y thenm().0 )) |] 'e m().0

Proof In Appendix C.

This modelling mechanism is not restricted to symmetric cryptography: if one provides
a way to recover a public key from a private (or secret) one (hence implementing the prim-
itive pubk), these primitives also support asymmetric cryptography. Following the Applied
π-calculus approach, assume that every principal of a security protocol is a process provid-
ing a private channel (e.g., pfsk , meaning public from secret key) which, given a channel
representing a private key and a reply channel, test if the private key is the correct one and
if so, sends the public key on the reply channel.

Consider thus the following extra primitive ’public on z from privatex’, which makes
available a(n input) channel (pfsk ) that sends on a received reply channel (z) the public key
(pk) corresponding to the private key (sk), if the value received (x) is indeed the private key.
This primitive is easily encodable in epi, parameterising the map with a function associating
to a channel a pair of keys.

[| public on z from privatex in P |]{pfsk 7→(pk,sk)}
def
= !pfsk(x, z).if x = sk then (z〈pk〉 |[|P |]{(pk,sk)})

The asymmetric cryptography law (Equation 2 above), translated to this setting, holds as
well. Encryption uses the inverse function, recovering the private key from the public one.

[| private on k from publicx |]{(pk,sk)}
def
= ! if k = pk then x · pk(y).x · sk〈y〉

7 Recall that the matching construct is encodable in epi.
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Proposition 10

(νpfsk , sk, z)(pfsk〈sk, z〉 |
[| public on z from privatex in

z(k).encryptm#k x in ( private on k from publicx |

decryptx#sk y in (if m = y thenm().0 )) |]{pfsk 7→(pk,sk)})

'e m().0

Proof In Appendix C.

4.2 Cryptographic epi

Carbone and Maffeis did not define the semantics of the primitives, and thus did not study
the properties of the encoding (as moreover, they have not developed the behavioural theory
of epi). Herein we do all that work: we first add to epi two key encryption primitives, encrypt
and decrypt, defining the cryptographic π-calculus with polyadic synchronisation (crypto-
epi), and extend epi labelled transition system with rules dealing with these new constructs.
Then we show that the new constructors preserve the bisimilarity relations defined to epi, and
finally, we prove that these cryptographic primitives are derivable constructs: crypto-epi can
be fully abstractly encoded in epi; thus we prove that the original calculus does not need to be
extended with those primitives, at least from the point of view of expressiveness. Moreover,
since the encoding is fully abstract, crypto-epi enjoys of all the behavioural theory of epi. The
main achievement here is thus a mobile calculus with cryptographic primitives enjoying the
“standard” behavioural theory. Adapting analysis tools like the Mobility Workbench [Vic94,
VM94] should be straightforward.

We start by extending the language we have been working with, adding cryptographic
primitives.

Syntax. Consider two extra productions in the syntax of epi (cf. Definition 1): encryptm#k

x inP and decryptx #k m inP . The first construct non-deterministically encrypts the ci-
pher text m under key k and returns the encrypted message as the fresh name x, to be used
in the scope of P , where it occurs bound. The decryption of message x through the key
k binds the name m in the continuation P to the original message. Notice that one, when
encrypting, does not expect free occurrences of m and k in P ; and when decrypting, does
not expect free occurrences of x and k in P . As shown above, these primitives support both
symmetrical and asymmetrical encryption systems.

Labelled Transition Semantics. The rules of epi in Figure 2 (page 7), together with the rules
in Figure 3 inductively define the transition semantics of crypto-epi.

The behavioural theory of epi extends naturally to this new setting. The notions of bisim-
ilarity, introduced in the previous section, enjoy similar properties when consider the new
constructs. Notice that the decrypt primitive behaves like an input prefix, thus it does not
preserve ground, early or late bisimilarity, but naturally, it preserves open bisimilarity. The
notion of early congruence in crypto-epi is obtained in the same manner, and the results in
Corollary 2 also extend straightforwardly to this new setting. Therefore, the theory devel-
oped can be used to analyse and (equationally) prove properties of security protocols.



16

(ENC)
P

α−→ P ′

encryptm#k x inP
α−→ encryptm#k x inP ′

where α 6= u〈x〉 and if α ∈ {u〈y〉 , u(y), u(y)} then x 6∈ nm(u)

(ENC-OPEN)
P
u〈x〉−→ P ′

encryptm#k x inP
u(x)−→ !x · k〈m〉 | P ′

where x 6∈ nm(u)

(DEC)
−−

decryptx#k y inP
x·k(y)−→ P

Fig. 3 Late transition rules for the cryptographic constructs

Equational laws. To present some examples we need to introduce some results. First, notice
that syntactical equality is an early bisimilarity, and that any strong bisimilarity is strictly
included in the corresponding weak version. In particular, =⊂'e⊂≈e.

Second, the usual structural congruence laws of the π-calculus [MPW92,SW01] also
hold in any bisimilarity. Therefore, we use below instances of the following laws.8

Lemma 3 (Structural Laws)

1. (PS , |,0 ) is a commutative monoı̈d with respect to 'e.
2. (νx)0 'e 0 and (νx)!x · k〈m〉 'e 0
3. (νx)(P |Q) 'e (P | (νx)Q), if x /∈ fn(P )

Finally, the following laws are useful in our setting.

Lemma 4

1. encryptm#k x inP 'e (νx)(!x · k〈m〉 | P )

2. decryptx#k m inP 'e x · k(m).P

Proof Construct the respective bisimulations containing the pair in question and, in the two
last cases, the identity relation on processes.

4.3 A secure message exchange

Sending a value in a free (i.e. public) channel is insecure, as any context (i.e. observer) can
have access to it. Bound (i.e. private) channels are, in this framework, consider secure. Since
one often needs to send sensitive data in public channels, we would like to show two basic
properties: (1) decrypting an encrypted value with the correct key gives back the original
value, and no other key produces it; and (2) sending encrypted values in public channels is
secure, as observers without the right keys cannot decrypt them.

8 Instead of proving each of these laws one may prove the “Harmony Lemma”, allowing to establish that
structural congruence is a bisimulation.
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To illustrate the use of these properties (and their correctness), consider a cryptographic
protocol for secure message exchange, proposed by Carbone and Maffeis [CM03], defined
as (νsec)(P |Q) where P and Q are the following processes.

P
def
= (νk)sec〈k〉 .public(y).decrypt y #k w inR

Q
def
= (νm)sec(z).encryptm#z x in public〈x〉 .S

Assume that sec does not occur free neither in R nor in S, m does not occur free in R, and
k and z do not occur free in S.

We show the correctness of the protocol (with respect to weak bisimilarity, to ignore
silent moves): an external observer cannot get neither the key k nor the clear text message
m during the execution of the protocol since the transfer of the knowledge of the key is done
on a secure—since private—channel (sec). Moreover, decrypting the encrypted value xwith
the key k (and with it only) gives back the original value m.

The following equation captures the correctness of the protocol.

(νsec)(P |Q) ≈e (νk,m)(R{m/w} | encryptm#k x inS)

The analysis below proves the equation. Note that the protocol is deterministic.

1. Consider the following processes.

P ′
def
= public(y).decrypt y #k w inR

Q′
def
= (νm)encryptm#k x in public〈x〉 .S{k/z}

The first step is the transmission of the key on channel sec:

(νsec)(P |Q)
τ−→ (νsec, k)(P ′ |Q′)

2. Consider now the following processes.

P ′′
def
= decryptx#k w inR{x/y}

Q′′
def
= (νm)(!x · k〈m〉 | S{k/z})

The next step is the transmission of the encrypted message:

(νsec, k)(P ′ |Q′) τ−→ (νsec, k, x)(P ′′ |Q′′)

3. Finally, the encrypted message is decrypted:

(νsec, k, x)(P ′′ |Q′′) τ−→ (νsec, k, x,m)(R{x/y}{m/w} | (!x · k〈m〉 | S{k/z}))

Since x /∈ fn(R) and k,m /∈ fn(S), then R{x/y} = R and S{k/z} = S. Moreover, sec /∈
fn(R)∪ fn(S). Thus, using the laws presented above, one concludes the proof by transitivity.

(νsec, k, x,m)(R{x/y}{m/w} | (!x · k〈m〉 | S{k/z}))

= (νsec, k, x,m)(R{m/w} | (!x · k〈m〉 | S))

'e (νk,m)(R{m/w} | (νx)(!x · k〈m〉 | S))

'e (νk,m)(R{m/w} | encryptm#k x inS)



18

5 A Fully Abstract Encoding

In order to prove the soundness and completeness of the encoding with respect to barbed
congruence, which we proved in Corollary 2 to coincide with early congruence, we build on
successive auxiliary results. More elaborate proofs are in Appendix B.

Henceforth, whenever we write P we refer to a process of the cryptographic π-calculus
with polyadic synchronisation.

5.1 Operational correspondence

To ease the proofs ahead we use the notions of structural congruence and of bisimulation up
to (the latter introduced for CCS [Mil89]). Note that the first lemma concerns the commonly
denoted structural properties which are preserved by the ground bisimulation.

Definition 13 Structural congruence

1. Structural congruence, written ≡, is the smallest congruence on the processes that sat-
isfies the following axioms where P , Q, R ∈ PS and z, w ∈ N .

– P + (Q+R) ≡ (P +Q) +R

– P +Q ≡ Q+ P

– P + 0 ≡ P
– P |(Q|R) ≡ (P |Q)|R
– P |Q ≡ Q|P
– P |0 ≡ P
– (νz)0 ≡ 0

– (νz)(νw)P ≡ (νw)(νz)P = (νw, z)P

– (νz)(P |Q) ≡ P |(νz)Q if z 6∈ fn(P )

2. Any two processes related by these axioms are called structurally congruent.

Lemma 5 9 Let P , Q ∈ PS . If P ≡ Q then P ∼g Q.

Definition 14 10Ground bisimulation up to ∼g
A binary symmetric relation S is a ground bisimulation up to ∼g , if PSQ implies:

- if P α−→ P ′ where bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that Q α−→ Q′ and
P ′ ∼g S ∼g Q′.

Proposition 11 11 If PSQ where S is a ground bisimulation up to ∼g then PS′Q where S′
is a ground bisimulation.

Proof The proof follows that for CCS [Mil89] with the necessary adjustments since we
are considering the π-calculus with polyadic synchronisation. The proof can be split into
proving firstly that ∼g S ∼g is a ground bisimulation and secondly that S is included in
∼g S ∼g .

The following lemma shows a strong operational correspondence between the actions
of a process and the actions of its encoding.

9 The same result holds for all the other notions of bisimilarity presented in this section.
10 An analogous definition can be presented for all notions of bisimilarity introduced in this section.
11 The same result holds for any of the notions of bisimilarity presented in this section.
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Lemma 6 Operational Correspondence

1. If [[P ]]
α−→ Q then there is a P ′ such that P α−→ P ′ and [|P ′|] = Q.

2. If P α−→ P ′ then [|P |] α−→ [|P ′|].

Proof In Appendix B.

5.2 Full Abstractness Result

The following lemmas prepares the ground for proving the soundness and the completeness
of the encoding.

Lemma 7

1. If [[P ]] ∼e [[Q]] then P ∼e Q.
2. If [[P ]] ∼beq [[Q]] then P ∼beq Q.

Proof In Appendix B.

Lemma 8

1. If P ∼e Q then [[P ]] ∼e [[Q]].
2. If P ∼beq Q then [[P ]] ∼beq [[Q]].

Proof Similar to the one of the previous lemma.

We are now in a position to prove the main result of this paper: there is a fully abstract
encoding of the cryptographic primitives in epi.

Theorem 2 Soundness
If [[P ]] 'b [[Q]] then P 'b Q

Proof If [[P ]] 'b [[Q]] then for any substitution σ we have that [[P ]]σ ∼beq [[Q]]σ. By Lemma
11 we then know that [[Pσ]] ∼beq [[Qσ]], and by Lemma 7.2 we have that Pσ ∼beq Qσ.

Theorem 3 Completeness
If P 'b Q then [[P ]] 'b [[Q]].

Proof If P 'b Q then for any substitution σ we have that Pσ ∼beq Qσ. By Lemma 8.2 then
[[Pσ]] ∼beq [[Qσ]] and by Lemma 11 we know that [[Pσ]] = [[P ]]σ, thus [[P ]]σ ∼beq [[Q]]σ,
i.e., [[P ]] 'b [[Q]].

6 Conclusions and Future Work

The various variants of π-calculus possess a very rich behavioural theory, with contextual
equivalences characterised by bisimulations, and with axiomatic laws for reasoning about
programs. However, the extra structure for data handling in cryptographic calculi like the
Applied π-calculus or Spi, severely complicates equational reasoning: naı̈ve adaptation of
bisimulations are not adequate; new notions developed are “heavy”, and difficult to auto-
mate [AF01,AG97,BAF07,BNP02,BN05].
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Our contribution is this: we provide standard behavioural theory for a mobile calculus
with (non-deterministic, symmetrical or asymmetrical) key encryption primitives. We show
the expressiveness of the primitives by proving both thesymmetrical and the asymmetrical
encryption systems laws, and by proving the correctness of a small protocol.

This work may be used further not only to directly analyse security protocols (possi-
bly defining other cryptographic primitives), but also to study the relationship with the other
calculi, comparing the observational equivalences and trying to define encodings. Moreover,
adapting analysis tools like the Mobility Workbench [Vic94,VM94] should be straightfor-
ward.

Aim and achievements. One aim of this work is to show that the π-calculus with polyadic
synchronisation, epi, is expressive enough to provide behavioural theory for the study of
cryptographic protocols. In particular, we show that, in epi, explicit encryption and decryp-
tion primitives (handy for specifying protocols, but a burden when developing behavioural
theory) are not needed because they may be fully abstractly encoded. Thus, they may be sim-
ply defined as programming constructs, what simplifies the development of the behavioural
theory and of analysis tools.

To attain this aim, we study in detail the behavioural semantics of epi. We first define
a contextual equivalence — barbed congruence — and look for a co-inductive congruence
relation which characterises it. To obtain such a result, we define in epi the usual notions
of bisimilarities proposed for the π-calculus, and comparing them, establishing a lattice of
inter-relations (similar to that of the π-calculus). We establish that, in epi, barbed congru-
ence, the “natural” contextual equivalence, coincides with early bisimilarity. Moreover, we
extend epi with non-deterministic, symmetrical, cryptographic primitives, defining the syn-
tax and operational semantics of this new calculus. The behavioural theory also extends nat-
urally to this setting. Following Carbone and Maffeis [CM03] we define an encoding of the
new constructs for encryption and decryption of messages into the original epi. Furthermore,
we prove that such an encoding is sound and complete with respect to barbed congruence.
This fully abstract encoding allows to import to crypto-epi all the behavioural theory of epi.
We therefore conclude that the π-calculus with polyadic synchronisation (epi) is expressive
enough to provide behavioural theory for, to analyse and to verify, security protocols. To
illustrate the use of the theory developed, we prove the correctness of a protocol of secure
message exchange. This work strengthens the hypothesis that a fully abstract encoding of a
crypto calculus like the Spi-calculus into epi is possible. Notice that Baldamus et al. already
proposed an encoding of Spi into the pi-calculus, but only preserving may testing [BPV04].

Future work. We plan to study if and how epi can express properties of cryptographic pro-
tocols such as authenticity and secrecy. In particular, we shall address the following issues:

1. adapt the Mobility Workbench to work with this setting;
2. develop equational (axiomatic) theory;
3. test with larger examples / known protocols;
4. deal with other crypto primitives; and
5. study an encoding of Spi and/or of Applied Pi into epi.
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A Proofs of results in Section 3

Proposition 12 The relation ∼b is preserved by prefixing, restriction and choice operators.

Proof Let P , Q, R ∈ PS be such that P ∼b Q, and let u = x1 · ... · xn where n ∈ N. Then:

– α.P ∼b α.Q since by applying the rule PREFIX we can conclude that i) if α = u(y) or u〈y〉 we have
that both P ↓u and Q ↓u or both P ↓u and Q ↓u respectively; ii) if α = τ we have that τ.P τ−→ P

and τ.Q τ−→ Q and by hypothesis P ∼b Q.
– (νx)P ∼b (νx)Q since by applying rules RES or OPEN we have that (νx)P ↓β if and only if

(νx)Q ↓β . In addition, if by applying RES (νx)P
τ−→ (νx)P ′ then we had that P τ−→ P ′ and

since P ∼b Q we would also have that Q τ−→ Q′ and hence (νx)Q
τ−→ (νx)Q′ where P ′ ∼b Q′

and so (νx)P ′ ∼b (νx)Q′ as expected.
– P + R ∼b Q+ R since P + R exhibits a barb β if and only if so does P or R. Analogously, Q+ R

exhibits a barb β if and only if so does Q or R. Since by hypothesis we have that P ∼b Q, we can
conclude that P +R and Q+R exhibit the same barbs.

Lemma 9 P 'b Q if and only if Pσ ∼beq Qσ for any substitution σ

Proof(⇒) Let P , Q ∈ PS be such that P 'b Q. Also, let u = x1 · ... · xk where k ∈ N and x1, ..., xk
are fresh, and σ = {ỹ/z̃} be a substitution where ỹ = y1, ..., yn and z̃ = z1, ..., zn.
Given C = u〈y1〉 . · · · .u〈yn〉 | u(z1). · · · .u(zn).[·] | R we know that C[P ] ∼b C[Q] since both
processes exhibit the same barbs. In addition, by performing n internal actions C[P ]

τ−→ ... · · · τ−→
Pσ | R, and the only process that does not exhibit barb u to which C[Q] reduces in n steps is Qσ | R.
Thus Pσ |R ∼b Qσ |R, that is, Pσ ∼beq Qσ.

(⇐) Let P , Q ∈ PS and σ be a substitution such that Pσ ∼beq Qσ, that is, Pσ | R ∼b Qσ | R for any
R. Since 'b is the largest congruence in ∼b it suffices to show that for any context C we have that
C[P ]σ | R ∼b C[Q]σ | R. The proof is done by induction on C and we consider only the relevant
transitions. Let C = u(y).C′ where u = x1 · ... · xk and k ∈ N.

- If by application of rules PREFIX and PAR1 one has C[P ]σ |R σ(u(y))−→ C′[P ]σ |R, then C[Q]σ |

R
σ(u(y))−→ C′[Q]σ |R and by induction hypothesis C′[P ]σ |R ∼b C′[Q]σ |R.

- If by application of rule COMM one has C[P ]σ | R τ−→ C′[P ]σ{z/y} | R′ (where we assume

R
u〈z〉−→ R′), then C[Q]σ |R τ−→ C′[Q]σ{z/y} |R′ and by induction hypothesis C′[P ]σ{z/y} |

R′ ∼b C′[Q]σ{z/y} |R′.

- If by application of rule CLOSE one hasC[P ]σ|R τ−→ (νy)C′[P ]σ|R′ (where we assumeR
u(y)−→

R′), then C[Q]σ |R τ−→ (νy)C′[Q]σ |R′; by induction hypothesis C′[P ]σ |R′ ∼b C′[Q]σ |R′
and by Proposition 12 ∼b is closed under restriction, so (νy)C′[P ]σ |R′ ∼b (νy)C′[Q]σ |R′.

The other cases can be handled in a similar way (for C =!C′ check reference [SW01]).

Lemma 10 The relation ∼g is preserved by the restriction operator.

Proof Let us prove that R = {((νx)P, (νx)Q) | P ∼g Q} is a ground bisimulation. We establish the
proof by performing a case analysis on the rule used to infer an action for (νx)P , where we assume that
bn(α) ∩ fn(P,Q) = ∅.

– Case of rule RES where x 6∈ nm(α). By definition of∼g , since P α−→ P ′ we have that Q α−→ Q′ and
P ′ ∼g Q′. Therefore, by application of rule RES, (νx)Q α−→ (νx)Q′ where x 6∈ nm(α).

– Case of rule OPEN where u = x1 · ... · xk for some k ∈ N and x 6∈ nm(u). By definition of ∼g ,

since P
u〈x〉−→ P ′ we have that Q

u〈x〉−→ Q′ and P ′ ∼g Q′. Therefore, by application of rule OPEN,

(νx)Q
u(x)−→ Q′ where x 6∈ nm(u).

Therefore,R is a ground bisimulation.

Proposition 13 The relation ∼g is preserved by prefixing and choice.

Proof The proof follows the pattern of the one above.
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Recall that every subset of a countable set is again countable, and that the countable union of countable
sets is countable. Note that we consider a set to be countable if it is either finite or has the same cardinality
as the set of the natural numbers N.

Theorem 4 ∼e=∼beq

Proof(⇒) We prove that∼e is a barbed bisimulation. Let u = x1 · ... ·xn where n ∈ N and let P ,Q ∈ PS
be such that PSQ where S is an early bisimulation. Then, if:

1. P
u(y)−→ P ′ then P ↓u and since P and Q are early bisimilar for each w there is a Q′ such that

Q
u(y)−→ Q′ and P ′{w/y}SQ′{w/y}. Thus, since Q

u(y)−→ Q′, we have that Q ↓u.
2. P α−→ P ′ where α = u〈y〉 or u(y) then P ↓u and since P and Q are early bisimilar there is a
Q′ such that Q α−→ Q′ which implies that Q ↓u.

3. P τ−→ P ′ since P and Q are early bisimilar there is a Q′ such that Q τ−→ Q′ (and P ′SQ′).
Note that to P ′ and Q′ we can apply the same reasoning as to the P and Q we started from till a
visible action is performed by both processes (or their descendants) like in case 1 or 2, or until both
processes are inactive.

Therefore, we can conclude that P and Q are barbed bisimilar. Since early bisimulation is preserved
by all operators except input prefixing (Lemma 2), we have that for any R, P | R ∼e Q | R, and thus
P | R ∼b Q | R. We then comply with the necessary requirements of barbed equivalence and establish
that P ∼beq Q.

(⇐) Given S = {(P,Q) : F, Y, x̃ exist such that (νx̃)CF,Y [P ] ∼b (νx̃)CF,Y [Q]} where x̃, F , H〈F 〉,
Y are related as explained before, we prove that S is an early bisimulation.
The context C[·] is defined as C[·] = [·] | V 〈F, Y 〉 where:
V 〈F, Y 〉 = ∑

(c,c′′)∈H〈F 〉

∑
(b,b′)∈F∪(y,y′)

c〈b〉 .(c′′ + b′ + in+ V 〈F ∪ (y, y′), Y \(y, y′)〉) (3)

+
∑

(c,c′′)∈H〈F 〉
c(y).(c′′+ y′+ out+V 〈F ∪ (y, y′), Y \(y, y′)〉+(νt)

∑
(b,b′)∈F

(t · b | t · y).b′ (4)

The first (3) and second (4) summands are used to test respectively the input and output actions of P or
Q12. Note in 3 that all possible inputs are considered in the inner summation just like early bisimulation
requires. In 4 the last term in the summation concerns the case of bound output in which the outputted
name will not be found inH , as opposed to the case of free output. Further, notice that the names in, out
are not in nm(P,Q), these names are used to show which type of action (input or output, respectively)
was performed.
The relation between F and Y can now be further analysed, since the names taken from Y are used to
augment F (and hence H) via name-communication. Note that on the definition of V 〈F, Y 〉 the pair
(y, y′) is drawn from Y .
We now prove the core of the theorem by splitting the proof into the four possible actions of P .

1. If P τ−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P | V 〈F, Y 〉) τ−→ (νx̃)(P ′ |
V 〈F, Y 〉) = R. Since by hypothesis (νx̃)CF,Y [P ] ∼b (νx̃)CF,Y [Q]}, then (νx̃)CF,Y [Q]

τ−→
T , and R may have as barbs only c such that c ∈ H1, and so should T . Note that (νx̃)CF,Y [Q]
could have performed a τ action by i) interaction between V 〈F, Y 〉 and process Q where Q per-
formed an input action; ii) interaction between V 〈F, Y 〉 and process Q where Q performed a free
or bound output action; iii) there is no interaction with V 〈F, Y 〉 and Q performs a τ action by
itself. Both i) and ii) are impossible since at least T ↓in or T ↓out and {in, out} ∩ H1 = ∅.
Thus, (νx̃)CF,Y [Q]

τ−→ T = (νx̃)(Q′ | V 〈F, Y 〉), that is Q τ−→ Q′ and (P ′, Q′) ∈ S.

2. If P
c(y)−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P | V 〈F, Y 〉) τ−→ (νx̃)(P ′{b/y} |

V1) = R where V1 = c′′+ b′+ in+V 〈F ∪ (y, y′), Y \(y, y′)〉. Then,R has as barbs at least c′′,
b′, and in. Note that (νx̃)CF,Y [Q] could have performed a τ action by the i), ii) and iii) reasons
mentioned in case 1. The situation ii) whereQ performed a free or bound output is impossible since
in that case T ↓out but R 6↓out. The situation iii) is impossible since in that case, e.g., T 6↓b′ . The
only possible situation is then if Q performed an input action of the type α = c1(b1). Note that the
following equalities have to hold c1 = c and b1 = b so that T ↓c′′ and T ↓b′ as does R. Thus,

12 Note that the summations in (3) and (4) are finite.
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we have that if P
c(y)−→ P ′ then for every possible b we have that Q

c(y)−→ Q′ and R ∼b T , that is,
(P ′{b/y}, Q′{b/y}) ∈ S.

3. If P
c〈z〉−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P |V 〈F, Y 〉) τ−→ (νx̃)(P ′ |V2) = R

where V2 = c′′ + z′ + out+ V 〈F, Y 〉+ (νt)
∑

(b,b′)∈F (t · b | t · y).b′ and t is fresh, while z ∈
fn(P ) ⊆ F1. Then, R has as barbs at least c′′, z′ and out. Since by hypothesis (νx̃)CF,Y [P ] ∼b
(νx̃)CF,Y [Q]}, then (νx̃)CF,Y [Q]

τ−→ T and T should have the same barbs as R. Note that
(νx̃)CF,Y [Q] could have performed a τ action by the i), ii) and iii) reasons mentioned in case
1. The situation i) is impossible since T ↓in but R 6↓in, and the situation iii) is impossible since,
e.g., T 6↓c′′ . Then we are in a situation whereQ has to do an output on the same channel as P (so it
has c′′ as a barb too), but we must still prove the output has to be free. This happens because since
P performed a free output, R can do a τ action from the last summation in V2 and the resulting
process has as an unique barb z′. However, if Q performs a bound output, the summation in V2 is
an inactive process, and even if (νx̃)CF,Y [Q] performs a τ action by the cases i), ii) and iii), in
both ii) and iii) the resulting process would have either in or out as a barb. In the case of i) then
there would be no interaction with V 〈F, Y 〉, and so the resulting process would not have z′ as a
barb. Thus, Q has to perform α = c〈z〉 as did P .

4. If P
c(y)−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P | V 〈F, Y 〉) τ−→ (νx̃)(νy)(P ′ |

V3) = Rwhere V3 = c′′+y′+out+V 〈F ∪(y, y′), Y \(y, y′)〉+(νt)
∑

(b,b′)∈F (t · b|t·y).b′.
The rest of the proof is very similar to case 3 where the difference between bound and free output
is analysed.

B Proofs of results in Section 5

Lemma 11 Substitution Lemma
[[Pσ]] = [[P ]]σ, for any substitution σ.

Proof By induction on the structure of crypto-epi processes. Since the relevant cases are those of the new
constructs (as the encoding is homomorphic in the other), we only analyse these cases.

CaseP = encryptm#k x inP ′; consider σ = {m′/m}13, thusPσ = encryptm′ #k x inP ′{m′/m}.
Since by induction hypothesis, [[P ′{m′/m}]] = [[P ′]]{m′/m}, we proceed as below.

[[Pσ]] = (νx)(x · k〈m′〉 | [[P ′{m′/m}]])
= (νx)(x · k〈m′〉 | [[P ′]]{m′/m})
= ((νx)(x · k〈m〉 | [[P ′]])){m′/m}
= [[P ]]σ

CaseP = decryptx#k y inP ′; consider σ = {m′/m}14, thusPσ = decryptx′ #k y inP ′{x′/x}.
Since by induction hypothesis, [[P ′{m′/m}]] = [[P ′]]{m′/m}, we proceed as below.

[[Pσ]] = x′ · k(y).[[P ′{x′/x}]]
= x′ · k(y).[[P ′]]{x′/x}
= (x · k(y).[[P ′]]){x′/x}
= [[P ]]σ

Lemma 12

1. If [|P |] uy−→ Q then, for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅, either
(a) P ≡ (νñ)(uy.P1|P2) and Q ≡ (νñ)([|P1|] | [|P2|]); or
(b) P ≡ (νñ)(encryptm#k x inuy.P1|P2) where x 6= y, and

Q ≡ (νñ)(x · km | [|P1|] | [|P2|]).

2. If [|P |] u(y)−→ Q then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅,
if y 6= x, then either

13 The other cases are handled in an analogous way. Note that if e.g. σ = {x/m} then we would have to
perform α-conversion.

14 Again ,the other cases are handled in an analogous way.
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(a) P ≡ (νñ, y)(uy.P1|P2) and Q ≡ (νñ)([|P1|] | [|P2|]); or
(b) P ≡ (νñ, y)(encryptm#k x inuy.P1|P2) and Q ≡ (νñ, x)(x · km | [|P1|] | [|P2|]);
otherwise, if x = y then
P ≡ (νñ)(encryptm#k y inuy.P1|P2) and
Q ≡ (νñ)(y · km | [|P1|] | [|P2|]).

3. If [|P |] u(y)−→ Q then for some P1, P2, if for some ñ such that n(u) ∩ {ñ} = ∅, then either
(a) P ≡ (νñ)(u(y).P1|P2) and Q ≡ (νñ)([|P1|] | [|P2|]); or
(b) P ≡ (νñ)(encryptm#k x inu(y).P1|P2) and Q ≡ (νñ, x)(x · km | [|P1|] | [|P2|]);
otherwise, if u = x · k then
P ≡ (νñ)(decryptx#k y inP1|P2), and
Q ≡ (νñ)([|P1|] | [|P2|]).

Proof Follows directly from the definition of processes in the cryptographic π-calculus with polyadic syn-
chronization and from the transition rules.

Lemma 13 Operational Correspondence

1. If [[P ]]
α−→ Q then there is a P ′ such that P α−→ P ′ and [|P ′|] = Q.

2. If P α−→ P ′ then [|P |] α−→ [|P ′|].

Proof The proof is done by induction on the inference of the transition of [[P ]]
α−→ Q.

1. Let α = uy. By Lemma 12 we have that:

(a) P ≡ (νñ)(uy.P1|P2) in which case P
uy−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

(b) P ≡ (νñ)(encryptm#k x inuy.P1|P2) in which case

P
uy−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

2. Let α = u(y). By Lemma 12 we have that:

(a) P ≡ (νñ, y)(uy.P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

(b) P ≡ (νñ, y)(encryptm#k x inuy.P1|P2) in which case

P
u(y)−→ P ′ ≡ (νñ)(encryptm#k x inP1|P2) and [|P ′|] = Q.

(c) P ≡ (νñ)(encryptm#k y inuy.P1|P2) in which case

P
u(y)−→ P ′ ≡ (νñ)(y · km|P1|P2) and [|P ′|] = Q.

3. Let α = u(y). By Lemma 12 we have that:

(a) P ≡ (νñ)(u(y).P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

(b) P ≡ (νñ)(encryptm#k x inu(y).P1|P2) in which case

P
u(y)−→ P ′ ≡ (νñ)(encryptm#k x inP1|P2) and [|P ′|] = Q.

(c) u = x · k and P ≡ (νñ)(decryptx#k y inP1|P2) in which case

P
x·k(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

4. Let α = τ . The most relevant cases result from the application of rules COMM or CLOSE. Let us
analyse the case of rule COMM1 (the remaining cases follow in a similar manner).

Consider P
uy−→ P ′ and Q

u(z)−→ Q′. Then P |Q τ−→ P ′|Q′{y/z}, and by clauses 1 and 3 of this

lemma, there exist P1, P ′1, Q1, Q′1 such that [|P1|] = P , [|Q1|] = Q, P1
uy−→ P ′1 where [|P ′1|] = P ′,

and Q1
u(z)−→ Q′1 where [|Q′1|] = Q′. Thus, P1|Q1

τ−→ P ′1|Q′1{y/z}, and using Lemma 11, we
conclude as needed.

[|P ′1|Q′1{y/z}|] = [|P ′1|] | [|Q′1{y/z}|] = [|P ′1|] | [|Q′1|]{y/z} = P ′|Q′{y/z}

Lemma 14

1. If [[P ]] ∼e [[Q]] then P ∼e Q.
2. If [[P ]] ∼beq [[Q]] then P ∼beq Q.

Proof
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1. We prove thatR = {(P,Q) : [[P ]] ∼e [[Q]]} is an early bisimulation (cf. Definition 11 in page 11).

Case P α−→ P ′ (the case Q α−→ Q′ is similar, and we omit its analysis).
Then, by Lemma 6.2 we have that [[P ]]

α−→ [[P ′]]. Since by hypothesis [[P ]] ∼e [[Q]] then there is a
Q′ such that [[Q]]

α−→ Q′, and by Lemma 6.1 we have that there is a Q′′ such that Q α−→ Q′′, where
[[Q′′]] = Q′.

We now split the proof according to the possible transitions of [[P ]].

Case α ∈ {τ, uy, u(y)}, where bn(α) ∩ fn(P,Q) = ∅.
By definition of ∼e we have that [[P ′]] ∼e [[Q′′]] and therefore P ′RQ′′.

Case α = u(y) where y 6∈ fn(P,Q). The reasoning is similar to the one above.
By definition of ∼e we have that [[P ′]]{w/y} ∼e [[Q′′]]{w/y} and by application of Lemma 11 we
know that [[P ′{w/y}]] ∼e [[Q′′{w/y}]]. Therefore, we conclude that P ′{w/y}RQ′′{w/y}.

2. Follows directly from Lemma 14.1 and Theorem 4, where it was established that early bisimulation
coincides with barbed equivalence.

C Proofs of results in Section 4

Proposition 14

[| encryptm#k x in (decryptx#k y in (if m = y thenm().0 )) |] 'e m().0

Proof By definition,

[| encryptm#k x in (decryptx#k y in (ifm = y thenm().0 )) |] def= (νx)(!x · k〈m〉 |x·k(y).(νz)(z ·m〈〉 |z·y().m().0 )

Construct the appropriate bisimulation, noticing that in two deterministic tau-steps one gets

(νx)(!x · k〈m〉 | (νz)(m().0 ) 'e m().0

The proof of Proposition 10 is similar, requiring five deterministic tau-steps.


