
An Algebra of Behavioural Types

António Ravara∗† Pedro Resende‡ Vasco T. Vasconcelos§

November 22, 2011

Abstract

We propose a process algebra, the Algebra of Behavioural Types, as a language
for typing concurrent objects. A type is a higher-order labelled transition system that
characterises all possible life cycles of a concurrent object. States represent interfaces
of objects; state transitions model the dynamic change of object interfaces. Moreover,
a type provides an internal view of the objects that inhabits it: a synchronous one,
since transitions correspond to message reception. To capture this internal view
of objects we define a notion of bisimulation, strong on labels and weak on silent
actions. We study several algebraic laws that characterise this equivalence, and
obtain completeness results for image-finite types.

Contents

1 The role of types 3

1.1 Types in a concurrent scenario . 3

1.2 Typing non-uniform objects . 4

1.3 Rationale of our approach . 5

1.4 A paradigmatic example . 6

1.5 A novel behavioural equivalence . 7

1.6 Summary . 9

∗Software Systems area at Center for Informatics and Information Technologies and Dep. of Informatics,
FCT, Univ. Nova de Lisboa, Portugal. Email: aravara@fct.unl.pt
†Research reported herein done while the author was at the Dep. of Mathematics, IST, Univ. Técnica

de Lisboa, Portugal.
‡Center for Mathematical Analysis, Geometry, and Dynamical Systems and Dep. of Mathematics, IST,

Univ. Técnica de Lisboa, Portugal. Email: pmr@math.ist.utl.pt
§Group of Software Systems at Large-Scale Informatics Systems Laboratory and Dep. of Informatics,

FC, Univ. de Lisboa, Portugal. Email: vv@di.fc.ul.pt

2 Non-deterministic finite types 10
2.1 Syntax . 10
2.2 Operational semantics . 11
2.3 Notion of Equivalence . 12
2.4 Algebraic characterisation . 14

3 Concurrent finite types 16
3.1 Syntax . 17
3.2 Operational semantics . 18
3.3 Algebraic characterisation . 21

4 Behavioural types 24
4.1 Syntax . 25
4.2 Operational semantics . 26
4.3 Axiomatic system . 28
4.4 Unique solutions . 29

5 Completeness of the axiom system for image-finite types 31
5.1 Equational characterisation . 32
5.2 Completeness for image-finite types . 34

6 Final discussion 36
6.1 Completeness for image-infinite types . 36
6.2 The notion of bisimulation . 37
6.3 Further work . 38
6.4 Related work . 41

7 Conclusions 44

Bibliography 45

2

1 The role of types

Type systems in programming languages are used to discipline the computational mecha-
nism of the language, ruling out program behaviours judge as erroneous. Examples of such
errors are the application of a function with the wrong number of arguments, or the invoca-
tion of a non-existing method in an object. A type system is a collection of axiom schemas
and inference rules, and acts as a proof system, guaranteeing the absence of erroneous pro-
gram behaviours. Therefore, types are abstract representations of the correct behaviour of
the various entities of a program, constituting partial behavioural specifications.1

To ensure the absence of a particular form of bad program behaviour, i.e. a specific
safety property, a good notion of type is an important ingredient. Our aim is a language
of types capable of expressing behavioural aspects of computing entities like objects. This
language should be expressible enough to be used in (decidable) proof systems for ensuring
statically not only safety properties of such entities, but also some (limited, although
interesting) liveness properties.

A programming language is type safe if it is equipped with a (static) type system that
guarantees the absence of run-time errors in well-typed programs. This important safety
property may be obtained combining two properties:

1. the absence of run-time errors in well-typed programs; and

2. Curry’s Subject-Reduction, which ensures that if a program is typable, then the com-
putation mechanism preserves the typability of all the programs resulting from the
intermediate steps.

In sequential and functional languages, types are assigned to the terms of the language.
The information that a type describes can be very simple (a set of values, booleans or
integers), more elaborate (a function, from integers to booleans, for example), or can even
be a complex structure (a graph or a term of a process algebra), depending on the purpose
of the type system. Type systems can ensure a wide range of properties, from basic, like all
operations are invoked with the adequate arguments, to more elaborate, like guaranteeing
termination or deadlock freedom.

In systems of objects, types usually record the methods of objects and the types of
its parameters, constituting interfaces for these objects. In a programming language with
objects, a type system should prevent the usually known as ‘method-not-understood ’ error,
a run-time error due to the erroneous call of a method at the target object (non-existence
or wrong number of arguments passed).

1.1 Types in a concurrent scenario

To ensure a safety result for a given program, one needs mathematical tools to deal with,
and reason about, the behaviour of such program. Ideas, concepts, and techniques from the

1Readers interested in a general introduction to this issue should consult Pierce’s thorough work [Pie02].

3

typed λ-calculus and from (name-passing) process calculi have been successfully applied to
the study of behavioural properties and of type systems for concurrent object-oriented lan-
guages. A calculus of mobile—or name-passing—processes is one where the communication
topology changes dynamically. Processes communicate via channels—called names—and
may also exchange names during the interaction, acquiring new acquaintances that they
can use for further communications. The precursor and paradigmatic case is the π-calculus
of Milner, Parrow and Walker [MPW92].

As a process algebra, one may use a mobile calculus not only to specify (concurrent) sys-
tems, but also to verify properties of those systems using the rich algebraic theory that such
a calculus possesses. On one hand, its features, like referencing—or naming—and scop-
ing, make process calculi approaches suitable for describing and studying object-oriented
programming. Thus, not surprisingly, there are many works on the semantics of (con-
current) objects as (mobile) processes (A brief synopsis may be found in [NR99]). On
the other hand, process calculi provide: (1) structural operational semantics—an essen-
tial element for describing the operational behaviour of programs; (2) various static type
systems—ensuring the absence of run-time errors in well-typed programs; and (3) several
notions of behavioural equivalences together with proof techniques, algebraic laws, and
logical characterisations—providing tools to reason about properties of programs.

In mobile calculi, types are usually assigned to names, constituting a discipline for com-
munication: they determine the arity of a name (and, in some systems, its directionality—
input or output), and recursively, the arity of the names carried by that name [Mil93,
PS96, VH93]. The roles of a type system in a mobile calculus are two-fold: (1) it avoids
communication errors, due to arity mismatch; and (2) it allows refinements on the algebraic
theory, leading to specialised behavioural equivalences.

Nonetheless, the referred systems provide little information about process behaviour,
and to ensure more than the usual safety properties one needs richer notions of types, able
of capturing the information flow within the processes. A natural approach is to consider
processes as types, as for instance done in [Bou98, CRR02, GH99, HVK98, IK04, Kob00,
RR01, Yos96].

1.2 Typing non-uniform objects

Objects exhibiting methods that may be enabled or disabled according to their internal
state—non-uniform objects—are very common in object-oriented programming. Simple
examples are a stack (from which one cannot pop elements if it is empty); a finite buffer
(where one cannot write if it is full); a cash machine (from which one can only get a balance
if the connection with the bank is enabled).

A static notion of typing, as interfaces-as-types, is not powerful enough to capture this
kind of dynamic properties of the behaviour of objects. A rigid interface, exhibiting all
methods of an object, gives misleading information about the functionality of the object.
In the beginning of the 90’s, Nierstrasz proposes the use of a regular language to type
active objects, i.e., objects that may dynamically change behaviour [Nie95]. The purpose
is to characterise all the traces of the menus offered by objects and to define a notion

4

of behavioural subtyping. Although the idea aplies to a sequential setting, the work on
this topic has mainly been developed for concurrent objects. Notice however that the
type theory developed herein can be used in sequential object-oriented languages (almost)
straighforwardly.

Concurrent setting. In a name-passing calculus of objects such as TyCO [VT93] or
πVa [San98], processes denote the behaviour of a community of interacting objects, where
each object has a location identified by a name. As in the π-calculus, processes determine
an assignment of types to names that reflects a discipline for communication.

Statically detecting ‘method-not-understood ’ errors is a more delicate problem in sys-
tems of (possibly distributed) concurrent objects, since the enabling conditions of methods
are harder to verify in this scenario. The usual records-as-types paradigm gives each name
a static type that contains information about all the methods of the object, regardless
of whether they are enabled or not. Is this an adequate notion of type of an object, in
the presence of concurrency? Nierstrasz argued that typing concurrent objects posed par-
ticular problems, due to the ‘non-uniform service availability of concurrent objects ’. By
synchronisation constraints, the availability of a service depends upon the internal state of
the object (which reflects the state of the system). Despite having developed a calculus of
objects, Nierstrasz did not apply these ideas in the form of a type system for it, neither did
he show how to model non-uniform objects. This task has then been taken by several au-
thors [Bou98, Col97, CPS97, CPDS99, NN97, NNS99b, Pun01, PP01, Pun02, RL99, RV00].
Most of these works propose a specific calculus, and develop a particular language of types
aiming at guaranteeing some envisaged property. Herein we study the semantics of a lan-
guage of types designed to cope with behavioural aspects of non-uniform objects, using in
this study process algebraic tools and results. At the end of this paper we compare the
referred works with our own.

1.3 Rationale of our approach

The purpose of this work is to study the semantic foundations of types for concurrent
objects, using the tools and the body of knowledge of the theory of process algebras. We
propose a process algebra of types, discuss a notion of equivalence, and study its algebraic
properties.

To capture the behaviour of non-uniform objects, we advocate the use of non-uniform
types, types that are themselves modelled as processes. Then, several questions arise:
What is the appropriate syntax and operational semantics? What is a good notion of
behavioural equality? Our purpose is to address theses questions: we develop herein the
Algebra of Behavioural Types, ABT, where a type characterises all possible life cycles of an
object. A type (a term of ABT) is basically a collection of enabled methods (an interface);
such a type is dynamic in the sense that the execution of a method can change it—thus,
a type may express temporal properties as ordering sequences of events, and reflects a
dependency of the interface of an object upon its internal state. Hence, the type of an
object is a partial representation of its behaviour, modelled as a labelled transition system:

5

states represent interfaces of objects; state transitions model the dynamic change of object
interfaces.

Therefore, apart from sequencing, other operators of process algebra naturally express
behaviour common to objects: sum represents an object interface; parallel composition
represents communities of objects. Types are thus built with the following operators:

1. non-deterministic labelled sum, denoting the collection of methods that an object
offers at a given state;

2. blocking υ, expressing that a collection of methods is not currently enabled;

3. parallel composition, merging types;2

4. recursion via a least fixed-point.

The operational semantics describes how the “execution” of a method yields a new type;
the equivalence notion equates behaviourally similar objects.

1.4 A paradigmatic example

Consider a one-place buffer, where one may write an integer value if the buffer is empty,
and from where one may read a value, providing a return address, if the buffer is full. An
interface type for that buffer would look like [read:nam,write:int]. This type provides no
information on the right order of calls the object may attend. In TyCO, the buffer may be
simply written as follows.3

def Empty(b) = b?{write(u)= Full〈b, u〉}
and Full(b, u) = b?{read(r)= (r!val〈u〉 | Empty〈b〉)}

The buffer alternates between an Empty state, where it only allows write operations, and a
Full state, where it only allows read operations. In each state the object waits (at name b)
for requests of the method offered (write or read), requests passing as argument the value
to store (in the case of write) or the return address (r) where the client waits for the value
that was stored. Notice that b is the identity of the object, following the ’?’ sign one finds
a set of methods, each with a name, a list of parameters and a body (after the ’=’ sign).
A message (or method call) like r!val〈u〉 indicates the identity of the called object (r), the
name of the method (val), and the argument of the call (u). The vertical bar (’|’) denotes
parallel composition. It is worth noticing that the calculus is asynchronous: the method
call is non-blocking and, in the example, is in parallel with the object in state Empty (after
the consumption of the value in the buffer). A behavioural type clearly expresses this
ordering: µt.write(int).read(nam).t.

2Parallel composition is a merge operator since the operands—types—do not communicate among
themselves.

3Available for http://www.dcc.fc.up.pt/˜tyco/. This version is not typable by the current type system
of TyCO, which uses an interface-like notion of types. The problem is the change in the interface. A
workaround is a busy-waiting implementation, less readable and less natural.

6

Elsewhere we use ABT as syntactic types for non-uniform concurrent objects in TyCO.
We formalise a notion of process with a communication error that copes with non-uniform
service availability, and define a type system that assigns terms of the type algebra to names
occurring in processes. This system enjoys the subject-reduction property, and guarantee
that typable processes do not deadlock or run into errors [RV00].

1.5 A novel behavioural equivalence

We assume that objects communicate via asynchronous message-passing; nevertheless,
types, as defined here, essentially correspond to a notion of object behaviour as it would be
perceived by an internal observer located within an object (the object’s private “gnome”).
This observer can see methods being invoked and can detect whether the object is blocked,
even though its methods may be enabled for self calls. Therefore, this notion of behaviour
is synchronous, as the gnome can detect refusals of methods when they are not enabled
for outside calls. The action of unblocking a method, denoted by υ, corresponds to an
invocation of a method in another object. Thus, this action is similar to CCS’s τ in that
it is hidden, but it is external rather than internal [Mil89a].

To illustrate what we mean by ‘blocked method’, consider a buffer that copies the stored
value to a stack. Thus, after accepting a write operation, the buffer performs an internal
operation—inserts the value in a stack s—before allowing read operations. The method
read is blocked until receiving a message acknowledging the insertion of the value.

(νs)(def Empty(b) = b?{write(u)= (νc)(s!push〈u, c〉 | c?{done= Full〈b, u〉})}
and Full(b, u) = b?{read(r)= r!val〈u〉 | Empty〈b〉}
| Stack(s))

A behavioural type describing this buffer should now take into account that a read oper-
ation is not immediately available, depending on some computation taking place in other
object (pushing the value; sending the acknowledgement message). Thus, a possible type
is µt.write(int).υ.read(nam).t.

The unblocking action is also useful to express internal non-determinism. Consider the
following object.

a?{l= (ν c) ((c!m1 | c!m2) | c?{m1 = a?{l1},m2 = a?{l2}})}.

The type of a expresses the internal choice: l.(υ.l1 + υ.l2).
Naturally, the resulting notion of equivalence has an intuition different from that of

bisimulation in CCS, since the observer is internal, rather than external:

1. distinguishes a blocked from an unblocked type

read(nam) 6≈ υ.read(nam), hence

µt.write(int).read(nam).t 6≈ µt.write(int).υ.read(nam).t,

2. does not count blockings

µt.write(int).υ.read(nam).t≈ µt.write(int).υ.υ.read(nam).t.

7

The nature of the silent action—unblocking—induces an original behavioural equiv-
alence notion. To capture the referred internal view of objects, we define a notion of
bisimulation, strong on labels and weak on silent actions. Naturally, we reach a new set of
algebraic laws, different from those we are aware of, in particular different from Milner’s
τ -laws.

An object o with methods l and m simultaneously available, as o?{l = P,m = Q},
would be described by the ABT type l + m, assuming that o does not occur free in P
and Q. Similarly, two objects sharing the same reference o, one with a single method l
and the other with a single method m, as o?{l= P} | o?{m= Q}, would be described by
the type l ‖m. This type also characterises a parallel composition of messages targeting
the same object as o!l | o!m. As usual, the behaviour of this object system should not be
distinguishable from that of o?{l= P | o?{m= Q},m= Q | o?{l= P}}, described by the
type l.m + m.l. Hence, an expansion law holds.

However, one must define carefully this expansion. Since terms of the algebra are
intended to be types of objects, it is useful to rule out meaningless terms: a type as υ+ l is
not an object interface, i.e., the collection of its enabled method names. To interpret sums
as interfaces, mixed sums should not be allowed. Therefore, we do not want to express the
type l‖υ.m as l.υ.m+υ.(l‖m), since no object interface would be described by such a type.
Moreover, the former type gives a more precise information: one may request method l; in
the environment there is another instance of the object providing a method m, which is
however unavailable. The technical work developed herein is simplified by this assumption.

Assuming object interfaces as collections of enabled method names, the rationale for
this interpretation of types of objects is:

labelled sums denote interfaces; blocked sums denote currently unavailable objects that
after unblocking offer an interface (a menu of options).

In conclusion, the expansion law should not generate mixed sums. This choice leads to
a novel setting, not studied before in process algebra, since parallel composition usually
enjoys expansion.

The problem of axiomatising our equivalence notion without eliminating the parallel
composition operator is also interesting from a mathematical point of view: we are not
aware of any axiomatic system for a process algebra where the parallel is not reduced to
sum. We develop a proof system, based on these laws, which is complete with respect to
the notion of bisimulation, at least for image-finite types. Notice that the absence of mixed
sums in ABT leads to a simpler axiomatic system than that of CCS.

Applications. The type theory developed herein allows to reason about objects using an
abstract representation of their behaviour. Since an ABT term describes all the possible
sequences of method calls for a particular type, and the equivalence notion semantically
characterises its behaviour, one may not only prove properties using equational reasoning,
but also perform program optimisations by transforming the type (e.g., the normal form
of the type indicates its simplest syntactic form).

8

1.6 Summary

A process algebra is a natural choice when the aim is to use behavioural types to statically
enforce some behavioural properties of systems. We show herein that a simple process
algebra—ABT—may be used to cope with non-uniform concurrent objects. Since ABT is
used as a language of types for concurrent objects, we tailored it not to be Turing powerful,
so we may envisage decidable simulation and bisimulation relations—such results would
be useful to develop type checking and inference algorithms.

ABT is similar to the Basic Parallel Processes, BPP [Chr93], a fragment of CCS pro-
posed by Christensen where communication is not present—parallel composition is simply
a merge of processes. The differences are basically three. In ABT: (1) all sums are prefixed;
(2) mixed sums (with labels and silent actions) are not allowed; and (3) the silent action
represents activity external, rather than internal, to the process. Since these items corre-
spond to our main criteria for the envisaged notion of type, to avoid confusions instead of
using BPP, we decided to design a new process algebra.

We construct ABT gradually. The next section presents finite types built with a non-
deterministic labelled sum and a blocking operator; then defines the operational semantics
and a novel equivalence notion; and finally provides a complete axiomatisation for that
equivalence. In Section 3 we add a parallel composition operator, this operator being a
merge of processes (i.e. without communication), and extend the previous axiomatic system
with two expansion laws—consequence of the absence of mixed sums—and a saturation
law. Since normal forms include parallel compositions, the proof of completeness of the
axiomatic system is not standard, and the result depends on a new inference rule that
we add to the proof system. The rule does not seem to be derivable. Finally, Section 4
presents the full algebra, with dynamic types obtained by a recursive constructor. The
axiomatic system contains three more laws to deal with recursion. In Section 5 we prove
the completeness of the axiomatic system for image-finite terms. The paper closes with
comparisons with related work and with some directions for future research, namely on a
modal logic and on a notion of subtyping.

Contributions. In short, the novelties introduced are the following.

1. A very simple process language,yet expressive enough to capture the behaviour of
(non-uniform) concurrent objects: a term represents sequences of method offers.

2. An original notion of behavioural equivalence for (non-uniform) concurrent objects, to
our knowledge the only one proposed so far. This novel notion was neither proposed
nor studied before.

3. An axiomatization of the equivalence notion, where parallel composition is not re-
duced to choice, along the lines of the works on spatial, and on separation, logic,
treating the parallel operator as separating resources (different instances of an ob-
ject).

9

4. The axiomatization is sound and complete (for image-finite terms). Soundness is
proved for full language. Completeness does not restrict the language to sequential
terms, as in most process algebras (including CCS), demanding only image-finiteness.

2 Non-deterministic finite types

We start by presenting an algebra of non-deterministic sequential finite types. The basic
term is an object type, a labelled sum that denotes an object interface—the collection of
the names of the methods offered by an object. As we allow the same label to appear more
than once (possibly with different continuations), the sum is non-deterministic. This fact
makes possible the definition of an expansion law later on when we introduce a parallel
composition operator. When an object is in a state where its methods are disabled, its type
reflects the situation: unavailable, or blocked, object types are types prefixed by a blocking
operator, denoted by υ. A sum of blocked object types— a blocked sum—represents the
possible types of an object, after becoming enabled. Hence, the silent transition is labelled
with υ and corresponds to the release—or unblocking—of the blocked sum due to some
action in another object: it is an inter-object choice that makes available one of the types
in the sum. Thus, it should be interpreted as an action that is external to the object.

The intended meaning of a labelled sum and of a blocked sum clarify that it does not
make sense to allow mixed sums: we want to distinguish an object that is enabled and offers
a certain collection of methods from one it is blocked. Furthermore, we did not find in the
literature of process algebra any equivalence notion build on this intuition. Therefore, we
develop a notion of type equivalence accordingly to the requirements explained above. This
fact leads to axiomatic systems that are not standard and require new proof techniques.

2.1 Syntax

Assume a countable set of method names, denoted by l,m, possibly subscripted.

Definition 2.1 (Non-deterministic sequential finite types). The grammar be-
low defines the set Tsf of sequential finite types.

α ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi

where I is a finite, possibly empty, indexing set, and each α̃i is a finite sequence of types.

A term of the form l(α̃).α is a method type. The label l in the prefix stands for the name
of a method expecting arguments of types α̃; the type α under the prefix prescribes the
behaviour of the object after the execution of the method l. A term of the form υ.l(α̃).α
is a blocked method type, the type of an unavailable method type l(α̃).α. The term υ.α
denotes thus a blocked type.

The only type composition operator of the algebra is the sum, ‘
∑

’, which has two uses:

10

1. gathers together several method types to form the type of an object that offers the
corresponding collection of methods: the labelled sum

∑
i∈I li(α̃i).αi;

2. associates several blocked types in the blocked sum
∑

i∈Iυ.αi; after being unblocked,
the object behaves according to one of the types αi.

Notation. We write α≡β when the types α and β are syntactically identical. We consider
also the following abbreviations:

1. the term 0 denotes the empty type (sum with empty indexing set); we omit the sum
symbol if the indexing set is singular, and we use the plus (‘+’) to denote binary
sums of types, which we assume associative;

2. the term l(α̃) denotes l(α̃).0, and l denotes l().

This simple language has sufficient ingredients to support the specification of non-
deterministic finite behaviours. To illustrate the use of the language, we progressively
develop a running example throughout the paper, the specification of an Automatic Teller
Machine (ATM, for short). In this section we present a finite ATM, i.e., a machine allowing
only a finite number of interactions.

Example 2.2. In its initial state, the ATM offers a welcome method that waits for two
values—card number and pin. The data provided by the user is validated by the bank while
the user waits—activity denoted by the first υ—and depending on the bank’s reply—again
not visible to the user—either the interaction is refused (method sorry) or the user selects
one of the operations offered: balance, deposit, or withdraw.

fATM
def
= welcome(int,int).υ.(υ.sorry + υ.Menu), where

Menu
def
= balance + deposit(int) + withdraw(int).

2.2 Operational semantics

A labelled transition relation on types defines the structural operational semantics for
non-deterministic sequential finite types.

Definition 2.3 (Actions). The following grammar defines the set of actions:

π ::= υ | l(α̃) .

Action υ denotes a silent transition that releases a blocked object; an action l(α̃) denotes
a transition corresponding to the invocation of method l with actual parameters of types α̃.
When occurring in sums, we refer to actions as prefixes. We write

∑
i∈I πi.αi to refer to

an arbitrary sum, either with prefixes li(α̃i)—labelled—or with prefix υ—blocked.

11

Definition 2.4 (Labelled transition relation). The following rule inductively de-
fines a labelled transition relation on Tsf.

Act
∑
i∈I

πi.αi
πj−→ αj (j ∈ I)

Act is in fact an axiom-schema that captures two cases:

1. the labelled transition l(α̃)—execution of a method—corresponds to the invocation
of a method with name l with arguments of types α̃, yielding the type α of the object
in the method body;

2. the silent transition υ—unblocking—releases a blocked sum.

Notation. Let =⇒ denote
υ−→ ∗ (the reflexive and transitive closure of

υ−→), and let
υ

=⇒
denote

υ−→+ (the transitive closure of
υ−→).

Terminology. The following terminology regarding the transition relation simplifies the
presentation of some proofs.

1. If α
π−→ α′ then the type α′ is an immediate derivative of the type α.

When π = l(α̃) we say the transition is labelled and α′ is an l-derivative of α.

When π = υ we say the transition is silent and α′ is an υ-derivative of α.

2. If α
π̃

=⇒ α′ then the type α′ is a derivative of the type α.

3. A type is

(a) blocked, if it only has immediate υ-derivatives, and is strictly blocked if all its
derivatives are blocked ;

(b) unblocked, if it has at least an immediate l-derivative, and is strictly unblocked
if all its derivatives are unblocked ;

(c) inert, if it has no transitions.4

2.3 Notion of Equivalence

We want two types to be equivalent if they offer the same methods—have the same
interface—and if, after each transition, they continue to be equivalent, in a bisimulation
style. Furthermore, from the point of view of each type, transitions of other types can
be regarded as hidden transitions, which would suggest weak bisimulation as the right
notion of equivalence for our types, with υ playing the role of Milner’s τ , but representing
external interaction rather than internal. However, we want types to distinguish an object

4If a type α is inert, then α≡ 0.

12

that immediately makes available a method, from another that makes it available only
after being unblocked (by some object). Therefore, υ should be externally unobservable—
unobservable from the outside of an object, but internally observable—an internal observer
should detect that the object is blocked. Hence, we would expect υ.l to be different from l,
since all the internal observer can see is that the object is blocked, and after being released
it can eventually execute the method l. This discards weak bisimulation as a candidate for
type equivalence. Furthermore, we want υ.l and υ.υ.l to be equivalent, because the number
of unblockings cannot be counted from within the object as they correspond to transitions
on other objects, thus discarding strong bisimulation [Mil89a] and progressing bisimula-
tion [MS92]. We also want to distinguish l.υ.m from l.m on the grounds that, for the
latter, a blocking after l cannot be observed, and thus observational congruence [Mil89a]
and rooted bisimulation [BBK87] are unsuitable. Also, notice that all the above mentioned
equivalences, with the exception of weak bisimulation, are finer than what we need, be-
cause they are congruences with respect to binary sums, as in CCS [Mil89a], whereas in
this work we stick to prefixed sums.

These considerations lead to the choice of a notion of equivalence that we call label-
strong bisimulation, or lsb. It is a higher-order strong bisimulation on labels and a weak
bisimulation on unblockings.

Hence, we require that if α and β are bisimilar then:

1. if α offers a particular method, then also β offers that method, and the parameters
and the bodies of the methods are pairwise bisimilar;

2. if α offers a hidden transition, then β can offer zero or more hidden transitions.

Conversely, the intuition is that two types are not bisimilar if they have different interfaces
(set of the outermost labels of a labelled sum), possibly after some matching transitions.

In Section 6.2 (Page 37) we further discuss the choices leading to this particular notion.

Definition 2.5 (Bisimilarity on types).

1. A symmetric binary relation R⊆Tsf × Tsf is a label-strong bisimulation, or simply a
bisimulation, if, whenever α R β:

(a) α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃ R β′β̃);5

(b) α
υ−→ α′ implies ∃β′ (β =⇒ β′ and α′ R β′).

2. Two types α and β are label-strong bisimilar, or simply bisimilar, and we write α≈β,
if there is a label-strong bisimulation R such that α R β.

The usual properties of a bisimilarity hold: it is an equivalence relation, the largest bisim-
ulation, and a greatest fixed point. The proofs of these results are standard (cf. [Mil89a],
Proposition 4.2 and Proposition 4.16). The following characterisation of lsb is useful.

5Let (α1 · · ·αn)R (β1 · · ·βn) denote α1 R β1 ∧ . . . ∧ αn R βn.

13

Proposition 2.6 (Label-strong bisimilarity). Types α and β are bisimilar, if, and
only if,

1. α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃≈ β′β̃);

2. α =⇒ α′ implies ∃β′ (β =⇒ β′ and α′ ≈ β′).

Proof. Notice that α =⇒ α′ means α
υ−→
n
α′, for some natural number n. The proof is

by induction on n.6

The sum of method types and the sum of blocked sums preserve bisimilarity. This result
is simple to verify, since both sums are guarded.

Proposition 2.7 (Congruence). Let α̃i≈ β̃i and αi≈βi for all i in an indexing set I.

1.
∑

i∈I li(α̃i).αi ≈
∑

i∈I li(β̃i).βi, and

2.
∑

i∈I υ.αi ≈
∑

i∈I υ.βi.

Briefly, lsb is a congruence relation with respect to prefixing and summation.

Proof. Proving that labelled sums and blocked sums preserve lsb is a direct application
of Definition 2.5, and of the fixed point property of lsb.

2.4 Algebraic characterisation

We present an axiomatisation of the equivalence notion and show that it is sound and
complete. The proof scheme for completeness is standard: a definition of a normal form
for the types; a lemma ensuring that for all types there exists an equivalent term in normal
form; and finally the completeness theorem says that for all pairs of equivalent normal forms
there exists a derivation of their equality using the rules of the axiomatic system. However,
the proofs differ from those in the literature, since the particular syntactic conditions and
restrictions of ABT make these proofs an elaborate combinatoric problem.

Prop/Definition 2.8 (Axiomatisation). The following equivalences, sound with re-
spect to lsb, inductively define the axiomatic system Asf.

Commutativity: for any permutation7 σ : I → I we have
∑

i∈I πi.αi =
∑

i∈I πσ(i).ασ(i);

Idempotence: π.α + π.α + β = π.α + β;

U1: υ.
∑

i∈I υ.αi =
∑

i∈I υ.αi.

Proof. It is straightforward to build the respective bisimulations.

Example 2.9. Using the υ-law U1, one may simplify the specification of the finite ATM
(cf. Example 2.2).

welcome(int,int).υ.(υ.sorry + υ.Menu) = welcome(int,int).(υ.sorry + υ.Menu)

6This proof technique is known as “transition induction”—it is an induction on the maximum length
of the derivation of the transition.

7A permutation is a bijection of a set into itself.

14

Notation. We write `α=β when we can prove α≈β using the laws above and the usual
rules of equational logic.

Theorem 2.10 (Soundness of Asf). If `α = β then α≈ β.

Proof. Follows from Proposition 2.7 and of Prop/Definition 2.8.

Remark. The novelty of this system is the υ-law U1: one can observe if a method is
enabled or not, but in the latter case, one cannot count how many unblockings must occur
to enable the method. Notice some more facts about this law:

1. The proof of completeness uses two derived rules.

(a) If ∀i∈I∃j∈J `αi = βj and ∀j∈J∃i∈I `αi = βj , then `
∑

i∈I υ.αi =
∑

j∈J υ.βj .

(b) If ∀i∈I∃j∈J (li ≡mj, ` α̃i = β̃j , and `αi = βj)

and ∀j∈J∃i∈I (li ≡mj, ` α̃i = β̃j, and `αi = βj) ,

then `
∑

i∈I li(α̃i).αi =
∑

j∈J mj(β̃j).βj .

The soundness of these rules is a consequence of Proposition 2.7, but it results also
from the fact that they are derived rules (the proof is simple). Therefore, the proof
system without them is still complete.

2. An interesting instance of the υ-law is that α ≈ 0, if α is a blocked sum with all its
derivatives being also blocked sums (i.e. α is a tree with all branches labelled by υ).

3. The υ-law corresponds to an instance of the CCS’s first τ -law, α.τ.P = α.P , when α
is τ (υ, in our case).

One can easily recognise particular instances of the remaining τ -laws of CCS that hold
in this setting. For example, the following derivable laws are instances of the second
and third τ -laws (P + τ.P = τ.P and α.(P + τ.Q) =α.(P + τ.Q) +α.Q respectively).

(a) υ.P + υ.υ.P = υ.υ.P ;

(b) υ.(υ.P + υ.Q) = υ.(υ.P + υ.Q) + υ.Q;

The first clause is easy to prove, since υ.υ.P = υ.P ; to prove the second clause use
first the υ-law, then idempotence, and then again the υ-law.

However, the τ -laws do not hold in general in this setting; for instance, the third
τ -law does not hold, as the following counter-example shows:

l.(υ.m+ υ.n) 6≈ l.(υ.m+ υ.n) + l.n .

After an l-transition, the right hand side offers an n-transition, which is not available
in the left hand side.

15

From these remarks it is easy to conclude that both weak bisimulation, which is a congru-
ence for prefixed sums, and observation congruence are coarser than lsb, when considered
in this setting.

We proceed now towards the completeness result for the axiomatic system, with respect
to lsb. The proof technique to establish the result uses the notion of depth of a type.

Definition 2.11 (Depth of a type). The following rules inductively define the depth
of a type.

depth(0) = 0,

depth(
∑

i∈I υ.αi) = 1 + max{depth(αi) | i ∈ I}, and

depth(
∑

i∈I li(α̃i).αi) = 1 + max{depth(α̃i) + depth(αi) | i ∈ I},

where depth(α̃) = max{depth(β) | β ∈ α̃}.

Theorem 2.12 (Completeness of Asf). If α≈ β then `α = β.

Proof. By induction on the sum of the depths of the types α and β.

Base case: depth(α) = depth(β) = 0; by definition of depth, α ≡ 0 ≡ β.

It follows from the reflexivity law of the proof system that `α = β.

Induction step: there are two cases to consider.

1. Case α is a labelled sum, and hence also β is a labelled sum, as α≈ β.

Thus, if α
l(α̃)−−→ α′ then β

l(β̃)−−→ β′ and α′α̃≈ β′β̃.

Since depth(α′α̃)+depth(β′β̃) ≤ depth(α)+depth(β), it follows by the induction

hypothesis that `α′α̃ = β′β̃.

2. Case α is a blocked sum, and hence also β is a blocked sum, as α≈ β.

Thus, if α
υ−→ α′ then β =⇒ β′ and α′ ≈ β′.

Again, since depth(α′) + depth(β′) ≤ depth(α) + depth(β), we conclude by the
induction hypothesis that `α′ = β′.

The result follows using the derived inference rules: rule 1b in the first case and rule 1a in
the second.

3 Concurrent finite types

We extend the algebra of non-deterministic sequential finite types to concurrent types,
adding a parallel composition operator. Since the algebra does not have communication,
this operator is simply a merge of types (cf. the parallel composition operator of BPP).
A type constructed with the parallel composition operator denotes the behaviour of a

16

parallel composition of objects with the same name. In the parallel composition of types
each component is the type of an element of the parallel composition of objects.

The axiomatic system includes two new expansion laws: the parallel composition of
labelled sums is equivalent to a labelled sum; the parallel composition of blocked sums
is equivalent to a blocked sum. However, the absence of mixed sums in the grammar of
types prohibits a general expansion law. The main consequence of this fact is that normal
forms include parallel compositions, and the standard proof technique to establish the
completeness of the axiomatic system must be refined. The mathematical study of the
implications of the absence of mixed sums is interesting by itself.

To prove the axiomatic system complete, we were forced to add a new inference rule to
the proof system of equational logic, which we prove sound. The rule does not seem to be
derivable.

We studied an alternative proof of completeness (without this new inference rule) which
uses only induction. However, the proof requires that the converse of the congruence for
the parallel holds for normal forms. We conjecture that the result holds, and leave it
as an open problem, since its proof turned out to be quite difficult, due to the highly
combinatorial nature of the problem. If proved, the conjecture can be used as a lemma in
a simpler proof of the completeness of the axiomatic system for the notion of equivalence,
system that would not require the new inference rule mentioned before.

3.1 Syntax

Take the set of method names assumed in the previous section.

Definition 3.1 (Concurrent finite types). The grammar below defines the set Tf
of concurrent finite types.

α, β ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi | (α ‖ β)

where I is a finite, possibly empty, indexing set, and each α̃i is a finite sequence of types.

The parallel composition operator, denoted by ‘‖’, represents the existence of several
objects located at (sharing) the same name, and executing in parallel (interpreted as dif-
ferent copies of the same object, possibly in different states). The prefixes of a sum bind
tighter than the parallel constructor ‘‖’, i.e., l.m ‖ n is (l.m) ‖ n.

Example 3.2. We refine the specification of the ATM, adding a method after the welcome
that shows some messages to the user while the communication with the bank is taking place.

fpATM
def
= welcome(int,int).(show ‖ υ.(υ.sorry + υ.Menu)), where

Menu
def
= balance + deposit(int) + withdraw(int).

Notice that a mixed sum here would be confusing because it would look like a user’s choice.

17

3.2 Operational semantics

Take the set of labels specified by Definition 2.3.

Definition 3.3 (Labelled transition relation). The axiom schema of Definition
2.4 together with the two rules below inductively define the labelled transition relation of
the algebra of concurrent finite types.

Rpar α
π−→ α′

α ‖ β π−→ α′ ‖ β
Lpar α

π−→ α′

β ‖ α π−→ β ‖ α′

To prove that lsb is still a congruence in this extended language it suffices to show that
the parallel composition operator preserves lsb.

Proposition 3.4 (Preservation of lsb by ‖). The parallel composition operator pre-
serves lsb.

Proof. It is easy to see that the relation R
def
= {(α ‖ β, α′ ‖ β) | α≈ α′} is a bisimulation,

and thus that ‖ preserves ≈. We proceed by transition induction.
Take (α ‖ β, α′ ‖ β) ∈R and let α ‖ β π−→ δ. We have two cases to consider:

Case α
π−→ α1 and δ ≡ α1 ‖ β.

By hypothesis, α≈ α′, thus there is an α′1 such that α′
π−→ α′1 and α1 ≈ α′1;

hence, by induction hypothesis, (α1 ‖ β, α′1 ‖ β) ∈R.

Case β
π−→ β1 and δ ≡ α ‖ β1.

Then, by rule Lpar, α ‖ β π−→ α ‖ β1 and obviously, also α′ ‖ β π−→ α′ ‖ β1;
hence, by induction hypothesis, (α ‖ β1, α′ ‖ β1) ∈R.

By symmetry we conclude that R is a lsb.

Corollary 3.5 (Congruence). lsb is a congruence relation on Tf.

As in the previous section, a result like Proposition 2.6 is convenient for some proofs.

Proposition 3.6 (Label-strong bisimilarity). Types α and β are bisimilar, if, and
only if,

1. α
l(α̃)−−→ α′ implies ∃β′, β̃ (β

l(β̃)−−→ β′ and α′α̃≈ β′β̃);

2. α =⇒ α′ implies ∃β′ (β =⇒ β′ and α′ ≈ β′).

It is useful to characterise active types, i.e. types that are not bisimilar to 0. Syn-
tactically, one can do it with a two-level grammar. Semantically, one uses the following
lemma.

18

Lemma 3.7 (Active types). α 6≈ 0 if and only if ∃α′,l(α̃) α =⇒ α′
l(α̃)−−→.

Proof. Straightforward.

The contrapositive of the lemma above is also interesting, as it characterises strictly blocked
types: they are equivalent to 0.

The following results make use of the notion of depth of a type, which we refine.

Definition 3.8 (Depth of a type). The rules of Definition 2.11, together with the
rule below inductively define the depth of a type.

depth(α ‖ β) = depth(α) + depth(β)

The subsequent proofs use the notion of normal form of a type.

Definition 3.9 (Normal forms of concurrent finite types).

1. A type α is saturated if α
υ

=⇒ α′ implies α
υ−→ α′.

2. A type α is a normal form if it is saturated, and furthermore, one of the following
conditions holds:

(a) α≡ 0; or

(b) α≡
∑

i∈I υ.αi and each αi is a normal form; or

(c) α≡
∑

i∈I li(α̃i).αi and each component of each αiα̃i is a normal form; or

(d) α≡α1‖α2, where α1 and α2 are respectively as in (b) and (c) above, with α1 6≈0.

We show now that all types have equivalent normal forms. We need an auxiliary result,
a second υ-law.

Lemma 3.10 (Law U2). υ.(
∑

i∈I υ.αi ‖
∑

j∈J mj(β̃j).βj) =

υ.(
∑

i∈I υ.αi ‖
∑

j∈J mj(β̃j).βj) + υ.(αk ‖
∑

j∈J mj(β̃j).βj), with k ∈ I.

Proof. It is straightforward to build the respective bisimulation.

Lemma 3.11 (Normal form lemma). For all α there exists a normal form α′ such that
`α = α′, with depth(α′)≤ depth(α).

Proof. By induction on the depth of α.
Base case: depth(α) = 0; by definition of depth, α≡ 0, a normal form by definition.
Induction step: α is now either a sum or a parallel composition. Let us consider first

the former case.
Case α ≡

∑
i∈I πi.αi; then, by induction hypothesis, for each αi there exists a normal

form α′i such that `αi = α′i, with depth(α′i)≤ depth(αi). The prefix can be of two forms.

19

1. Case πi ≡ li(α̃i), for all i.

Since the types α̃i also have normal forms α̃′i, we conclude that `α=
∑

i∈I li(α̃
′
i).α

′
i,

as clearly, depth(
∑

i∈I li(α̃
′
i).α

′
i) ≤ depth(α).

2. Case πi ≡ υ, for all i.

We only have to guarantee saturation. Thus, for each i such that α′i
υ−→, either:

(1) there is a Ji 6= ∅ such that α′i ≡
∑

j∈Ji υ.αj; for each j ∈ Ji we then have

α ≡
∑

i∈I υ.α
′
i
υ.υ−→ αj;

by idempotency and law U1 , we conclude `
∑

i∈I υ.α
′
i =

∑
i∈I υ.α

′
i + υ.αj; therefore,

using these laws for all such αj we thus obtain a normal form of α, since the resulting
type is saturated, whose depth clearly equals that of

∑
i∈I υ.α

′
i;

(2) or α′i ≡ (
∑

j∈Ji υ.αj) ‖ β, with β ≡
∑

k∈Ki
lk(β̃k).βk and Ji, Ki 6= ∅; for each j ∈ Ji

we have
∑

i∈I υ.α
′
i
υ.υ−−→ αj ‖ β;

by U2 , we conclude

`
∑
i∈I

υ.α′i =
∑
i∈I

υ.α′i + υ.(αj ‖ β) .

Notice that (αj ‖ β) may not be a normal form (e.g., if αj ≡ 0), but since clearly
depth(αj ‖ β)<depth(α), thus by induction hypothesis, there is a normal form γ such
that `αj ‖ β = γ; hence

`
∑
i∈I

υ.α′i =
∑
i∈I

υ.α′i + υ.γ .

We still have to saturate υ.γ. If it is a blocked sum, using U1 we obtain a saturated
form γ′; if it is a parallel composition we use U2 to obtain γ′. So,

`
∑
i∈I

υ.α′i =
∑
i∈I

υ.α′i + γ′ .

Repeatedly applying U2 in the same way to all α′i of this form, and applying U1 as
in the proof of Theorem 2.12, we attain a normal form of α, whose depth obviously
does not exceed that of

∑
i∈I υ.α

′
i.

Case α≡γ1‖γ2; we use the commutative monoid laws and the expansion laws to rewrite
α either as a blocked sum, a labelled-prefixed sum, or a parallel composition of the previous
two with I, J 6= ∅, and without increasing the depth of the types. The first two cases are
treated as above, and in the parallel composition case we apply the same reasoning to each
sum separately, obtaining `α = α1 ‖ α2, where α1 and α2 are respectively a blocked sum
and a labelled-prefixed sum, both normal forms. If `α1 = 0 then `α1 ‖α2 =α2; otherwise,
by definition, α1 ‖α2 is a normal form. Moreover, notice that depth(α1)≤depth(

∑
i∈I υ.αi)

and depth(α2)≤ depth(
∑

j∈J lj(β̃j).βj). Therefore, depth(α1 ‖ α2)≤ depth(α).

20

An auxiliary useful result for some proofs ahead is the following.

Proposition 3.12. If α≡
∑

i∈I υ.αi is a normal form, then no αi is a parallel composi-
tion.

Proof. Let, for some l ∈ I, αl ≡
∑

j∈Ji υ.αj ‖
∑

k∈Ki
lk(α̃k).αk, which is a normal form.

For some j ∈ Ji, one may infer that α
υυ−→ αj ‖

∑
k∈Ki

lk(α̃k).αk, and since α is saturated,

it is also the case that α
υ−→ αj ‖

∑
k∈Ki

lk(α̃k).αk.
Therefore, for some i ∈ I, αi ≡ αj ‖

∑
k∈Ki

lk(α̃k).αk. But then αj is blocked since α is
a normal form, and furthermore, αj 6≈ 0; hence, by Lemma 3.7, αj has a derivative which
is a labelled sum.

Since the types are finite, applying repeatedly this procedure leads to, for some i ∈ I,
αi ≡

∑
m∈Mi

lm(α̃m).αm ‖
∑

k∈Ki
lk(α̃k).αk, which is not a normal form, and we attain a

contradiction.

The following result is also useful, and builds on the previous one.

Proposition 3.13. Let α, β, and γ be types such that α and β are labelled sums, γ is a
blocked sum, and α≈ β ‖ γ. Then γ ≈ 0.

Proof. By induction on the depth of the types (i.e., on depth(α)+depth(β)), considering
the three types in normal form (otherwise, use Lemma 3.11).
Base case: depth(α) + depth(β) = 0. Then α≈ β ≈ 0, hence 0≈ 0 ‖ γ, and since 0 ‖ γ ≈ γ,
by transitivity we conclude that γ ≈ 0.

Induction step. If α
l(α̃)−−→ α′ then, since by hypothesis α≈ β ‖ γ and γ is a blocked sum, we

have ∃β′, β̃ (β
l(β̃)−−→ β′ and α′ ≈ β′ ‖ γ). We perform now a case analysis on the form of α′.

Case α′ is again a labelled sum, so is β′ since α′ ≈ β′ ‖ γ and γ is a blocked sum;
as clearly we have depth(α)′ + depth(β)′ < depth(α) + depth(β), we conclude using the
induction hypothesis that γ ≈ 0.

Case α′ is a blocked sum, so is β′ since α′ ≈ β′ ‖ γ. If α′ ≈ 0 then also β′ ‖ γ ≈ 0, and
we conclude γ ≈ 0. So, consider now α′ 6≈ 0; by Lemma 3.7, there is a υ-derivative α′′ of
α′ which, by Lemma 3.12, is also a labelled sum; since α′ ≈ β′ ‖ γ, there is a υ-derivative
δ of β′ ‖ γ which is a parallel composition of a labelled sum and a blocked sum. We have
two cases to consider: either δ ≡ β′′ ‖ γ with β′′ being a labelled sum, and we conclude by
induction that γ ≈ 0, or δ ≡ β′ ‖ γ′ with γ′ being a labelled sum. The latter situation is

however impossible: let β ‖ γ υ−→ β ‖ γ′ l(β̃)−−→ δ; then α
l(α̃)−−→ α1 such that α1 ≈ δ (hence α1 is

a labelled sum), and again as α≈β ‖γ by hypothesis, also β ‖γ l(α̃)−−→ β1 ‖γ with β1 being a
labelled sum; but now we conclude by induction that γ ≈ 0, attaining a contradiction.

3.3 Algebraic characterisation

We extend the axiomatic system Asf with laws regarding the parallel composition operator,
and show that the resulting axiomatic system is sound and complete. Notice that we need

21

two expansion laws, since the syntax of finite types does not allow mixing labels and υ in
sums, e.g., as in l.α + υ.β. Moreover, we further need an extra υ-law which allows us to
saturate blocked parallel types that do not expand.

Prop/Definition 3.14 (Axiomatisation). The laws of Prop/Definition 2.8, together
with the following laws, sound with respect to lsb, inductively define the axiomatic sys-
tem Af.

CM 〈Tf/ =, ‖,0〉 is a commutative monoid;

EXP1
∑

i∈I υ.αi ‖
∑

j∈J υ.βj =∑
i∈I υ.(αi ‖

∑
j∈J υ.βj) +

∑
j∈J υ.(

∑
i∈I υ.αi ‖ βj);

EXP2
∑

i∈I li(α̃i).αi ‖
∑

j∈J mj(β̃j).βj =∑
i∈I li(α̃i).(αi ‖

∑
j∈J mj(β̃j).βj) +

∑
j∈J mj(β̃j).(

∑
i∈I li(α̃i).αi ‖ βj);

U1 υ.
∑

i∈I υ.αi =
∑

i∈I υ.αi;

U2 υ.(
∑

i∈I υ.αi ‖
∑

j∈J mj(β̃j).βj) =

υ.(
∑

i∈I υ.αi ‖
∑

j∈J mj(β̃j).βj) + υ.(αk ‖
∑

j∈J mj(β̃j).βj), with k ∈ I.

Proof. It is straightforward to build the respective bisimulations.

Theorem 3.15 (Soundness of Af). If `α = β then α≈ β.

Proof. A consequence of Proposition 2.7, Proposition 3.4, and of Prop/Definition 3.14.

To obtain a system that is provably complete, there are three alternatives.

1. Allow arbitrary prefixed sums, i.e. mixing labels and υ in sums, and having a single
(CCS like) expansion law; the proof of completeness is standard. Notice that the
other laws still hold.

2. Add a new inference rule to the equational logic and proceed as usual.

If ∀i∈I∃k∈K (` α̃i = β̃k, li ≡mk, and `αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl)

and ∀k∈K∃i∈I (` α̃i = β̃k, li ≡mk, and `αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl)

and ∀j∈J∃l∈L (`
∑

i∈I li(α̃i).αi ‖ αj =
∑

k∈Kmk(β̃k).βk ‖ βl) (1)

and ∀l∈L∃j∈J (`
∑

i∈I li(α̃i).αi ‖ αj =
∑

k∈Kmk(β̃k).βk ‖ βl),

then `
∑

i∈I li(α̃i).αi ‖
∑

j∈J υ.αj =
∑

k∈Kmk(β̃k).βk ‖
∑

l∈L υ.βl .

22

3. Keep the proof system and use induction directly.

The first alternative is somewhat unnatural, since labelled sums represent interfaces of
objects (i.e., collections of enabled method names), and thus an arbitrary sum does not
represent a valid object interface.8 Moreover, the problem of axiomatising an equivalence
notion without eliminating the parallel composition operator is also interesting from a
mathematical point of view: we are not aware of any axiomatic system for a process
algebra where the parallel is not reduced to sum. Hence, we rule out mixed sums.

For the last two alternatives, normal forms include a parallel composition, as there is
no expansion law for the parallel composition of a labelled sum and a blocked sum; thus
the proofs of the normal form lemma and of the completeness theorem are different from
those for CCS.

The third alternative (using only induction) turns out to be quite difficult, due to the
highly combinatorial nature of the problem. The proof requires that the converse of the
congruence result for the parallel operator holds for normal forms: if α1 ‖α2≈α′1 ‖α′2 then
α1 ≈ α′1 and α2 ≈ α′2. We did not prove (nor disprove) this result, but succeeded for a
particular case—the new inference rule.

Therefore, we proceed now according to the second alternative listed above. First we
have to show that the new inference rule is sound.

Lemma 3.16 (Soundness of the new inference rule). The inference rule (1) is
sound.

Proof. Let α ≡
∑

i∈I li(α̃i).αi ‖
∑

j∈J υ.αj and β ≡
∑

k∈Kmk(β̃k).βk ‖
∑

l∈L υ.βl. We
proceed by induction on the depth of the types (i.e., on depth(α) +depth(β)), and conduct
a case analysis of the possible immediate transitions of α and β.

1. Case α
l(α̃)−−→ αi ‖

∑
j∈J υ.αj.

Since by hypothesis there is a k ∈ K such that li ≡ mk, and since by induction
hypothesis α̃i ≈ β̃k, as by hypothesis ` α̃i = β̃k, then we also have

β
mk(β̃k)−−−−→ βk ‖

∑
l∈L υ.βl.

Moreover, αi ‖
∑

j∈J υ.αj≈βk ‖
∑

l∈L υ.βl, again by induction hypothesis and because
by hypothesis we have

`αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl.

2. Case α
υ−→

∑
i∈I li(α̃i).αi ‖ αj.

Let β
υ−→

∑
k∈Kmk(β̃k).βk ‖ βl for some l ∈ L.

Using again the hypotheses and the soundness the axiomatic system, it follows that∑
i∈I li(α̃i).αi ‖ αj ≈

∑
k∈Kmk(β̃k).βk ‖ βl.

8cf. Example 3.2

23

By symmetry we conclude that α≈ β.

Again, we show a completeness result for the axiomatic system, with respect to lsb.

Theorem 3.17 (Completeness of Asf). If α≈ β then `α = β.

Proof. By induction on the sum of the depths of the types α and β (assumed to be
normal forms, by Lemma 3.11).
Taking into account the proof of Theorem 2.12, we only have one case to consider.
Case α≡

∑
i∈I li(α̃i).αi ‖

∑
j∈J υ.αj and β ≡

∑
k∈Kmk(β̃k).βk ‖

∑
l∈L υ.βl.

We examine the indexing sets:

1. If I 6= ∅, then obviously also K 6= ∅, as α≈ β.

2. Note that J 6= ∅ and also L 6= ∅, since clause 3 of the definition of normal forms
demands

∑
j∈J υ.αj 6≈ 0 and thus also

∑
l∈L υ.βl 6≈ 0.

3. Thus, consider I, J,K, L 6=∅. The proof analyses the possible transitions of α. There
are two cases to consider:

(a) Case α
li(α̃i)−−−→ αi ‖

∑
j∈J υ.αj.

Since, by hypothesis, α≈β, then there exists a k∈K such that li≡mk, α̃i≈ β̃k,
and β

mk(β̃k)−−−−→ βk ‖
∑

l∈L υ.βl, with αi ‖
∑

j∈J υ.αj ≈ βk ‖
∑

l∈L υ.βl.

By induction hypothesis it follows that ` α̃i = β̃k and thus,

`αi ‖
∑

j∈J υ.αj = βk ‖
∑

l∈L υ.βl.

(b) Case α
υ−→

∑
i∈I li(α̃i).αi ‖ αj.

If β
υ

=⇒
∑

k∈Kmk(β̃k).βk ‖ βl then, as β is saturated, thus

β
υ−→

∑
k∈Kmk(β̃k).βk ‖ βl;

the proof proceeds similarly to the previous case.

Otherwise,
∑

i∈I li(α̃i).αi ‖ αj ≈
∑

k∈Kmk(β̃k).βk ‖
∑

l∈L υ.βl with the sum of
their depths being lesser than the sum of the original depths, and we can again
use the induction hypothesis.

The result for the case we are examining follows by the inference rule 1.

As there are no more cases, the proof is complete.

4 Behavioural types

Finally, we present the Algebra of Behavioural Types, ABT for short. We obtain it by
extending the algebra of concurrent finite types with a recursive operator µ to denote
infinite types. A type µt.α denotes a solution to the equation t = α. Recursive types

24

allow us to characterise the behaviour of persistent objects, as well as that of (possibly non
persistent) objects, created when executing methods of persistent objects.

In this section, we present the syntax and operational semantics of ABT, add to the ax-
iomatic system of the previous section three new laws regarding the behaviour of recursive
types, laws that we prove correct. Note that these axioms are different from those of CCS.
The next section shows that the axiomatic system—simpler than that of CCS because of
absence of mixed sums in ABT—is complete for image-finite types. The result holds in a
setting more general than that of CCS, as we do not require processes to be sequential.

4.1 Syntax

Assume a countable set of variables, denoted by t, possibly subscripted, disjoint from the
set of method names considered in the previous sections.

Definition 4.1 (Behavioural types). The grammar below defines the set T of be-
havioural types.

α, β ::=
∑
i∈I

li(α̃i).αi |
∑
i∈I

υ.αi | (α ‖ β) | t | µt.α

where I is a finite, possibly empty, indexing set, each α̃i is a finite sequence of types .

The recursive operator µ allows the definition of possibly infinite types, as in the next
example.

Example 4.2. We refine again the specification of the ATM, allowing recurrent behaviour.

ATM
def
= show ‖ µt.welcome(int,int).υ.(υ.sorry.t+ υ.Menu)), where

Menu
def
= balance.t+ deposit(int).t+ withdraw(int).t.

This version of the ATM has now a “kind” behaviour, allowing a user to perform several
operations.

Since types may have type variables, we define when a type variable occurs free in a
type, and when it occurs bound.

Definition 4.3 (Free and bound variables). An occurrence of the variable t in the
type α is bound if it occurs in a part µt.α of α; otherwise the occurrence of t in α is free.

Alpha-conversion in a type µt.α is defined as usual. Henceforth we consider only con-
tractive types, i.e., terms where, in any subexpression of the form (µt.(µt1....(µtn.α))) (with
n ≥ 0), the body α is not t.

Notation. For simplicity, we use the following conventions.

1. Assume a variable convention like in Barendregt [Bar84], and assume types equal
up-to alpha-conversion. Moreover, fv(α) denotes the set of variables that occur free
in type α and var(α) denotes the set of all variables (free or bound) in α.

25

2. The type α{β/t} denotes the result of the substitution in α of β for the free occur-

rences of t. Furthermore, the type α{β̃/t̃} denotes the simultaneous substitution9

of β̃ for the free occurrences of t̃ in α.

3. Let {t̃} denote the set of the elements, and |t̃| the length, of the sequence t̃.

4. For simplicity, we sometimes write α(β) instead of α{β/t}.

Terminology. The following concepts will be useful to prove the subsequent results.

Definition 4.4 (Guarded variables and guarded types).

1. A type without free variables is said closed; otherwise it is open.

2. A free variable t is guarded in α if all its occurrences are within some label-prefixed
part of α.

3. A type α is guarded if all its free variables are guarded. Otherwise, we say α is
unguarded.

Example 4.5. The variable t is guarded in l(t).α, in l(α̃).t, and in l(υ.t).0, but not in υ.t.

4.2 Operational semantics

Assume the set of labels specified by Definition 2.4. We define the operational semantics
of ABT by adding a new rule to the labelled transition relation defined in Definition 3.3.
Table 1 presents all the rules together.

Definition 4.6 (Labelled transition relation). The axiom schema of Definition
2.4 together with the two rules of Definition 3.3 and with the axiom and the rule below
inductively define the labelled transition relation of the algebra of behavioural types.

Rec
α{µt.α/t} π−→ α′

µt.α
π−→ α′

The definition of lsb that we have been using (Definition 2.5 in page 13), only applies
to closed terms. Following the usual approach (see, e.g. [Ren00]), we extend it to open
terms by requiring them to be bisimilar if all their closed instantiations are bisimilar.

Definition 4.7 (Bisimilarity on open types). Let fv(α)∪ fv(β)⊆{t̃}. Then, α≈β
if, for all sequences of closed types γ̃, we have α{γ̃/t̃} ≈ β{γ̃/t̃}.

9Standard notion (see, for instance, Barendregt [Bar84]).

26

Act
∑

i∈I πi.αi
πj−→ αj (j ∈ I)

Rpar α
π−→ α′

α ‖ β π−→ α′ ‖ β
Lpar α

π−→ α′

β ‖ α π−→ β ‖ α′
Rec

α{µt.α/t} π−→ α′

µt.α
π−→ α′

Table 1: The labelled transition relation of the Algebra of Behavioural Types.

It is straightforward to verify that this new definition of lsb is an equivalence relation
and a fix point.

An important property is substitutivity : according to Rensink [Ren00], a relation is
substitutive if it is preserved by insertion—substituting equivalent types for variables do
not change the behaviour of a type—and by instantiation—replacing a closed type for a
variable in equivalent types result in equivalent types. Since preservation by instantiation
is built into the new definition of lsb, it suffices to prove that lsb is preserved by insertion.

Proposition 4.8 (Substitutive). If α1 ≈ α2 then α{α1/t} ≈ α{α2/t}.

Proof. It is easy to show that the relation {(α{α1/t}, α{α2/t}) | α1 ≈ α2} is an lsb.

It is necessary to verify that lsb is still a congruence—an expected result, but since we
conduct the proof on recursive terms rather than on equations, it turns out to be sim-
pler (in particular, a bisimulation suffices, whereas for equations one needs to establish a
bisimulation up to).

An important auxiliary result is a consequence of the rule Rec: folding or unfolding
a recursive term does not change its behaviour, since µt.α and α{µt.α/t} have the same
transitions, and thus one expects them to be bisimilar.

Lemma 4.9 (Unfolding). µt.α≈ α{µt.α/t}.

Proof. Immediate.

We prove now that the operator µt preserves lsb and hence, that our notion of equivalence
is still a congruence.

Proposition 4.10 (Preservation of lsb by recursion). The recursive operator pre-
serves label-strong bisimulation.

Proof. We show that the relation {(µt.α, µt.β) | α ≈ β} is an lsb, and thus, that µt
preserves ≈. The proof is by transition induction. The base case is trivial, as the definition
of lsb implies that if α ≈ β and α ≡ t then β ≡ t. There are two cases to consider in the
induction step.

27

1. Let µt.α
l(α̃(µt.α))−−−−−→ γ. By a shorter derivation (see rule Rec) also α(µt.α)

l(α̃(µt.α))−−−−−→ γ.
Since by hypothesis α≈ β, we have

α(µt.α)≈ β(µt.α)
l(β̃(µt.α))−−−−−→ β′(µt.α)≈ α′(µt.α)≡ γ ,

as there are β̃ such that α̃(µt.α)≈ β̃(µt.α).

Therefore, µt.β has an l-transition, hence also β(µt.β)
l(β̃(µt.β))−−−−−→ β′(µt.β), and the

result follows as by induction hypothesis α′(µt.α)≈ β′(µt.β) and α̃′(µt.α)≈ β̃(µt.β).

2. Let µt.α
υ−→ α′. The proof is as in the first case, except that we do not need to worry

about the parameters in the prefixes.

The proof is complete.

Therefore, lsb in ABT is a congruence.

4.3 Axiomatic system

We present an axiomatisation of the equivalence notion, adding three recursion rules to
the previous axiomatic system, and show its soundness. Completeness will be the topic of
the next section. The axiomatisation of lsb requires three more laws:

1. unfolding recursive types preserves lsb;

2. equalities involving recursive types have unique solutions up to lsb;

3. allow the saturation of recursive types.

Notice that the absence of mixed sums in ABT leads to a simpler axiomatic system than
that of CCS.

Prop/Definition 4.11 (Axiomatic system). The laws of Prop/Definition 3.14, to-
gether with the following recursion laws, inductively define an axiomatic system.

R1 µt.α = α{µt.α/t};

R2 if β = α{β/t} then β = µt.α, provided that α is guarded;

R3 µt.(υ.t+
∑

i∈I υ.αi) = µt.
∑

i∈I υ.αi.

28

Remark. Laws R3 and R5 of CCS10 have no correspondence in this setting, as ABT
does not have binary sums. Thus, our law R3 corresponds to (is an instance of) the CCS’s
R4 law. Soundness of the above axioms is not a trivial result. To prove it, one has first to
ensure that the equations have unique solutions, i.e.,

if β is guarded, α1 ≈ β{α1/t}, and α2 ≈ β{α2/t} then α1 ≈ α2.

The next subsection is dedicated to the proof of that result. Once we establish it, the proof
of the soundness of the axioms follows.

Proof. The Unfolding Lemma (4.9) states that law R1 is sound. Law R2 of Prop/Defini-
tion 4.11 is a corollary of the uniqueness of the solutions of equations (Theorem 4.16 in
page 31) and of law R1. To prove law R3, one simply has to build the appropriate
bisimulation.

4.4 Unique solutions

The proof follows a method analogous to that used for CCS, but we attain a more general
result, since we do not require the type to be sequential. The method was set up by Milner;
Ying has a simpler proof that we follow here [Yin99].

We need the auxiliary notion of lsb up to ≈.

Definition 4.12 (Lsb up to ≈). An lsb up to ≈ is a symmetric binary relation R on
types such that, whenever α R β then

1. α
l(α̃)−−→ α′ implies ∃β̃,β′ β

l(β̃)−−→ β′ and α′α̃≈R≈ β′β̃, and

2. α =⇒ α′ implies ∃β′ β =⇒ β′ and α′ ≈R≈ β′ .

We show that lsb up to ≈ is still a label-strong bisimulation.

Proposition 4.13 (Lsb up to ≈ is a bisimulation). Let R be an lsb up to ≈. Then,

1. ≈R≈ is an lsb.

2. R ⊆ ≈.

Proof. Similar to the proof for weak bisimulation up to weak bisimilarity in [Mil89a].

Remark. The definition of lsb up to ≈ is slightly different from that of lsb: with
υ−→

instead of =⇒ in the antecedent of the second condition of Definition 4.12, the previous
proposition would not hold, as the example R ={(υ.υ.a.0, υ.0)} shows.11

Two technical lemmas are necessary to prove the result. We present and prove them
below, and proceed to the main result: equations have unique solutions (up to lsb).

Lemma 4.14. Let α be guarded, and consider all its free variables in {t̃}.
10CCS’ recursion laws: µt.(t + α) = µt.α (R3), µt.(τ.t + α) = µt.τ.α (R4), and µt.(τ.(t + α) + β) =

µt.(τ.t+ α+ β) (R5).
11notice the similarities with the Exercise 5.14 in [Mil89a].

29

1. If α(β̃)
l(γ̃)−−→ γ then there exist α′ and α̃ with free variables in t̃ such that γ ≡ α′(β̃)

and γ̃ ≡ α̃(β̃), and, for all β̃′, α(β̃′)
l(α̃(β̃′))−−−−→ α′(β̃′).

2. If α(β̃)
υ−→ γ then there exists α′ with free variables in t̃ such that γ ≡ α′(β̃) and, for

all β̃′, we have α(β̃′)
υ−→ α′(β̃′). Furthermore, α′ is guarded.

Proof. By transition induction.12 There are two cases to consider, depending on the
transition performed.

1. Let α(β̃)
l(γ̃)−−→ γ. The base case is simple: let α ≡

∑
i∈I li(α̃i).αi. Then α(β̃) ≡∑

i∈I li(α̃i(β̃)).αi(β̃), l(γ̃)≡ li(α̃i(β̃)), and γ≡αi(β̃) for some i∈ I. The result follows
from taking α′ ≡ αi and α̃≡ α̃i.
For the induction step, we have two different cases to consider, according to the
possible forms of α.

(a) Case α≡ α1 ‖ α2.

Then α(β̃)≡ α1(β̃) ‖ α2(β̃). There are two sub-cases to consider:

i. either γ ≡ γ1 ‖ α2(β̃), with α1(β̃)
l(γ̃)−−→ γ1,

ii. or γ ≡ α1(β̃) ‖ γ2, with α2(β̃)
l(γ̃)−−→ γ2, by a shorter derivation.

Without loss of generality, assume the first case. Since α is guarded, so is α1,
and thus, by induction hypothesis, it follows that γ1≡α′1(β̃) and γ̃≡ α̃1(β̃). The
result follows from taking α′ ≡ α′1‖α2 and α̃≡ α̃1.

(b) Case α≡ µt.β.

Then α(β̃)≡ µt.β(β̃), where the free variables of β are taken from t and t̃. The
variables t̃ must be guarded in β, otherwise they would not be guarded in α.

If µt.β(β̃)
l(γ̃)−−→ γ then β{µt.β(β̃)/t} l(γ̃)−−→ γ, by a shorter derivation. But the

variables of t̃ are guarded in β{µt.β/t}, and thus, by induction hypothesis, we

conclude that γ ≡ α′(β̃) and γ̃ ≡ α̃(β̃).

2. Let α(β̃)
υ−→ γ. The proof is as in the first case, except that we need not worry about

parameters in prefixes. The main difference is that we must also prove that α′ is
guarded. The base case is trivial. Case α ≡

∑
i∈I υ.αi, all the αi must be guarded

because α is, and thus α′ is guarded. In the remaining cases, the conclusion is a
consequence of the induction hypothesis.

The proof is complete.

Lemma 4.15. Let α be guarded, and consider all its free variables in t̃. If α(β̃) =⇒ γ

then there exists α′ with free variables in t̃ such that γ ≡ α′(β̃) and, for all β̃′, we have

α(β̃′) =⇒ α′(β̃′).

12Induction on the lenght of the derivation of the transition.

30

Proof. Let α(β̃) =⇒ γ and let n be the actual number of υ’s in the transition. The proof
follows easily from the previous lemma, by induction on n.

We are finally in a position to prove the uniqueness of the solutions of equations, the result
that leads to the correctness of the axiom system.

Theorem 4.16 (Unique solutions of equations). Let β̃ be guarded, α̃1≈β̃(α̃1) and

α̃2 ≈ β̃(α̃2). Then α̃1 ≈ α̃2.

Proof. Let R be the relation {(γ(α̃1), γ(α̃2)) | var(γ)⊆ t̃}. We will show that:

1. γ(α̃1)
l(δ̃1)−−→ α1 implies ∃α2, δ̃2 γ(α̃2)

l(δ̃2)−−→ α2 and α1(δ̃1)≈R≈ α2(δ̃2);

2. γ(α̃1) =⇒ α1 implies ∃α2 γ(α̃2) =⇒ α2 and α1 ≈R≈ α2.

1. So let us prove the first item: since ≈ is a congruence,

γ(α̃1)≈ γ(β̃(α̃1)) R γ(β̃(α̃2))≈ γ(α̃2) .

Therefore, by hypothesis α̃1 ≈ β̃(α̃1) and β̃(α̃2) ≈ α̃2. Let γ(α̃1)
l(δ̃1)−−→ α1. Then,

γ(β̃(α̃1))
l(δ̃′1)−−→ α′1 with δ̃1 ≈ δ̃′1 and α1 ≈ α′1. By Lemma 4.14, there are γ̃ and γ′

such that δ̃′1 ≡ γ̃(α̃1), α
′
1 ≡ γ′(α1) and γ(β̃(α̃2))

l(γ̃(α̃2))−−−−→ α′2 ≡ γ′(α̃2), which implies

γ̃(α̃2)
l(δ̃2)−−→ α2, with γ̃(α̃2)≈ δ̃2 and α′2 ≈ α2.

We conclude that δ̃1 ≈R≈ δ̃2 and α1 ≈R≈ α2.

2. We prove 2 by similar reasoning, but using Lemma 4.15, instead of Lemma 4.14.

By the results we have seen before, and by symmetry, this establishes that R is a label-
strong bisimulation up to label-strong bisimilarity, and also that γ(α̃1) ≈ γ(α̃2) for all γ,
which includes the cases α1i ≈ α2i (γ ≡ ti), for all i= 1, . . . , |t̃|.

Note that from this result follows as a corollary that the recursive constructor preserves
the equivalence notion (at least for guarded types), as stated in Prop/Definition 4.11. We
finally present the proof of that result.

Proof. If α ≈ β and both are guarded, then since µt.α ≈ α(µt.α), also µt.α ≈ β(µt.α),
thus µt.α≈ µt.β.

5 Completeness of the axiom system for image-finite

types

The presence of the recursive operator in the algebra allows us to define infinite types like
µt.(l.t), a type that represents an infinite sequence of l-actions. It represents the behaviour
of a persistent object that repeatedly offers a method l. This is actually an image-finite

31

type,13 but the recursive operator, together with the parallel composition operator, allows
us to define image-infinite types like µt.υ.(l‖t). This would be the type of an ephemeral
object (usable only once) with a method l that is created by a method of a persistent
object.

Due to decidability issues in process algebra, the study of complete axiomatisations of
equivalence notions is restricted to languages generating only image-finite terms. Therefore,
in this section we use a sublanguage of ABT, obtained by removing the parallel composition
operator from the grammar in Definition 4.1. The resulting language is image-finite (van
Glabbeek [vG93a] proves that a language with action prefixes, choice, and recursion is
image-finite).

The main result herein is the completeness of the axiom system of the previous section
for this language of image-finite types. The proof is not trivial, and so we dedicate to
it this section. It follows the “standard” structure of that for image-finite CCS [Mil89b],
being significantly simpler, as ABT does not have communication.

5.1 Equational characterisation

The purpose of this first step of the completeness proof is to show an equational charac-
terisation theorem showing that all types satisfy some set of equations.

Terminology. Consider a set of variables T = {t1, . . . , tn} and a set of types A =
{α1, . . . , αn} where fv(A) ⊆ T and n ≥ 0. Let S : t1 = α1, . . . , tn = αn denote a system
of (possibly mutually recursive) equations, and let var(S) = T . We use the following
abbreviations: t̃ = t1, . . . , tn, α̃ = α1, . . . , αn and S : t̃ = α̃ denotes a system of equations.
Furthermore, ` α̃ = β̃(α̃) stands for `α1 = β1(α1) and . . . and `αn = βn(αn), for some
n ≥ 0.

Then, ∀ i.1 ≤ i ≤ n,

1. we write ti
π−→ t, if π.t is a summand of αi;

2. let α1 be a closed type; we write α1S if, for any β̃ it is the case that ` α̃ = β̃(α̃);

3. we say the system S is: guarded, if ∀i ti 6
υ

=⇒ ti; saturated if ti
υ

=⇒ t′ implies ti
υ−→ t′;

and standard, if αi ≡
∑

j∈J υ.tf(i,j) or αi ≡
∑

j∈J lij(t̃
′
f(i,j)).tf(i,j), where t̃′f(i,j) ⊆ t̃.

The following lemma is crucial to prove that semantically equivalent types satisfying two
different sets of equations also satisfy a common set of equations (Theorem 5.2).

Lemma 5.1 (Saturation).
Let αS, with S standard and guarded. There is an S ′ standard, guarded, and saturated
such that αS ′.

13A type α is image-finite, if the collection {β | α π−→ β} is finite for each action π.

32

Proof. From S obtain S ′ saturated, by saturating each equation. Consider S: t̃= α̃ and
take t1 = α1. It is now necessary to perform a case analysis on the structure of α1. Since
S is standard, there are only two cases to be considered.

1. Case α1 is a labelled sum, it is already (trivially) saturated.

2. Case α1 is a blocked sum, as it is guarded by hypothesis, if t1
υ.υ−−→ tj then j 6= 1. To

saturate α1 proceed like in the second case of the proof of Lemma 3.11, obtaining α′1.

Now in S substitute α′1 for α1 and repeat this process for the remaining equations.

Theorem 5.2 (Common set of equations).

Consider two systems of equations S: t̃ = γ̃ and T : ũ = δ̃, standard and guarded, where
var(S) is disjoint from var(T). Let αS, and β T , and let α ≈ β. Then, there is a
system U standard and guarded such that αU and β U .

Proof. By Lemma 5.1, assume S and T saturated. We construct the common set U as
follows.

There are α̃ and β̃, with α1 ≡ α and β1 ≡ β such that ` α̃ = γ̃[α̃/t̃] and ` β̃ = δ̃[β̃/ũ].
Since by hypothesis α≈ β and S and T are saturated:

1. t1
l(t̃′)−−→ ti implies ∃uj ,ũ′(u1

l(ũ′)−−→ uj and αiα̃
′ ≈ βjβ̃′)14;

2. u1
l(ũ′)−−→ uj implies ∃ti,t̃′(t1

l(t̃′)−−→ ti and αiα̃
′ ≈ βjβ̃′);

3. t1
υ−→ ti implies ∃uj(u1

υ−→ uj and αi ≈ βj);

4. u1
υ−→ uj implies ∃ti(t1

υ−→ ti and αi ≈ βj).

Consider the following bisimulation relation R:

1. R⊆ t̃× ũ such that

(a) t
l(t̃′)−−→ t′ implies ∃u′,ũ′(u

l(ũ′)−−→ u′ and t′t̃′Ru′ũ′);

(b) u
l(ũ′)−−→ u′ implies ∃t′,t̃′(t

l(t̃′)−−→ t′ and t′t̃′Ru′ũ′);

(c) t
υ−→ t′ implies (t′Ru or ∃u′(u

υ−→ u′ and t′Ru′));

(d) u
υ−→ u′ implies (t R u′ or ∃t′(t

υ−→ t′ and t′Ru′)).

2. t1Ru1.

We aim at U : ṽ = ε̃, where ṽ = {vij | ti R uj}, and ε̃= {εij | ti R uj}, with εij being a sum
with summands:

14Consider subfamilies of types α̃′ and β̃′, corresponding respectively to t̃′ and ũ′.

33

1. l(ṽ′).vkl, if ti
l(t̃′)−−→ tk and uj

l(ũ′)−−→ ul and tk t̃
′Rulũ

′;15

2. υ.vkl, if ti
υ−→ tk and uj

υ−→ ul and tk Rul.

To finally prove ’αU ’, with v11 being the leading variable, we must find ϕ̃ such that
ϕ1 ≡ α and ` ϕ̃= ε̃[ϕ̃/ṽ].
Let ϕij ≡ αi. Since ti ≈ uj we have two cases to consider:

1. Case ti
l(t̃′)−−→ tk, where tk Rul and t̃′R ũ.

Then εij is a labelled sum with a summand l(ṽ′).vkl, and αi has a summand l(α′, . . .).αk;

thus εij[ϕ̃/ṽ] has a summand l(α′, . . .).αk, and we conclude the equality.

2. Case ti
υ−→ tk and tk Rul.

Then εij is a blocked sum with a summand υ.vkl, and αi has a summand υ.αk;

thus εij[ϕ̃/ṽ] has a summand υ.α, with υ.tk ≈ υ.ul, and we conclude the equality.

The proof is complete.

We prove now that all types satisfy a standard and guarded set of equations.

Proposition 5.3 (Equational characterisation).
For every image-finite type α with free variables t̃ there is S standard and guarded such
that αS, and var(S)⊆ t̃. Moreover, if t is guarded in α, then t is guarded in S.

Proof. By induction on the structure of α. Construct the set S, standard and guarded,
as in the proof of Theorem 4.1 in [Mil89b].

5.2 Completeness for image-finite types

From the results in the previous subsection we establish the main result of this section: the
axiom system A is complete with respect to the equivalence notion for image-finite types,
that is, types without the parallel composition operator.

We do this in two steps, as usual: first prove the completeness of the axiom system
for image-finite guarded types, and then show that every type has a provably equivalent
guarded one, hence the axiomatisation is complete for all image-finite types. The former
step is the critical one.

So let us prove first that the types that satisfy a set of equations are unique up to
bisimulation.

Theorem 5.4 (Unique solution of equations).
If S is guarded with free variables t̃, then there is a type α such that αS. Moreover, if
for some β with free variables t̃, β S, then `α = β.

15Consider v′n the variable associated with t′n × u′n, e.g., v′n = v25 if t′n = t2 and u′n = u5.

34

Proof. By induction on the cardinality of S.

The base case is immediate: consider the system S: t = δ with t guarded in δ; making

α
def
= µt.δ, rule R1 ensures µt.δS; moreover, if there is a β with free variables t such that

β S, i.e. ` β = δ(β), then by rule R2, ` β = µt.δ, as required. For the induction step
proceed similarly to the proof of Theorem 4.2 in [Mil89b].

Theorem 5.5 (Completeness for image-finite guarded types).
If α and β are image-finite guarded types, and α≈ β then `α = β.

Proof. Proposition 5.3 ensures that there is an S standard and guarded such that αS
and an S ′ standard and guarded such that β S ′. But then Theorem 5.2 guarantees that
there is a single set of equations that they both satisfy, and hence the result follows using
Theorem 5.4.

Proposition 5.6 (Reduction to guarded types).
For every type α there is a guarded type β such that `α = β.

Proof. One should perform a case analysis on the form of α, but since we consider only
contractive types (i.e., α 6= µt.t), it is enough to consider types of the form µt.α. The diffi-
culty is that t may occur arbitrarily deep in α, possibly within other recursions. Therefore,
it is useful to prove a stronger result (according to the proof for CCS by Milner [Mil89b]):

For every type α such that if t ∈ fv(α) then t 6= α there is a guarded type β for which:

1. t is guarded in β;

2. no free unguarded occurrence of any variable in β lies within a recursion in β;

3. `µt.α = µt.β.

We prove this by induction on the depth of the nesting of recursions in α.

1. The first step is to remove from α free unguarded occurrences of variables occurring
within recursions. By induction hypothesis, for every µt′.γ in α such that the recur-
sion depth of γ is smaller than that of α, there is a γ′ for which the result above
holds. Thus, no free unguarded occurrence of any variable in γ′[µt′.γ/t′] lies within a
recursion. Now substitute in α every top-level µt′.γ by γ′[µt′.γ/t′], obtaining a type
α′ that fulfils the four required conditions.

2. Then, we only need to remove the remaining free unguarded occurrence of t in α′,
which do not lie within recursions. A case analysis on the structure of α′ leads to
the conclusion α′≡µt.(υ.t+

∑
i∈I υ.αi); applying rule R3 yields `α′=µt.

∑
i∈I υ.αi.

Repeatedly applying this procedure yields the envisage type µt.β, and the result
follows by transitivity.

Since we conclude the proof of the stronger result, we’re done.

Corollary 5.7 (Completeness for image-finite types).
If α and β are image-finite types, and α≈ β then `α = β.

Proof. Straightforward, using the previous proposition and Theorem 5.5.

35

6 Final discussion

To represent with a type the behaviour of a (non-uniform, possibly distributed) concurrent
object, a process algebra is a natural idea. Since a type (partially) specifies an object,
three are the basic requirements:

1. method calls are the basic actions, and thus,

2. the silent action is external rather than internal, as it corresponds to an action in
another object (not directly observable);

3. sums (records-as-objects) are either prefixed by method calls, representing objects’
interfaces, or by the silent action, representing disabled—or blocked—objects; in
short, there are neither free nor mixed sums.

Hence, actions are either method calls or the silent action, the basic process is the (possibly
empty) action-prefixed sum, and the composition operators are parallel composition and
recursion.

No existing process algebra has all these characteristics together. BPP is similar to,
but not exactly, what we need. For the sake of simplicity and to avoid confusion we define
ABT, a new process algebra. Furthermore, since the notion of observation differs from the
usual one in process algebra, it leads to a new, simple, and natural notion of equivalence,
lsb, which has a complete axiom system, at least for image-finite types. Moreover, the
absence of mixed sums in ABT leads to a simpler axiomatic system than that of CCS.

To conclude, we discuss three last questions:

1. can the proof system be complete, when considering image-infinite types?

2. why is lsb our notion of type equivalence?

3. what else remains to be done?

6.1 Completeness for image-infinite types

Completeness for infinite state types is a considerably more difficult problem. One can-
not hope for completeness of axiomatisations of equivalence notions in process algebras
like CCS, since the problem of checking weak notions of equivalences like bisimulation is
undecidable [May00, Sbr08].

The study of image-infinite (or infinite-state) systems is a lively area of concurrency
theory, with several important results established [BE97, CH93, Mol96]. Srba wrote a com-
prehensive survey on (un)decidability results of equivalence notions and decision problems
on infinite-state systems, which he keeps up-to-date [Sbr08].

We focus our attention in two process algebras: BPA and BPP. BPA is the class of
Basic Process Algebra of Bergstra and Klop [BK85], corresponding to the transition sys-
tems associated with Greibach Normal Form (GNF) context-free grammars, in which only

36

left-most derivations are allowed. BPP is the class of Basic Parallel Processes of Chris-
tensen [Chr93], which is the parallel counterpart of BPA but with arbitrary derivations.
Strong bisimilarity is decidable for BPA [CHS95] and for BPP [CHM93b, CHM93a]. How-
ever there is still no such result for weak bisimilarity on full BPA and BPP, although the
result is already established for the totally normed subclasses [Hir97], and a possible deci-
sion procedure for full BPP is NP-hard [Stř98]. Recent results are reported by Křet́ınský
et al. [KŘS06]. It is thus an open problem if an equivalence notion like the one we propose
herein is decidable.

Nevertheless, even if ultimately decidability is an important result to ensure the ap-
plicability of our equivalence notion, we are looking for completeness, since decidability is
stronger than what we need: the existence of a proof for each equation suffices.

6.2 The notion of bisimulation

Why is lsb our equivalence notion? Could it be different? Could we have used an existent
notion? We now approach these questions.

An alternative notion of bisimulation. Consider the following definition of a bisim-
ulation relation.

Definition 6.1 (Label-semi-strong bisimilarity).

1. A symmetric binary relation R ⊆ T × T is a label-semi-strong bisimulation, (lssb),
if whenever α R β then

(a) α
l(α̃)−−→ α′ implies ∃β′, β̃, γ (β

l(β̃)−−→ γ =⇒ β′ and α′α̃ R β′β̃);

(b) α
υ−→ α′ implies ∃β′ (β =⇒ β′ and α′ R β′);

2. Two types α and β are label-semi-strong bisimilar, and we write α≈sβ, if there is a
label-semi-strong bisimulation R such that α R β.

Again, ≈s is an equivalence relation and α ≈s β holds if and only if conditions 1(a)
and 1(b) of the previous definition hold with R replaced by ≈s. Furthermore, lssb is a
congruence relation (the proofs of these results are very similar to those done previously
for lsb).

This notion differs from lsb by allowing unblockings after method calls (condition 1(a)).
In the context of deterministic finite types the two equivalences coincide, as we have pre-
viously shown [RRV98]. However, as we discuss in that paper, the notions do not coincide
in more general transition systems, namely in non-deterministic ones.

Take the systems in Figure 1. In l.υ.l, the second l is only observable after the oc-
currence of the unblocking, which corresponds to the execution of some action in another
object. There is a causal dependency between the first l, the action corresponding to the
unblocking, and the second l. If the law l.υ.l= l.υ.l+ l.l holds for some equivalence notion
then the notion does not capture causality between action execution in different objects,

37

�
l ��
•
υ ��
•
l ��
•

≈s

6≈

�
l ��

l
��?

??
?

•
υ ��

•
l��

•
l ��

•

•

Figure 1: lsb vs. lssb: comparing l.υ.l to l.υ.l + l.l

and thus it is a local notion, whereas a notion that distinguishes the types in the law is
global (with respect to the community of objects).

Theorem 6.2 (Comparing lsb and lssb).
Label-strong bisimulation is finer than label-semi-strong bisimulation.

Proof. Clearly, a label-strong bisimulation is also a label-semi-strong bisimulation. The
converse does not hold, as, e.g., the systems in Figure 1 show.

We have adopted lsb as the “right” notion of bisimulation, for it is global, and it is tech-
nically simpler. Furthermore, it is finer than lssb.

Relation to other notions. What is the position of lsb in the lattice of bisimulation
equivalences? Since it is a bisimulation it is above a large spectrum of equivalence no-
tions [vG93b]. Obviously, its relative position varies according to the characteristics of the
transition system in consideration. We focus now on CCS and ABT.

As with weak bisimulation (wb), lsb is not a congruence in CCS. However, one defines
from lsb a congruence (let us call it lsc) just by demanding that a silent action should be
matched by at least one silent action (cf. the observational congruence, oc). Hence, lsc
is finer than oc (as lsb is finer than wb), since the laws of lsc are particular cases of the
laws of oc. In CCS, the coarsest bisimulation which is still a congruence is the progressing
bisimulation (pb) [MS92]. Notice that lsc is incomparable to pb, as, e.g., l.υ.m 6=pb l.υ.υ.m
but l.υ.m≈lsc l.υ.υ.m, and l + τ.l =pb τ.l but l + τ.l 6≈lsc τ.l.

In ABT, wb is a congruence, as the sums are prefixed. Since this setting has no
mixed sums, the υ-laws are particular cases of the laws holding for wb. Thus, wb is still
coarser than lsb, but notice that pb is, in this setting, finer than the previous two, since
it distinguishes, e.g., l.υ.m from l.υ.υ.m (hence, the law U1—valid for lsb and for weak
bisimulation—is not valid for pb).

6.3 Further work

The first priority is to find out if lsb is completely axiomatisable in the context of ABT.
From there, apart from the decision procedure for lsb, two topics are interesting: a modal

38

characterisation, to specify properties, and a notion of subtyping, to allow program refine-
ment.

Modal characterisation. To specify/verify properties of types it is useful to have a
logical characterisation of the equivalence notion. In the process algebra realm this is done
with a modal action logic like the Hennessy-Milner Logic [HM85, Mil89a]. In the same
way we define a modal logic for ABT.

Definition 6.3 (Syntax).
The grammar below defines the set F of formulae of the logic.

ϕ, ψ ::= > | ¬ϕ | (ϕ ∧ ψ) | 〈υ〉ϕ | 〈l(α̃)〉ϕ

The relation below defines when a type satisfies a formula.

Definition 6.4 (Semantics).
The following rules inductively define the satisfaction relation |= ⊆T × F .

1. α |=>, for any α;

2. α |=¬ϕ, if not α |=ϕ;

3. α |=ϕ ∧ ψ, if α |=ϕ and α |=ψ;

4. α |= 〈υ〉ϕ, if ∃α′(α =⇒ α′ and α′ |=ϕ);

5. α |= 〈l(α̃)〉ϕ, if ∃α′(α
l(α̃)−−→ α′ and α′ |=ϕ).

An equivalence relation rises naturally from the satisfaction relation.

Definition 6.5 (Logical equivalence).
Types α and β are logically equivalent, α =lg β, if, for all ϕ, we have α |=ϕ, if, and only
if, β |=ϕ.

Logical equivalence is sound with respect to lsb. The converse direction is a conjecture.
Usually, it requires assuming image-finite systems, but =⇒ is not image-finite.

Theorem 6.6 (Soundness).
If α =lg β then α≈ β.

Proof. By induction on the structure of the formulae.

We would like to extend this modal logic with recursion (in the lines of the modal µ-
calculus [Koz83]), study our types as logical formulae, and see how to specify and verify
certain properties of systems of objects.

39

Subtyping. Since types are partial specifications of the behaviour of objects, the sub-
typing relation gives us the possibility of specifying that behaviour in more detail. In fact,
the principle of substitutability16 states that “a type β is a subtype of a type α, if β can
safely be used in place of α” [LW94]. “Safely” means that the program is still typable and
thus no run-time error arises. Therefore, subtyping allows the substitution of: (1) a type
for one with less methods (co-variant in width), as it is safe to provide more than what
is expected; and (2) a parameter type for one with more methods (contra-variant in the
arguments), as it is safe to assume that the argument has less behaviour than it really has.

Instead of defining the subtyping relation via typing rules, as for instance, in [PS96] we
propose a semantic definition. It would be interesting to define those rules and study the
relationship among both notions; we leave that for future work.

Definition 6.7 (Similarity on types).

1. A binary relation R⊆T × T is a label-strong simulation, or simply a simulation, if
whenever α R β we have:

(a) β
l(β̃)−−→ β′ implies ∃α′, α̃ (α

l(α̃)−−→ α′ and α′β̃ R β′α̃);

(b) β
υ−→ β′ implies ∃β′ (α =⇒ α′ and α′ R β′);

2. Type β is label-strong similar to type α, or α simulates β, and we write α ≤ β, if
there is a label-strong simulation R such that α R β.

A symmetric simulation is a label-strong bisimulation (Definition 2.5 in page 13). The
simulation is a subtyping relation, since it is a pre-order (reflexive and transitive). Thus,
if α simulates α′, we say that α is a subtype of α′, and write α≤ α′.

Example 6.8. Subtyping provides flexibility, allowing to change/update (parts of) a sys-
tem without compromising the overall behavioural and correctness. The following examples
show, on the left-hand side, types specifying systems that can safely replace those specified
by the type on the right-hand side.

1. (n ‖ l(m))≤ l(m) and (n+ l(m))≤ l(m)

2. l(m)≤ l(m+ n)

3. l(m)≤ υ.l(m)

4. Recall Example 2.2 (Page 11) where

Menu
def
= balance + deposit(int) + withdraw(int)

It is possible to add a new functionality like money transfer without compromising
the correctness of the system. Let

Menu’
def
= balance + deposit(int) + withdraw(int) + transfer(int,int)

One easily checks that Menu’ ≤Menu.

16AKA the Liskov substitution principle.

40

The following result ensures that subtyping is a pre-order.

Proposition 6.9 ((T ,≤) is a pre-ordered set).

1. α≤ α;

2. if α≤ β and β ≤ γ then α≤ γ;

Proof. Straightforward, simply using the definition

The operators of ABT, as well as lsb, preserve the simulation relation.

Proposition 6.10 (Congruence).

1. Similarity is a congruence relation;

2. lsb preserves similarity.

Proof. The proof of the first clause is standard. The proof of the second clause is trivial,
since ≈ implies ≤.

This pre-order relation induces an equivalence relation (if α ≤ β and β ≤ α then α = β)
that is coarser than lsb, since usually there are types that can simulate each other without
being bisimilar. A simple example is the pair of types υ.(a+ b) and υ.(υ.a+ υ.(a+ b)).

We would like to define a syntactic notion of subtyping and develop a proof system via
subtyping rules, sound and possibly complete with respect to the semantic notion based
on simulation that we just presented.

6.4 Related work

In sequential computational settings, since they were proposed, types have been interpreted
as predicates, i.e., abstract behavioural specifications of a program, and have thus formal
semantic interpretations [Hin97, Sel08]. In the context of object-oriented programming,
types are used to statically guarantee semantic interoperability, capturing behavioural
aspects of the specified systems. Barbara Liskov’s substitution principle allow to safely
replace objects of type T in a program with objects of type S, if S is a subtype of T [LW94].
Oscar Nierstrasz noticed that objects may exhibit non-uniform method availability (one
cannot pop from an empty buffer - push should be called first), thus requiring types to
represent possible sequences of method calls [Nie95].

Concurrency theory inspires dynamic notions of typing and subtyping, often called
behavioural. These notions have (at least) three different forms: types and effects, regular
types, and processes as types. In the following paragraphs we briefly present each approach
and compare it to ours.

41

Types and effects. The type and effect discipline is a framework for principal typing
reconstruction in implicitly typed polymorphic functional languages [NN99, TJ94]. An
effect system extends a type system to statically describe the dynamic behaviour of a com-
putation (its effect). Types describe what expressions compute (sets of values) and effects
describe how expressions compute (behaviour). In the context of polymorphic functional
languages, these systems are used to control resource usage, like memory manipulation.
When such languages are concurrent, effects resemble processes, and the effect system is
akin to a labelled transition system [HNN99]. Types and effects may decrease with compu-
tation. As effects (also called behaviours) model communication, their decrease corresponds
to consuming prefixes, which suggests an operational semantics. Thus, behaviours look like
process algebra terms, an abstraction of the semantics of the language. In the context of
name-passing process calculi, types and behaviours may be merged to become abstract
specifications of systems behaviour. We give a detailed account of this approach ahead,
when presenting process types.

Behavioural typing. Several researchers are working on this track, developing be-
havioural notions of typing for concurrent object calculi. We give herein a brief account of
their work. Consider two main approaches:

Regular types : use a regular language as types for objects.

1. Nierstrasz characterises the traces of menus offered by (active) objects [Nie95]. He
proposes a notion of subtyping, request substitutability, based on a generalisation of
the Liskov substitution principle by Wegner and Zdonick [WZ88], which states that
“services may be refined as long as the original promises are still upheld”. According
to the extension relation of Brinksma et al. [BSS87], request substitutability is a
transition relation, close to the failures model.

2. Colaço et al. propose a calculus of actors based on an extended TyCO, supporting
objects that dynamically change behaviour [Col97, CPS97, CPDS99]. The authors
define a type system which aims at the detection of “orphan messages”, i.e. messages
that may never be accepted by any actor, either because the requested service is not
available, or because, due to dynamic changes in an actor’s interface, the requested
service is no longer available. Types are interface-like, with multiplicities (how often
can a method be invoked), thus without dynamic information, and the type system
requires complex operations on a lattice of types. Nonetheless, they define a type in-
ference algorithm based on set-constraints resolution, a well-known technique widely
used in functional languages.

3. Najm and Nimour propose a calculus of objects that features dynamically changing
interfaces [NN97, NNS99a, NNS99b]. The authors develop a typing system handling
dynamic method offers in interfaces, and guaranteeing a liveness property: all pend-
ing requests are treated. Types are sets of deterministic guarded parametric equa-
tions, equipped with a transition relation, and representing infinite state systems. A
type inference algorithm is built on an equivalence relation, a compatibility relation,

42

and a subtyping relation on types, based on the simulation and on the bisimulation
relations (strong versions, thus decidable).

Process types. To capture with types behavioural aspects of a system, a natural idea,
inspired by the effect analysis techniques, is to consider processes as types. Approaches
in the context of concurrency, namely in process calculi, where mainly syntactical, but
recently, through the combination of both type and model checking, semantic approaches
have emerged, leading to behavioural type systems: types are sound abstractions of the
behaviour of processes, and the analysis performed is akin to model checking. As the
properties are checked on types, not on processes, they become decidable, and thus this
approach benefits from the advantages of both type and model checking. Some significant
works are the following.

1. Boudol proposes a dynamic type system for the Blue Calculus, a variant of the π-
calculus directly incorporating the λ-calculus [Bou97]. Types are functional and as-
signed to terms, in the style of Curry simple types, and incorporate Hennessy-Milner
logic with recursion—modalities interpreted as resources of names. So, processes in-
habit the types, and this approach captures some causality in the usage of names in
a process, ensuring that messages to a name will meet a corresponding offer. Well-
typed processes behave correctly, a property preserved under reduction.

2. Puntigam defines a calculus of active objects with process types that specify con-
straints on the ordering of messages [Pun01, PP01, Pun02]. A static type inference
system (with polynomial time complexity) ensures that all sequences of messages
sent to an object are acceptable, even if the set of acceptable messages changes dy-
namically. Objects are syntactically constrained to a unique identity and messages
are received in the order they were sent and not suppressed by deadlocks, as every
object is associated with a FIFO queue. The expressiveness of types is that of a
non-regular language, which is equipped with a subtyping relation.

3. Kobayashi et al. have studied deadlock and livelock detection in mobile calculi [Kob00,
KSS00]. Channel types have information not only about their arity, but also about
their usage (sequences of possible inputs and outputs), about when they should be
used, and if they must be used.

4. To avoid having a dedicated proof system, tailored to the specific target property,
often with its own language of types, Igarashi and Kobayashi proposed a generic
framework to develop type systems to ensure various properties, the Generic Type
System [IK04]. The language of types is the restriction-free fragment of CCS, hence
types are abstract representations of a process’ behaviour. Particular type systems
for concrete properties emerge as instances of the generic one: a given property is
captured by instantiating a general subtyping relation and by defining a consistency
condition on types. One needs to prove that reduction on types preserves consistency

43

and that consistency on types implies the desired condition on processes. This pro-
cess works with safety properties (like simple arity-mismatch, race-freedom and even
deadlock-freedom), but not with liveness properties, which require model-checking.

This line of work has been pursued by several authors [AB10, Cai07, CRR02, RR01].

Protocols types specify the sequence and form of messages passing over communication
channels between a number of parties, in distributed systems. Correctness of such systems
implies that protocols are obeyed. Types are terms of a simple process algebra that allows
to describe one side of a communication process, like ABT. There are two main trends.

1. Session types allow the specification of a protocol to be expressed as a type [HVK98,
THK94]; when a communication channel is created, a session type is associated with
it; the two parties at each end of the channel have dual types. Such a type specifies
not only the data types of individual messages, but also the state transitions of
the protocol and hence the allowable sequences of messages. Static typechecking
makes possible to verify, at compile-time, that an agent using the channel does so in
accordance with the protocol.

Unlike ABT, session types distinguish incoming from outgoing actions, but do not
have a parallel composition operator. The purpose of session types is however rather
different from that of ABT: to discipline communication protocols running on private
channels, instead of representing the behaviour of a distributed object.

2. Conversation types capture the interactive behaviour of a service-based system, de-
scribing multiparty interactions [CV10]. The aim is to discipline the conversations
between an unanticipated number of participants, ensuring at the same time progress
in the presence of several interleaved conversations.

ABT can be seen as a sublanguage of conversation types, which also uses both spatial
and behavioural operators.

Concluding remarks. None of the works referred above study semantically the language
of types or propose equivalence notions, so in that respect our work is original. ABT
serves well as a language for partial specification of object behaviour: a term captures
all the possible behaviour of a concurrent (possibly distributed) object. It may even be
consider as a denotation of a labelled transition system representing such behaviour. Some
of the notions of process types presented before are also suited for such representation. In
particular, ABT is very similar to session types or to conversation types, thus the work
presented here may be applied to those languages.

7 Conclusions

The approach to behavioural types for a concurrent calculus in other works is done either
by using an existing process algebra as a language of types, or by designing a new language

44

appropriate to a particular calculus. We instead propose a simple and natural notion of
types for a general setting—systems of (non-uniform) concurrent objects—and then show
that these types are adequate to the purpose, and are a process algebra with convenient
properties.

The Algebra of Behavioural Types, ABT is a process algebra in the style of CCS. It is
syntactically very similar to its proper subclass BPP; in particular, communication is not
present. The actions have terms of the process algebra as parameters. The nature of the
silent action induces an original equivalence notion, different from all other equivalences
known for process algebras. Naturally the set of axioms that characterises the equivalence
notion is also original. However, the proof techniques are basically the same, but some
crucial proofs are simpler. The interesting aspect is that normal forms include a parallel
composition, as there is no expansion law for the parallel composition of a labelled sum
and a blocked type. Thus the proof of the normal form lemma and of the completeness
theorem are different from those for CCS.

Some of the ideas presented in this paper, namely regarding external silent actions and
label-(semi-)strong bisimulation, appeared first in [RRV98], where however the algebra was
much less tractable (e.g., with non-associative sums) and no completeness results were ob-
tained. The developments presented here are part of the first author’s PhD thesis [Rav00].

We use ABT to type non-uniform concurrent objects in TyCO, where we formalise a
notion of process with a communication error that copes with non-uniform service avail-
ability [RV00]: we advocate that the right notion of communication error in systems of
concurrent objects is that no message should be forever not understood. Using ABT as the
language of types, we have developed for TyCO a static type system that assigns terms of
ABT to TyCO processes, and enjoys the subject reduction property, ensuring that typable
processes are not locally deadlocked, and do not run into errors [RV00, Rav00].

We believe that ABT can be used not only to type other concurrent calculi with exten-
sions for objects, but also to type distribute calculi. To fully use its expressiveness one can
define in its favourite calculus functionalities like a method update that changes the type
of the method, object extension adding methods, distributed objects without uniqueness
of objects’ identifiers, and non-uniform objects.

Acknowledgements

Special thanks to Gérard Boudol, Ilaria Castellani, Silvano Dal Zilio, and Massimo Merro,
for fruitful discussions and careful reading of parts of this document. Several anonymous
referees made useful comments.

References

[AB10] Lucia Acciai and Michele Boreale. Spatial and behavioural types in the pi-
calculus. Journal of Information and Computation, 208:1118–1153, 2010.

45

[Bar84] Henk Barendregt. The Lambda Calculus - Its Syntax and Semantics. North-
Holland, 1981 (1st ed.) revised 84.

[BBK87] Jos C. M. Baeten, Jan A. Bergstra, and Jan W. Klop. On the consistency of
Koomen’s fair abstraction rule. Theoretical Computer Science, 51(1–2):129–
176, 1987.

[BD97] Howard Bowman and John Derrick, editors. 2nd IFIP Conference on Formal
Methods for Open Object-based Distributed Systems, Canterbury, U. K. Chap-
man & Hall, 1997.

[BE97] Olaf Burkart and Javier Esparza. More infinite results. Bulletin of the European
Association for Theoretical Computer Science (EATCS), 62:138–159, 1997.

[Bes93] Eike Best, editor. 4th International Conference on Concurrency Theory (CON-
CUR), Hildesheim, Germany, volume 1243 of Lecture Notes in Computer Sci-
ence. Springer-Verlag, 1993.

[BK85] Jan A. Bergstra and Jan W. Klop. Algebra of communicating processes with
abstraction. Theoretical Computer Science, 37(1):77–121, 1985.

[Bou97] Gérard Boudol. Typing the use of resources in a concurrent calculus. In R. K.
Shyamasundar and Kazunori Ueda, editors, Proceedings of ASIAN’97, volume
1345 of Lecture Notes in Computer Science, pages 239–253. Springer-Verlag,
1997.

[Bou98] Gérard Boudol. The π-calculus in direct style. Higher-Order and Symbolic
Computation, 11:177–208, 1998.

[BSS87] Ed Brinksma, Giuseppe Scollo, and Chris Steenbergen. LOTOS specifications,
their implementations and their tests. In Protocol Specification, Testing and
Verification VI (IFIP), pages 349–360. North-Holland, 1987.

[Cai07] Lúıs Caires. Logical semantics of types for concurrency. In Proceedings of the
2nd Conference on Algebra and Coalgebra in Computer Science (CALCO’07),
volume 4624 of Lecture Notes in Computer Science, pages 16–35. Springer-
Verlag, 2007.

[CFG99] Paolo Ciancarini, Alesandro Fantechi, and Roberto Gorrieri, editors. 3rd IFIP
Conference on Formal Methods for Open Object-based Distributed Systems, Flo-
rence, Italy. Kluwer Academic Publishers, 1999.

[CH93] Søren Christensen and Hans Hüttel. Decidability issues for infinite-state
processes—a survey. Bulletin of the European Association for Theoretical Com-
puter Science (EATCS), 51:156–166, 1993.

46

[CHM93a] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Bisimulation equiva-
lence is decidable for basic parallel processes. In Best [Bes93], pages 143–157.

[CHM93b] Søren Christensen, Yoram Hirshfeld, and Faron Moller. Decomposability, de-
cidability and axiomatisability for bisimulation equivalence on basic parallel
processes. In Proceedings of LICS’93, pages 386–396. IEEE, Computer Society
Press, 1993.

[Chr93] Søren Christensen. Decidability and Decomposition in Process Algebras. PhD
thesis, Laboratory for Foundations of Computer Science, University of Edin-
burgh, U. K., 1993.

[CHS95] Søren Christensen, Hans Hüttel, and Colin Stirling. Bisimulation equivalence
is decidable for all context-free processes. Journal of Information and Compu-
tation, 121(2):143–148, 1995.

[Col97] Jean-Louis Colaço. Analyses Statiques d’un calcul d’acteurs par typage. Thèse
d’État, Institut National Polytechnique de Toulouse, France, 1997.

[CPDS99] Jean-Louis Colaço, Mark Pantel, Fabien Dagnat, and Patrick Sallé. Safety anal-
ysis for non-uniform service availability in actors. In Ciancarini et al. [CFG99].

[CPS97] Jean-Louis Colaço, Mark Pantel, and Patrick Sallé. A set constraint-based
analyses of actors. In Bowman and Derrick [BD97].

[CRR02] Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: model
checking message-passing programs. In Proceedings of the 29th ACM Sympo-
sium on Principles of Programming Languages (POPL), pages 45–57. ACM
Press, 2002.

[CV10] Lúıs Caires and Hugo T. Vieira. Conversation types. Theoretical Computer
Science, 411(51–52):4399–4440, 2010.

[GH99] Simon J. Gay and Malcolm J. Hole. Types and subtypes for client-server in-
teractions. In Proceedings of the 8th European Symposium on Programming
(ESOP’99), volume 1576 of Lecture Notes in Computer Science, pages 74–90.
Springer-Verlag, 1999. Full version available as Types and Subtypes for Cor-
rect Communication in Client-Server Systems. Technical report TR-2003-131,
Department of Computing Science, University of Glasgow, February 2003.

[Hin97] Roger Hindley. Basic Simple Type Theory. Cambridge University Press, 1997.

[Hir97] Yoram Hirshfeld. Bisimulation trees and the decidability of weak bisimulations.
In Proceedings of the International Workshop on the Verification of Infinite-
State Systems, volume 5 of Electronic Notes in Theoretical Computer Science
(ENTCS). Elsevier Science Publishers, 1997.

47

[HM85] Matthew Hennessy and Robin Milner. Algebraic laws for nondeterminism and
concurrency. Journal of the ACM, 32(1):137–161, 1985.

[HNN99] Chris Hankin, Flemming Nielson, and Hanne Riis Nielson. Principles of Pro-
gram Analysis. Springer, 1999.

[HVK98] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives
and type discipline for structured communication-based programming. In Chris
Hankin, editor, Proceedings of the 7th European Symposium on Programming
(ESOP’98), volume 1381 of Lecture Notes in Computer Science, pages 122–138.
Springer-Verlag, 1998.

[IK04] Atsushi Igarashi and Naoki Kobayashi. Generic type system for the pi-calculus.
Theoretical Computer Science, 311(1-3):121–163, 2004.

[Kob00] Naoki Kobayashi. Type systems for concurrent processes: From deadlock-
freedom to livelock-freedom, time-boundedness. In Theoretical Computer Sci-
ence: Exploring New Frontiers of Theoretical Informatics, Proceedings of the
International IFIP Conference TCS 2000, Sendai, Japan, volume 1872 of Lec-
ture Notes in Computer Science, pages 365–389. IFIP, Springer-Verlag, 2000.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Computer
Science, 27(3):333–354, 1983.

[KŘS06] M. Křet́ınský, V. Řehák, and J. Strejček. Refining the Undecidability Border
of Weak Bisimilarity. In Proceedings of the 7th International Workshop on
Verification of Infinite-State Systems (INFINITY’05), volume 149 of Electronic
Notes in Theoret. Computer Science, pages 17–36. Elsevier Science Publishers,
2006.

[KSS00] Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-
free process calculus. In Catuscia Palamidessi, editor, CONCUR 2000: Con-
currency Theory (11th International Conference, University Park, PA, USA),
volume 1877 of Lecture Notes in Computer Science, pages 489–503. Springer-
Verlag, 2000.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyp-
ing. ACM Transactions on Programming Languages and Systems (TOPLAS),
16(6):1811–1841, 1994.

[May00] Richard Mayr. Process rewrite systems. Journal of Information and Compu-
tation, 156(1):264–286, 2000.

[Mil89a] Robin Milner. Communication and Concurrency. International Series in Com-
puter Science. Prentice Hall, 1989.

48

[Mil89b] Robin Milner. A complete axiomatisation for observational congruence of finite-
state behaviours. Journal of Information and Computation, 81(2):227–247,
1989.

[Mil93] Robin Milner. The polyadic π-calculus: A tutorial. In Friedrich L. Bauer,
Wilfried Brauer, and Helmut Schwichtenberg, editors, Logic and Algebra of
Specification, Proceedings of the International NATO Summer School (Markto-
berdorf, Germany, 1991), volume 94 of Series F. NATO ASI, Springer-Verlag,
1993. Available as Technical Report ECS-LFCS-91-180, University of Edin-
burgh, U. K., 1991.

[Mol96] Faron Moller. Infinite results. In Ugo Montanari and Vladimiro Sassone, edi-
tors, Proceedings of CONCUR’96, volume 1119 of Lecture Notes in Computer
Science, pages 195–216. Springer-Verlag, 1996.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile pro-
cesses, part I/II. Journal of Information and Computation, 100:1–77, 1992.
Available as Technical Reports ECS-LFCS-89-85 and ECS-LFCS-89-86, Uni-
versity of Edinburgh, U. K., 1989.

[MS92] Ugo Montanari and Vladimiro Sassone. Dynamic congruence vs. progressing
bisimulation for CCS. Fundamenta Informaticae, 16(2):171–199, 1992.

[Nie95] Oscar Nierstrasz. Regular types for active objects. In Object-Oriented Software
Composition, pages 99–121. Prentice Hall, 1995.

[NN97] Elie Najm and Abdelkrim Nimour. A calculus of object bindings. In Bowman
and Derrick [BD97].

[NN99] Flemming Nielson and Hanne Riis Nielson. Type and effect systems. In Correct
System Design, pages 114–136, 1999.

[NNS99a] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Guaranteeing
liveness in an object calculus through behavioral typing. In Proceedings of
FORTE/PSTV’99. Kluwer Academic Publishers, 1999.

[NNS99b] Elie Najm, Abdelkrim Nimour, and Jean-Bernard Stefani. Infinite types for
distributed objects interfaces. In Ciancarini et al. [CFG99].

[NR99] Uwe Nestmann and António Ravara. Semantics of objects as processes (SOAP).
In Ana Moreira and Serge Demeyer, editors, ECOOP’99 Workshop Reader,
volume 1743 of Lecture Notes in Computer Science, pages 314–325. Springer-
Verlag, 1999. An introduction to, and summary of, the 2nd International SOAP-
Workshop.

[Pie02] Benjamin Pierce. Types and Programming Languages. The MIT Press, 2002.

49

[PP01] Franz Puntigam and Christof Peter. Types for active objects with static dead-
lock prevention. Fundamenta Informaticae, 49:1–27, 2001.

[PS96] Benjamin C. Pierce and Davide Sangiorgi. Typing and subtyping for mobile
processes. Mathematical Structures in Computer Science, 6(5):409–454, 1996.
An extended abstract appeared in Proceedings of LICS’93 : 376–385.

[Pun01] Franz Puntigam. Strong types for coordinating active objects. Concurrency
and Computation: Practice and Experience, 13:293–326, 2001.

[Pun02] Franz Puntigam. State inference for dynamically changing interfaces. Computer
Languages, 27:163–202, 2002.

[Rav00] António Ravara. Typing Non-Uniform Concurrent Objects. PhD thesis, Insti-
tuto Superior Técnico, Technical University of Lisbon, Portugal, 2000.

[Ren00] Arend Rensink. Bisimilarity of open terms. Journal of Information and Com-
putation, 156, 2000.

[RL99] António Ravara and Lúıs Lopes. Programming and implementation is-
sues in non-unifom TyCO. Technical report, Department of Computer
Science, Faculty of Sciences, University of Porto, 4150 Porto, Portugal,
1999. Presented at the Workshop on Object-Oriented Specification Tech-
niques for Distributed Systems and Behaviours (OOSDS’99). Satellite event
of the 1st Conference on Principles, Logics and Implementations of high-
level programming languages (PLI’99). URL: http://www.tec.informatik.uni-
rostock.de/IuK/congr/oosds99/program.htm.

[RR01] Sriram K. Rajamani and Jakob Rehof. A behavioral module system for the pi-
calculus. In Patrick Cousot, editor, Static Analysis: 8th International Sympo-
sium, SAS 2001, volume 2126 of LNCS, pages 375–394. Springer-Verlag, 2001.

[RRV98] António Ravara, Pedro Resende, and Vasco T. Vasconcelos. Towards an alge-
bra of dynamic object types. In Semantics of Objects as Processes (SOAP),
volume NS-98-5 of BRICS Notes Series, pages 25–30. Danish Institute of Basic
Research on Computer Science (BRICS), 1998.

[RV00] António Ravara and Vasco T. Vasconcelos. Typing non-uniform concurrent
objects. In Catuscia Palamidessi, editor, CONCUR 2000: Concurrency The-
ory (11th International Conference, University Park, PA, USA), volume 1877
of Lecture Notes in Computer Science, pages 474–488. Springer-Verlag, 2000.
Extended version available as DM-IST Research Report 12/2000, Portugal.

[San98] Davide Sangiorgi. An interpretation of typed objects into typed π-calculus.
Journal of Information and Computation, 143(1):34–73, 1998. Earlier version
published as Rapport de Recherche RR-3000, INRIA, August 1996.

50

[Sbr08] Jiri Sbrna. Roadmap of infinite results, 2008.

[Sel08] Jonathan Seldin. The logic of church and curry. In The Handbook of the History
of Logic, volume 5. Elsevier, 2008.

[Stř98] Jitka Stř́ıbrná. Hardness results for weak bisimilarity of simple process algebras.
In Proceedings of MFCS’98 Workshop on Concurrency, volume 18 of Electronic
Notes in Theoretical Computer Science (ENTCS). Elsevier Science Publishers,
1998.

[THK94] Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An interaction-based lan-
guage and its typing system. In Parallel Architectures and Languages Europe,
volume 817 of Lecture Notes in Computer Science. Springer-Verlag, 1994.

[TJ94] Jean-Pierre Talpin and Pierre Jouvelot. The type and effect discipline. Journal
of Information and Computation, 111(2):245–296, 1994. An extended abstract
appeared in Proceedings of LICS’92, pages 162–173.

[vG93a] Rob J. van Glabbeek. A complete axiomatization for branching bisimulation
congruence of finite-state behaviours. In Proceedings of the 18th International
Symposium on Mathematical Foundations of Computer Science (MFCS’93),
volume 711 of Lecture Notes in Computer Science, pages 473–484. Springer-
Verlag, 1993.

[vG93b] Rob J. van Glabbeek. The linear time—branching time spectrum II (the se-
mantics of sequential systems with silent moves). In Best [Bes93], pages 66–80.

[VH93] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic
π-calculus. In Best [Bes93], pages 524–538.

[VT93] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of ob-
jects. In Proceedings of the 1st International Symposium on Object Technologies
for Advanced Software, volume 742 of Lecture Notes in Computer Science, pages
460–474. Springer-Verlag, 1993.

[WZ88] Peter Wegner and Stanley B. Zdonik. Inheritance as an incremental modifica-
tion mechanism or what like is and isn’t like. In Proceedings of the 2nd European
Conference on Object-Oriented Programming (ECOOP), Oslo, Norway, volume
322 of Lecture Notes in Computer Science, pages 55–77. Springer-Verlag, 1988.

[Yin99] Mingsheng Ying. A shorter proof to uniqueness of solutions of equations (note).
Theoretical Computer Science, 216:395–397, 1999.

[Yos96] Nobuko Yoshida. Graph types for monadic mobile processes. In Proceedings
of the 16th Conference on Foundations of Software Technology and Theoretical
Computer Science (FST/TCS), volume 1180 of Lecture Notes in Computer

51

Science, pages 371–386. Springer-Verlag, 1996. Extended version as Technical
Report ECS-LFCS-96-350, University of Edinburgh.

52

