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Abstract

We thoroughly study the behavioural theory of epi, a π-calculus extended with polyadic
synchronisation. We show that the natural contextual equivalence, barbed congruence, coincides
with early bisimilarity, which is thus its co-inductive characterisation. Moreover, we relate
early bisimilarity with the other usual notions, ground, late and open, obtaining a lattice of
equivalence relations that clarifies the relationship among the “standard” bisimilarities.
Furthermore, we apply the theory developed to obtain an expressiveness result: epi extended
with key encryption primitives may be fully abstractly encoded in the original epi calculus.
The proposed encoding is sound and complete with respect to barbed congruence; hence,
cryptographic epi (crypto-epi) gets behavioural theory for free, what contrasts with other
process languages with cryptographic constructs that usually require a big effort to develop
such theory.
Therefore, it is thus possible to use crypto-epi to analyse and to verify properties of security
protocols using equational reasoning. To illustrate this claim, we prove the symmetric and
asymmetric cryptographic system laws, and the correctness of a protocol of secure message
exchange.
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1. INTRODUCTION

We study herein the behavioural theory of a π-calculus where, instead of on simple names, processes
synchronise in vectors of names (epi, acronym standing for extended π-calculus). To illustrate the expressive
power of the calculus and a possible application area, we show that some cryptographic primitives are
derivable in epi. Therefore, if one adds such primitives to the calculus, the resulting process language enjoys
the same theory of the original language, and thus one may use it to prove properties of security protocols.

Extended π-calculus. The π-calculus with polyadic synchronisation (epi), proposed by Carbone and
Maffeis [CM03] is an extension of the π-calculus of Milner, Parrow, and Walker [MPW92, SW01] that
generalises the synchronisation mechanism, based on handshaking, i.e., the simultaneous execution of
input/output actions, by allowing channel names to be composite.

The fact that in epi communication is only established if the channel vectors match element-wise, enhances
its expressive power with respect to the π-calculus. In particular, Carbone and Maffeis show that the
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matching construct1 can be encoded in the π-calculus with polyadic synchronisation but not in the π-
calculus. In addition, they also prove that the higher the degree of synchronisation (i.e. the maximum length
of the channel vectors), the higher the expressive power of the calculus.

Carbone and Maffeis did not fully develop the behavioural theory of the process language they proposed.
Defining a grammar and an operational semantics yields a description language and a rigorous definition
of its computational behaviour, but a calculus (in the logical sense) requires a theory to equate terms. A
process calculus is achieved either by axiomatically, inductively, or co-inductively defining a behavioural
equivalence (ideally a congruence).

Goals and contributions. The aim of this paper is twofold: to develop the behavioural theory of epi,
defining a contextual equivalence and looking for its co-inductive characterisation; and to use this theory to
show how to define cryptographic primitives preserving it, thus allowing the calculus extended with such
primitives to be used to analyse and to verify security protocols.

The first goal is hence to study in detail the behavioural semantics of epi: (1) defining an operational
semantics (a late labelled transition system semantics); (2) defining the usual equivalence notions (in the
context of mobile calculi): contextual and co-inductive (ground, late, early and open bisimilarities); and (3)
extending results from the π-calculus to epi, namely obtaining congruence results, finding which (if any)
bisimilarity coincides with the contextual equivalence, and establishing a lattice of inter-relations between
the various equivalence relations. We find that, in epi, like in π, barbed congruence coincides with early
congruence (early bisimilarity closed for all substitutions), and thus, we have a co-inductive characterisation
of the “natural” contextual equivalence of the calculus. Moreover, we relate all these “standard” notions of
co-inductive equivalences, ground, late, early, and open, bisimilarities and congruences, obtaining a lattice
of equivalence relations that clarifies the relationship among them.2 To our knowledge, this is original work,
and provides to epi the basic behavioural theory of a mobile calculus.

The second goal is to use the theory developed to show that epi extended with key encryption primitives
may be used to analyse and to verify security protocols. To explore this possible application area, and
to further show the expressive power of epi, we define a new calculus, the cryptographic π-calculus with
polyadic synchronisation (crypto-epi), an extension of epi with the referred cryptographic primitives (in
the spirit of the spi-calculus of Abadi and Gordon [AG97] — itself an extension of the π-calculus with
constructs that allow for encryption and decryption of messages — or of the applied π-calculus of Abadi
and Fournet [AF01] — another extension of the π-calculus with a term algebra). These two primitives
are suggested by Carbone and Maffeis in the introduction of their paper [CM03] as another argument to
support the expressiveness of the calculus they propose — epi. As a first contribution, we prove, using
those primitives, the symmetric and asymmetric cryptographic system laws. Since Carbone and Maffeis did
not define nor study the extension of the calculus with such primitives, herein, we formally define crypto-
epi: (1) adding to the grammar of epi primitives for (symmetrically) encoding and decoding names; (2)
providing transition rules to deal with these constructs, enriching the labelled transition system of epi; (3)
extending results from epi to crypto-epi, namely showing that the new constructs preserve early bisimilarity.
Then we show that crypto-epi is fully abstractly encoded, with respect to barbed congruence, in the original
π-calculus with polyadic synchronisation, thus reflecting the behavioural theory of epi back to crypto-epi,
and allowing the usual reasoning principles using behavioural equivalences to be used in the latter.

The encoding is also proposed by Carbone and Maffeis in the introduction of their paper, but they do
not study its properties. To our knowledge, our result is original: not only it shows that these cryptographic
primitives may be defined in epi as programming constructs and do not need to be primitive, re-enforcing the
expressive power of epi, but also it provides standard behavioural theory to a cryptographic mobile process
calculus. Moreover, since the results closely follow those of the pi-calculus, it should be straightforward
to adapt tools like the Mobility Workbench [Vic94, VM94] to epi and crypto-epi, achieving a powerful
tool to prove by equational reasoning properties of security protocols. Note that other cryptographic
calculi like the spi-calculus or the applied pi-calculus have a more evolved and sometimes cumbersome

1The matching construct is the process if x = y then P ; it compares names x and y and, if they coincide, behaves like process P ;
otherwise does nothing. It is fully abstractly encoded in epi (assuming no matching in P ) as the process (νz)(z · x〈〉 | z · y().P ).
2The result is a lattice similar to that of the π-calculus.
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P ::= processes π ::= prefixes
0 inaction τ internal action
|π.P prefix |x1 · ... · xk(y) input
| !P replication |x1 · ... · xk〈y〉 output
| (νx)P restriction
| (P | P ) parallel composition
| (P + P ) choice

FIGURE 1: crypto-epi syntax

behavioural theory. The extra structure for data handling severely complicates equational reasoning:
naı̈ve adaptation of bisimulations are not adequate; new notions developed are “heavy”, and difficult to
automate [AF01, AG97, BAF07, BNP02, BN05]. To illustrate the use of the theory developed, we prove
the correctness of a protocol of secure message exchange.

Structure of the paper. We structure the presentation of our work in the following manner:

• In Section 2 we introduce the syntax and a late labelled transition semantics of the π-calculus with
polyadic synchronisation, epi, as first proposed by Carbone and Maffeis.

• In Section 3 we define the four usual co-inductive notions of equivalence (ground, late, early and
open bisimilarity), and compare these notions, concluding that they relate to each other just as in the
π-calculus. We further introduce the notions of barbed bisimilarity, equivalence and congruence, and
conclude the latter coincides with early congruence. Although relying on a similar result obtained for
the π-calculus [San92], the proof of the coincidence of the notions in epi requires several adjustments.

• In Section 4 we extend epi with the cryptographic primitives proposed by Carbone and
Maffeis [CM03]. In addition to their work, we give an operational semantics to the new calculus,
adding new rules to the original labelled transition system, and moreover, we analyse in detail a
simple cryptographic protocol, proving it correct.

• In Section 5 we prove fully abstract (with respect to barbed congruence) the encoding of the
cryptographic constructs in epi.

• Section 6 concludes the paper, listing our contributions and giving directions for future research.
• The proofs that are technically more elaborate are presented in appendices.

2. epi: π-CALCULUS WITH POLYADIC SYNCHRONISATION

The π-calculus with polyadic synchronisation, epi, is a variant of the π-calculus where the channels can
consist of sequences of names and communication is established if and only if the channel vectors match
element-wise.3

2.1. Syntax

We introduce the syntax of the calculus in detail and also mention some of the main differences between
this and the π-calculus. These differences will be explained in further detail in subsequent parts throughout
this section.

Definition 2.1 Processes
Let N be a countable set of names and x, x1, ..., xk, y range over N for some k ∈ N. The grammar in
Figure 1 defines the class of processes PS , ranged over by P , Q.

The decreasing order of precedence of operators follows that of the definition, where the prefix operator has
the highest precedence. In what follows we use the notation π for π.0 , and (νz, w)P for (νz)(νw)P .

3We call π-calculus with biadic synchronisation the particular case of the π-calculus with polyadic synchronisation where the
composite channels have at most two names.
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Action Description fn(α) bn(α) nm(α)
τ internal action ∅ ∅ ∅

u〈y〉 free output nm(u) ∪ {y} ∅ nm(u) ∪ {y}
u(y) bound output nm(u) {y} nm(u) ∪ {y}
u(y) input nm(u) {y} nm(u) ∪ {y}

TABLE 1: Actions

Process Description fn(P ) bn(P ) nm(P )
0 inaction ∅ ∅ ∅
π.Q prefix fn(π) ∪ (fn(Q)\ bn(π)) bn(π) ∪ bn(Q) nm(π) ∪ nm(Q)
!Q replication fn(Q) bn(Q) nm(Q)

(νy)Q restriction fn(Q)\{y} {y} ∪ bn(Q) {y} ∪ nm(Q)
(Q1|Q2) parallel composition fn(Q1, Q2) bn(Q1, Q2) nm(Q1, Q2)

(Q1 +Q2) choice fn(Q1, Q2) bn(Q1, Q2) nm(Q1, Q2)

TABLE 2: Names in Processes

All operators used here are also present in the π-calculus and their behavior is as expected. Nonetheless,
note that restriction is made on names as in the π-calculus and not on composite channels: this allows for
partial restriction.

One should also note that in the π-calculus with polyadic synchronization it is not necessary to include the
match operator since it can be encoded in the calculus. This is not possible in a ‘sensible’ manner using the
original π-calculus that, therefore, takes the match operator as a primitive. This important separation result
between the two calculi was obtained by Carbone and Maffeis [CM03], and it is the central expressiveness
result about epi.

Consider u = x1 · ... · xk and u = x1 · ... · xk, where k ∈ N, represent respectively the input and output
channel vectors. Then, nm(u) = nm(u) = {x1, ..., xk}. As in the π-calculus, there are four possible kinds
of actions α in the present calculus, as seen in Table 1. Let bn(α) denote the set of bound names in α,
fn(α) the set of free names in α and nm(α) the set of all names in α (the union of the previous two sets).
The respective notions for prefixes, i.e., fn(π), bn(π), and nm(π), are defined similarly. Furthermore, the
notions of bound and free names in a process P , denoted by bn(P ) and fn(P ) respectively, follow from
those of the π-calculus. Table 2 presents the rigorous definition of these notions, where nm(P ) denotes the
names in the process P . Let fn(P1, P2) = fn(P1) ∪ fn(P2), and consider similar definitions for bn(P1, P2)
and nm(P1, P2).

Note that we sometimes use polyadic CCS-like prefixes a · w and a · y where no item is being sent or
expected to be received. We do this to highlight the fact that what could be transmitted is irrelevant, the
problem lies in the synchronization of the composite channels. In general, u.P will be used as shorthand
for u〈y〉 .P for some y, and u.P will be used as shorthand for u(y).P where y 6∈ fn(P ).

Substitution and α-convertibility are defined as in the π-calculus [SW01], though we now require that the
latter takes into account the possibility of composite channels. For the sake of clarity, we provide the formal
definitions next.

Definition 2.2 Substitution
Let w 6∈ bn(P ) where P ∈ PS .

1. The result of applying the substitution σ = {w/z} to process P , written Pσ or P{w/z}, is the
process obtained by replacing each free occurrence of z in P by w.

2. The result of applying the simultaneous substitution σ = {w1, ..., wn/x1, ..., xn}, for distinct xi, to
process P where w1, ..., wn 6∈ bn(P ), also written Pσ, is the process obtained by simultaneously
replacing each free occurrence of xi in P by wi where 1 ≤ i ≤ n and n ∈ N.
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Note that given a substitution σ = {w/z} we denote the result of applying σ to z as σ(z). In this case,
we then have that σ(z) = w. Moreover, substitution may imply the renaming via α-conversion of bound
actions to avoid unwanted captures of free names. The definition of this notion follows.

Definition 2.3 α-convertibility
Let u = x1 · ... · xk where k ∈ N.

1. A change of bound names in a process P is the replacement of a subterm u(z).Q of P by
u(w).Q{w/z} or the replacement of a subterm (νz)Q of P by (νw)Q{w/z} where in each case
w does not occur (at all) in Q.

2. Two processes P and Q are α-convertible, written P =α Q, if Q can be obtained from P by a finite
number of changes of bound names.

2.2. Late Labelled Transition Semantics

We propose herein a late labelled transition semantics of the π-calculus with polyadic synchronisation. In
addition, we provide some examples that reflect the differences between this and the π-calculus.

Definition 2.4 Late labelled transition relation
Let u = x1 · ... ·xk, where k ∈ N. The late labelled transition relation α−→⊆ PS×PS , where α is a possible
action, is the smallest relation generated by the set of rules in Figure 2 (page 26).4

The rules follow in a straightforward manner those of the π-calculus where we now consider vectors of
names as channels. The rules follow in a straightforward manner those of the π-calculus, considering now
vectors of names as channels. Note once again that the restriction rule, RES, considers singular and not
composite names, i.e., restriction is partial. Nevertheless, we enforce an all-or-nothing behavior, that is, we
require the match of all the names in the vector channel to allow synchronization. The following example
reflects the consequences of this type of restriction.

Example 2.5 Let P = (νx1)x1 · x2〈y〉 and Q = x1 · x2〈y〉 . Then, P cannot perform the input action
because of the restriction in one of its channel names, whileQ can. Consider now P = x(y)y · z〈v〉 |x〈w〉 .
Its reduction performs a substitution in (only) one of the channel names, yielding w · z〈v〉 .

Now that we have introduced the labelled transition relation for processes in the π-calculus with polyadic
synchronisation, we can reflect on the importance of α-convertibility. The following example accounts for
the relevance of this operation.

Example 2.6 Let P = (S |Q) | R where S = x · z(y).y(b), Q = z · y(b) and R = x · z〈c〉 . We expect S
to synchronise with R in such a way that P τ−→ (c(b) | z · w(b)) | 0 , but in order for this to be achievable
we need to perform an α-conversion, else the side condition of the PAR1 rule is not satisfied.

−−

x · z(a).a(b) x·z(a)−→ a(b)
PREFIX

x · z(y).y(b) x·z(a)−→ a(b)
CONV

x · z(y).y(b) | z · y(b) x·z(a)−→ a(b) | z · y(b)
PAR1

−−

x · z〈c〉 x·z〈c〉−→ 0
PREFIX

P
τ−→ (c(b)) | z · w(b)) | 0

COMM

Note that if we had not performed the α-conversion and had disrespected the side condition of the PAR1
rule then P would have evolved through a τ action into c(b) | z · c(b).
4Note that not included in the figure are four rules: the symmetric form CH2 of CH1 which has Q + P instead of P + Q, and the
symmetric forms PAR2, COMM2 and CLOSE2 of PAR1, COMM1, CLOSE1 in which the roles of the left and right components are
swapped.
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3. OBSERVATIONAL SEMANTICS

In this section we develop the behavioural theory of epi. In short, we define a contextual equivalence
for epi—barbed congruence—and find its co-inductive characterisation. Following the literature of the
π-calculus [MPW92, San96], with the necessary adjustments we introduce the “standard” notions of
bisimilarity: ground, late, early, and open. Then study their preservation by the operators of epi and inter-
relate these notions, getting a lattice of discriminating power. Finally, we show that early congruence (early
bisimilarity closed for all substitutions) coincides with barbed congruence, being thus its co-inductive
characterisation.

Although not surprising, these results are technically difficult, and some proofs deviate from those in the
π-calculus. This work is necessary to provide to epi behavioural theory. Appendix A contains the more
complex proofs of the results presented in this section.

3.1. A Contextual Equivalence

Definitions. We define first an equivalence notion.

Definition 3.1 Barbs
The predicate ‘P exhibits barb β’, written P ↓β , is defined by:

- P ↓u if P can perform an input action on channel u
- P ↓u if P can perform an output action on channel u

A barb is an input or output channel identifier. Note that the predicate just defined concerns only visible
and immediate possible action.

Example 3.2 Let P = (x · y(a) | x · y〈b〉 ).z〈c〉 +w · x〈c〉 and Q = (νx)(x · y(a) | x · y〈b〉 ).z〈c〉 , where
all names are distinct. Then, P ↓x·y , P ↓x·y , and P ↓w·x, but P 6↓z . Furthermore, Q exhibits no barbs.

We now introduce the notion of barbed bisimilarity as proposed by Milner and Sangiorgi [MS92]. It is an
equivalence relation on processes based on their observable behaviour.

Definition 3.3 Barbed bisimilarity

1. A binary symmetric relation S is a barbed bisimulation if PSQ implies:

- if P ↓β then Q ↓β for each barb β
- if P τ−→ P ′ then there exists a Q′ such that Q τ−→ Q′ and P ′SQ′

2. Processes P and Q are barbed bisimilar if PSQ for some barbed bisimulation S.
3. Barbed bisimilarity, written ∼b, is the greatest barbed bisimulation.

Properties. Note that barbed bisimilarity is not a congruence since it is not preserved by parallel
composition, nor by replication, nor by substitution, as seen in the following examples.5

Example 3.4 Let P = m〈n〉 .m〈n〉 ,Q = m〈n〉 andR = m(x). As seen in the previous example P ∼b Q,
and triviallyR ∼b R. Nonetheless, P |R 6∼b Q |R since P |R τ−→ P ′ = m〈n〉 and P ′ ↓m butQ |R τ−→ 0 .

Example 3.5 Let P = m〈n〉 .a〈b〉 + m(x), Q = m〈n〉 .b〈a〉 + m(x) and a, b be distinct names. Then,
P and Q are barbed bisimilar since they exhibit exactly the same barbs: m and m. Nonetheless, !P and
!Q are not barbed bisimilar since two copies of P and two copies of Q can synchronise, but the resulting
processes do not exhibit the same barb, i.e., !P τ−→ P ′ and P ′ ↓a but !Q τ−→ Q′ and Q′ ↓b.

Example 3.6 Let P = m | n and Q = m.n + n.m. Then, P and Q are barbed bisimilar since they have
the same barbs. We only analyse the case when P starts: if P ↓m then Q ↓m and if P ↓n then Q ↓n.

5Example 3.6 is an exercise proposed in reference [SW01].
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However, if we consider the substitution σ = {n/m}, we have that Pσ and Qσ are not barbed bisimilar,

since Pσ τ−→ but Qσ
τ

6−→.

Nonetheless, barbed bisimilarity is preserved by the remaining operators.

Proposition 3.7 The relation ∼b is preserved by prefixing, restriction and choice operators.

PROOF: In Appendix A.

2

Closing barbed bisimilarity for parallel composition yields an equivalence notion.

Definition 3.8 Barbed equivalence
Two processes P and Q are barbed equivalent, written ∼beq , if P |R ∼b Q |R for every process R.

In order to define barbed congruence we must first introduce the notion of context. Contexts are processes
with a “hole”.

Definition 3.9 Barbed congruence

1. A context is obtained when a ‘hole’ [·] replaces a process P ∈ PS .
2. The process obtained by replacing [·] in C by P ∈ PS , where C is a context, is denoted by C[P ].
3. Two processes P and Q are barbed congruent, written 'b, if C[P ] ∼b C[Q] for every context C[·].

We now extend to epi the result that establishes an alternative definition of barbed congruence in the π-
calculus, as done by Sangiorgi and Walker [SW01]: closing barbed equivalence for substitution yields
barbed congruence.

Lemma 3.10 P 'b Q if and only if Pσ ∼beq Qσ for any substitution σ

PROOF: In Appendix A.

2

3.2. Four Notions of Bisimilarity

Seeking for a co-inductive characterisation of barbed congruence, we define the usual notions of
bisimilarity, and inter-relate them.

Ground Bisimilarity. The first notion we will consider is that of ground bisimilarity, where there is no
name instantiation.

Definition 3.11 Ground bisimilarity

1. A binary symmetric relation S is a ground bisimulation if PSQ implies:
if P α−→ P ′ where bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that Q α−→ Q′ and P ′SQ′.

2. Processes P and Q are ground bisimilar if PSQ for some ground bisimulation S.
3. Ground bisimilarity, written ∼g , is the largest ground bisimulation.6

The notion of ground bisimilarity is very simple since a process merely has to imitate the other in its possible
transitions and vice versa without considering name instantiation. Unfortunately, as in the π-calculus, a
consequence of this is that ground bisimilarity is not preserved by the parallel composition operator, as the
following example shows.

6The existence and uniqueness of a largest bisimulation is a direct consequence of the Knäster-Tarski’s Fixed Point Theorem.
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Example 3.12 Let P = (νa)(z(w).a · w〈c〉 | a · y(b)) and Q = z(w). Then both P and Q are ground
bisimilar since after performing the input action they both become inactive. Conversely,

P ′ = P | z〈y〉 τ−→ (νa)(a · y〈c〉 | a · y(b)),

which can also perform an internal action, while Q′ = Q | z〈y〉 can only perform one internal action and
then becomes inactive. We can then conclude that although P and Q are ground bisimilar, P ′ and Q′ are
not ground bisimilar.

Ground bisimilarity is not preserved by replication either, as the following example illustrates. Note that in
the definition of P we use polyadic CCS-like prefixes a · w and a ·y where no item is being sent or expected
to be received. We do this to highlight the fact that what could be transmitted is irrelevant, the problem lies
in the synchronisation of the composite channels. In general, u.P will be used as shorthand for u〈y〉 .P for
some y, and u.P will be used as shorthand for u(y).P where y 6∈ fn(P ).

Example 3.13 Let P = (νa)(z(w).a · w|a · y).z〈x〉 + z〈y〉 and Q = z(w) + z〈y〉 , where w and y are
distinct. Then P ∼g Q, but !P 6∼g!Q since two copies of P and two copies of Q can synchronise and

the resulting processes are not bisimilar. In detail, !P τ−→ τ−→z〈x〉−→ P ′, but no descendant of !Q can ever
perform an output action z〈x〉 .

Nonetheless, ground bisimilarity is preserved, just like in the π-calculus, by the remaining operators.

Lemma 3.14 The relation ∼g is preserved by prefixing, restriction and choice operators.

PROOF: In Appendix A.

2

Late and Early Bisimilarity. We now introduce the notions of late and early bisimilarity, which differ
in their treatment of name instantiation for input actions. The definitions of these notions are standard. In
late bisimilarity we require that the derivative of a process simulates the derivative of the other process (and
vice versa) for all possible instantiations of the bound parameter. It is called late because the choice of the
name instantiation is made after the choice of the derivative.

Definition 3.15 Late bisimilarity
Let u = x1 · ... · xk where k ∈ N.

1. A binary symmetric relation S is a late bisimulation if PSQ implies:

- if P α−→ P ′ where α = u〈y〉 , u(y) or τ and bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that
Q

α−→ Q′ and P ′SQ′.
- if P

u(y)−→ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that Q
u(y)−→ Q′ and for each w,

P ′{w/y}SQ′{w/y}.
2. Two processes P and Q are late bisimilar if PSQ for some late bisimulation S.
3. Late bisimilarity, written ∼l, is the largest late bisimulation.

In early bisimilarity we require that under the same possible name instantiation there is a derivative of each
of the processes that simulates the other and vice versa. It is named early because the choice of the name
instantiation is made before the choice of the derivative.

Definition 3.16 Early bisimilarity
Let u = x1 · ... · xk where k ∈ N.

1. A binary symmetric relation S is an early bisimulation if PSQ implies:

- if P α−→ P ′ where α = u〈y〉 , u(y) or τ and bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that
Q

α−→ Q′ and P ′SQ′.
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- if P
u(y)−→ P ′ where y 6∈ fn(P,Q) then for each w there is a Q′ such that Q

u(y)−→ Q′ and
P ′{w/y}SQ′{w/y}.

2. Two processes P and Q are early bisimilar if PSQ for some early bisimulation S.
3. Early bisimilarity, written ∼e, is the largest early bisimulation.

Similarly to what happens in the π-calculus, in the π-calculus with polyadic synchronisation both late and
early bisimilarity are not preserved by input prefixing. This is evidenced by the following example where
we consider processes in the π-calculus with biadic synchronisation.

Example 3.17 Let P = (νa)(a · z〈c〉 |a · y(b)) and Q = 0 . Since both P and Q are unable to perform any
action, we have that P and Q are late and early bisimilar. Now consider the processes P ′ = z(y).P and

Q′ = z(y).0 . Then P ′
z(y)−→ P and Q′

z(y)−→ 0 , but we have that P{z/y} τ−→ while 0
τ

6−→. Thus, P ′ and Q′

are neither early nor late bisimilar.

Again, as in the π-calculus, both late and early bisimilarity are preserved by all other operators.

Proposition 3.18 The relations ∼l and ∼e are preserved by all operators except input prefixing.

PROOF: The proof follows that for the π-calculus by Milner et al. for the output prefixing, choice and
parallel composition operators [MPW92] and that by Milner for the replication operator [Mil93]. Example
3.17 proves that neither ∼l nor ∼e are preserved by input prefixing.

2

Moreover, as in the original π-calculus, congruences for late and early bisimilarity,'l and'e, are achieved
by closing the equivalences over all name substitutions [MPW92]. The relation between the notions of late
bisimilarity and late congruence, and of early bisimilarity and early congruence, are shown in the following
proposition.

Proposition 3.19 'l⊂∼l and 'e⊂∼e.

PROOF: The inclusion follows directly from the definitions of late bisimilarity and late congruence because
for P , Q ∈ PS , if P 'l Q then for all substitutions σ we have that Pσ ∼l Qσ. In particular, this is true for
the identity substitution, that is, P ∼l Q.

The following example is evidence of the strictness of the inclusion. Let P , Q ∈ PS and consider distinct
x, y, z, w ∈ N . If P = (νw)(w · x〈a〉 |w ·y(b)) and Q = (νw)(w · x〈a〉 |w ·z(b)), then P ∼l Q since both
processes are inactive. Nonetheless, for σ = {y/x}, Pσ can perform a τ action, but Qσ remains inactive.
Thus, Pσ 6∼l Qσ, and so P 6'l Q.

2

Proposition 3.20 'e⊂∼e

PROOF: The inclusion follows directly from the definitions of early bisimilarity and early congruence and
is similar to that of Proposition 3.19. The same example given in Proposition 3.19 can be used to prove the
strictness of the inclusion, since P ∼e Q but P 6'e Q.

2

Open Bisimilarity. The notion of open bisimilarity was introduced by Sangiorgi and proved to be a
congruence relation in the π-calculus [San96]. That is also the case here: in epi, open bisimilarity is a
congruence.

Definition 3.21 Open bisimilarity
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1. A binary symmetric relation S is an open bisimulation if PSQ implies for every substitution σ:
If Pσ α−→ P ′ where bn(α) ∩ fn(Pσ,Qσ) = ∅ then there is a Q′ such that Qσ α−→ Q′ and P ′SQ′.

2. Two processes P and Q are open bisimilar if PSQ for some open bisimulation S.
3. Open bisimilarity, written ∼o, is the largest open bisimulation.

As expected, open bisimilarity is a congruence.

Proposition 3.22 The relation ∼o is preserved by all operators.

PROOF: The proof follows that in [San96].

2

3.3. Expressiveness Results

The congruence properties appear to stem directly from those of the π-calculus. However, ground
bisimilarity is a full congruence in the asynchronous π-calculus without match [San00] (and a similar
result holds for late and for early bisimilarity [HHK95]), but this result does not hold if we consider
the asynchronous π-calculus with polyadic synchronisation, as seen in Example 3.12. Matching does not
need to be considered as a primitive in the π-calculus with polyadic synchronisation (synchronous or
asynchronous) since it can be derived. Therefore, ground, late and early bisimilarities are not congruences
in the asynchronous π-calculus with polyadic synchronisation (without match).

We now analyse the relationships between the bisimilarity relations previously defined and present a
general diagram that summarises these results in Corollary 3.27. The results and proofs are similar to those
presented for the π-calculus [MPW92, Qua99]. The largest open bisimulation is itself a late bisimulation,
and it is also included in late congruence.

Proposition 3.23 ∼o⊂∼l and ∼o⊂'l.

Late bisimilarity is itself an early bisimulation, although the reverse does not hold. The same result holds if
we consider the notions of late and early congruences instead of late and early bisimilarity.

Proposition 3.24 ∼l⊂∼e and 'l⊂'e.

Our last result shows that if two processes are early bisimilar then they are also ground bisimilar, although
the reverse does not hold.

Proposition 3.25 ∼e⊂∼g .

Barbed bisimilarity is a much coarser relation than the bisimilarities introduced so far. The following
example illustrates the difference between barbed bisimilarity and those notions of bisimilarity.

Example 3.26 Let P = m〈n〉 .m〈n〉 andQ = m〈n〉 . Then, P andQ are barbed bisimilar since their only

barb is m. However, P and Q are not ground, nor late, nor early nor open bisimilar since P
m〈n〉−→ m〈n〉

and Q
m〈n〉−→ 0 , which are obviously not bisimilar.

We now summarise the results presented in the following diagram where→ stands for strict inclusion ⊂.

Corollary 3.27

∼o → ∼l → ∼e → ∼g
↘ ↑ ↑ ↗

'l → 'e
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A co-inductive characterisation of barbed congruence. We finally prove that the “natural” contextual
equivalence—barbed congruence—coincides with early bisimilarity, which is thus a co-inductive
characterisation of the latter. Sangiorgi obtained a characterisation of barbed equivalence by proving
it coincided with early bisimilarity [San92]. We extend that result for the π-calculus with polyadic
synchronisation, completing the behavioural theory.

Theorem 3.28 ∼e=∼beq

PROOF: In Appendix A.

2

Corollary 3.29 'e='b

PROOF: Let P , Q ∈ PS .

(⇒) If P 'e Q then by definition of early congruence, Pσ ∼e Qσ for any substitution σ. By Theorem
3.28 we know that Pσ ∼beq Qσ, and by Lemma 3.10 P 'b Q.

(⇐) If P 'b Q then by Lemma 3.10 we know that Pσ ∼beq Qσ for any substitution σ. By Theorem 3.28
we have that Pσ ∼e Qσ, and therefore P 'e Q.

2

4. ENCODING CRYPTOGRAPHIC PRIMITIVES

To model an encryption system one needs to consider primitives to encrypt and decrypt information using
keys. In symmetric cryptography these primitives should respect the following equation, where m is the
information to be encoded and k is the shared key.

decrypt(encrypt(m, k), k) = m (1)

In asymmetric cryptography, one needs an extra primitive (e.g., pubk) to obtain a public key from a private
one. The equation defining the intended system’ behaviour, considering now k to be a private key, is as
follows.

decrypt(encrypt(m, pubk(k)), k) = m (2)

4.1. Cryptographic Primitives in Process Calculi

To our knowledge, the first mention of a possible encoding of a calculus with (symmetric) cryptographic
primitives into a calculus with polyadic synchronisation was put forth by Abadi and Gordon [AG97]. The
idea can be summarised in the following way: the sending of a message m encrypted under a key k over a
channel a can be seen as a · k〈m〉 .P . In order to receive this message, the other party needs to know the
channel where the message is being transmitted and the key, which could be represented as a · k(m).P .

An encoding of key encryption primitives into π-calculus with polyadic synchronisation is proposed by
Carbone and Maffeis in the introduction of their paper to further illustrate its expressive power [CM03].

[| encryptm #k x inP |] def= (νx)(!x · k〈m〉 | [|P |])

[| decryptx #k m inP |] def= x · k(m).[|P |]

With this definitions, the symmetric cryptography law (Equation 1 above), translated to this new language,
is very easy to prove: the decryption of the encrypted text m (with the shared key k) should be equal to m.
In that case, m is made available (as an input process).7

7Recall that the matching construct is encodable in epi.
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Proposition 4.1

[| encryptm #k x in (decryptx #k y in (if m = y then m().0 )) |] 'e m().0

PROOF: In Appendix C.

2

This modelling mechanism is not restricted to symmetric cryptography: if one provides a way to recover
a public key from a private (or secret) one (hence implementing the primitive pubk), these primitives also
support asymmetric cryptography. Following the Applied π-calculus approach, assume that every principal
of a security protocol is a process providing a private channel (e.g., pfsk , meaning public from secret key)
which, given a channel representing a private key and a reply channel, test if the private key is the correct
one and if so, sends the public key on the reply channel.

Consider thus the following extra primitive ’public on z from privatex’, which makes available a(n input)
channel (pfsk ) that sends on a received reply channel (z) the public key (pk) corresponding to the private
key (sk), if the value received (x) is indeed the private key. This primitive is easily encodable in epi,
parameterising the map with a function associating to a channel a pair of keys.

[| public on z from privatex in P |]{pfsk 7→(pk,sk)}
def= !pfsk(x, z).if x = sk then (z〈pk〉 | [|P |]{(pk,sk)})

The asymmetric cryptography law (Equation 2 above), translated to this setting, holds as well. Encryption
uses the inverse function, recovering the private key from the public one.

[| private on k from publicx |]{(pk,sk)}
def= ! if k = pk then x · pk(y).x · sk〈y〉

Proposition 4.2

(νpfsk , sk, z)(pfsk〈sk, z〉 |
[| public on z from privatex in

z(k).encryptm #k x in ( private on k from publicx |
decryptx #sk y in (if m = y then m().0 )) |]{pfsk 7→(pk,sk)})

'e m().0

PROOF: In Appendix C.

2

4.2. Cryptographic epi

Carbone and Maffeis did not define the semantics of the primitives, and thus did not study the properties of
the encoding (as moreover, they have not developed the behavioural theory of epi). Herein we do all that
work: we first add to epi two key encryption primitives, encrypt and decrypt, defining the cryptographic
π-calculus with polyadic synchronisation (crypto-epi), and extend epi labelled transition system with rules
dealing with these new constructs. Then we show that the new constructors preserve the bisimilarity
relations defined to epi, and finally, we prove that these cryptographic primitives are derivable constructs:
crypto-epi can be fully abstractly encoded in epi; thus we prove that the original calculus does not need to
be extended with those primitives, at least from the point of view of expressiveness. Moreover, since the
encoding is fully abstract, crypto-epi enjoys of all the behavioural theory of epi. The main achievement
here is thus a mobile calculus with cryptographic primitives enjoying the “standard” behavioural theory.
Adapting analysis tools like the Mobility Workbench [Vic94, VM94] should be straightforward.

We start by extending the language we have been working with, adding cryptographic primitives.
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Syntax. Consider two extra productions in the syntax of epi (cf. Definition 2.1): encryptm #k x inP
and decryptx #k m inP . The first construct non-deterministically encrypts the cipher text m under key k
and returns the encrypted message as the fresh name x, to be used in the scope of P , where it occurs bound.
The decryption of message x through the key k binds the name m in the continuation P to the original
message. Notice that one, when encrypting, does not expect free occurrences of m and k in P ; and when
decrypting, does not expect free occurrences of x and k in P . As shown above, these primitives support
both symmetrical and asymmetrical encryption systems.

Labelled Transition Semantics. The rules of epi in Figure 2 (page 26), together with the rules in Figure 3
inductively define the transition semantics of crypto-epi.

The behavioural theory of epi extends naturally to this new setting. The notions of bisimilarity, introduced
in the previous section, enjoy similar properties when consider the new constructs. Notice that the decrypt
primitive behaves like an input prefix, thus it does not preserve ground, early or late bisimilarity, but
naturally, it preserves open bisimilarity. The notion of early congruence in crypto-epi is obtained in the
same manner, and the results in Corollary 3.29 also extend straightforwardly to this new setting. Therefore,
the theory developed can be used to analyse and (equationally) prove properties of security protocols.

Equational laws. To present some examples we need to introduce some results. First, notice that
syntactical equality is an early bisimilarity, and that any strong bisimilarity is strictly included in the
corresponding weak version. In particular, =⊂'e⊂≈e.

Second, the usual structural congruence laws of the π-calculus [MPW92, SW01] also hold in any
bisimilarity. Therefore, we use below instances of the following laws.8

Lemma 4.3 (Structural Laws)

1. (PS , |,0 ) is a commutative monoı̈d with respect to 'e.
2. (νx)0 'e 0 and (νx)!x · k〈m〉 'e 0
3. (νx)(P |Q) 'e (P | (νx)Q), if x /∈ fn(P )

Finally, the following laws are useful in our setting.

Lemma 4.4

1. encryptm #k x inP 'e (νx)(!x · k〈m〉 | P )
2. decryptx #k m inP 'e x · k(m).P

PROOF: Construct the respective bisimulations containing the pair in question and, in the two last cases, the
identity relation on processes.

2

4.3. A secure message exchange

Sending a value in a free (i.e. public) channel is insecure, as any context (i.e. observer) can have access to it.
Bound (i.e. private) channels are, in this framework, consider secure. Since one often needs to send sensitive
data in public channels, we would like to show two basic properties: (1) decrypting an encrypted value with
the correct key gives back the original value, and no other key produces it; and (2) sending encrypted values
in public channels is secure, as observers without the right keys cannot decrypt them.

To illustrate the use of these properties (and their correctness), consider a cryptographic protocol for secure
message exchange, proposed by Carbone and Maffeis [CM03], defined as (νsec)(P | Q) where P and Q

8Instead of proving each of these laws one may prove the “Harmony Lemma”, allowing to establish that structural congruence is a
bisimulation.
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are the following processes.

P
def= (νk)sec〈k〉 .public(y).decrypt y #k w inR

Q
def= (νm)sec(z).encryptm #z x in public〈x〉 .S

Assume that sec does not occur free neither in R nor in S, m does not occur free in R, and k and z do not
occur free in S.

We show the correctness of the protocol (with respect to weak bisimilarity, to ignore silent moves): an
external observer cannot get neither the key k nor the clear text message m during the execution of the
protocol since the transfer of the knowledge of the key is done on a secure—since private—channel (sec).
Moreover, decrypting the encrypted value x with the key k (and with it only) gives back the original value
m.

The following equation captures the correctness of the protocol.

(νsec)(P |Q) ≈e (νk,m)(R{m/w} | encryptm #k x inS)

The analysis below proves the equation. Note that the protocol is deterministic.

1. Consider the following processes.

P ′
def= public(y).decrypt y #k w inR

Q′
def= (νm)encryptm #k x in public〈x〉 .S{k/z}

The first step is the transmission of the key on channel sec:

(νsec)(P |Q) τ−→ (νsec, k)(P ′ |Q′)
2. Consider now the following processes.

P ′′
def= decryptx #k w inR{x/y}

Q′′
def= (νm)(!x · k〈m〉 | S{k/z})

The next step is the transmission of the encrypted message:

(νsec, k)(P ′ |Q′) τ−→ (νsec, k, x)(P ′′ |Q′′)
3. Finally, the encrypted message is decrypted:

(νsec, k, x)(P ′′ |Q′′) τ−→ (νsec, k, x,m)(R{x/y}{m/w} | (!x · k〈m〉 | S{k/z}))

Since x /∈ fn(R) and k,m /∈ fn(S), then R{x/y} = R and S{k/z} = S. Moreover, sec /∈ fn(R) ∪ fn(S).
Thus, using the laws presented above, one concludes the proof by transitivity.

(νsec, k, x,m)(R{x/y}{m/w} | (!x · k〈m〉 | S{k/z}))

= (νsec, k, x,m)(R{m/w} | (!x · k〈m〉 | S))

'e (νk,m)(R{m/w} | (νx)(!x · k〈m〉 | S))

'e (νk,m)(R{m/w} | encryptm #k x inS)

5. A FULLY ABSTRACT ENCODING

In order to prove the soundness and completeness of the encoding with respect to barbed congruence, which
we proved in Corollary 3.29 to coincide with early congruence, we build on successive auxiliary results.
More elaborate proofs are in Appendix B.

Henceforth, whenever we write P we refer to a process of the cryptographic π-calculus with polyadic
synchronisation.
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5.1. Operational correspondence

To ease the proofs ahead we use the notions of structural congruence and of bisimulation up to (the
latter introduced for CCS [Mil89]). Note that the first lemma concerns the commonly denoted structural
properties which are preserved by the ground bisimulation.

Definition 5.1 Structural congruence

1. Structural congruence, written ≡, is the smallest congruence on the processes that satisfies the
following axioms where P , Q, R ∈ PS and z, w ∈ N .

• P + (Q+R) ≡ (P +Q) +R
• P +Q ≡ Q+ P
• P + 0 ≡ P
• P |(Q|R) ≡ (P |Q)|R
• P |Q ≡ Q|P
• P |0 ≡ P
• (νz)0 ≡ 0
• (νz)(νw)P ≡ (νw)(νz)P = (νw, z)P
• (νz)(P |Q) ≡ P |(νz)Q if z 6∈ fn(P )

2. Any two processes related by these axioms are called structurally congruent.

Lemma 5.2 9 Let P , Q ∈ PS . If P ≡ Q then P ∼g Q.

Definition 5.3 10Ground bisimulation up to ∼g
A binary symmetric relation S is a ground bisimulation up to ∼g , if PSQ implies:

- if P α−→ P ′ where bn(α)∩ fn(P,Q) = ∅ then there is a Q′ such that Q α−→ Q′ and P ′ ∼g S ∼g Q′.

Proposition 5.4 11 If PSQ where S is a ground bisimulation up to ∼g then PS ′Q where S ′ is a ground
bisimulation.

PROOF: The proof follows that for CCS [Mil89] with the necessary adjustments since we are considering
the π-calculus with polyadic synchronisation. The proof can be split into proving firstly that ∼g S ∼g is a
ground bisimulation and secondly that S is included in ∼g S ∼g .

2

The following lemma shows a strong operational correspondence between the actions of a process and the
actions of its encoding.

Lemma 5.5 Operational Correspondence

1. If [[P ]] α−→ Q then there is a P ′ such that P α−→ P ′ and [|P ′|] = Q.
2. If P α−→ P ′ then [|P |] α−→ [|P ′|].

PROOF: In Appendix B.

2

5.2. Full Abstractness Result

The following lemmas prepares the ground for proving the soundness and the completeness of the encoding.

Lemma 5.6
9The same result holds for all the other notions of bisimilarity presented in this section.
10An analogous definition can be presented for all notions of bisimilarity introduced in this section.
11The same result holds for any of the notions of bisimilarity presented in this section.
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1. If [[P ]] ∼e [[Q]] then P ∼e Q.
2. If [[P ]] ∼beq [[Q]] then P ∼beq Q.

PROOF: In Appendix B.

2

Lemma 5.7

1. If P ∼e Q then [[P ]] ∼e [[Q]].
2. If P ∼beq Q then [[P ]] ∼beq [[Q]].

PROOF: Similar to the one of the previous lemma.

2

We are now in a position to prove the main result of this paper: there is a fully abstract encoding of the
cryptographic primitives in epi.

Theorem 5.8 Soundness
If [[P ]] 'b [[Q]] then P 'b Q

PROOF: If [[P ]] 'b [[Q]] then for any substitution σ we have that [[P ]]σ ∼beq [[Q]]σ. By Lemma B.1 we then
know that [[Pσ]] ∼beq [[Qσ]], and by Lemma 5.6.2 we have that Pσ ∼beq Qσ.

2

Theorem 5.9 Completeness
If P 'b Q then [[P ]] 'b [[Q]].

PROOF: If P 'b Q then for any substitution σ we have that Pσ ∼beq Qσ. By Lemma 5.7.2 then
[[Pσ]] ∼beq [[Qσ]] and by Lemma B.1 we know that [[Pσ]] = [[P ]]σ, thus [[P ]]σ ∼beq [[Q]]σ, i.e.,
[[P ]] 'b [[Q]].

2

6. CONCLUSIONS AND FUTURE WORK

The various variants of π-calculus possess a very rich behavioural theory, with contextual equivalences
characterised by bisimulations, and with axiomatic laws for reasoning about programs. However, the extra
structure for data handling in cryptographic calculi like the Applied π-calculus or Spi, severely complicates
equational reasoning: naı̈ve adaptation of bisimulations are not adequate; new notions developed are
“heavy”, and difficult to automate [AF01, AG97, BAF07, BNP02, BN05].

Our contribution is this: we provide standard behavioural theory for a mobile calculus with (non-
deterministic, symmetrical or asymmetrical) key encryption primitives. We show the expressiveness of the
primitives by proving both thesymmetrical and the asymmetrical encryption systems laws, and by proving
the correctness of a small protocol.

This work may be used further not only to directly analyse security protocols (possibly defining other
cryptographic primitives), but also to study the relationship with the other calculi, comparing the
observational equivalences and trying to define encodings. Moreover, adapting analysis tools like the
Mobility Workbench [Vic94, VM94] should be straightforward.

Aim and achievements. One aim of this work is to show that the π-calculus with polyadic
synchronisation, epi, is expressive enough to provide behavioural theory for the study of cryptographic
protocols. In particular, we show that, in epi, explicit encryption and decryption primitives (handy for
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specifying protocols, but a burden when developing behavioural theory) are not needed because they may
be fully abstractly encoded. Thus, they may be simply defined as programming constructs, what simplifies
the development of the behavioural theory and of analysis tools.

To attain this aim, we study in detail the behavioural semantics of epi. We first define a contextual
equivalence — barbed congruence — and look for a co-inductive congruence relation which characterises
it. To obtain such a result, we define in epi the usual notions of bisimilarities proposed for the π-calculus,
and comparing them, establishing a lattice of inter-relations (similar to that of the π-calculus). We establish
that, in epi, barbed congruence, the “natural” contextual equivalence, coincides with early bisimilarity.
Moreover, we extend epi with non-deterministic, symmetrical, cryptographic primitives, defining the syntax
and operational semantics of this new calculus. The behavioural theory also extends naturally to this setting.
Following Carbone and Maffeis [CM03] we define an encoding of the new constructs for encryption and
decryption of messages into the original epi. Furthermore, we prove that such an encoding is sound and
complete with respect to barbed congruence. This fully abstract encoding allows to import to crypto-epi
all the behavioural theory of epi. We therefore conclude that the π-calculus with polyadic synchronisation
(epi) is expressive enough to provide behavioural theory for, to analyse and to verify, security protocols.
To illustrate the use of the theory developed, we prove the correctness of a protocol of secure message
exchange. This work strengthens the hypothesis that a fully abstract encoding of a crypto calculus like the
Spi-calculus into epi is possible. Notice that Baldamus et al. already proposed an encoding of Spi into the
pi-calculus, but only preserving may testing [BPV04].

Future work. We plan to study if and how epi can express properties of cryptographic protocols such as
authenticity and secrecy. In particular, we shall address the following issues:

1. adapt the Mobility Workbench to work with this setting;
2. develop equational (axiomatic) theory;
3. test with larger examples / known protocols;
4. deal with other crypto primitives; and
5. study an encoding of Spi and/or of Applied Pi into epi.
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A. PROOFS OF RESULTS IN SECTION 3

Proposition A.1 The relation ∼b is preserved by prefixing, restriction and choice operators.

PROOF: Let P , Q, R ∈ PS be such that P ∼b Q, and let u = x1 · ... · xn where n ∈ N. Then:

• α.P ∼b α.Q since by applying the rule PREFIX we can conclude that i) if α = u(y) or u〈y〉 we have
that both P ↓u and Q ↓u or both P ↓u and Q ↓u respectively; ii) if α = τ we have that τ.P τ−→ P

and τ.Q τ−→ Q and by hypothesis P ∼b Q.
• (νx)P ∼b (νx)Q since by applying rules RES or OPEN we have that (νx)P ↓β if and only if

(νx)Q ↓β . In addition, if by applying RES (νx)P τ−→ (νx)P ′ then we had that P τ−→ P ′ and since
P ∼b Q we would also have that Q τ−→ Q′ and hence (νx)Q τ−→ (νx)Q′ where P ′ ∼b Q′ and so
(νx)P ′ ∼b (νx)Q′ as expected.

• P +R ∼b Q+R since P +R exhibits a barb β if and only if so does P or R. Analogously, Q+R
exhibits a barb β if and only if so does Q or R. Since by hypothesis we have that P ∼b Q, we can
conclude that P +R and Q+R exhibit the same barbs.

2

Lemma A.2 P 'b Q if and only if Pσ ∼beq Qσ for any substitution σ

PROOF:

(⇒) Let P , Q ∈ PS be such that P 'b Q. Also, let u = x1 · ... · xk where k ∈ N and x1, ..., xk are fresh,
and σ = {ỹ/z̃} be a substitution where ỹ = y1, ..., yn and z̃ = z1, ..., zn.
Given C = u〈y1〉 . · · · .u〈yn〉 | u(z1). · · · .u(zn).[·] | R we know that C[P ] ∼b C[Q] since both
processes exhibit the same barbs. In addition, by performing n internal actions C[P ] τ−→ ... · · · τ−→
Pσ |R, and the only process that does not exhibit barb u to which C[Q] reduces in n steps is Qσ |R.
Thus Pσ |R ∼b Qσ |R, that is, Pσ ∼beq Qσ.

(⇐) Let P , Q ∈ PS and σ be a substitution such that Pσ ∼beq Qσ, that is, Pσ | R ∼b Qσ | R for any
R. Since 'b is the largest congruence in ∼b it suffices to show that for any context C we have that
C[P ]σ | R ∼b C[Q]σ | R. The proof is done by induction on C and we consider only the relevant
transitions. Let C = u(y).C ′ where u = x1 · ... · xk and k ∈ N.

- If by application of rules PREFIX and PAR1 one has C[P ]σ | R σ(u(y))−→ C ′[P ]σ | R, then

C[Q]σ |R σ(u(y))−→ C ′[Q]σ |R and by induction hypothesis C ′[P ]σ |R ∼b C ′[Q]σ |R.
- If by application of rule COMM one has C[P ]σ | R τ−→ C ′[P ]σ{z/y} | R′ (where we

assume R
u〈z〉−→ R′), then C[Q]σ | R τ−→ C ′[Q]σ{z/y} | R′ and by induction hypothesis

C ′[P ]σ{z/y} |R′ ∼b C ′[Q]σ{z/y} |R′.
- If by application of rule CLOSE one has C[P ]σ | R τ−→ (νy)C ′[P ]σ | R′ (where we assume

R
u(y)−→ R′), then C[Q]σ | R τ−→ (νy)C ′[Q]σ | R′; by induction hypothesis C ′[P ]σ | R′ ∼b

C ′[Q]σ | R′ and by Proposition A.1 ∼b is closed under restriction, so (νy)C ′[P ]σ | R′ ∼b
(νy)C ′[Q]σ |R′.

The other cases can be handled in a similar way (for C =!C ′ check reference [SW01]).

2

Lemma A.3 The relation ∼g is preserved by the restriction operator.

PROOF: Let us prove that R = {((νx)P, (νx)Q) | P ∼g Q} is a ground bisimulation. We establish the
proof by performing a case analysis on the rule used to infer an action for (νx)P , where we assume that
bn(α) ∩ fn(P,Q) = ∅.

• Case of rule RES where x 6∈ nm(α). By definition of ∼g , since P α−→ P ′ we have that Q α−→ Q′

and P ′ ∼g Q′. Therefore, by application of rule RES, (νx)Q α−→ (νx)Q′ where x 6∈ nm(α).
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• Case of rule OPEN where u = x1 · ... · xk for some k ∈ N and x 6∈ nm(u). By definition of ∼g ,

since P
u〈x〉−→ P ′ we have that Q

u〈x〉−→ Q′ and P ′ ∼g Q′. Therefore, by application of rule OPEN,

(νx)Q
u(x)−→ Q′ where x 6∈ nm(u).

Therefore,R is a ground bisimulation.

2

Proposition A.4 The relation ∼g is preserved by prefixing and choice.

PROOF: The proof follows the pattern of the one above.

2

Recall that every subset of a countable set is again countable, and that the countable union of countable sets
is countable. Note that we consider a set to be countable if it is either finite or has the same cardinality as
the set of the natural numbers N.

Theorem A.5 ∼e=∼beq

PROOF:

(⇒) We prove that ∼e is a barbed bisimulation. Let u = x1 · ... · xn where n ∈ N and let P , Q ∈ PS be
such that PSQ where S is an early bisimulation. Then, if:

1. P
u(y)−→ P ′ then P ↓u and since P and Q are early bisimilar for each w there is a Q′ such that

Q
u(y)−→ Q′ and P ′{w/y}SQ′{w/y}. Thus, since Q

u(y)−→ Q′, we have that Q ↓u.
2. P α−→ P ′ where α = u〈y〉 or u(y) then P ↓u and since P and Q are early bisimilar there is a
Q′ such that Q α−→ Q′ which implies that Q ↓u.

3. P τ−→ P ′ since P and Q are early bisimilar there is a Q′ such that Q τ−→ Q′ (and P ′SQ′).
Note that to P ′ and Q′ we can apply the same reasoning as to the P and Q we started from till a
visible action is performed by both processes (or their descendants) like in case 1 or 2, or until
both processes are inactive.

Therefore, we can conclude that P and Q are barbed bisimilar. Since early bisimulation is preserved
by all operators except input prefixing (Lemma 3.18), we have that for any R, P | R ∼e Q | R, and
thus P | R ∼b Q | R. We then comply with the necessary requirements of barbed equivalence and
establish that P ∼beq Q.

(⇐) Given S = {(P,Q) : F, Y, x̃ exist such that (νx̃)CF,Y [P ] ∼b (νx̃)CF,Y [Q]} where x̃, F , H〈F 〉, Y
are related as explained before, we prove that S is an early bisimulation.
The context C[·] is defined as C[·] = [·] | V 〈F, Y 〉 where:
V 〈F, Y 〉 = ∑

(c,c′′)∈H〈F 〉

∑
(b,b′)∈F∪(y,y′)

c〈b〉 .(c′′ + b′ + in+ V 〈F ∪ (y, y′), Y \(y, y′)〉) (3)

+
∑

(c,c′′)∈H〈F 〉

c(y).(c′′ + y′ + out+ V 〈F ∪ (y, y′), Y \(y, y′)〉+ (νt)
∑

(b,b′)∈F

(t · b | t · y).b′ (4)

The first (3) and second (4) summands are used to test respectively the input and output actions of
P or Q12. Note in 3 that all possible inputs are considered in the inner summation just like early
bisimulation requires. In 4 the last term in the summation concerns the case of bound output in which
the outputted name will not be found in H , as opposed to the case of free output. Further, notice that
the names in, out are not in nm(P,Q), these names are used to show which type of action (input or
output, respectively) was performed.
The relation between F and Y can now be further analysed, since the names taken from Y are used

12Note that the summations in (3) and (4) are finite.
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to augment F (and hence H) via name-communication. Note that on the definition of V 〈F, Y 〉 the
pair (y, y′) is drawn from Y .
We now prove the core of the theorem by splitting the proof into the four possible actions of P .

1. If P τ−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P | V 〈F, Y 〉) τ−→ (νx̃)(P ′ |
V 〈F, Y 〉) = R. Since by hypothesis (νx̃)CF,Y [P ] ∼b (νx̃)CF,Y [Q]}, then (νx̃)CF,Y [Q] τ−→
T , and R may have as barbs only c such that c ∈ H1, and so should T . Note that (νx̃)CF,Y [Q]
could have performed a τ action by i) interaction between V 〈F, Y 〉 and process Q where Q
performed an input action; ii) interaction between V 〈F, Y 〉 and process Q where Q performed
a free or bound output action; iii) there is no interaction with V 〈F, Y 〉 andQ performs a τ action
by itself. Both i) and ii) are impossible since at least T ↓in or T ↓out and {in, out} ∩H1 = ∅.
Thus, (νx̃)CF,Y [Q] τ−→ T = (νx̃)(Q′ | V 〈F, Y 〉), that is Q τ−→ Q′ and (P ′, Q′) ∈ S.

2. If P
c(y)−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P | V 〈F, Y 〉) τ−→ (νx̃)(P ′{b/y} |

V1) = R where V1 = c′′ + b′ + in + V 〈F ∪ (y, y′), Y \(y, y′)〉. Then, R has as barbs at least
c′′, b′, and in. Note that (νx̃)CF,Y [Q] could have performed a τ action by the i), ii) and iii)
reasons mentioned in case 1. The situation ii) where Q performed a free or bound output is
impossible since in that case T ↓out but R 6↓out. The situation iii) is impossible since in that
case, e.g., T 6↓b′ . The only possible situation is then if Q performed an input action of the type
α = c1(b1). Note that the following equalities have to hold c1 = c and b1 = b so that T ↓c′′
and T ↓b′ as does R. Thus, we have that if P

c(y)−→ P ′ then for every possible b we have that

Q
c(y)−→ Q′ and R ∼b T , that is, (P ′{b/y}, Q′{b/y}) ∈ S.

3. If P
c〈z〉−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P |V 〈F, Y 〉) τ−→ (νx̃)(P ′ |V2) = R

where V2 = c′′ + z′ + out + V 〈F, Y 〉 + (νt)
∑

(b,b′)∈F (t · b | t · y).b′ and t is fresh,
while z ∈ fn(P ) ⊆ F1. Then, R has as barbs at least c′′, z′ and out. Since by hypothesis
(νx̃)CF,Y [P ] ∼b (νx̃)CF,Y [Q]}, then (νx̃)CF,Y [Q] τ−→ T and T should have the same barbs
as R. Note that (νx̃)CF,Y [Q] could have performed a τ action by the i), ii) and iii) reasons
mentioned in case 1. The situation i) is impossible since T ↓in but R 6↓in, and the situation
iii) is impossible since, e.g., T 6↓c′′ . Then we are in a situation where Q has to do an output on
the same channel as P (so it has c′′ as a barb too), but we must still prove the output has to be
free. This happens because since P performed a free output, R can do a τ action from the last
summation in V2 and the resulting process has as an unique barb z′. However, if Q performs a
bound output, the summation in V2 is an inactive process, and even if (νx̃)CF,Y [Q] performs a
τ action by the cases i), ii) and iii), in both ii) and iii) the resulting process would have either
in or out as a barb. In the case of i) then there would be no interaction with V 〈F, Y 〉, and so
the resulting process would not have z′ as a barb. Thus, Q has to perform α = c〈z〉 as did P .

4. If P
c(y)−→ P ′, then we can infer that (νx̃)CF,Y [P ] = (νx̃)(P | V 〈F, Y 〉) τ−→ (νx̃)(νy)(P ′ |

V3) = R where V3 = c′′+ y′+ out+V 〈F ∪ (y, y′), Y \(y, y′)〉+(νt)
∑

(b,b′)∈F (t · b | t · y).b′.
The rest of the proof is very similar to case 3 where the difference between bound and free
output is analysed.

2

B. PROOFS OF RESULTS IN SECTION 5

Lemma B.1 Substitution Lemma
[[Pσ]] = [[P ]]σ, for any substitution σ.

PROOF: By induction on the structure of crypto-epi processes. Since the relevant cases are those of the new
constructs (as the encoding is homomorphic in the other), we only analyse these cases.
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Case P = encryptm #k x inP ′; consider σ = {m′/m}13, thus Pσ = encryptm′ #k x inP ′{m′/m}.
Since by induction hypothesis, [[P ′{m′/m}]] = [[P ′]]{m′/m}, we proceed as below.

[[Pσ]] = (νx)(x · k〈m′〉 | [[P ′{m′/m}]])
= (νx)(x · k〈m′〉 | [[P ′]]{m′/m})
= ((νx)(x · k〈m〉 | [[P ′]])){m′/m}
= [[P ]]σ

Case P = decryptx #k y inP ′; consider σ = {m′/m}14, thus Pσ = decryptx′ #k y inP ′{x′/x}. Since
by induction hypothesis, [[P ′{m′/m}]] = [[P ′]]{m′/m}, we proceed as below.

[[Pσ]] = x′ · k(y).[[P ′{x′/x}]]
= x′ · k(y).[[P ′]]{x′/x}
= (x · k(y).[[P ′]]){x′/x}
= [[P ]]σ

2

Lemma B.2

1. If [|P |] uy−→ Q then, for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅, either

(a) P ≡ (νñ)(uy.P1|P2) and Q ≡ (νñ)([|P1|] | [|P2|]); or
(b) P ≡ (νñ)(encryptm #k x inuy.P1|P2) where x 6= y, and

Q ≡ (νñ)(x · km | [|P1|] | [|P2|]).

2. If [|P |] u(y)−→ Q then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅,
if y 6= x, then either

(a) P ≡ (νñ, y)(uy.P1|P2) and Q ≡ (νñ)([|P1|] | [|P2|]); or
(b) P ≡ (νñ, y)(encryptm #k x inuy.P1|P2) and Q ≡ (νñ, x)(x · km | [|P1|] | [|P2|]);

otherwise, if x = y then
P ≡ (νñ)(encryptm #k y inuy.P1|P2) and
Q ≡ (νñ)(y · km | [|P1|] | [|P2|]).

3. If [|P |] u(y)−→ Q then for some P1, P2, if for some ñ such that n(u) ∩ {ñ} = ∅, then either

(a) P ≡ (νñ)(u(y).P1|P2) and Q ≡ (νñ)([|P1|] | [|P2|]); or
(b) P ≡ (νñ)(encryptm #k x inu(y).P1|P2) and Q ≡ (νñ, x)(x · km | [|P1|] | [|P2|]);

otherwise, if u = x · k then
P ≡ (νñ)(decryptx #k y inP1|P2), and
Q ≡ (νñ)([|P1|] | [|P2|]).

PROOF: Follows directly from the definition of processes in the cryptographic π-calculus with polyadic
synchronization and from the transition rules.

2

Lemma B.3 Operational Correspondence

1. If [[P ]] α−→ Q then there is a P ′ such that P α−→ P ′ and [|P ′|] = Q.
2. If P α−→ P ′ then [|P |] α−→ [|P ′|].

PROOF: The proof is done by induction on the inference of the transition of [[P ]] α−→ Q.

1. Let α = uy. By Lemma B.2 we have that:

(a) P ≡ (νñ)(uy.P1|P2) in which case P
uy−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

13The other cases are handled in an analogous way. Note that if e.g. σ = {x/m} then we would have to perform α-conversion.
14Again ,the other cases are handled in an analogous way.
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(b) P ≡ (νñ)(encryptm #k x inuy.P1|P2) in which case

P
uy−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

2. Let α = u(y). By Lemma B.2 we have that:

(a) P ≡ (νñ, y)(uy.P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

(b) P ≡ (νñ, y)(encryptm #k x inuy.P1|P2) in which case

P
u(y)−→ P ′ ≡ (νñ)(encryptm #k x inP1|P2) and [|P ′|] = Q.

(c) P ≡ (νñ)(encryptm #k y inuy.P1|P2) in which case

P
u(y)−→ P ′ ≡ (νñ)(y · km|P1|P2) and [|P ′|] = Q.

3. Let α = u(y). By Lemma B.2 we have that:

(a) P ≡ (νñ)(u(y).P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

(b) P ≡ (νñ)(encryptm #k x inu(y).P1|P2) in which case

P
u(y)−→ P ′ ≡ (νñ)(encryptm #k x inP1|P2) and [|P ′|] = Q.

(c) u = x · k and P ≡ (νñ)(decryptx #k y inP1|P2) in which case

P
x·k(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

4. Let α = τ . The most relevant cases result from the application of rules COMM or CLOSE. Let us
analyse the case of rule COMM1 (the remaining cases follow in a similar manner).

Consider P
uy−→ P ′ and Q

u(z)−→ Q′. Then P |Q τ−→ P ′|Q′{y/z}, and by clauses 1 and 3 of this

lemma, there exist P1, P ′1, Q1, Q′1 such that [|P1|] = P , [|Q1|] = Q, P1
uy−→ P ′1 where [|P ′1|] = P ′,

and Q1
u(z)−→ Q′1 where [|Q′1|] = Q′. Thus, P1|Q1

τ−→ P ′1|Q′1{y/z}, and using Lemma B.1, we
conclude as needed.

[|P ′1|Q′1{y/z}|] = [|P ′1|] | [|Q′1{y/z}|] = [|P ′1|] | [|Q′1|]{y/z} = P ′|Q′{y/z}

2

Lemma B.4

1. If [[P ]] ∼e [[Q]] then P ∼e Q.
2. If [[P ]] ∼beq [[Q]] then P ∼beq Q.

PROOF:

1. We prove thatR = {(P,Q) : [[P ]] ∼e [[Q]]} is an early bisimulation (cf. Definition 3.16 in page 9).

Case P α−→ P ′ (the case Q α−→ Q′ is similar, and we omit its analysis).
Then, by Lemma 5.5.2 we have that [[P ]] α−→ [[P ′]]. Since by hypothesis [[P ]] ∼e [[Q]] then there is
a Q′ such that [[Q]] α−→ Q′, and by Lemma 5.5.1 we have that there is a Q′′ such that Q α−→ Q′′,
where [[Q′′]] = Q′.

We now split the proof according to the possible transitions of [[P ]].

Case α ∈ {τ, uy, u(y)}, where bn(α) ∩ fn(P,Q) = ∅.
By definition of ∼e we have that [[P ′]] ∼e [[Q′′]] and therefore P ′RQ′′.

Case α = u(y) where y 6∈ fn(P,Q). The reasoning is similar to the one above.
By definition of ∼e we have that [[P ′]]{w/y} ∼e [[Q′′]]{w/y} and by application of Lemma B.1 we
know that [[P ′{w/y}]] ∼e [[Q′′{w/y}]]. Therefore, we conclude that P ′{w/y}RQ′′{w/y}.

2. Follows directly from Lemma B.4.1 and Theorem A.5, where it was established that early
bisimulation coincides with barbed equivalence.

2
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C. PROOFS OF RESULTS IN SECTION 4

Proposition C.1

[| encryptm #k x in (decryptx #k y in (if m = y then m().0 )) |] 'e m().0

PROOF: By definition,

[| encryptm #k x in (decryptx #k y in (if m = y thenm().0 )) |] def= (νx)(!x · k〈m〉 |x·k(y).(νz)(z ·m〈〉 |z·y().m().0 )

Construct the appropriate bisimulation, noticing that in two deterministic tau-steps one gets

(νx)(!x · k〈m〉 | (νz)(m().0 ) 'e m().0

2

The proof of Proposition 4.2 is similar, requiring five deterministic tau-steps.
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Encoding cryptographic primitives in a calculus with polyadic synchronisation

(PREFIX)
−

α.P
α−→ P

(CH1)
P

α−→ P ′

P +Q
α−→ P ′

(PAR1)
P

α−→ P ′

P |Q α−→ P ′|Q
where bn(α) ∩ fn(Q) = ∅

(RES)
P

α−→ P ′

(νx)P α−→ (νx)P ′
where x 6∈ nm(α)

(REP-ACT)
P

α−→ P ′

!P α−→ P ′|!P

(REP-COMM)
P

u〈x〉−→ P ′ P
u(z)−→ P ′′

!P τ−→ (P ′|P ′′{x/z})|!P

(REP-CLOSE)
P

u(x)−→ P ′ P
u(x)−→ P ′′

!P τ−→ (νx)(P ′|P ′′)|!P
where x 6∈ fn(P )

(OPEN)
P

u〈x〉−→ P ′

(νy)P
u(x)−→ P ′

where x 6∈ nm(u)

(CLOSE1)
P

u(x)−→ P ′ Q
u(x)−→ Q′

P |Q τ−→ (νx)(P ′|Q′)

(COMM1)
P

u〈x〉−→ P ′ Q
u(z)−→ Q′

P |Q τ−→ P ′|Q′{x/z}

(CONV)
P

α−→ P ′

Q
α−→ P ′

if Q =α P

FIGURE 2: Late transition rules.
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Encoding cryptographic primitives in a calculus with polyadic synchronisation

(ENC)
P

α−→ P ′

encryptm #k x inP
α−→ encryptm #k x inP ′

where α 6= u〈x〉 and if α ∈ {u〈y〉 , u(y), u(y)} then x 6∈ nm(u)

(ENC-OPEN)
P

u〈x〉−→ P ′

encryptm #k x inP
u(x)−→ !x · k〈m〉 | P ′

where x 6∈ nm(u)

(DEC)
−−

decryptx #k y inP
x·k(y)−→ P

FIGURE 3: Late transition rules for the cryptographic constructs
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