
Spatial Types for Concurrency
A Spatial Logic to Specify and Verify Distributed Systems

Tiago Lança Matos Sucena de Carvalho

Dissertação para obtenção do Grau de Mestre em

Matemática e Aplicações

Júri

Presidente: Prof. Doutora Maria Cristina Sales Viana Serodio Sernadas

Orientador: Prof. Doutor António Maria Alarcão Ravara

Vogais: Prof. Doutor Luı́s Caires

Outubro 2007

TIPOS ESPACIAIS PARA CONCORRÊNCIA
Lógica Espacial para Especificação e Verificação de Sistemas Distribuı́dos

NOME: Tiago Lança Matos Sucena de Carvalho

MESTRADO EM: Matemática e Aplicações

ORIENTADOR: Professor Doutor António Maria Alarcão Ravara

RESUMO:
Na ciência da computação, especificar e verificar propriedades comportamentais é considerado um prob-
lema clássico. Recentemente, tem surgido um interesse em propriedades espaciais de processos em Sis-
temas Distribuı́dos. Como tal, têm sido propostas lógicas modais cujos sistemas de prova são, em geral,
indecidı́veis. Uma excepção é o provador automático proposto por Luı́s Caires [Cai03].

Tradicionalmente, os sistemas de tipos são usados para garantir ausência de erros em linguagens de
programação por serem decidı́veis e de complexidade reduzida, mas recentemente, também têm sido usados
para garantir propriedades espaciais de processos.

O objectivo desta tese é definir uma lógica decidı́vel (sintaxe, semântica e sistema dedutivo) que per-
mita especificar e verificar estaticamente propriedades, nomeadamente invariantes, não só espaciais como
comportamentais, em sistemas distribuı́dos implementados através de processos concorrentes.

Neste trabalho, começa-se por escolher uma linguagem simples de processos e uma linguagem expres-
siva de fórmulas. A primeira é o fragmento livre de escolha não-determinı́stica de uma álgebra de processos
– o CCS de Milner – enquanto que a segunda baseia-se na Lógica Espacial de Caı́res e Cardelli [CC03] e na
Lógica de Processos de Milner [Mil89]. Adoptando a abordagem “proposições como tipos”, estabelece-se
uma semântica denotacional, baseada em relações estruturais e de transição, e uma noção de subtipagem,
interpretada como implicação lógica. De seguida, define-se como sistema dedutivo um sistema de tipos
e prova-se alguns resultados que o caracterizam, nomeadamente um resultado de consistência fraca e um
resultado de completude. Por último, desenvolve-se uma aplicação que consiste em derivar uma asserção
no sistema e que permite observar o seu potencial.

PALAVRAS-CHAVE: Álgebra de Processos; Concorrente; Comportamental; Lógica Espacial; Tipo; Sis-
tema de tipos.

i

SPATIAL TYPES FOR CONCURRENCY
A Spatial Logic to Specify and Verify Distributed Systems

ABSTRACT:
The problem of specifying and verifying properties is considered to be a classical problem in computer sci-
ence. Recently, there has been a growing interest in spatial properties of processes in Distributed Systems.
So, several modal logics have been proposed such that the proof systems are, in general, undecidable. An
exception is the model-checker of Luı́s Caires [Cai03].

Traditionally, type systems are used to guarantee the absence of errors in programming languages due
to being decidable and to their low complexity. But recently, they have also been used to ensure spatial
properties of processes.

The aim of this thesis is to define a decidable logic (syntax, semantics and deductive system), which
allows both spatial and behavioural properties of concurrent processes to be specified and verified, namely
invariants.

This work first considers a simple language of processes and an expressive language of formulas. The
former is the nondeterministic choice free fragment of a process algebra – Milner’s CCS – while the latter
is based on the Spatial Logic of Caı́res and Cardelli [CC03] and on the Process Logic of Milner [Mil89].
Adopting a “propositions as types” approach, where types are formulas, denotational semantics are estab-
lished through certain structural and transition relations, and subtyping is interpreted as a certain logical
entailment. Furthermore, a type system is defined as a deductive system and some results are proved about
it, namely weak consistency and completeness. Finally, a complete application of the system is developed,
thus expressing its potential.

KEYWORDS: Behavioural; Concurrency; Process Algebra; Spatial Logic; Type; Type System.

iii

Contents

List of Tables vii

Preface ix

1 Introduction 1
1.1 Background . 1
1.2 Aims . 2
1.3 Contributions . 3
1.4 Outline of the thesis . 3

2 Calculus of Processes 4
2.1 Syntax of processes . 4
2.2 Operational semantics . 5

2.2.1 Names, variables and substitutions in processes 5
2.2.2 Structural congruence on processes . 7
2.2.3 Labelled transition system . 8

3 Type System 10
3.1 Syntax of types . 10
3.2 Semantics . 11

3.2.1 Structural congruence on types . 11
3.2.2 Interpretation of types . 14

3.3 Deductive system . 17
3.3.1 Structural type rules . 17
3.3.2 Subtyping . 18
3.3.3 Typing rules . 27

4 Properties of the Type System 29
4.1 Preliminaries . 29
4.2 Main results . 42

4.2.1 Consistency . 42
4.2.2 Completeness . 44

4.3 Further results . 47

5 An Application 49

v

6 Conclusions 53
6.1 Achievements . 53
6.2 Future work . 53

Bibliography 55

vi

List of Tables

2.1 The Labelled Transition System. 9

3.1 The Structural Type System. 18
3.2 The Subtyping System. 28

5.1 Structural derivation. 50
5.2 Subtyping derivation 1. 51
5.3 Subtyping derivation 2. 51
5.4 Subtyping derivation 3. 51

vii

Preface

The following task was proposed to me by my supervisor António Ravara: “to develop a decidable proof
system to statically verify and specify spatial properties of distributed systems”. The outcome is the thesis
presented here. Eventually a scientific paper will be written and submitted to a journal of mathematics, as
was originally intended.

This work was supported by the Space-Time-Types Project1 and by SQIG2 at IT3 (former CLC4).

Acknowledgements

I would first like to thank my supervisor António Ravara for his guidance, motivation and constant availabil-
ity to discuss work. I would also like to thank Luı́s Caires, for the critical observations and scientific advise
given in due time and to Luı́s Cruz-Filipe, for the revision work and the precious suggestions. Furthermore,
a special thanks to my family and friends for their constant support, encouragement and curiosity.

1The Space-Time-Types Project, POSC/EIA/55582/2004
2Security and Quantum Information Group
3Instituto de Telecomunicações
4Center for Logic and Computation

ix

Chapter 1

Introduction

1.1 Background

Over the last thirty years, we have observed an impressive spread of new technology. Much of this new
technology involves communicating or interacting. Communication plays a central role within concurrent

systems, which are composed of several parts that interact. Early on, it was perceived that mathemati-
cal models should be developed to describe this type of systems. Around 1980, several proposals were
conceived to cope with this need, among these: CSP, the Communicating Sequential Processes of Hoare
[Hoa85], and CCS, the Calculus of Communicating Systems of Milner [Mil89]. These two models, though
independently developed, have much in common and are widely known as process algebras.

Sometime after, Milner, Parrow and Walker developed a more expressive special kind of process algebra
which allows data to be passed through channels – the π-calculus: a calculus of mobile processes [PW92].
Commonly known as the π-calculus, it was rapidly established as the new paradigm to model interaction.
The special feature of this calculus is its ability to model mobility, being also able to represent the systems
and data structures that CCS does.

In parallel, a considerable amount of work has been dedicated into the specification and verification of
behavioural and temporal properties of concurrent systems, which is considered to be a classical problem
in computer science.

Recently, a shift of focus has occurred from the rigid concurrent systems towards distributed systems,
followed by a growing interest in spatial properties of distributed systems. For this purpose, several modal
and temporal logics have been introduced, such as spatial logics.

Spatial logics support the specification not only of behavioural properties but also of spatial properties
of distributed systems in a fairly integrated way. Essentially, spatial logics are modal logics that interpret
each world as a structured space composed of a certain kind of resources [OP99]. Spatial logics have been
used in the definition of several core languages, calculi and data models [LG00, IO01, CC03, GG03]. In
[CC03] and in [LG00], spatial logics were developed for process calculi and for the Ambient Calculus,
respectively. Furthermore, proof systems for verifying spatial properties have already been defined, for in-
stance, in [CC03]; but, in general, these are undecidable. An exception is the model-checker of Luı́s Caı́res
[Cai03], which allows the user to automatically verify behavioural and spatial properties of distributed
systems expressed in the π-calculus. The algorithm implemented was proved correct for all processes, and
complete for a certain class of bounded processes.

1

Traditionally, type systems were used to guarantee safety in programming languages, i.e. the ab-
sence of errors. Some examples are the λ-calculus [Han94, Pie02], ML [Pie02], and other functional
languages. Regarding concurrent processes, several type systems have been proposed involving a notion of
behavioural typing [SW01, IK04, RR01, RV00]. Lately, type systems have also been proposed to ensure
non-behavioural properties of processes, such as, properties related to the use of resources and the spatial
distribution of capabilities. In particular, in [GG03], spatial types were already used to type programs in a
functional language for semistructured data.

1.2 Aims

Behavioural properties of processes like race-freedom and deadlock-freedom are of great importance. But
several other interesting properties are inherently spatial, for instance connectivity, stating that there exists
an access route between two different sites, unique handling, stating that there is at most one server process
listening on a given channel, or resource availability, stating that a bound exists on the number of channels
that can be allocated at a given location.

The main purpose of this thesis is to develop a general notion of typing based on spatial logic for
concurrent processes, expressive enough to capture both behavioural and spatial properties. Furthermore,
we aim a decidable proof system capable of assigning an interesting class of spatial/behavioural types to
an interesting class of processes.

Consider a simple process model - a nondeterministic choice free fragment of Milner’s CCS [Mil89].
As formulas, consider an expressive set of connectives inspired in the spatial logic of [CC03] and in the
modal connectives of Milner’s PL (Process Logic defined in [Mil89]). We adopt a “propositions as types”
approach, such that types are formulas, subtyping is interpreted as logical entailment and the type system
is seen as a deductive system. Types are partial specifications of the spatial/behavioural properties of
processes. We prove that the type system is consistent and complete with respect to a certain semantic
notion.

A motivating example: Looper

The purpose of the application described bellow is to exhibit an example of spatial invariants that are
interesting to specify in the system. Furthermore, it acts as a requirement imposed on the system, meaning
that it will often be used to motivate decisions.

Consider the following process

Looper
def= (νa)(a | (recX.ā.(a | a | X))).

Looper is a process which can only perform internal transitions and for each transition it creates a new
copy of a private name a. The important feature of this process is that it has always more than one thread
running in parallel, i.e. it is not a sequential process, and that is the property we want to capture.

More precisely, we want to infer in the system the following typing judgement

Γ ` Looper : �(0̄ | 0̄)

where type �(0̄ | 0̄) specifies that Looper will always have at least two separate threads running in parallel.

2

This example will be further developed in chapter 5.

1.3 Contributions

The main contribution of this thesis is the definition of a logic, where:

• the chosen syntax of formulas is inspired in both spatial logic of [CC03] and process logic of [Mil89],
and provides expressiveness without sacrificing decidability;

• the semantics, of a denotational kind, interpret spatial connectives mainly through structural congru-
ence and behavioural connectives through a labelled transition relation;

• the deductive system, which is a type system, decomposed in three parts:

– a structural part containing structural inference rules;

– a subsumption rule which introduces an axiomatic subtyping relation into the system; and

– an infinitary conjunction rule.

1.4 Outline of the thesis

This thesis is organized in four parts briefly described as such:

• Chapter 2 introduces a calculus of processes based upon Milner’s CCS [Mil89];

• Chapter 3 develops a type system presenting several inference rules that compose it, namely a sub-
sumption rule that introduces subtyping in the system;

• Chapter 4 consists of a series of results which describe properties of the system, namely consistency
and completeness results;

• Chapter 5 presents a derivation of a complete example of application of the type system.

• Chapter 6 describes the achievements of this work and the future possible developments.

3

Chapter 2

Calculus of Processes

The purpose of this chapter is to introduce the calculus of processes considered in the remaining chapters.
This calculus is, in fact, a fragment of Milner’s CCS [Mil89]. In section 2.1 the syntax of the calculus is
presented and the operators are briefly explained. In section 2.2 the operational semantics is introduced,
thus the operators are rendered meaning.

2.1 Syntax of processes

Consider a countable set of names, A, ranged over by a, b, c, ... and let A denote the set of co-names,
ranged over by ā, b̄, c̄, Set L , A∪A, where L is the set of labels, and let Act , L∪{τ} where τ is the
silent or invisible action. As in CCS, we say that ā is the complement of a and we extend complementation
to all actions by defining ¯̄a = a and τ̄ = τ . Further, consider a countable set of process variables, X ,
disjoint from the previous sets.

The following definition sets a language of processes.

Definition 2.1.1. (Syntax of processes) The following grammar defines the set P of processes.

Labels α ::= a | a

Actions π ::= α | τ

Processes P ::= 0 inaction

| π.P prefix

| P | P parallel composition

| (νa)P restriction

| (recX.P) recursion

| X process variable

The processes produced by this grammar constitute a fragment of CCS. Summations are left out for
reasons of simplicity which will become more apparent further ahead. Thus we have the inactive process 0,
action prefixing π.P for sequential behaviour, parallel composition P | Q to express concurrency, restricted
names (νa)P and recursion (recX.P). Prefixed operations (α., (νa) and recX.) bind more tightly than
composition.

4

Also, it is often convenient to omit ‘.0’; for example we write a.b for a.b.0.
In name restriction (νa)P and in recursion (recX.P), the distinguished occurrences of the name a and

the variable X are binding, both with scope P .
Recursive types are supposed to describe regular trees: a process tree should be “read” as the infinite

unfolding of a recursive process. But there are processes which can not be reasonably interpreted as repre-
sentations of regular trees; for example, the unfolding of the process P = (recX.X) gives P again, which
can not be “read” as a tree. Therefore, to achieve this tight correspondence we must restrict the use of
recursive processes. With this purpose consider first the following definition.

Definition 2.1.2. (Subexpression of a Process) Given a process P , we denote by sub(P) the set induc-

tively defined as follows:

sub(0) , {0}

sub((π.P ′)) , {(π.P ′)} ∪ sub(P ′)

sub((P1 | P2)) , {(P1 | P2)} ∪ sub(P1) ∪ sub(P2)

sub(((νa)P ′)) , {((νa)P ′)} ∪ sub(P ′)

sub((recX.P ′)) , {(recX.P ′)} ∪ sub(P ′)

sub(X) , {X}

The next definition, adapted from [Pie02], induces the intended restriction.

Definition 2.1.3. (Contractive Process) A process P is contractive if, for any subexpression of P of the

form (recX.(recX1....(recXn.Q))), the body Q is not X .

In the following we will restrict our language to contractive processes.

2.2 Operational semantics

Following the work of Milner [Mil89, Mil99], this section defines the operational semantics of the process
calculus via two binary relations: a static one - the structural congruence relation - and a dynamic one - a
labelled transition relation.

2.2.1 Names, variables and substitutions in processes

We first define the notions of free and bound names and variables, along with the notions of substitution

of names and variables in processes, which are used in defining the structural congruence and the labelled
transition system relations.

5

Definition 2.2.1. (Free and bound names in processes) For any process P , the set of free names of P ,

written fn(P), and the set of bound names of P , written bn(P), are inductively defined as follows:

fn(0) , ∅ bn(0) , ∅
fn(a.P) , fn(P) ∪ {a} bn(π.P ′) , bn(P ′)
fn(ā.P) , fn(P) ∪ {a} bn(P1 | P2) , bn(P1) ∪ bn(P2)
fn(τ.P) , fn(P) bn((νa)P ′) , {a} ∪ bn(P ′)
fn(P | Q) , fn(P) ∪ fn(Q) bn((recX.P ′)) , bn(P ′)
fn((νa)P) , fn(P) \ {a} bn(X) , ∅
fn((recX.P)) , fn(P)
fn(X) , ∅

We say that a name is fresh in a process if it is neither bound nor free in that process. The set of names
appearing in a process P , written n(P), is the union of the free and bound names of P .

Definition 2.2.2. (Free and bound variables in processes) For any process P , the set of free variables of

P , written fv(P), and the set of bound variables of P , written bv(P), are inductively defined as follows:

fv(0) , ∅ bv(0) , ∅
fv(π.P ′) , fv(P ′) bv(π.P ′) , bv(P ′)
fv(P1 | P2) , fv(P1) ∪ fv(Q2) bv(P1 | P2) , bv(P1) ∪ bv(P2)
fv((νa)P ′) , fv(P ′) bv((νa)P ′) , bv(P ′)
fv((recX.P ′)) , fv(P ′) \ {X} bv((recX.P ′)) , bv(P ′) ∪ {X}
fv(X) , {X} bv(X) , ∅

We say that a variable is fresh in a process if it is neither bound nor free in that process. The set of
variables appearing in a process P , written v(P), is the union of the free and bound variables of P .

In the following we will need to substitute names for names and variables for processes in processes.
Therefore, we write P{a/b} and P{Q/X} for the operation which replaces all occurrences of b and X for
a and Q in P , respectively. Moreover, when we write P{a/b}{c/d}, we mean (P{a/b}){c/d}, i.e. the
substitutions are sequential, not simultaneous. The next two definitions make it precise.

Definition 2.2.3. (Substitution of names) Given a process P and names a and b, we denote by P{a/b}
the process inductively defined as follows:

0{a/b} , 0

(b.P ′){a/b} , a.(P ′{a/b})

(b̄.P ′){a/b} , ā.(P ′{a/b})

(π.P ′){a/b} , π.(P ′{a/b}), if π 6= b, b̄

(P1 | P2){a/b} , (P1{a/b}) | (P2{a/b})

((νa)P ′){a/b} , (νc)(P ′{c/a}{a/b}), where c is fresh in P ′

6

((νb)P ′){a/b} , (νa)(P ′{a/b}), where a 6∈ fn(P ′)

((νc)P ′){a/b} , (νc)(P ′{a/b}), where c 6= a, b

(recX.P ′){a/b} , (recX.(P ′{a/b}))

X{a/b} , X

Definition 2.2.4. (Substitution of variables) Given processes P and Q, we denote by P{Q/X} the pro-

cess inductively defined as follows:

0{Q/X} , 0

(π.P ′){Q/X} , π.(P ′{Q/X})

(P1 | P2){Q/X} , (P1{Q/X}) | (P2{Q/X})

((νa)P ′){Q/X} , (νa)(P ′{Q/X})

(recY.P ′){Y/X} , (recZ.(P ′{Z/Y }{Y/X})), where Z is fresh in P ′

(recX.P ′){Y/X} , (recY.(P ′{Y/X})), if Y 6∈ fv(P ′)

(recY.P ′){Q/X} , (recY.(P ′{Q/X})), where Q 6= Y

Y {Q/X} , Y

X{Q/X} , Q

2.2.2 Structural congruence on processes

Within a process, changing a bound name or variable into fresh ones must not alter it in terms of behaviour.
Thus, in a similar fashion as in [Mil99], we relate processes which differ only in that a replacement of this
kind has occurred. This is called alpha-conversion and it is formally defined next.

Definition 2.2.5. (α-conversion) α-conversion, ≡α, is the least congruence on processes such that

(νa)P ≡α (νb)(P{b/a}), where b is fresh in P (Alpha Res)

(recX.P) ≡α (recY.(P{Y/X})), where Y is fresh in P (Alpha Rec)

The next definition is largely inspired on [Mil99].

Definition 2.2.6. (Structural congruence) Structural congruence,≡, is the least congruence on processes

such that

1. If P ≡α Q, then P ≡ Q

2. P | 0 ≡ P

3. P | Q ≡ Q | P

4. P | (Q | R) ≡ (P | Q) | R

7

5. (νa)0 ≡ 0

6. (νa)(νb)P ≡ (νb)(νa)P

7. (νa)(P | Q) ≡ ((νa)P | Q), if a /∈ fn(Q)

Processes which are α-convertible are also structurally congruent; laws (2)-(4) show that the set of
processes equipped with the parallel composition forms an abelian monoid with inaction as its neutral
element; restricting a name in an inactive process or changing the order of restriction of the names is
irrelevant; the last law states that parts of a process not containing a name a can be included in the scope
of a (νa) or not, with no difference.

The following lemma is presented without a proof as it is a straightforward property of structural
congruence. A proof can easily be found in any book (cf. [Mil89], [Mil99]).

Lemma 2.2.7. If P ≡ Q, then fn(P) = fn(Q).

2.2.3 Labelled transition system

To express the behaviour of processes we include a labelled transition system that contains one or more
rules for each combinator of the calculus.

First, we give a standard general definition of labelled transition system.

Definition 2.2.8. (Labelled Transition System) A Labelled Transition System over a set of actions A is a

pair (Q, T) consisting of

• a set Q of states;

• a ternary relation T ⊆ (Q×A×Q), known as a transition relation.

Moreover, if (q, α, q′) ∈ T we write q
α−→ q′, and we call q the source and q′ the target of the transition. If

q
π−→ q′, then q′ is a π-derivative of q.

Now, consider the following labelled transition system for the calculus. From this point further we will
often refer to it simply as the LTS.

Definition 2.2.9. (Labelled Transition System for concurrent processes) The Labelled Transition System

(P, T) of concurrent processes over Act has P as its states and its transitions T are exactly those which

can be inferred by the rules listed on Table 2.1.

The only operator of the calculus which does not have a rule associated with it is inaction 0. This
results from the fact that the inactive process can not perform any transition. In all rules a transition of a
composite process can be inferred from transitions of its components. Remember that α can be of the form
a or ā, but not τ .

This set of rules is in fact an adaptation of the labelled transition system for concurrent processes
of [Mil89]. In addition it includes rule SC which appears in the reduction relation for the π-calculus of
[SW01]. It allows restructuring both before and after a transition and the use of the rule after a transition
ensures that the transition relation is closed under structural congruence, in the sense that if P

π−→ Q and
R ≡ Q, then P

π−→ R.

8

π.P
π−→ P

Act
P

π−→ P ′

P | Q
π−→ P ′ | Q

Par1

P
α−→ P ′ Q

ᾱ−→ Q′

P | Q
τ−→ P ′ | Q′ Par2

P
π−→ P ′

(νa)P π−→ (νa)P ′ , π, π̄ 6= a Res
P{(recX.P)/X} π−→ P ′

(recX.P) π−→ P ′ Rec

P ≡ P ′ π−→ Q′ ≡ Q

P
π−→ Q

SC

Table 2.1: The Labelled Transition System.

9

Chapter 3

Type System

This chapter presents the Logic in the following way. Section 3.1 introduces the syntax of formulas.
Section 3.2 defines the semantics of formulas, where, in subsection 3.3.2, subtyping relation and subtyping
derivation are introduced. Finally, section 3.3 presents the deductive system, i.e. the type system.

3.1 Syntax of types

The type language is largely inspired in the Spatial Logic of [CC03] and in the Process Logic described in
[Mil89]. Some type operators are closely related with spatial logic operators and the others, the modal and
propositional ones, are taken from Milner’s process logic. The former aspire to express spatial properties
of processes while the latter are meant to express behavioural properties of processes.

Consider sets A, A, L and Act as defined in 2.1. In addition consider a countable set of type variables,
Z , disjoint from these.

Definition 3.1.1. (Syntax of types) Let I be a nonempty countable index set. The following grammar

defines the set T of types.

A ::= 0 inaction

| π.A prefix

| A | A parallel composition

| arA restriction

| (recZ.A) recursion

| Z type variable

| 0̄ active

| [π]A if π

| 〈π〉A may π

|
∧

i∈I Ai conjunction

|
∨

i∈I Ai disjunction

Note as a first observation, that this grammar does not contain any form of negation, though it is possible
to define; [CC03], is an example of a closely related logic that uses negation. But, instead of using negation
to define other connectives, all dual operators are taken as primitives in the language; this is meant this way

10

for reasons of decidability.
Every operator in the calculus of processes has a counterpart among types: inaction, prefix, parallel

composition and recursion combinators are also defined within types. Furthermore, restriction of names
in types is also defined, though with a different notation taken from [CC03] – arA. We call these type
combinators the structural operators. We have the active type 0̄, the dual of 0; two modalities: [π]A
to express the type of a process after performing any transition and 〈π〉A to express the possibility of
transition by a process and its type after that transition; conjunction and disjunction to enable the definition
of more expressive modalities.

All these operators will be rendered meaning when we define the satisfaction relation below.
Before moving on we must restrict the language of types. As in section 2.1, for recursive types to be

interpreted as regular trees a restriction must be assumed. Accordingly, consider the next two definitions.

Definition 3.1.2. (Subexpression of a Type) Given a type A, we denote by sub(A) the set inductively

defined as follows:

sub(0) , {0}

sub(0̄) , {0̄}

sub(π.A′) , {π.A′} ∪ sub(A′)

sub(A1 | A2) , {A1 | A2} ∪ sub(A1) ∪ sub(A2)

sub(πrA′) , {πrA′} ∪ sub(A′)

sub((recZ.A′)) , {(recZ.A′)} ∪ sub(A′)

sub(Z) , {Z}

sub([π]A′) , {[π]A′} ∪ sub(A′)

sub(〈π〉A′) , {〈π〉A′} ∪ sub(A′)

sub(
∧

i∈I Ai) , {
∧

i∈I Ai} ∪
⋃

i∈I sub(Ai)

sub(
∨

i∈I Ai) , {
∨

i∈I Ai} ∪
⋃

i∈I sub(Ai)

Definition 3.1.3. (Contractive type) A type A is contractive if, for any subexpression of A of the form

(recZ.(recZ1....(recZn.B))), the body B is not Z.

In the following we will restrict our language to contractive types.

3.2 Semantics

3.2.1 Structural congruence on types

In an analogous way as in for processes we also need to define the notions of free and bound names and
variables, along with the notions of substitution of names and variables in types.

11

Definition 3.2.1. (Free and bound names in types) For any type A, the set of free names of A, written

fn(A), and the set of bound names of A, written bn(A), are inductively defined as follows:

fn(0) , ∅ bn(0) , ∅
fn(0̄) , ∅ bn(0̄) , ∅
fn(π.A′) , {π} ∪ fn(A′) bn(π.A′) , bn(A′)
fn(A1 | A2) , fn(A1) ∪ fn(A2) bn(A1 | A2) , bn(A1) ∪ bn(A2)
fn(arA′) , fn(A′) \ {a} bn(arA′) , bn(A′) ∪ {a}
fn((recZ.A′)) , fn(A′) bn((recZ.A′)) , bn(A′)
fn(Z) , ∅ bn(Z) , ∅
fn(〈π〉A′) , {π} ∪ fn(A′) bn(〈π〉A′) , bn(A′)
fn([π]A′) , {π} ∪ fn(A′) bn([π]A′) , bn(A′)
fn(

∧
i∈I Ai) ,

⋃
i∈I fn(Ai) bn(

∧
i∈I Ai) ,

⋃
i∈I bn(Ai)

fn(
∨

i∈I Ai) ,
⋃

i∈I fn(Ai) bn(
∨

i∈I Ai) ,
⋃

i∈I bn(Ai)

We say that a name is fresh in a type if it is neither bound nor free in that type. The set of names
appearing in a type A, written nt(A), is the union of the free and bound names of A.

Definition 3.2.2. (Free and bound variables in Types) For any type A, the set of free variables of A,

written fv(A), and the set of bound variables of A, written bv(A), are inductively defined as follows:

fv(0) , ∅ bv(0) , ∅
fv(0̄) , ∅ bv(0̄) , ∅
fv(π.A′) , fv(A′) bv(π.A′) , bv(A′)
fv(A1 | A2) , fv(A1) ∪ fv(A2) bv(A1 | A2) , bv(A1) ∪ bv(A2)
fv(πrA′) , fv(A′) bv(πrA′) , bv(A′)
fv((recZ.A′)) , fv(A′) \ {Z} bv((recZ.A′)) , bv(A′) ∪ {Z}
fv(Z) , {Z} bv(Z) , ∅
fv(〈π〉A′) , fv(A′) bv(〈π〉A′) , bv(A′)
fv([π]A′) , fv(A′) bv([π]A′) , bv(A′)
fv(

∧
i∈I Ai) ,

⋃
i∈I fv(Ai) bv(

∧
i∈I Ai) ,

⋃
i∈I bv(Ai)

fv(
∨

i∈I Ai) ,
⋃

i∈I fv(Ai) bv(
∨

i∈I Ai) ,
⋃

i∈I bv(Ai)

We say that a variable is fresh in a type if it is neither bound nor free in that type. The set of variables
appearing in a type A, written vt(A), is the union of the free and bound variables of A.

The next two definitions extend the operation, introduced in section 2.2, of substituting names for
names and variables for variables, to types. Therefore, we write A{a/b} and A{B/Z} for the operation
which replaces all occurrences of b and Z for a and B in A, respectively.

Definition 3.2.3. (Substitution of names in types) Given a type A and names a and b, we denote by

A{a/b} the type inductively defined as follows:

0{a/b} , 0

0̄{a/b} , 0̄

(b.A′){a/b} , a.(A′{a/b})

12

(b̄.A′){a/b} , ā.(A′{a/b})

(π.A′){a/b} , π.(A′{a/b}), if π 6= b, b̄

(A1 | A2){a/b} , (A1{a/b}) | (A2{a/b})

(arA′){a/b} , cr(A′{c/a}{a/b}), where c 6∈ fn(A′)

brA′){a/b} , br(A′{a/b}), where b 6∈ fn(A′)

(crA′){a/b} , cr(A′{a/b}), where c 6= a, b

(recZ.A′){a/b} , (recZ.(A′{a/b}))

Z{a/b} , Z

([b]A′){a/b} , [a] (A′{a/b})

(
[
b̄
]
A′){a/b} , [ā] (A′{a/b})

([π]A′){a/b} , [π] (A′{a/b}), if π 6= b, b̄

(〈b〉A′){a/b} , 〈a〉 (A′{a/b})

(
〈
b̄
〉
A′){a/b} , 〈ā〉 (A′{a/b})

(〈π〉A′){a/b} , 〈π〉 (A′{a/b}), if π 6= b, b̄

(
∧

i∈I Ai){a/b} ,
∧

i∈I (Ai{a/b})

(
∨

i∈I Ai){a/b} ,
∨

i∈I (Ai{a/b})

Definition 3.2.4. (Substitution of variables in types) Given types A and B, we denote by A{B/Z} the

type inductively defined as follows:

0{B/Z} , 0

0̄{B/Z} , 0̄

π.A′{B/Z} , π.(A′{B/Z})

(A1 | A2){B/Z} , (A1{B/Z}) | (A2{B/Z})

(arA′){B/Z} , ar(A′{B/Z})

(recW .A′){W /Z} , (recX .(A′{X /W }{W /Z})), where X is fresh in A′

(recZ.A′){W /Z} , (recW .(A′{W /Z})), where W 6∈ fv(A′)

(recW .A′){B/Z} , (recW .(A′{B/Z})), where B 6= W

W {B/Z} , W

Z{B/Z} , B

13

[π]A′{B/Z} , [π] (A′{B/Z})

〈π〉A′{B/Z} , 〈π〉 (A′{B/Z})

(
∧

i∈I Ai){B/Z} ,
∧

i∈I (Ai{B/Z})

(
∨

i∈I Ai){B/Z} ,
∨

i∈I (Ai{B/Z})

As the structural type operators are the same as the calculus operators it is natural to define α-conversion
and structural congruence over types as well. This is done in a similar way as in section 2.2.2.

Definition 3.2.5. (α-conversion on types) α-conversion on types, ≡t
α, is the least congruence on types

such that

arA ≡t
α br(A{b/a}), where b is fresh in A (t-Alpha Res)

(recZ.A) ≡t
α (recW .(A{W /Z})), where W is fresh in A (t-Alpha Rec)

Definition 3.2.6. (Structural congruence on types) Types-structural congruence, ≡t, is the least congru-

ence on types such that

1. If A ≡t
α B, then A ≡t B

2. A | 0 ≡t A.

3. A | B ≡t B | A.

4. A | (B | C) ≡t (A | B) | C.

5. ar0 ≡t 0.

6. arbrA ≡t brarA.

7. ar(A |B) ≡t (arA | B), if a 6∈ fn(B).

So, types which are α-convertible are also structuraly congruent; laws (2)-(4) show that the set of
types equipped with the parallel composition forms an abelian monoid with inaction as its neutral element;
restricting a name in an inactive type or changing the order of restriction of the names is irrelevant; the last
law states that parts of a type not containing a name a can be included in the scope of a ar or not, with no
difference.

3.2.2 Interpretation of types

After having formally defined a language of formulas (types), we introduce below a new semantics using
the notions of structural congruence and of labelled transition.

First, we give the following three definitions about processes, taken from [Mil99].

14

Definition 3.2.7. (Experiment relations) The relations ⇒ and s⇒, for any s ∈ Act∗, are defined as

follows:

1. P ⇒ Q means that there is a sequence of zero or more τ transitions P
τ−→ . . .

τ−→ Q. Formally,

⇒ def=(τ−→)∗, is the transitive reflexive closure of τ−→.

2. Let s = π1 . . . πn. Then P
s⇒ Q means P ⇒ π1−→ P1 · · · ⇒

πn−−→ Pn ⇒ Q. Formally, s⇒ def= ⇒ π1−→⇒
· · · ⇒ πn−−→⇒.

For s ∈ Act∗, if P
s⇒ P ′, then P ′ is an s-descendant of P .

Definition 3.2.8. (Weak Simulation) Let S be a binary relation over P . Then S is said to be a weak
simulation if, whenever PSQ,

if P
e⇒ P ′ then there exists Q′ ∈ P such that Q

e⇒ Q′ and P ′SQ′.

We say that Q weakly simulates P , written P <: Q, if there exists a weak simulation S such that PSQ.

Definition 3.2.9. (Weak Bisimulation) A binary relation S over P is said to be a weak bisimulation if

both S and its converse are weak simulations. We say that P and Q are weakly bisimilar, written P ≈ Q,

if there exists a weak bisimulation S such that PSQ.

A reason not to consider summations in the language of types becomes apparent after the next result.

Proposition 3.2.10. (Preservation) Simulation is preserved by all process operators.

In [Mil99] it was proved that bisimulation is preserved by all operators except summations. Therefore,
the work is considerably simplified. In particular, it enables the previous helpful result.

A simple to prove result relating structural congruence and bisimulation is presented below. It is usually
known as the “Harmony Lemma” and a proof of it can be found in [Mil89].

Lemma 3.2.11. (Harmony Lemma) Structural congruence is a bisimulation.

The following direct corollary of this result will be useful further ahead.

Corollary 3.2.12. (SC is a Simulation) If P ≡ Q, then P <: Q.

Proof. By Proposition 3.2.11, if P ≡ Q, then P ≈ Q. Then, there exists a weak bisimulation S such that
PSQ. Moreover, by definition of weak bisimulation, S and its converse are weak simulations. Therefore,
P <: Q.

The semantics of types is defined by assigning to each type A a set of processes, namely the set of
processes which satisfy the property denoted by A. With this purpose, we introduce a binary relation
between processes and types, named satisfaction, which induces the mentioned set. But before formally
defining satisfaction we need to mention the notion of environment, denoted by Γ, needed to cater for free
variables within the body of recursion, which is an injective function mapping process variables into type
variables. Satisfaction, denoted by |=Γ, is formalized in the following definition.

15

Definition 3.2.13. (Interpretation of Types) The satisfaction relation, |=Γ, is inductively defined over

types by the following rules:

Voi P |=Γ 0, if P 6 π−→ , for every π;

Non P |=Γ 0̄, if P
π−→ P ′, for some π and P ′;

Var P |=Γ Z, if P is a variable X and X : Z is in Γ;

Par P |=Γ A | B, if P ≡Q |R,Q |=Γ A and R |=Γ B, for some Q and R;

Pre P |=Γ π.A, if for some P ′ P
π−→ P ′ and P ′ |=Γ A, and, for every π′ and P ′′,

if P
π′

−→ P ′′ then π′ is π and, P ′′ and P ′ are weakly bisimilar;

New P |=Γ arA, if P ≡ (νa)Q and Q |=Γ A, for some Q;

Rec P |=Γ (recZ.A), if P ≡ (recX.P ′) and P ′ |=Γ,{X:Z} A′, for some X and P ′;

Dia P |=Γ 〈π〉A, if P
π−→ P ′ and P ′ |=Γ A, for some P ′;

Box P |=Γ [π]A, if P |=Γ π.A or P 6 π−→;

Con P |=Γ

∧
i∈I Ai, if P |=Γ Ai for all i ∈ I;

Dis P |=Γ

∨
i∈I Ai, if P |=Γ Ai for some i ∈ I.

Notation 1. To simplify, we write P |= A instead of P |=∅ A.

We now provide a brief explanation of the relation defined above.

• 0 is satisfied by every process that can not perform any transition, for instance 0 and (νa)a.0;

• 0̄, the dual of 0, is satisfied by every process that can perform an action;

• a type variable Z is exactly satisfied by the process variable given by the environment Γ;

• A | B is satisfied by every process that can be spatially decomposed in two parts, provided each part
satisfies A and B, respectively;

• π.A is satisfied by every process which has a π-derivative P ′ that satisfies A and such that every
π-derivative of it is bisimilar to P ′;

• arA is satisfied by every process which can be transformed (using structural congruence) into a
process restricted by a and that the scope of the restriction satisfies A;

• (recZ.A) is satisfied by every process which can be transformed into a process recursion, the body
of the recursion satisfies A and that the variable of the recursion satisfies Z;

• 〈π〉A is satisfied by every process having a π-derivative that satisfies A;

• [π]A is satisfied by every process P such that either every π-derivative of P satisfies A or P does
not have any π-derivative;

16

• P |=Γ

∧
i∈I Ai is satisfied by every process that satisfies Ai for every i ∈ I;

• P |=Γ

∨
i∈I Ai is satisfied by every process that satisfies Ai for some i ∈ I;

The use of both structural congruence and labelled transition in the definition of satisfaction enables the
expressiveness to talk about spatial properties and behavioural properties.

Let us now introduce some derived forms for the system. These will enable other connectives to be
expressed, which subsequently will make its power more apparent. First, it is more convenient to subscribe
a conjunction or a disjunction by a condition different from i ∈ I . Thus, it becomes easier and more
intuitive to define the following logical operators - modal operators.

Definition 3.2.14. (Abbreviations)

〈t〉A abv= 〈π1 . . . πn〉A
abv= 〈π1〉 . . . 〈πn〉A, where n ≥ 1 and t = π1 . . . πn;

[t]A abv= [π1 . . . πn]A abv= [π1] . . . [πn]A, where n ≥ 1 and t = π1 . . . πn;

♦A
abv=

∨
t∈Act∗ 〈t〉A;

�A
abv=

∧
t∈Act∗ [t]A;

!A abv= (recZ.A | Z).

We also provide a brief explanation of these operators.

• 〈t〉A, read as possible t-A, is satisfied by every process which has a t-descendant that satisfies A;

• [t]A, read as necessarily t-A, is satisfied by every process such that every t-descendant satisfies A;

• ♦A, read as some time A, is satisfied by every process which has a t-descendant that satisfies A, for
some t ∈ Act∗;

• �A, read as always A, is satisfied by every process such that every t-descendant satisfies A, for every
t ∈ Act∗;

• !A, read as iterate A, is satisfied by every process recursion with A | Z in the body of the recursion.

3.3 Deductive system

3.3.1 Structural type rules

We now introduce an important part of our type system: the structural type rules.
To cater for free variables (within the body of recursion, etc.) we need an environment Γ which is an

injective function mapping process variables into type variables, as already stated. Hence, judgements are
of the form Γ ` P : A, where P is a process, A is a type and Γ has the form X1 : Z1, . . . , Xn : Zn.
Moreover, Γ, X : Z denotes the disjoint union of Γ and {X : Z}, where Z 6∈ codom(Γ).

The inference rules and axioms composing the structural type system are those listed on table 3.1. It has
exactly one rule for each connective of the process calculus; these rules build a correspondence between
the calculus operators and the structural type operators. Rule T-Voi states that the process 0 has type 0; rule
T-Var uses the environment Γ, X : Z to determine the type of the process variable X; in rules T-Par, T-Pre
and T-New a type of a composite process can be inferred from its components with the same environment;

17

Γ ` 0 : 0
T-Voi

Γ, X : Z ` X : Z
T-Var

Γ ` P : A Γ ` Q : B
Γ ` P | Q : A | B

T-Par

Γ ` P : A
Γ ` π.P : π.A

T-Pre
Γ ` P : A

Γ ` (νa)P : arA
T-New

Γ, X : Z ` P : B
Γ ` (recX.P) : (recZ.B)

T-Rec

Table 3.1: The Structural Type System.

rule T-Rec states that recursive processes have recursive types which can be inferred from the type of the
body of the recursion, extending the environment to cope with the variables that become free.

Definition 3.3.1. (Structural derivation) The Structural Type System consists of all the structural rules.

Therefore, valid structural type judgements are those which can be inferred from these rules and a structural
typing derivation is a proof of the validity of a certain structural type judgement.

Notation 2. To simplify, we write ` P : A instead of ∅ ` P : A.

3.3.2 Subtyping

The structural typing rules introduced are insufficient to infer interesting properties about processes. This
section introduces a binary relation over types which is central to the type system. Amidst the type system,
this relation brings inference power and expressiveness. Commonly known as subtyping, it is introduced
into the the system through a subsumption rule Subsumbtion functions like a bridge between typing and
subtyping relations.

The subsumption rule

Weak simulation relates processes according to their behaviour. As a type denotes a set of processes, it is
natural to define a relation over types based on weak simulation.

Definition 3.3.2. (Subtyping) Subtyping, <:, is the smallest binary relation over types such that, for every

types A and B, A <: B if, for every process P and environment Γ such that P |=Γ A, there exists a process

Q such that P <: Q and Q |=Γ B.

We say that A is a subtype of B if A <: B.

A simpler intuition is to read A <: B as logical entailment to a certain extent, that is, “if a process P

has type A, then it is weakly simulated by a process Q with type B”.

18

Like weak simulation, subtyping is also reflexive and transitive. In other words, subtyping has a pre-
order structure.

Proposition 3.3.3. (Preorder) The subtyping relation is a preorder. That is:

1. A <: A;

2. A <: B and B <: C ⇒ A <: B.

Proof. For part 1., just note that the identity relation is a weak simulation. Therefore, for any P such that
P |=Γ A, P is weakly simulated by P itself; so the subtyping relation is reflexive.
For part 2., assume P |=Γ A. Then, as A <: B, there exists Q such that P <: Q and Q |=Γ B.
Subsequently, as B <: C, there exists R such that Q <: R and R |=Γ C. It is easy to see that if P <: Q

and Q <: R, then P <: R and this suffices to conclude that the subtyping relation is transitive.

Type equivalence is defined as the symmetrical closure of subtyping.

Definition 3.3.4. (Type Equivalence) For every types A and B, A <:> B, if A <: B and B <: A.

A simple observation is that type equivalence is an equivalence relation.

Proposition 3.3.5. (Equivalence) <:> is an equivalence relation.

Proof. Reflexivity and transitivity are inferred directly from proposition 3.3.3 and symmetry comes from
definition 3.3.4.

The following rule defines the bridge between typing and subtyping.

Definition 3.3.6. (Subsumption rule)

Γ ` P : A A <: B

Γ ` P : B
, with A <6:> 0 or B 6= 0̄ T-Sub

This rule states that, if P has type A and A is a subtype of B, then P also has type B. For instance, it
is easy to see that process P = a.0 is weakly simulated by process Q = a.0 | b.0. The only action that P

can perform before becoming inactive is a and Q mimics this action, though not becoming inactive after
that. It is straightforward to infer structurally that P has type A = a.0 and to infer that a.0 is subtype of
B = a.0 | b.0. Therefore, by subsumption we conclude that P has also type a.0 | b.0. This means that
type B expresses at least the properties of P .

The side-condition is included to prevent awkward results. For instance, without it, it would be possible
to infer vacuously that process 0 has type 0̄, i.e. that the inactive process has at least the property of doing
something.

19

Subtyping rules

The subtype relation is formalized as a collection of inference rules for deriving statements of the form
A <: B. In this subsection we introduce several subtyping rules adding to reflexivity and transitivity
proved in the last subsection. The rules are presented grouped in propositions. Every inference rule is
proved correct.

The following proposition says that the the set of types equipped with parallel composition constitutes
a commutative monoid with type 0 as its neutral element.

Proposition 3.3.7. (Commutative monoid)

1. A | 0 <:> A;

2. A | B <:> B | A;

3. A | (B | C) <:> (A | B) | C.

Proof.

Neutral element: First, assume that P |=Γ A | 0. Then, there exists processes Q and R such that
P ≡ Q | R, Q |=Γ A and R |=Γ 0. Consider the binary relation S = {(P | 0, P) : P ∈ P}. Then
(Q | 0, Q) ∈ S and, if Q | 0 e⇒ Q′, then Q′ = Q′′ | 0, Q

e⇒ Q′′ and (Q′′ | 0, Q′′) ∈ S. So S is a
simulation and Q | 0 is weakly simulated by Q; hence, A | 0 <: A.

Secondly, assume that P |=Γ A. Of course 0 |=Γ 0 and, by definition 2.2.6, P ≡ P | 0. So
P |=Γ A | 0. Hence, as P <: P , we have that A <: A | 0.

Therefore A | 0 <:> A.

Commutativity: First, assume that P |=Γ A | B. Then, there exists processes Q and R such that
P ≡ Q | R, Q |=Γ A and R |=Γ B. By definition 2.2.6, Q | R ≡ R | Q. Moreover, P ≡ R | Q

and, subsequently, P |=Γ B | A. Then, as P <: P , we have that A | B <: B | A.

The other direction is similar.

Therefore A | B <:> B | A.

Associativity: First, assume that P |=Γ A | (B | C). Then, there exists processes Q and R such
that P ≡ Q | R, Q |=Γ A and R |=Γ (B | C). Again, there exists processes R1 and R2 such
that R ≡ R1 | R2, R1 |=Γ B and R2 |=Γ C. Moreover, there exists processes Q, R1 and R2

such that P ≡ Q | (R1 | R2) and Q |=Γ A, R1 |=Γ B and R2 |=Γ C. By definition 2.2.6,
Q | (R1 | R2) ≡ (Q | R1) | R2. Then, P ≡ (Q | R1) | R2 and, subsequently, P |=Γ (A | B) | C.
Then, as P <: P , we have that A | (B | C) <: (A | B) | C.

The other direction is similar.

Therefore A | (B | C) <:> (A | B) | C.

The following proposition is a rather important preservation result.

20

Proposition 3.3.8. (Preservation) Subtyping is preserved by all type operators except conjunction.

Proof.

1. Suppose A <: B and let P |=Γ π.A. Then, there exists P ′such that P
π−→ P ′, P ′ |=Γ A and, for

every π′ and P ′′, P
π′

−→ P ′′ implies that π′ = π and P ′′ ≈ P ′. Subsequently, by hypothesis, there
exists Q′ such that P ′ <: Q′ and Q′ |=Γ B. Let Q be π.Q′. Then, Q |=Γ π.B and it remains to
be shown that P <: Q. For this purpose assume that P

π′

−→ P ′′. Then, as already stated, π′ = π

and P ′′ ≈ P ′, and, in particular, P ′′ <: P ′. On the other hand, Q
π−→ Q′ and P ′ <: Q′. Then, by

transitivity, P ′′ <: Q′ and we conclude that there exists a simulation S such that PSQ. Therefore,
P <: Q.

2. Suppose A <: B and let P |=Γ A | C. Then, there exists P1 and P2 such that P ≡ P1 | P2,
P1 |=Γ A and P2 |=Γ C. Subsequently, by hypothesis, there exists Q1 such that P1 <: Q1 and
Q1 |=Γ B. Then, Q1 | P2 |=Γ B | C. By corollary 3.2.12, P <: P1 | P2 and, by proposition 3.2.10,
P1 | P2 <: Q1 | P2; thus, by transitivity, P <: Q1 | P2.

3. Suppose A <: B and let P |=Γ arA. Then, there exists P1 such that P ≡ (νa)P1 and P1 |=Γ A.
Subsequently, by hypothesis, there exists Q1 such that P1 <: Q1 and Q1 |=Γ B. Then we have
that (νa)Q1 |=Γ arB. By corollary 3.2.12, P <: (νa)P1 and, by proposition 3.2.10, we get
(νa)P1 <: (νa)Q1; thus, by transitivity, P <: (νa)Q1.

4. Suppose A <: B and let P |=Γ (recZ.A). Then, there exists X and P1 such that P ≡ (recX.P1)
and P1 |=Γ,{X:Z} A. Subsequently, by hypothesis, there exists Q1 such that P1 <: Q1 and
Q1 |=Γ,{X:Z} B. Then, (recX.Q1) |=Γ (recZ.B). By corollary 3.2.12, P <: (recX.P1) and,
by proposition 3.2.10, (recX.P1) <: (recX.Q1); thus, by transitivity, P <: (recX.Q1).

5. Suppose A <: B and let P |=Γ [π]A. Then, either P 6 π−→ for every π or P |=Γ π.A. So, we must
consider both cases. In the first, it is easy to find a process Q and a weak simulation S such that
PSQ and Q |=Γ [π]B. In fact, every process Q vacuously weakly simulates P because P 6 π−→ for
every π. In the second case, using Part (1.):, one can conclude that there exists Q such that P <: Q

and Q |=Γ [π]B. Subsequently, Q |=Γ π.B.

In both cases π.A <: π.B.

6. Suppose A <: B and let P |=Γ 〈π〉A. Then, there exists a process P ′ such that P
π−→ P ′ and

P ′ |=Γ A. By hypothesis, there exists Q′ such that P ′ <: Q′ and Q′ |=Γ B. Let Q be the process
obtained from P by substituting the occurrence of P ′ by Q′. First, it is true that Q

π−→ Q′ because so
did P . Then, Q |=Γ 〈π〉B. Secondly, P <: Q by construction and using the fact that P ′ <: Q′.

7. Suppose A <: B and let P |=Γ A ∨ C. Then, P |=Γ A or P |=Γ C. By hypothesis, there exists Q

such that P <: Q and Q |=Γ B. Hence Q |=Γ B ∨ C. It is easy to generalize this case to the index
set I; just consider C to be

∨
i∈I Ci

21

It is still an open result to determine whether conjunction preserves subtyping or not.
The proof of the next result is given on chapter 4.3.

Proposition 3.3.9. If A ≡t B, then A <: B.

The next, is an auxiliary result. It is used in the proof of the following proposition.

Lemma 3.3.10. Let A be an arbitrary type and s = π1 . . . πn an arbitrary sequence of actions.

If A <: [π]A, for every π, and P |=Γ A, then exactly one of the following assertions is true:

1. There exists a sequence of processes P1, . . . , Pn, P ′
0, . . . , P

′
n such that:

(a) P ′
0 = P ;

(b) P ′
k <: Pk+1, 0 ≤ k ≤ n;

(c) Pk
πk−→ P ′

k, 1 ≤ k ≤ n− 1;

(d) Pk |=Γ πk.A, 1 ≤ k ≤ n− 1;

(e) Pn |=Γ [πn]A.

2. There exists a sequence of processes P1, . . . , Pj , P
′
0, . . . , P

′
j , with j ≤ n− 1, such that:

(a) P ′
0 = P ;

(b) P ′
k <: Pk+1, 0 ≤ k ≤ j − 1;

(c) Pk
πk−→ P ′

k, 1 ≤ k ≤ n− 1;

(d) Pk |=Γ πk.A, 1 ≤ k ≤ n− 1;

(e) Pj 6
πj−→.

Proof. By induction on the size of the action sequence.

n=1 If A <: [π]A, ∀π, and P |=Γ A, then, by definition of Subtyping (3.3.2), there exists a process P1

such P <: P1 and P1 |=Γ [π]A. Let P = P0. Thus, conditions (a)-(e) from the first assertion are
immediately satisfied.

n=m+1 By induction hypothesis the lemma is valid for n = m and we have two cases to consider:

– Suppose that it is the first assertion that is true for m. Then, through (e), there exists a process
Pm such that Pm |=Γ [πm]A, i.e., either Pm |=Γ πm.A or Pm 6 πm−−→. If the latter is true, then
the second assertion of the lemma is true. If the former is true, then there exists a process P ′

m

such that Pm
πm−−→ P ′

m and P ′
m |=Γ A. Hence, by hypothesis, there exists a process Pm+1 such

that Pm <: Pm+1 and Pm+1 |=Γ [πm+1]A. Therefore conditions (a)-(e) are verified; that is,
the first assertion is true for m + 1;

– Suppose that it is the second assertion that is true. Then, as j ≤ m− 1 ≤ m = n− 1, the same
sequence suffices to verify the second assertion for m + 1.

The following proposition gathers several crucial subtyping rules needed for completeness and to derive
the motivating example.

22

Proposition 3.3.11.

1. A <:!A | A;

2. A | !A <:>!A;

3. π.A <: 〈π〉A;

4. If A <: 〈π〉B, then A | C <: 〈π〉 (B | C);

5. If A1 <: 〈α〉B1 and A2 <: 〈ᾱ〉B2, then A1 | A2 <: 〈τ〉 (B1 | B2);

6. ar(〈π〉A) <: 〈π〉 (arA), if a 6= π, π̄;

7. 〈π〉A <: π.A, if ∀P : (P |=Γ 〈π〉A =⇒ ∃P ′: (∀P ′′, π′:P π′

−→ P ′′ =⇒ π′ = π ∧ P ′′ ≈ P ′));

8. π.A <: [π]A;

9. (recZ.A) <: A{(recZ.A)/Z};

10. If ∀P : (P |=Γ B =⇒ P 6 π−→), then B <: [π]A;

11. Aj <:
∨

i∈I Ai, if j ∈ I;

12. ar(!a | (recZ.ā.(a | a | Z))) <: [π] (ar(!a | (recZ.ā.(a | a | Z)))), for every π.

13. If A <: [π]A, for every π, then A <: �A.

Proof.

1. Let P |=Γ A and Q = R | P where R |=Γ!A. Then, Q |=Γ!A | A. Consider the binary relation
S = {(P,R | P) : P,R ∈ P}. It is clear that (P,Q) ∈ S and if P

e⇒ P ′ then R | P
e⇒ R | P ′,

that is, there exists Q′ ∈ P such that Q
e⇒ Q′ and P ′SQ′. So Q weakly simulates P , therefore,

A <:!A | A.

2. First, let P |=Γ A | !A. Then, there exists P1 and P2 such that P ≡ P1 | P2, P1 |=Γ A and
P2 |=Γ!A. If P2 |=Γ!A, then, by definition, there exists X and P21 such that P2 ≡ (recX.P21)
and P21 |=Γ,{X:Z} A | Z. Subsequently, there exists P22 and P23 such that P21 ≡ P22 | P23,
P22 |=Γ,{X:Z} A and P23 |=Γ,{X:Z} Z. Then, by definition 3.2.13, P23 = X . Using repeat-
edly proposition 3.2.12, the fact that simulation is transitivity and preserved by all process op-
erators to the structural relations above yields P <: (recX.(P22 | X)) | P2. Note that either
P22 <: P1 or P1 <: P22. Suppose without loss of generality that P1 <: P22 and let Q =
(recX.(P22 | X)). Then, P <: (recX.(P22 | X)) | P22 and it is easy to find a weak simulation
S such that (recX.(P22 | X)) | P22 <: (recX.(P22 | X)). Hence P <: (recX.(P22 | X)) and,
thus, A | !A <:!A.

Secondly, let P |=Γ!A. Then, there exists X and P ′ such that P ≡ (recX.P ′) and P ′ |=Γ A | X .
Subsequently, there exists P ′

1 and P ′
2 such that P ′ ≡ P ′

1 | P ′
2, P ′

1 |=Γ,{X:Z} A and P ′
2 |=Γ,{X:Z} X .

Let Q = P ′
1 | P . Then, Q |=Γ A | !A. Let S = {(P,R | P) : P,R ∈ P}. Then, (P,Q) ∈ S and if

23

P
e⇒ P ′ then P ′

1 | P
e⇒ P ′

1 | P ′, that is, there exists Q′ ∈ P such that Q
e⇒ Q′ and P ′SQ′. So Q

weakly simulates P , i.e., !A <: A | !A.

Therefore !A | A <:>!A.

3. Let P |=Γ π.A. Then, in particular, there exists P ′ such that P
π−→ P ′ and P ′ |=Γ A. Hence,

P |=Γ 〈π〉A and as, by proposition 3.3.3, P <: P we have that π.A <: 〈π〉A.

4. Let P |=Γ A | C. Then, there exists P1 and P2 such that P ≡ P1 | P2, P1 |=Γ A and P2 |=Γ

C. By hypothesis, there exists a process Q1 such that P1 <: Q1 and Q1 |=Γ 〈π〉B. Then, by
proposition 3.3.8, P1 | P2 <: Q1 | P2. By proposition 3.2.12, we have that P ≡ P1 | P2 implies
that P <: P1 | P2 and, by proposition 3.3.3 (transitivity of <:), we have that P <: Q1 | P2. It
remains to be shown that Q1 | P2 |=Γ 〈π〉 (B | C). Thus, as Q1 |=Γ 〈π〉B, there exists Q′

1 such that
Q1

π−→ Q′
1 and Q′

1 |=Γ B. Then, by definition 2.2.9, Q1 | P2
π−→ Q′

1 | P2 and by definition 3.2.13,
Q′

1 | P2 |=Γ B | C. Hence, Q1 | P2 |=Γ 〈π〉 (B | C) and we conclude that A | C <: 〈π〉 (B | C).

5. Let P |=Γ A1 | A2. Then, there exists P1 and P2 such that P ≡ P1 | P2, P1 |=Γ A1 and P2 |=Γ A2.
By hypothesis, there exists processes Q1 and Q2 such that P1 <: Q1, P2 <: Q2, and Q1 |=Γ 〈α〉B1

and Q2 |=Γ 〈ᾱ〉B2. At this point it is quite easy to conclude that P1 | P2 <: Q1 | Q2 so it is
omitted. By proposition 3.2.12, we have that P ≡ P1 | P2 implies that P <: P1 | P2 and, by
proposition 3.3.3 (transitivity of <:), we have that P <: Q1 | Q2. It remains to be shown that
Q1 | Q2 |=Γ 〈τ〉 (B1 | B2). Thus, as Q1 |=Γ 〈α〉B1 and Q2 |=Γ 〈ᾱ〉B2, there exists Q′

1 and
Q′

2 such that Q1
α−→ Q′

1 and Q′
1 |=Γ B1, and, Q2

ᾱ−→ Q′
2 and Q′

2 |=Γ B2, respectively. Then,
by definition 2.2.9, Q1 | Q2

τ−→ Q′
1 | Q′

2 and by definition 3.2.13, Q′
1 | Q′

2 |=Γ B1 | B2. Hence,
Q1 | Q2 |=Γ 〈τ〉 (B1 | B2) and we conclude that A1 | A2 <: 〈τ〉 (B1 | B2).

6. Let P |=Γ ar(〈π〉A). Then, there exists P1 such that P ≡ (νa)P1 and P1 |=Γ 〈π〉A. Subsequently,
there exists P2 such that P1

π−→ P2 and P2 |=Γ A. Then, by definition 2.2.9 and as a 6= π, π̄,
(νa)P1

π−→ (νa)P2 and by definition 3.2.13, (νa)P2 |=Γ arA. Hence, (νa)P1 |=Γ 〈π〉 (arA).
By proposition 3.2.12, P ≡ (νa)P1 implies that P <: (νa)P1 so we conclude that ar(〈π〉A) <:
〈π〉 (arA).

7. Let P |=Γ 〈π〉A. Then, by the side-condition, there exists P ′ such that for every P ′′ and π′ such
that P

π′

−→ P ′′, then π′ = π and P ′′ ≈ P ′. Hence, by definition 3.2.13, P |=Γ π.A.

8. Immediate by definition 3.2.13.

9. Let P |=Γ (recZ.A). Then there exists a process variable X and a process P such that P ≡
(recX.P ′) and P ′ |=Γ A. Then P ′{(recX.P ′)/X} |=Γ A{(recZ.A)/Z} and, by proposition
3.2.12, P <: (recX.P ′). Now, let S = {((recX.Q), Q{(recX.Q)/X}) : Q ∈ P}. Of course,
((recX.P ′), P ′{(recX.P ′)/X}) ∈ S, and it is almost direct to show that S is a simulation. For
suppose that (recX.P ′) π−→ P ′′, then by definition 2.2.9, also P ′{(recX.P ′)/X} π−→ P ′′; hence
(recX.P ′) <: P ′{(recX.P ′)/X} . Subsequently, (recZ.A) <: A{(recZ.A)/Z}.

24

10. Let P |=Γ B. Then, by the side-condition, P 6 π−→. Hence, by definition 3.2.13, P |=Γ [π]A.

11. Immediate by definition 3.2.13.

12. Let π be any action and P |=Γ ar(!a | (recZ.ā.(a | a | Z))). The first observation is that the only
action that P can perform is τ . Therefore it is easy to prove that ar(!a | (recZ.ā.(a | a | Z))) <:
[π] (ar(!a | (recZ.ā.(a | a | Z)))), for every π different from τ , using the definition 3.2.13 almost
directly.

So, let π be τ and assume that Q = τ.P . Then, Q |=Γ τ.(ar(!a | (recZ.ā.(a | a | Z)))) and, by
definition 3.2.13, Q |=Γ [τ] (ar(!a | (recZ.ā.(a | a | Z)))). It remains to be shown that P <: Q

which is actually very easy; just notice that whatever action, π, that P performs is matched by an
experiment e = τπ of Q.

13. Let P |=Γ A and let s = π1 . . . πn be any experiment. At this point, lemma 3.3.10 can be used to
build a process Q such that P <: Q and Q |=Γ [s]A in the following way.

First, assume that the first assertion of lemma 3.3.10 is true. Then there exists a sequence of processes
P1, . . . , Pn, P ′

0, . . . , P
′
n such that:

1. P ′
0 = P ;

2. P ′
k <: Pk, 0 ≤ k ≤ n;

3. Pk
πk−→ P ′

k, 1 ≤ k ≤ n− 1;

4. Pk |=Γ πk.A, 1 ≤ k ≤ n− 1;

5. Pn |=Γ [πn]A.

From (3) and (4) one can easily conclude from definition 3.2.13 that:

6. Pk <: πk.P ′
k, 1 ≤ k ≤ n− 1,

and, subsequently, by proposition 3.3.8, that:

7. π1 . . . πk−1.Pk <: π1 . . . πk−1.πk.P ′
k, 1 ≤ k ≤ n− 1.

On the other hand, from 2., again using repeatedly proposition 3.3.8, one can also conclude that:

8. π1 . . . πk.P ′
k <: π1 . . . πk.Pk+1, 0 ≤ k ≤ n− 1.

Using transitivity of simulation several times over 7. and 6. we have that P <: π1 . . . πn−1.Pn.
So, let Q = π1 . . . πn−1.Pn. Then P <: Q. Moreover, from 5., one can conclude that, for each
1 ≤ i ≤ n− 1:

9. πn−i . . . πn−1.Pn |=Γ πn−i. [πn−i+1] . . . [πn]A and, consequently, by definition 3.2.13

10. πn−i . . . πn−1.Pn |=Γ [πn−i] . [πn−i+1] . . . [πn]A.

So, π1 . . . πn−1.Pn |=Γ [π1] . . . [πn]A; that is, Q |=Γ [π1] . . . [πn]A.

Secondly, assume that the second assertion of lemma 3.3.10 is true. Then there exists a sequence of
processes P1, . . . , Pj , P

′
0, . . . , P

′
j such that:

25

11. P ′
0 = P ;

12. P ′
k <: Pk, 0 ≤ k ≤ j − 1;

13. Pk
πk−→ P ′

k, 1 ≤ k ≤ n− 1;

14. Pk |=Γ πk.A, 1 ≤ k ≤ n− 1;

15. Pj 6
πj−→.

Thus, in a similar way as above one can conclude that P <: π1 . . . πj−1.Pj . So, let Q = π1 . . . πj−1.Pj .
Then P <: Q. Moreover, from 15., one can conclude that, Pj |=Γ [πj]B for every type B. In par-
ticular, Pj |=Γ [πj] .([πj+1] . . . [πn]A). Using the same reasoning as above, from 14., we have that
π1 . . . πj−1.Pj |=Γ [π1] . . . [πj−1] . [πj] .([πj+1] . . . [πn]A); that is, Q |=Γ [π1] . . . [πn]A

In any case P <: Q and Q |=Γ [s]A and, as s is an arbitrary action sequence, we have that Q |=Γ

[s]A for every action sequence s. Hence, Q |=Γ

∧
s∈Act∗ ([s]A); that is Q |=Γ �A.

Finally, we present the last three subtyping rules considered in this thesis. These rules express properties
of the active type 0̄.

Proposition 3.3.12. (0̄ rules)

1. A <: 0̄;

2. ar(0̄ | 0̄) <: 0̄ | 0̄;

3. If A <: 0̄ and B <: 0̄, then A | B <: 0̄ | 0̄;

Proof.

1. Let A be any type. Suppose that P |=Γ A. There are two cases to consider: whether P 6 π−→ for
every π or there is an action π and a process P ′ such that P

π−→ P ′. In the first case it is very
easy to find a simulation S and a process Q such that PSQ and Q |=Γ 0̄. For instance, take
S = {(P, a.P) : P 6 π−→ for every π}. It vacuously satisfies the definition of a simulation and
a.P |=Γ 0̄. In the second case note that if P

π−→ P ′ for some action π and process P ′, then P |=Γ 0̄

and P <: P . In any case A <: 0̄.

2. Suppose P |=Γ ar(0̄ | 0̄). Then, there exists P ′ such that P ≡ (νa)P ′ and P ′ |=Γ 0̄ | 0̄. Subse-
quently, there exists P1 and P2 such that P ′ ≡ P1 | P2, P1 |=Γ 0̄ and P2 |=Γ 0̄. Let Q = P1 | P2.
Hence Q |=Γ 0̄ | 0̄. It remains to be shown that P <: Q. Thus, as P ≡ (νa)P ′ and P ′ ≡ P1 | P2,
we have that P ≡ (νa)(P1 | P2). Therefore P <: (νa)(P1 | P2), by corollary 3.2.12. Consider S
to be {((νa)P, P) : P ∈ P}. It is easy to see that S is a simulation because if (νa)P π−→ Q′ then
Q′ = (νa)Q′′ and also P

π−→ Q′′ and (νa)Q′′SQ′′; hence, (νa)(P1 | P2) <: P1 | P2. Lastly, by
transitivity P ≡ (P1 | P2).

3. Suppose P |=Γ A | B. Then, there exists P1 and P2 such that P ≡ P1 | P2, P1 |=Γ A and
P2 |=Γ B. By Part (1.) there exists Q1 and Q2 such that P1 <: Q1 and P2 <: Q2, respectively. Let
Q = Q1 | Q2. Then, Q |=Γ 0̄ | 0̄. Also, by corollary 3.2.12, P <: P1 | P2.

26

In addition, consider S to be {(P1 | P2, Q1 | Q2) : P1 <: Q1 and P2 <: Q2} and let P1 | P2
π−→ P ′.

Accordingly to the definition 2.2.9 (the LTS), whether P ′ is P ′
1 | P2 or P1 | P ′

2 or P ′
1 | P ′

2. The first
two cases are identical, so let P ′ be P ′

1 | P2. Then, P1
π−→ P ′

1 and, as P1 <: Q1, there exists Q′
1

such that Q1
π−→ Q′

1 and P ′
1 <: Q′

1. Therefore, Q1 | Q2
π−→ Q′

1 | Q2 and (P ′
1 | P2, Q

′
1 | Q2) ∈ S.

For the third case, let P ′ be P ′
1 | P ′

2. Then, π = τ , P1
α−→ P ′

1 and P2
ᾱ−→ P ′

2. Thus, as P1 <: Q1

and P2 <: Q2, there exists Q′
1 and Q′

2 such that Q1
α−→ Q′

1 and P ′
1 <: Q′

1, and, Q2
ᾱ−→ Q′

2

and P ′
2 <: Q′

2, respectively. Consequently, Q1 | Q2
τ−→ Q′

1 | Q′
2 and (P ′

1 | P ′
2, Q

′
1 | Q′

2) ∈ S. In
conclusion, P1 | P2 <: Q1 | Q2.

Finally, by transitivity, P <: Q and Q |=Γ 0̄ | 0̄.

We end this subsection presenting a few formalities.

Definition 3.3.13. (Subtyping derivation) The Subtyping System consists of all the subtyping rules, that

is, all rules given by propositions 3.3.3 - 3.3.12. Therefore, valid subtyping judgements are those which

can be inferred from these rules and a subtyping derivation is a proof of the validity of a certain subtyping

judgement.

The inference rules and lemmas composing the subtyping system are listed in Table 3.2.

3.3.3 Typing rules

The purpose of this last section is to formalize the type system, namely to summarize the rules introduced
in the previous sections.

Definition 3.3.16. (Conjunction rule)

Γ ` P : Ai for all i ∈ I

Γ ` P :
∧

i∈I Ai

T-Con

Contrary to disjunction, conjunction can not be inferred through subtyping. Therefore it must be intro-
duced in the system by a separate rule. In addition, as we have not considered conjunction to be a structural
connective, for coherence reasons, we present it separated from the structural rules.

This rule will be discussed further ahead. For the moment, it suffices to observe that no condition is
imposed over the indexing set I .

Definition 3.3.17. (Typing derivation) The Type System consists of all the structural rules, the subsump-

tion rule and the conjunction rule. Therefore, valid type judgements are those which can be inferred from

these rules and a typing derivation is a proof of the validity of a certain type judgement.

The inference rules composing the type system are the structural rules listed on table 3.1 and the sub-
sumption and the conjunction rules, that is, definitions 3.3.6 and 3.3.16 respectively.

27

A <: A

A <: B B <: C
A <: C

arA <:> br(A{b/a}) , b fresh in A

(recZ.A) <:> (recW .A{W /Z}) , W fresh in A

A | 0 <:> A

A | B <:> B | A

(A | B) | C <:> A | (B | C)

ar0 <:> 0

br(arA) <:> ar(brA)

ar(A | B) <:> (arA | B) , a 6∈ fn(B)

A <: B
π.A <: π.B

A <: B
A | C <: B | C

A <: B
arA <: arB

A <: B
(recZ.A) <: (recZ.B)

A <: B
[π]A <: [π]B

A <: B
〈π〉A <: 〈π〉B

Aj <: Bj∨
i∈I Ai <:

∨
i∈I Bi

, if j ∈ I

A <:!A | A

A | !A <:>!A

π.A <: 〈π〉A

π.A <: [π]A

ar(〈π〉A) <: 〈π〉 (arA) , if a 6= π, π̄

(recZ.A) <: A{(recZ.A)/Z}

Aj <:
∨

i∈I Ai , if j ∈ I

A <: [π]A
A <: �A

, for every π ∈ Act

A <: 〈π〉B
A | C <: 〈π〉 (B | C)

A1 <: 〈α〉B1 A2 <: 〈ᾱ〉B2

A1 | A2 <: 〈τ〉 (B1 | B2)

ar(!a | (recZ.ā.(a | a | Z))) <: [π] (ar(!a | (recZ.ā.(a | a | Z))))
, for every π ∈ Act

A <: 0̄

ar(0̄ | 0̄) <: 0̄ | 0̄

A <: 0̄ B <: 0̄
A | B <: 0̄ | 0̄

Lemma 3.3.14. For every process P such that P |=Γ B implies P 6 π−→, then B <: [π]A.

Lemma 3.3.15. For every process P such that P |=Γ 〈π〉A implies that, there exists a process P ′ such

that if P
π′

−→ P ′′, then π′ is π and P ′′ ≈ P ′, for every process P ′′ and action π′, then 〈π〉A <: π.A.

Table 3.2: The Subtyping System.

28

Chapter 4

Properties of the Type System

This chapter presents some properties of the type system. Section 4.1 presents an important type existence
result and a series of results which are used in the proofs of the main results. In section 4.2, the main
section, we prove a weak consistency result and a completeness result. Section 4.3 exhibits a proof of
proposition 3.3.9 using completeness.

4.1 Preliminaries

First, we prove that, for every typing derivation, there exists another derived using only structural rules.

Lemma 4.1.1. If Γ ` P : A, then there is B such that B <: A and Γ ` P : B is derived using a structural

type rule or the conjunction rule in the final step of the derivation.

Proof. First, note that for any derivation of Γ ` P : A in the system, the last rule used must be one of the
following: a Structural rule, the Conjunction rule or the Subsumption rule.

In the first two cases we can take B to be A, as A <: A.
In the last case, assume that Γ ` P : A is derived using the subsumption rule in the last step of the

derivation. As a typing derivation is finite assume that the last n consecutive steps of the derivation were
inferred by the subsumption rule and the n+1 step was inferred by a structural type rule or the conjunction
rule. Then, it must exist a sequence of types B1, . . . , Bn+1, such that Bn+1 = A, B1 = B and, for each
1 ≤ i ≤ n, Bi <: Bi+1, Γ ` P : Bi+1 is obtained from Γ ` P : Bi by the subsumption rule and
Γ ` P : B1 is derived using a structural type rule or the conjunction rule in the final step of its derivation.
By transitivity of the subtyping relation we conclude that B1 <: Bn+1; that is B <: A.

Lemma 4.1.2. (Weakening) If X is fresh in P , Z is fresh in A, X : Z 6∈ Γ and Γ ` P : A, then

Γ, X : Z ` P : A.

Proof. If Γ ` P : A, then, by Lemma 4.1.1, there exists a type B such that B <: A and Γ ` P : B is
derived using a structural rule or the conjunction rule in the last step of the derivation.

29

First, we prove that Γ, X : Z ` P : B, by induction on a derivation of Γ ` P : B in the Type System.
For a given derivation, we proceed by a case analysis on the final structural type rule or the conjunction
rule used.

Case T-Voi: P = 0

B = 0

Immediate from rule T-Voi and as X : Z 6∈ Γ.

Case T-Var: P = X1

B = Z1

As X is fresh in X1 and Z is fresh in Z1, we must have that X1 6= X and Z1 6= Z. We also have that
X : Z 6∈ Γ, so, from rule T-Var, Γ, X1 : Z1, X : Z ` X1 : Z1.

Case T-Pref: P = π.P ′

B = π.A′

The rule T-Pref has the following assumption,

1. Γ ` P ′ : A′.

By definition, fv(π.P ′) = fv(P ′), bv(π.P ′) = bv(P ′), fv(π.A′) = fv(A′) and bv(π.A′) = bv(A′);
hence, from the hypothesis, X and Z are fresh in P ′ and A′, respectively, and, subsequently, by induction
hypothesis, Γ, X : Z ` P ′ : A′. Then, Γ, X : Z ` π.P ′ : π.A′, by T-Pref.

Case T-Par: P = P1 | P2

B = A1 | A2

The rule T-Par has the following two assumptions,

1. Γ ` P1 : A1,

2. Γ ` P2 : A2.

By definition, fv(P1 | P2) = fv(P1) ∪ fv(P2), bv(P1 | P2) = bv(P1) ∪ bv(P2), fv(A1 | A2) = fv(A1) ∪
fv(A2) and bv(A1 | A2) = bv(A1) ∪ bv(A2); hence, from the hypothesis, X and Z are fresh in P1, A1,
and in P2 and A2, respectively. So, by induction hypothesis,

3. Γ, X : Z ` P1 : A1,

4. Γ, X : Z ` P2 : A2,

respectively. Finally, by T-Par, Γ, X : Z ` P1 | P2 : A1 | A2.

Case T-New: P = (νa)P ′

B = arA′

The rule T-New has the following assumption,

1. Γ ` P ′ : A′.

By definition, fv((νa)P ′) = fv(P ′), bv((νa)P ′) = bv(P ′), fv(arA′) = fv(A′) and bv(arA′) =
bv(A′); hence, from the hypothesis, X and Z are fresh in P ′ and A′, respectively. So, by induction

30

hypothesis, Γ, X : Z ` P ′ : A′ and, by T-New, Γ, X : Z ` (νa)P ′ : arA′.

Case T-Rec: P = (recX1.P1)
B = (recZ1.A1)

The rule T-Rec has the following assumption,

1. Γ, X1 : Z1 ` P ′ : A′.

By hypothesis, X and Z are fresh in (recX1.P1) and (recZ1.A1), respectively. So, X and Z must be
different from X1 and Z1, respectively; hence, X and Z are also fresh in P1 and A1, respectively. Then, by
induction hypothesis, Γ, X1 : Z1, X : Z ` P ′ : A′ and, by T-Rec, Γ, X : Z ` (recX1.P1) : (recZ1.A1).

Case T-Con: P = P

B =
∧

i∈I Bi

The rule T-Con has the following assumption,

1. Γ ` P : Bi for all i ∈ I .

By hypothesis, Z is fresh in
∧

i∈I Bi. So, Z is fresh in Bi for every i ∈ I , by definition. Then, by induction
hypothesis, Γ, X : Z ` P : Bi for every i ∈ I . By T-Con, Γ, X : Z ` P :

∧
i∈I Bi.

So we conclude that Γ, X : Z ` P : B. Then, by the subsumption rule and since B <: A, Γ, X : Z `
P : A.

Lemma 4.1.3. (Strengthening) If X 6∈ fv(P), Z 6∈ fv(A) and Γ, X : Z ` P : A, then Γ ` P : A.

Proof. If Γ ` P : A, then, by Lemma 4.1.1, there exists a type B such that B <: A and Γ ` P : B is
derived using a structural rule or the conjunction rule in the last step of the derivation.

First, we prove that Γ ` P : B, by induction on a derivation of Γ, X : Z ` P : B in the Type System.
For a given derivation, we proceed by a case analysis on the final structural type rule or the conjunction
rule used.

Case T-Voi: P = 0

B = 0

Immediate from rule T-Voi.

Case T-Var: P = X1

B = Z1

As X 6∈ fv(X1) = {X1} and Z 6∈ fv(Z1) = {Z1}, we must have that X1 6= X and Z1 6= Z. Hence, exists
X1 : Z1 in Γ and, consequently, it is possible to derive Γ ` X1 : Z1 in the system.

Case T-Pref: P = π.P ′

B = π.A′

The rule T-Pref has the following assumption,

1. Γ, X : Z ` P ′ : A′.

31

By definition, fv(π.P ′) = fv(P ′) and fv(π.A′) = fv(A′); hence, from the hypothesis, X and Z are not free
in P ′ and A′, respectively. Subsequently, by induction hypothesis, Γ ` P ′ : A′. Then, Γ ` π.P ′ : π.A′, by
T-Pref.

Case T-Par: P = P1 | P2

B = A1 | A2

The rule T-Par has the following two assumptions,

1. Γ, X : Z ` P1 : A1,

2. Γ, X : Z ` P2 : A2.

By definition, fv(P1 | P2) = fv(P1) ∪ fv(P2) and fv(A1 | A2) = fv(A1) ∪ fv(A2); hence, from the
hypothesis, X and Z are not free in P1, P2, and in A1 and A2, respectively. So, by induction hypothesis,

3. Γ ` P1 : A1,

4. Γ ` P2 : A2,

respectively. Finally, by T-Par, Γ ` P1 | P2 : A1 | A2.

Case T-New: P = (νa)P ′

B = arA′

The rule T-New has the following assumption,

1. Γ, X : Z ` P ′ : A′.

By definition, fv((νa)P ′) = fv(P ′) and fv(arA′) = fv(A′); hence, from the hypothesis, X and Z are
fresh in P ′ and A′, respectively. So, by induction hypothesis, Γ ` P ′ : A′ and, by T-New, Γ ` (νa)P ′ :
arA′.

Case T-Rec: P = (recX1.P1)
B = (recZ1.A1)

The rule T-Rec has the following assumption,

1. Γ, X : Z, X1 : Z1 ` P ′ : A′.

There are four cases to consider resulting from whether X is X1 or not and Z is Z1 or not.
First, note that the cases where X is X1 or Z is Z1 can not happen. This results from the fact that if it

could happen, then, by the assumption of T-Rec and by hypothesis, the system could derive, for instance,
Γ, X : Z, X : Z ` P1 : A1 which violates the definition of the environment Γ.

So, X and Z are different from X1 and Z1, respectively. From the hypothesis and because fv((recX1.P1)) =
fv(P1) \ {X1} and fv((recZ1.A1)) = fv(A1) \ {Z1}, we have that X and Z are free in P1 and A1, respec-
tively. By induction hypothesis, Γ, X1 : Z1 ` P ′ : A′ and, by T-Rec, Γ ` (recX1.P1) : (recZ1.A1).

Case T-Con: P = P

B =
∧

i∈I Bi

The rule T-Con has the following assumption,

1. Γ, X : Z ` P : Bi for all i ∈ I .

32

By hypothesis, Z is free in
∧

i∈I Bi. So, Z is free in Bi for every i ∈ I , by definition. Then, by induction
hypothesis, Γ ` P : Bi for every i ∈ I . By T-Con, Γ ` P :

∧
i∈I Bi.

So we conclude that Γ ` P : B. Then, by the subsumption rule and since B <: A, we have that
Γ ` P : A.

Lemma 4.1.4. If X is free in P and Γ ` P : A, then there are Z and Γ′ such that Z is free in A and Γ is

equal to Γ′, X : Z.

Proof. Immediate, by construction. Just notice that the only rule that introduces free variables is the rule
T-Var and its environment contains at least these variables. All other rules preserve the environment.

Theorem 4.1.5. (Typability) If P is a process, then there is a type A and an environment Γ such that

Γ ` P : A is derived structurally.

Proof. By induction on the structure of P .

Case Inactive: P = 0

Immediate from rule T-Voi, Γ ` 0 : 0.

Case Parallel: P = P1 | P2

By induction hypothesis there are A1, A2, Γ1 and Γ2 such that Γ1 ` P1 : A1 and Γ2 ` P2 : A2. At this
point, we can assume that Γ1 and Γ2 are the same, because we want each process variable common to P1

and P2 to be mapped to the same type variable, and of course we can use weakening to produce the same
Γ. So Γ1 ` P1 : A1 and Γ2 ` P2 : A2. Then, using the T-Par rule we obtain Γ1 ` P1 | P2 : A1 | A2.

Case Restriction: P = (νa)P1

By induction hypothesis there are A1 and Γ1 such that Γ1 ` P1 : A1 is derived structurally. By rule T-New,
Γ1 ` (νa)P1 : arA1.

Case Prefix: P = π.P1

By induction hypothesis there are A1 and Γ1 such that Γ1 ` P1 : A1 is derived structurally. By rule T-Pre,
Γ1 ` π.P1 : π.A1.

Case Recursion: P = (recX.P1)

By induction hypothesis there are A1 and Γ1 such that Γ1 ` P1 : A1 is derived structurally. Notice that X

is free in P1. Then, by lemma 4.1.4, there are Z and Γ′ such that Z is free in A1 and Γ′, X : Z ` P1 : A1.
By rule T-Rec, Γ′ ` (recX.P1) : (recZ.A1).

Case Process Variable: P = X

33

Let Z be any type variable, and let Γ be Γ′, X : Z, where Γ′ is chosen so that Γ is a well defined environ-
ment. Then, by T-Var, Γ′, X : Z ` X : Z.

Lemma 4.1.6. (Substitution of variables) If Γ, X : Z ` P : A and Γ ` Q : B, then Γ ` P{Q/X} :
A{B/Z}.

Proof. If Γ, X : Z ` P : A, then, by Lemma 4.1.1, there exists a type C such that C <: A and Γ, X : Z `
P : C is derived using a structural rule or the conjunction rule in the last step of the derivation.

First, we prove that Γ ` P{Q/X} : C{B/Z}, by induction on a derivation of Γ, X : Z ` P : C in the
Type System. For a given derivation, we proceed by a case analysis on the final structural type rule or the
conjunction rule used.

Case T-Voi: P = 0

C = 0

Immediate from the hypothesis, noting that, by definition of substitution, 0{Q/X} = 0 and 0{B/Z} = 0.

Case T-Var: P = X1

C = Z1

We have four subcases to consider resulting from whether X1 is X or not and Z1 is Z or not. First, note
that the cases where X1 is X but Z1 is not Z, and vice-versa, can not happen, by definition of Γ.

So, let X1 = X and, Z1 = Z. By definition of substitution, we have that X{Q/X} = Q and
Z{B/Z} = B, and the result follows directly from the hypothesis.

Now let X1 6= X and Z1 6= Z. By definition of substitution, we have that X1{Q/X} = X1 and
Z1{B/Z} = Z1, and the result follows directly from the hypothesis.

Case T-Pre: P = π.P ′

C = π.A′

The rule T-Pre has the following assumption,

1. Γ, X : Z ` P ′ : A′.

By induction hypothesis, Γ ` P ′{Q/X} : A′{B/Z}. Subsequently, applying T-Pre, we get Γ ` π.(P ′{Q/X}) :
π.(A′{B/Z}). But, by definition of substitution, π.(P ′{Q/X}) = (π.P ′){Q/X} and π.(A′{B/Z}) =
(π.A′){B/Z}.

Hence, Γ ` (π.P ′){Q/X} : (π.A′){B/Z}.

Case T-Par: P = P1 | P2

C = A1 | A2

The rule T-Par has the following two assumptions,

1. Γ, X : Z ` P1 : A1,

2. Γ, X : Z ` P2 : A2.

34

By induction hypothesis, from 1. and 2., we get

3. Γ ` P1{Q/X} : A1{B/Z},

4. Γ ` P2{Q/X} : A2{B/Z},

respectively. By rule T-Par, from 3. and 4., Γ ` P1{Q/X} | P1{Q/X} : A1{B/Z} | A2{B/Z}. But, by
definition of substitution, we have that P1{Q/X} | P1{Q/X} = (P1 | P2){Q/X} and A1{B/Z} | A2{B/Z} =
(A1 | A2){B/Z}. So Γ ` (P1 | P2){Q/X} : (A1 | A2){B/Z}, as desired.

Case T-New: P = (νa)P ′

C = arA′

The rule T-New has the following assumption,

1. Γ, X : Z ` P ′ : A′.

By induction hypothesis, Γ ` P ′{Q/X} : A′{B/Z}. Subsequently, applying T-New, we get Γ `
(νa)(P ′{Q/X}) : ar(A′{B/Z}). But, by definition of substitution (νa)(P ′{Q/X}) = ((νa)P ′){Q/X}
and ar(A′{B/Z}) = (arA′){B/Z}, so we obtain, Γ ` ((νa)P ′){Q/X} : (arA′){B/Z}, as desired.

Case T-Rec: P = (recX1.P1)
C = (recZ1.A1)

We have four subcases to consider resulting from whether X1 is X or not and Z1 is Z or not.
First, note that the cases where X is X1 or Z is Z1 can not happen. This results from the fact that if it

could happen, then, by the assumption of T-Rec and by hypothesis, the system could derive, for instance,
Γ, X : Z, X : Z ` P1 : A1 which violates the definition of the environment Γ.

So, X and Z are different from X1 and Z1, respectively. Then, from T-Rec we know that Γ, X :
Z, X1 : Z1 ` P1 : A1. Then, Γ, X1 : Z1 ` P1{Q/X} : A1{B/Z}, by induction hypothesis. By
T-Rec, Γ ` (recX1.(P1{Q/X})) : (recZ1.(A1{B/Z})). As, by definition, (recX1.(P1{Q/X})) =
(recX1.P1){Q/X} and (recZ1.(A1{B/Z})) = (recZ1.A1){B/Z}, we get Γ ` (recX1.P1){Q/X} :
(recZ1.A1){B/Z}, as desired.

Case T-Con: P = P

C =
∧

i∈I Ci

The rule T-Con has the following assumption,

1. Γ ` P : Ci for every i ∈ I .

By induction hypothesis, we have that

2. Γ ` P : Ci{B/Z} for every i ∈ I ,

respectively. Then, by rule T-Con, Γ ` P :
∧

i∈I (Ci{B/Z}). As, by definition of substitution of variables
in tupes,

∧
i∈I (Ci{B/Z}) = (

∧
i∈I Ci){B/Z}, we get Γ ` P : (

∧
i∈I Ci){B/Z}.

So we conclude that Γ ` P{Q/X} : C{B/Z}. Since C <: A we have that C{B/Z} <: A{B/Z}.
Then, by the subsumption rule, Γ ` P{Q/X} : A{B/Z}.

35

Lemma 4.1.7. If Γ ` P : A and b is fresh in P , then:

1. b is fresh in A′, for some A′ such that A′ ≡t
α A;

2. Γ ` P{b/a} : A{b/a}.

Proof. If Γ ` P : A, then, by Lemma 4.1.1, there exists a type B such that B <: A and Γ ` P : B is
derived using a structural rule or the conjunction rule in the last step of the derivation.

First, we prove that b is fresh in B and Γ ` P{b/a} : B{b/a}, by induction on a derivation of
Γ ` P : B in the Type System. For a given derivation, we proceed by a case analysis on the final structural
type rule or the conjunction rule used.

Case T-Voi: P = 0

B = 0

Part (1.): Immediate, noting that by definition of free and bound names in types, fn(0) = ∅ and
bn(0) = ∅, respectively.

Part (2.): Immediate, noting that by definition of substitution in both processes and types, 0{b/a} = 0.

Case T-Var: P = X

B = Z

Part (1.): Immediate, noting that by definition of free and bound names in types, fn(X) = ∅ and
bn(X) = ∅, respectively.

Part (2.): Immediate, noting that by definition of substitution in processes and types, X{b/a} = X

and Z{b/a} = Z, respectively.

Case T-Pre: P = π.P ′

B = π.A′

The rule T-Pre has the following assumption,

1. Γ ` P ′ : A′.

Part (1.): We have two consider two cases: whether π is τ or it is an α.
First, consider that π is τ . By hypothesis, b 6∈ fn(τ.P ′) = fn(P ′) and b 6∈ bn(τ.P ′) = bn(P ′). Then,

b is fresh in P ′. By induction hypothesis, w infer that b is free in A′. So b 6∈ fn(A′) = fn(τ.A′) and
b 6∈ bn(A′) = bn(τ.A′), that is b is fresh in τ.A′.

Secondly, consider that π is an α. By hypothesis, b 6∈ fn(α.P ′) = {α} ∪ fn(P ′) and b 6∈ bn(α.P ′) =
bn(P ′). Then b 6= α and b is fresh in P ′. So, by induction hypothesis we infer that b is fresh in A′, that is
b 6∈ fn(A′) and b 6∈ bn(A′). As b 6= α, it is also true that b 6∈ {α} ∪ fn(A′) = fn(α.A′). So b is fresh in
α.A′.

Part (2.): We have two major cases: whether π is τ or it is an α.
First, consider that π is τ . Then, as b is fresh in P , by definition, b 6∈ fn(τ.P ′) = fn(P ′) and b 6∈

bn(τ.P ′) = bn(P ′). So, from this fact and 1., applying the induction hypothesis we obtain Γ ` P ′{b/a} :

36

A′{b/a}. Then, applying the rule T-Pre, Γ ` τ.(P ′{b/a}) : τ.(A′{b/a}). As τ.(P ′{b/a}) = (τ.P ′){b/a}
and τ.(A′{b/a}) = (τ.A′){b/a}, we conclude as desired that Γ ` (τ.P ′){b/a} : (τ.A′){b/a}.

Secondly, consider that π is an α. As b is a fresh name in P , by definition, we have that: b 6∈ fn(α.P ′) =
{α}∪ fn(P ′) and b 6∈ bn(α.P ′) = bn(P ′). So, b 6∈ fn(P ′) and b 6∈ bn(P ′), in other words, b is fresh in P ′.
So, from this fact and 1., and applying the induction hypothesis, Γ ` P ′{b/a} : A′{b/a}. At this point we
have to consider three subcases: whether α is a or ā or not.
(subcase α = a): By T-Pre, Γ ` b.(P ′{b/a}) : b.(A′{b/a}). As b.(P ′{b/a}) = (a.P ′){b/a} and
b.(A′{b/a}) = (a.A′){b/a}, we have that Γ ` (a.P ′){b/a} : (a.A′){b/a}.
(subcase α = ā): By T-Pre, Γ ` b̄.(P ′{b/a}) : b̄.(A′{b/a}). As b̄.(P ′{b/a}) = (ā.P ′){b/a} and
b̄.(A′{b/a}) = (ā.A′){b/a}, we have that Γ ` (ā.P ′){b/a} : (ā.A′){b/a}.
(subcase α 6= a and α 6= ā): By T-Pre, Γ ` α.(P ′{b/a}) : α.(A′{b/a}). As, by definition, α.(P ′{b/a}) =
(α.P ′){b/a} and α.(A′{b/a}) = (α.A′){b/a}, we obtain the expected result, that Γ ` (α.P ′){b/a} :
(α.A′){b/a}.

Case T-Par: P = P1 | P2

B = A1 | A2

The rule T-Par has the following two assumptions,

1. Γ ` P1 : A1,

2. Γ ` P2 : A2.

Note that b 6∈ fn(P1 | P2) = fn(P1) ∪ fn(P2) implies that b 6∈ fn(P1) and b 6∈ fn(P2) and similarly with
bounded names.

Part (1.): By induction hypothesis, from 1. and 2., we get

3. b is fresh in A1,

4. b is fresh in A2,

respectively. So, from 3. and 4., we have that b 6∈ fn(A1) ∪ fn(A2) = fn(A1 | A2) and similarly with
bounded names, so b is fresh in A1 | A2, as intended.

Part (2.): Note that b 6∈ fn(P1 | P2) = fn(P1) ∪ fn(P2) and b 6∈ bn(P1 | P2) = bn(P1) ∪ bn(P2)
implies that b 6∈ fn(P1), b 6∈ fn(P2), b 6∈ bn(P1) and b 6∈ bn(P2). So, b is fresh in P1 and in P2.

By induction hypothesis, from 1. and 2., we get

5. Γ ` P1{b/a} : A1{b/a},

6. Γ ` P2{b/a} : A2{b/a},

respectively. So, from 5. and 6., by T-Par, Γ ` P1{b/a} | P2{b/a} : A1{b/a} | A2{b/a}. As, P1{b/a} | P2{b/a} =
(P1 | P2){b/a} and A1{b/a} | A2{b/a} = (A1 | A2){b/a}, we have that Γ ` (P1 | P2){b/a} : (A1 | A2){b/a}.

Case T-New: P = (νc)P ′

B = crA′

The rule T-New has the following assumption,

37

1. Γ ` P ′ : A′.

Part (1.): There are two subcases to consider: whether b is c, or not. In the first subcase, it is immediate
that b is not fresh in P . In the second subcase, if b is different from c, then, b 6∈ fn(P ′) \ {c} implies that
b 6∈ fn(P ′) and b 6∈ bn((νc)P ′) = {c} ∪ bn(P ′) implies that b 6∈ bn(P ′). So, By induction hypothesis,
b is fresh in A′ which implies that b 6∈ fn(A′) \ {c} = fn(crA′). Moreover, as b is different from c,
b 6∈ bn(A′) ∪ {c} = bn(crA′) and we conclude that b is fresh in crA′.

Part (2.): First note that, as b is fresh in P , b 6∈ fn((νc)P ′) = fn(P ′) \ {c} and b 6∈ bn((νc)P ′) =
bn(P ′) ∪ {c}. In particular, b must be different from c. So b is fresh in P ′.

By induction hypothesis, Γ ` P ′{b/a} : A′{b/a}. Then, by T-New, Γ ` (νc)(P ′{b/a}) : cr(A′{b/a}).
Finally, as (νc)(P ′{b/a}) = ((νc)P ′){b/a} and cr(A′{b/a}) = (crA′){b/a}, Γ ` ((νc)P ′){b/a} :
(crA′){b/a}.

Case T-Rec: P = (recX.P ′)
B = (recZ.A′)

The rule T-Rec has the following assumption,

1. Γ, X : Z ` P ′ : A′.

Note that, by definition, fn((recX.P ′)) = fn(P ′) and bn((recX.P ′)) = bn(P ′), so b 6∈ fn(P ′) and
b 6∈ bn(P ′).

Part (1.): By induction hypothesis, b is fresh in A′. But, by definition, fn(A′) = fn((recZ.A′)) and
bn(A′) = bn((recZ.A′)), so, equally, b 6∈ fn((recZ.A′)) and b 6∈ bn((recZ.A′)), that is it is fresh in
(recZ.A′).

Part (2.): By induction hypothesis, Γ, X : Z ` P ′{b/a} : A′{b/a}. Then, by T-Rec, Γ ` (recX.(P ′{b/a})) :
(recZ.(A′{b/a})). As, (recX.(P ′{b/a})) = ((recX.P ′)){b/a} and (recZ.(A′{b/a})) = (recZ.A′){b/a},
we have Γ ` (recX.P ′){b/a} : (recZ.A′){b/a}.

Case T-Con: P = P

B =
∧

i∈I Bi

The rule T-Con has the following assumption,

1. Γ ` P : Bi for every i ∈ I .

Note that, by definition, fn(
∧

i∈I Bi) =
⋃

i∈I fn(Bi) and bn(
∧

i∈I Bi) =
⋃

i∈I bn(Bi), so b 6∈ fn(Bi), bn(Bi)
for every i ∈ I .

Part (1.): By induction hypothesis, b is fresh in Bi for every i ∈ I , respectively. But, by definition,⋃
i∈I fn(Bi) = fn(

∧
i∈I Bi) and

⋃
i∈I bn(Bi) = bn(

∧
i∈I Bi), so, equally, b 6∈ fn(

∧
i∈I Bi) and b 6∈

bn(
∧

i∈I Bi), that is it is fresh in
∧

i∈I Bi.

Part (2.): By induction hypothesis, Γ ` P{b/a} : Bi{b/a} for every i ∈ I . Then, by T-Con,
Γ ` P{b/a} :

∧
i∈I (Bi{b/a}). As,

∧
i∈I (Bi{b/a}) = (

∧
i∈I Bi){b/a}, we have Γ ` P{b/a} :

(
∧

i∈I Bi){b/a}.

So we conclude that b is fresh in B and Γ ` P{b/a} : B{b/a}. For the first part of the Lemma, the
fact that b is fresh in B and that B <: A do not imply that b is fresh in A. Nevertheless, we can always use

38

a suitable renaming of names of A. Therefore, there exists A′ such that A′ ≡t
α A and b is fresh in A′. For

the second part of the Lemma, since B <: A we have that B{b/a} <: A{b/a}. Then, by the subsumption
rule, Γ ` P{b/a} : A{b/a}.

Proposition 4.1.8. If Γ ` P : A and P ≡ Q, then Γ ` Q : B, for some B such that B ≡t A.

Proof. By induction on a derivation of P ≡ Q in the Structural Congruence Relation. For a given deriva-
tion, we proceed by a case analysis on the final derivation rule used.

Case 1: P ≡α Q

We have to consider two subcases: Alpha Res and Alpha Rec (in both directions).

Subcase 1.1.a): (νa)P ′ ≡α (νb)(P ′{b/a}), where b is fresh in P ′

By T-New, A = arA′ and Γ ` P ′ : A′. Then, by lemma 4.1.7.(2), Γ ` P ′{b/a} : A′{b/a}, as b is fresh
in P ′. By T-New, Γ ` (νb)(P ′{b/a}) : br(A′{b/a}).

To see that br(A′{b/a}) ≡t arA′, notice that, by lemma 4.1.7.(1), b is fresh in A′ which implies that
br(A′{b/a}) ≡t

α arA′.

Subcase 1.1.b): (νb)(P ′{b/a}) ≡α (νa)P ′, where b is fresh in P ′

By T-New, A = arA′ and Γ ` P ′{b/a} : A′. It is not hard to notice that a is fresh in P ′{b/a} and
P ′{b/a}{a/b} = P ′. Hence, by lemma 4.1.7, we have that Γ ` P ′ : A′{a/b} and a is fresh in A′.
Then, by T-New, Γ ` (νa)P ′ : ar(A′{a/b}). Moreover, as a is fresh in A′, by definition of Alpha t-Res,
ar(A′{a/b}) ≡t

α brA′, and consequently, by Structural congruence, ar(A′{a/b}) ≡t brA′

Subcase 1.2.a): (recX.P ′) ≡α (recY.P ′{Y/X}), where Y is fresh in P ′

By T-Rec, A = (recZ.A′) and Γ, X : Z ` P ′ : A′. Let W be fresh in A′. Then, by T-Var, we know
that Γ, Y : W ` Y : W . From lemma 4.1.2, as Y and W are fresh in P ′ and A′, respectively, Γ, X :
Z, Y : W ` P ′ : A′. So, by lemma 4.1.6, Γ, Y : W ` P ′{Y/X} : A′{W /Z}. Then, by T-Rec,
Γ ` (recY.P ′{Y/X}) : (recW .A′{W /Z}). Moreover, as W is fresh in A′, (recW .A′{W /Z}) ≡t

α

(recZ.A′) and, consequently, (recW .A′{W /Z}) ≡t (recZ.A′), as intended.

Subcase 1.2.b): (recY.P ′{Y/X}) ≡α (recX.P ′), where Y is fresh in P ′

By T-Rec, A = (recW .A′) and Γ, Y : W ` P ′{Y/X} : A′. Let Z be fresh in A′. Then, by T-Var,
we know that Γ, X : Z ` X : Z. Clearly X is fresh in P ′{Y/X}. By lemma 4.1.2, Γ, Y : W , X :
Z ` P ′{Y/X} : A′. By definition of substitution P ′{Y/X}{X/Y } = P ′. Hence, by lemma 4.1.6,
Γ, X : Z ` P ′ : A′{Z/W } and, by T-Rec, Γ ` (recX.P) : (recZ.A′{Z/W }). Moreover, as Z is
fresh in A′, (recZ.A′{Z/W }) ≡t

α (recW .A′) and, consequently, we conclude that (recZ.A′{Z/W }) ≡t

(recW .A′).

Case 2.a): P ′ | 0 ≡ P ′

By T-Par, we must have A = A1 | A2, for some A1 and A2, and the following assumptions

39

Γ ` P ′ : A1, for some A1

Γ ` 0 : A2, for some A2

By T-Voi we conclude that A2 = 0 and as A1 ≡t A1 | 0 we get the result.

Case 2.b): P ′ ≡ P ′ | 0

By T-Par and T-Voi, we have that

Γ ` P | 0 : A | 0.

As A | 0 ≡t A we get the required.

Case 3.a): P1 | P2 ≡ P2 | P1

By T-Par, we must have that A = A1 | A2, for some A1 and A2, and the following

Γ ` P1 : A1,

Γ ` P2 : A2.

Again by T-Par, we have that Γ ` P2 | P1 : A2 | A1. So, as A2 | A1 ≡t A1 | A2 we get the required.

Case 3.b): P2 | P1 ≡ P1 | P2

Similar to 3.a).

Case 4.a): P1 | (P2 | P3) ≡ (P1 | P2) | P3

By T-Par, we must have that A = A1 | A2, for some A1 and A2, and the following

1. Γ ` P1 : A1,

2. Γ ` P2 | P3 : A2.

Again by T-Par, this time applied to 2., we must have that A2 = A21 | A22, for some A21 and A22, and the
following

3. Γ ` P2 : A21,

4. Γ ` P3 : A22.

Once more by applying T-Par to 1. and 3. we get

5. Γ ` P1 | P2 : A1 | A21.

Yet another appliance of T-Par, this time to 5. and 4., yields

6. Γ ` (P1 | P2) | P3 : (A1 | A21) | A22.

As (A1 | A21) | A22 ≡t A1 | (A21 | A22), we get the required.

Case 4.b): (P1 | P2) | P3 ≡ P1 | (P2 | P3)

Similar to 4.a).

40

Case 5.a): (νa)0 ≡ 0

By T-New, we must have that A = arA1, for some A1 and a, and the following

Γ ` (νa)0 : A1

By T-Voi A1 = 0, and, as 0 ≡t arA1, we get the required.

Case 5.b): 0 ≡ (νa)0

By T-Voi A = 0 and Γ ` 0 : 0. Then, by T-New, we have that Γ ` (νa)0 : ar0. As ar0 ≡t 0, we get
the required.

Case 6.a): (νa)(νb)P ≡ (νb)(νa)P

By T-New, A = arA′ and Γ ` (νb)P : A′. Again by T-New, A′ = arA′′ and Γ ` P : A′′. Now
applying the rule T-New two more times we obtain Γ ` (νa)P : arA′′ and Γ ` (νb)(νa)P : br(arA′′).
Now, as br(arA′′) ≡t ar(brA′′), we get the required.

Case 6.b): (νb)(νa)P ≡ (νa)(νb)P

Similar to 6.a).

Case 7.a): (νa)(P1 | P2) ≡ ((νa)P1) | P2, where a 6∈ fn(P2)

First, notice that (νa)(P1 | P2) ≡ ((νa)P1) | P2 has a side-condition: a 6∈ fn(P2). If a appears bounded
in P2 we can use renaming; therefore assume that a is not bounded in P2. Moreover, a is fresh in P2. By
T-New, from the hypothesis, we must have that A = arA′ and Γ ` P1 | P2 : A′. Then, by T-Par, we must
have that A′ = A′

1 | A′
2 and the following

1. Γ ` P1 : A′
1,

2. Γ ` P2 : A′
2.

From 1., by T-New, Γ ` (νa)P1 : arA′
1. Then, Γ ` ((νa)P1) | P2 : (arA′

1) | A′
2, using 2. and T-Par.

By lemma 4.1.7.(1), as a is fresh in P2, we have that a is fresh in A′
2. In particular, a is free in A′

2 and,
consequently, (arA′

1) | A′
2 ≡t ar(A′

1 | A′
2), as desired.

Case 7.b): ((νa)P1) | P2 ≡ (νa)(P1 | P2), where a 6∈ fn(P2)

First, notice that ((νa)P1) | P2 ≡ (νa)(P1 | P2) has a side-condition: a 6∈ fn(P2). Again, if a appears
bounded in P2 we can use renaming; therefore assume that a is not bounded in P2. Moreover, a is fresh in
P2. By T-Par, we must have that A = A1 | A2 and

1. Γ ` (νa)P1 : A1,

2. Γ ` P2 : A2.

By T-New, from 1., we must have that A1 = arA′
1 and Γ ` P1 : A′

1. Then, Γ ` P1 | P2 : A′
1 | A2,

using 2. and T-Par. Finally, by T-New, Γ ` (νa)(P1 | P2) : ar(A′
1 | A2). By lemma 4.1.7.(1), as a is

fresh in P2, we have that a is fresh in A2. In particular, a is free in A2 and, consequently, ar(A′
1 | A′

2) ≡t

arA′
1 | A′

2, as desired.

41

4.2 Main results

This section presents two main properties of the system.

4.2.1 Consistency

Theorem 4.2.1. (Consistency of the Type System) If Γ ` P : A, then there exists a process Q such that

P <: Q and Q |=Γ A, where Γ is a well-defined environment.

Proof. If Γ ` P : A, then, by Lemma 4.1.1, there exists a type B such that B <: A and Γ ` P : B is
derived using a structural rule or the conjunction rule in the last step of the derivation.

First, we prove that P |=Γ B, by induction on a derivation of Γ ` P : B in the Type System. For
a given derivation, we proceed by a case analysis on the final structural type rule or the conjunction rule
used.

Case T-Voi: P = 0

B = 0

Immediate, noting that by definition of satisfaction 0 |=Γ 0.

Case T-Var: P = X

B = Z

By hypothesis, Γ, X : Z ` X : Z. Let Γ′ = Γ, X : Z. Then, by definition of judgement, Γ′(X) = Z and,
consequently, X |=Γ′ Z, i.e. X |=Γ,{X:Z} Z.

Case T-Pre: P = π.P ′

B = π.A′

The rule T-Pre has the following assumption,

1. Γ ` P ′ : A′.

By induction hypothesis, P ′ |=Γ A′.
First, note that, by rule Act of the LTS, π.P ′ π−→ P ′.
Secondly, let π′ be any action and Q be any process such that π.P ′ π′

−→ Q. By the LTS it is true that
the only rules which have π.P ′ π′

−→ Q in the conclusion are rules Act and SC. If rule Act was the one used,
then π′ = π and Q = P ′ which implies Q ≈ P ′. If rule SC was the one used, then there are P ′′ and Q′

such that π.P ′ ≡ P ′′, Q ≡ Q′ and P ′′ π′

−→ Q′. Note that the only such P ′′ is π.P ′ | 0. Then, using rule
SC again and rule Act yields the same result.

Then, by definition of satisfaction, we have that π.P ′ |=Γ π.A′.

Case T-Par: P = P1 | P2

B = A1 | A2

The rule T-Par has the following two assumptions,

1. Γ ` P1 : A1,

2. Γ ` P2 : A2.

42

By induction hypothesis, from 1. and 2., we get

3. P1 |=Γ A1,

4. P2 |=Γ A2,

respectively. As P = P1 | P2, we have that P ≡ P1 | P2. Then, by definition of satisfaction, from 3. and
4., P1 | P2 |=Γ A1 | A2.

Case T-New: P = (νa)P ′

B = arA′

The rule T-New has the following assumption,

1. Γ ` P ′ : A′.

By induction hypothesis, P ′ |=Γ A′. Then, by definition of satisfaction, we have that (νa)P ′ |=Γ arA′.

Case T-Rec: P = (recX.P ′)
B = (recZ.A′)

The rule T-Rec has the following assumption,

1. Γ, X : Z ` P ′ : A′.

By induction hypothesis, P ′ |=Γ,{X:Z} A′. Then, by definition of satisfaction, we have that (recX.P ′) |=Γ

(recZ.A′). It is easy to see that Γ must be an well-defined environment, by (1.).

Case T-Con: P = P

B =
∧

i∈I Bi

If Γ ` P :
∧

i∈I Bi, then, by the conjunction rule, Γ ` P : Bi for every i ∈ I . Then, by induction
hypothesis, P |=Γ Bi for every i ∈ I , respectively. Finally, by definition of interpretation, P |=Γ

∧
i∈I Bi.

So we conclude that P |=Γ B. Then, since B <: A we have that, by definition of subtyping, there
exists Q such that P <: Q and Q |=Γ A as desired.

Note that consistency is actually weak consistency. This is due to the subsumption rule which ties
subtyping to the system. Hence, the system must comply with the definition of subtyping, which leads us
to the previous result.

Corollary 4.2.2. (Consistency) If ` P : A, then there exists a process Q such that P <: Q and Q |= A.

Proof. Direct from 4.2.1, with Γ = ∅.

43

4.2.2 Completeness

Lemma 4.2.3. If P
π−→ P ′ and Γ ` P ′ : A′, then Γ ` P : A for some A such that A <: 〈π〉A′.

Proof. By induction on a derivation of P
π−→ Q in the Labelled Transition System. For a given derivation,

we proceed by a case analysis on the final transition rule used in the proof.

Case Pref: P = π.P ′

By hypothesis, Γ ` P ′ : A′. Then, by T-Pref, Γ ` π.P ′ : π.A′ and π.A′ <: 〈π〉A′, by Proposition 3.3.11.

Case Par1: P = P1 | Q

P ′ = P2 | Q

By hypothesis, P1
π−→ P2. As Γ ` P2 | Q : A′, we have that A′ = A1 | A2, Γ ` P2 : A1 and Γ ` Q : A2.

By induction hypothesis, Γ ` P1 : B and B <: 〈π〉A1. Then, by T-Par, Γ ` P1 | Q : B | A2; that
is Γ ` P : A, where A = B | A2. Moreover, by Proposition 3.3.11, as B <: 〈π〉A1, we have that
B | A2 <: 〈π〉 (A1 | A2); that is, A <: 〈π〉A′.

Case Par2: P = P1 | P2

P ′ = P ′
1 | P ′

2

By hypothesis, P1
α−→ P ′

1 and P2
ᾱ−→ P ′

2, for some α. As Γ ` P ′
1 | P ′

2 : A′, we have that A′ = A′
1 | A′

2,
Γ ` P ′

1 : A′
1 and Γ ` P ′

2 : A′
2. By induction hypothesis, Γ ` P1 : A1, Γ ` P2 : A2, A1 <: 〈α〉A′

1 and
A2 <: 〈ᾱ〉A′

2. Then, by T-Par, Γ ` P1 | P2 : A1 | A2; that is Γ ` P : A, where A = A1 | A2. Moreover,
by Proposition 3.3.11, as A1 <: 〈α〉A′

1 and A2 <: 〈ᾱ〉A′
2, we have that A1 | A2 <: 〈τ〉 (A′

1 | A′
2); that

is, A <: 〈π〉A′.

Case Res: P = (νa)Q
P ′ = (νa)Q′

By hypothesis, Q π−→ Q′, where a is different from π and π̄. As Γ ` (νa)Q′ : A′, we have that A′ = arA′′

and Γ ` Q′ : A′′. By induction hypothesis, Γ ` Q : B and B <: 〈π〉A′′. Then, by T-New, Γ ` (νa)Q :
arB; that is Γ ` P : A, where A = arB. Moreover, by Proposition 3.3.8, as B <: 〈π〉A′′, we have
that arB <: ar(〈π〉A′′). Subsequently, as a is different from π and π̄, we have that ar(〈π〉A′′) <:
〈π〉 (arA′′), by Proposition 3.3.11. Finally, by transitivity, A <: 〈π〉A′.

Case Rec: P = (recX.Q)
P ′ = Q′

By hypothesis, (recX.Q) π−→ Q′ and Γ ` Q′ : A′. Then Q{(recX.Q)/X} π−→ Q′, by rule T-Rec. By
induction hypothesis we have that Γ ` Q{(recX.Q)/X} : B and B <: 〈π〉A′, for some type B.

On the other hand, by Theorem 4.1.5, there is a type A such that Γ ` (recX.Q) : A. Then,
by rule T-Rec, Γ, X : Z ` Q : A1 and A = (recZ.A1). Therefore, by Proposition 4.1.6, Γ `
Q{(recX.Q)/X} : A1{(recZ.A1)/Z}. It is simple to observe that A1{(recZ.A1)/Z} <: B. By Propo-
sition 3.3.11, (recZ.A1) <: A1{(recZ.A1)/Z}, so, by transitivity of the subtyping relation, (recZ.A1) <:
B and, again by transitivity, (recZ.A1) <: 〈π〉A′; that is, A <: 〈π〉A′.

44

Case SC: P = P1

P ′ = Q1

By hypothesis, P1 ≡ P2, Q1 ≡ Q2 and P2
π−→ Q2. As Γ ` Q1 : A′ and Q1 ≡ Q2, by lemma 4.1.8,

there exists a type B1 such that Γ ` Q2 : B1 and A′ ≡t B1. Then, By induction hypothesis, Γ ` P2 : B2

and B2 <: 〈π〉B1. Again, as P2 ≡ P1, we have, by lemma 4.1.8, that there exists a type A such that
Γ ` P1 : A and B2 ≡t A.

One can conclude that A <: 〈π〉A′ by repeated use of the following three results: Propositions 3.3.8
and Proposition 3.3.9, and transitivity of <:. First, by Proposition 3.3.9, as B2 ≡t A, we have that
A <: B2. Then using transitivity and the fact that B2 <: 〈π〉B1, we conclude A <: 〈π〉B1. On the
other hand, by Proposition 3.3.9, from A′ ≡t B1, we have that B1 <: A′. Subsequently, by Proposition
3.3.8, 〈π〉B1 <: 〈π〉A′.

Finally, as A <: 〈π〉B1 and 〈π〉B1 <: 〈π〉A′, by transitivity, we have that A <: 〈π〉A′.

Theorem 4.2.4. (Completeness of the Type System) If P |=Γ A, then Γ ` P : A, where Γ is a well-

defined environment.

Proof. By structural induction on the definition of A.

Case Void: A = 0

If P |=Γ 0, then P ≡ 0. On the other hand, Γ ` 0 : 0, by T-Inact. Hence, by Proposition 4.1.8, Γ ` P : B

for some B such that B ≡t 0. Again by Proposition 4.1.8, as P ≡ P and 0 ≡t B we have that Γ ` P : 0.

Case NonVoid: A = 0̄

If P |=Γ 0̄, then P 6≡ 0. By theorem 4.1.5, there is a type A and an environment Γ′ such that Γ′ ` P : A.
By Proposition 3.3.12, A <: 0̄; hence, by subsumption, Γ′ ` P : 0̄.

Case Variable: A = Z

If P |=Γ Z, then P = X and Γ is Γ′, X : Z, for some X and Γ′. By T-Var, Γ′, X : Z ` X : Z; that is
Γ ` X : Z.

Case Prefix: A = π.A′

If P |=Γ π.A′, then there is P ′ such that P
π−→ P ′, P ′ |=Γ A′ and ∀π′, P ′′: (P π′

−→ P ′′ =⇒ π′ = π∧P ′′ ≈
P ′). In particular, P |=Γ 〈π〉A′. By completeness of the diamond case, we have that Γ ` P : 〈π〉A′.
Finally, by Proposition 3.3.11, 〈π〉A′ <: π.A′; hence, by the subsumption rule, Γ ` P : π.A′.

Case Parallel: A = A1 | A2

If P |=Γ A1 | A2, then exists P1 and P2 such that P ≡ P1 | P2, P1 |=Γ A1 and P2 |=Γ A2. By induction
hypothesis, Γ ` P1 : A1 and Γ ` P2 : A2. Then, by T-Par, Γ ` P1 | P2 : A1 | A2. By Proposition 4.1.8,
as P ≡ P1 | P2 there is B such that Γ ` P : B and B ≡t A1 | A2. Again by Proposition 4.1.8, as P ≡ P

and A1 | A2 ≡t B, Γ ` P : A1 | A2.

45

Case Restriction: A = arA′

If P |=Γ arA′, then exists P ′ such that P ≡ (νa)P ′ and P ′ |=Γ A′. By induction hypothesis, Γ ` P ′ : A′.
Then, by T-New, Γ ` (νa)P ′ : arA′. By Proposition 4.1.8, as P ≡ (νa)P ′ there is B such that Γ ` P : B

and B ≡t arA′. Again by Proposition 4.1.8, as P ≡ P and arA′ ≡t B, Γ ` P : arA′.

Case Recursion: A = (recZ.A′)

If P |=Γ (recZ.A′), then, by definition, there exist X and P ′ such that P ≡ (recX.P ′) and P ′ |=Γ,{X:Z}

A′. By induction hypothesis, we have that Γ, X : Z ` P ′ : A′. Therefore, by T-Rec, Γ ` (recX.P ′) :
(recZ.A′).

Now, as P ≡ (recX.P ′), we have, by Proposition 4.1.8, that Γ ` P : B, for some B ≡t (recZ.A′).
Again by Proposition 4.1.8, as P ≡ P , and (recZ.A′) ≡t B, we have that Γ ` P : (recZ.A′).

Case Diamond: A = 〈π〉A′

If P |=Γ 〈π〉A′, then, by definition, there is a P ′ such that P
π−→ P ′ and P ′ |=Γ A′. By induction

hypothesis, we have that Γ ` P ′ : A′. Therefore, by lemma 4.2.3, Γ ` P : B and B <: 〈π〉A′, for some
B; hence, by Subsumption, Γ ` P : 〈π〉A′.

Case Box: A = [π]A′

If P |=Γ [π]A′, then, by definition, either P |=Γ π.A′ or P 6 π−→.
First, suppose that P |=Γ π.A′. Then, by completeness, Γ ` P : π.A′. By Proposition 3.3.11,

π.A′ <: [π]A′; hence, by the Subsumption rule, Γ ` P : [π]A′.
Secondly, suppose that P 6 π−→. In the first case, let B be the structural type of P , obtained by lemma

4.1.1. By Proposition 3.3.11, B <: [π]A. Then, by the Subsumption rule, Γ ` P : [π]A.

Case Conjunction: A =
∧

i∈I Ai

If P |=Γ

∧
i∈I Ai, then, by definition, P |=Γ Ai for all i ∈ I . Then, by induction hypothesis, Γ ` P : Ai

for all i ∈ I , respectively. Finally, by the Conjunction rule, Γ ` P :
∧

i∈I Ai.

Case Disjunction: A =
∨

i∈I Ai

If P |=Γ

∨
i∈I Ai, then, by definition, P |=Γ Ai for some i ∈ I . Thus, there exists j ∈ I such that

P |=Γ Aj , then, by induction hypothesis, Γ ` P : Aj . By Proposition 3.3.11, Aj <:
∨

i∈I Ai, as j ∈ I;
subsequently, by the subsumption rule, Γ ` P :

∨
i∈I Ai.

Corollary 4.2.5. (Completeness) If P |= A, then ` P : A.

Proof. Direct from 4.2.4, with Γ = ∅.

46

4.3 Further results

In this section we prove proposition 3.3.9 using results of previous sections.
First, the following three auxiliary lemmas are needed.

Lemma 4.3.1. If Γ ` P : A and a is fresh in A, then a is fresh in P .

Proof. Similar to 4.1.7.

Lemma 4.3.2. If P |=Γ A and a is fresh in A, then a is fresh in P .

Proof. By completeness, if P |=Γ A, then Γ ` P : A. Then as a is fresh in A, by lemma 4.3.1, a is fresh
in P .

Proof of proposition 3.3.9

Case 1: A ≡α B

We have to consider two subcases: Alpha Res and Alpha Rec (in both directions).

Subcase 1.1.a): arA′ ≡t
α br(A′{b/a}), where b is fresh in A′

Let P |=Γ arA′. Then there exists P ′ such that P ≡ (νa)P ′ and P ′ |=Γ A′. By lemma 4.3.2, as b is fresh
in A, we have that b is fresh in P and so, b is also fresh in P ′. Then, there exists Q such that P ′{b/a} <: Q

and Q |=Γ A′{b/a}. Therefore, (νb)Q |=Γ br(A′{b/a}).
Moreover, as P ′{b/a} <: Q, we have that (νb)(P ′{b/a}) <: (νb)Q. On the other hand, as b is fresh

in P ′, we have that (νa)P ′ ≡α (νb)(P ′{b/a}) and subsequently, (νa)P ′ ≡ (νb)(P ′{b/a}). Then, by
proposition 3.2.12, P <: (νa)P ′ and (νa)P ′ <: (νb)(P ′{b/a}). Hence, by transitivity of <:, we finally
obtain P <: (νb)Q. Therefore, arA′ <: br(A′{b/a}).

Subcase 1.1.b): br(A′{b/a}) ≡α arA′, where b is fresh in A′

Similar to 1.1.a).

Subcase 1.2.a): (recZ.A′) ≡α (recW .A′{W /X}), where W is fresh in A′

Let P |=Γ (recZ.A′). Then there exists a process variable X and a process P ′ such that P ≡ (recX.P ′)
and P ′ |=Γ,X:Z A′. By completeness, Γ, X : Z ` P ′ : A′. Let Y be a fresh variable in P ′. Using
proposition 4.1.2, as W is fresh in A′, we have that Γ, X : Z, Y : W ` P ′ : A′. On the other hand, we
have that Γ, Y : W ` Y : W , by rule T-Var. Therefore, Γ, Y : W ` P ′{Y/X} : A′{W /Z} by proposition
4.1.6. Now, using rule T-Rec, we obtain Γ ` (recY.P ′{Y/X}) : (recW .A′{W /Z}).

Moreover, (recY.P ′{Y/X}) ≡α (recX.P ′) because Y is chosen fresh in P ′. Therefore, we have
that (recY.P ′{Y/X}) ≡ (recX.P ′), and so, by proposition 3.2.12, (recX.P ′) <: (recY.P ′{Y/X}).
In the same way, as P ≡ (recX.P ′) we have that P <: (recX.P ′). Finally, by transitivity of <:,

47

P <: (recY.P ′{Y/X}); hence, (recZ.A′) <: (recW .A′{W /X}).

Subcase 1.2.b): (recW .A′{W /X}) ≡α (recZ.A′), where W is fresh in A′

Similar to 1.2.a).

Cases 2 - 4:

Done in lemma 3.3.7.

Case 5.a): ar0 ≡t 0

Let P |=Γ ar0. Then there exists a process P ′ such that P ≡ (νa)P ′ and P ′ |=Γ 0. Subsequently, we
have that P ′ 6 π−→ for every π. Then also (νa)P ′ 6 π−→ for every π. Therefore, (νa)P ′ |=Γ 0. On the other
hand, by proposition 3.2.12, P <: (νa)P ′. Hence ar0 |=Γ 0.

Case 5.b): 0 ≡t ar0

Let P |=Γ 0. Then P 6 π−→ for every π. Therefore, it is not hard to notice that P <: (νa)P . On the other
hand (νa)P |=Γ ar0. Hence 0 <: ar0.

Case 6.a): arbrA′ ≡t brarA′

Let P |=Γ arbrA′. Then there exists a process P ′ such that P ≡ (νa)P ′ and P ′ |=Γ brA′. In the same
way, there exists a process P ′′ such that P ′ ≡ (νb)P ′′ and P ′′ |=Γ A′. Then, (νa)P ′′ |=Γ arA′ and,
subsequently, (νb)(νa)P ′′ |=Γ brarA′. On the other hand, as P ≡ (νa)P ′ and P ′ ≡ (νb)P ′′, we have
that P ≡ (νa)(νb)P ′′. But by definition 2.2.6, (νa)(νb)P ′′ ≡ (νb)(νa)P ′′ so P ≡ (νb)(νa)P ′′ and, by
proposition 3.2.12, P <: (νb)(νa)P ′′. Hence arbrA′ <: brarA′.

Case 6.b): brarA ≡t arbrA

Similar to 6.a).

Case 7.a): ar(A1 | A2) ≡t (arA1) | A2, where a 6∈ fn(A2)

Let P |=Γ ar(A1 | A2). Then there exists a process P ′ such that P ≡ (νa)P ′ and P ′ |=Γ A1 | A2.
Subsequently, there exists processes P1 and P2 such that P ′ ≡ P1 | P2, P1 |=Γ A1 and P2 |=Γ A2. Hence,
P ≡ (νa)(P1 | P2). On the other hand, ((νa)P1) | P2 |=Γ (arA1) | A2. It remains to be shown that
P <: ((νa)P1) | P2. For this purpose, we first note that P <: (νa)(P1 | P2) by proposition 3.2.12. So if
we show that (νa)(P1 | P2) <: ((νa)P1) | P2 we may conclude that P <: ((νa)P1) | P2 by transitivity
of <:. Thus,

Case 7.b): (arA1) | A2 ≡t ar(A1 | A2), where a 6∈ fn(A2)

Similar to 7.b).

48

Chapter 5

An Application

This chapter resumes and further discusses the application introduced in chapter 1, consisting of a deriva-
tion of a spatial invariant about a process. The process is Looper, and the application is described next.

First, consider the Looper process

Looper
def= (νa)(a | (recX.ā.(a | a | X))).

The goal is to prove that
Γ ` Looper : �(0̄ | 0̄).

This states that Looper will always have two separate threads running in parallel.
Consider the following two abbreviations

LoopType
abv= (recZ.ā.(a | a | Z)), and

MsgsType
abv= !a | a.

The Type System first proves

` Looper : ar(MsgsType | LoopType) (5.1)

using structural rules in all steps except one. Table 5.1 gives a derivation for Looper. Note that the steps of
the derivation are all structural except the one on the left-hand side where subsumption is used along with
the subtyping rule a <:!a | a, proved on lemma 3.3.11. The non-structural step could be “pushed forward”
to the subtyping part without any impact; it is left there to simplify.

Tables 5.2 and 5.3 exhibit subtyping derivations for

ar(!a | a | (recZ.ā.(a | a | Z))) <: ar(!a | (recZ.ā.(a | a | Z))) (5.2)

and
[π] (ar(!a | (recZ.ā.(a | a | Z))) <: [π] (ar(!a | a | (recZ.ā.(a | a | Z)))) (5.3)

respectively. The derivation of tables 5.2 and 5.3 both use lemmas 3.3.7, 3.3.11 and 3.3.3 in the first steps
of the derivation and uses proposition 3.3.8 in the last steps.

49

Also, from proposition 3.3.11 we know that

ar(!a | (recZ.ā.(a | a | Z))) <: [π] (ar(!a | (recZ.ā.(a | a | Z))), for every π. (5.4)

So, using transitivity of subtyping (lemma 3.3.3) twice, we can conclude from expressions (5.2), (5.4) and
(5.3) the following relation

ar(!a | a | (recZ.ā.(a | a | Z))) <: [π] (ar(!a | a | (recZ.ā.(a | a | Z)))), for every π. (5.5)

That is,

ar(MsgsType | LoopType) <: [π] (ar(MsgsType | LoopType)), for every π. (5.6)

Then, using the last subtyping rule in proposition 3.3.11, we conclude from expression 5.5 that

ar(MsgsType | LoopType) <: �(ar(MsgsType | LoopType)). (5.7)

On the other hand, table 5.4 exhibits a derivation of

�(ar(MsgsType | LoopType)) <: �(0̄ | 0̄). (5.8)

It uses all rules in proposition 3.3.12, rules from proposition 3.3.3 and 3.3.8. The last step in the derivation
of table 5.4 is not proved. This issue will be addressed in the end of this chapter. For now, assume that it is
proved.

Summing up, we have that:

1. ` Looper : ar(MsgsType | LoopType) from (5.1);

2. ar(MsgsType | LoopType) <: �(ar(MsgsType | LoopType)) from (5.7);

3. �(ar(MsgsType | LoopType)) <: �(0̄ | 0̄) from (5.8).

Therefore, using transitivity of the subtyping relation, we obtain from 2. and 3.

ar(MsgsType | LoopType) <: �(0̄ | 0̄) (5.9)

` 0 : 0 T-Pre` a : a a <:!a | a
T-Sub` a :!a | a

X : Z ` 0 : 0 T-Pre
X : Z ` a : a

X : Z ` 0 : 0 T-Pre
X : Z ` a : a X : Z ` X : Z T-Par

X : Z ` a | X : a | Z
T-Par

X : Z ` a | a | X : a | a | Z
T-Pre

X : Z ` ā.(a | a | X) : ā.(a | a | Z)
T-Rec` (recX.ā.(a | a | X)) : (recZ.ā.(a | a | Z))
T-Par` a | (recX.ā.(a | a | X)) : MsgsType | LoopType

T-New` Looper : ar(MsgsType | LoopType)

Table 5.1: Structural derivation.

50

!a | a <: a | !a a | !a <:!a
!a | a <:!a

!a | a | (recZ.ā.(a | a | Z)) <:!a | (recZ.ā.(a | a | Z))
ar(!a | a | (recZ.ā.(a | a | Z))) <: ar(!a | (recZ.ā.(a | a | Z)))

Table 5.2: Subtyping derivation 1.

!a <: a | !a a | !a <:!a | a

!a <:!a | a

!a | (recZ.ā.(a | a | Z)) <:!a | a | (recZ.ā.(a | a | Z))
ar(!a | (recZ.ā.(a | a | Z))) <: ar(!a | a | (recZ.ā.(a | a | Z)))

[π] (ar(!a | (recZ.ā.(a | a | Z))) <: [π] (ar(!a | a | (recZ.ā.(a | a | Z))))

Table 5.3: Subtyping derivation 2.

Finally, using the subsumption rule we conclude from (5.9) that ` Looper : �(0̄ | 0̄).

The last step

Table 5.4 exhibits a derivation of

�(ar(MsgsType | LoopType)) <: �(0̄ | 0̄). (5.10)

The last step (the dashed line), uses preservation of subtyping by �. By definition 3.2.14, �A is an
abbreviation of

∧
t∈Act∗ [t]A. Therefore, it actually uses preservation of subtyping by conjunction, which

was not proved.
Hence, the derivation of the example remains an open problem.
We end this chapter with a few remarks concerning this issue. First, consider the following attempt to

prove that binary (to simplify) conjunction preserves subtyping. Assume that A <: B and suppose that
P |=Γ A ∧ C. Then, P |=Γ A and P |=Γ C. As A <: B, there is a process Q such that P <: Q and
Q |=Γ B. But, is it true that Q |=Γ C? If the answer is yes, then A | C <: B | C and the derivation is
valid. If not, then it remains open.

A careful observation of the last step in table 5.4 suggests that such a strong result is actually not

MsgsType <: 0̄ LoopType <: 0̄
MsgsType | LoopType <: 0̄ | 0̄

ar(MsgsType | LoopType) <: ar(0̄ | 0̄) ar(0̄ | 0̄) <: 0̄ | 0̄
ar(MsgsType | LoopType) <: 0̄ | 0̄

�(ar(MsgsType | LoopType)) <: �(0̄ | 0̄)

Table 5.4: Subtyping derivation 3.

51

needed. Instead, if we prove that

If A <: B, then
∧

t∈Act∗

[t]A <:
∧

t∈Act∗

[t]B, (5.11)

then the derivation is still valid.
By proposition 3.3.8,

If A <: B, then [π]A <: [π]B, for every π. (5.12)

Consider an arbitrary sequence of actions t = πn . . . π1. Therefore, by a simple induction over n,

If A <: B, then [π1] . . . [πn]A <: [π1] . . . [πn]B. (5.13)

That is,
If A <: B, then [t]A <: [t]B, (5.14)

and as t is arbitrary,
If A <: B, then [t]A <: [t]B, for every t. (5.15)

Hence, remains to be shown the following assertion

If [t]A <: [t]B, for every t, then
∧

t∈Act∗

[t]A <:
∧

t∈Act∗

[t]B. (5.16)

In conclusion, the validity of the derivation of the spatial invariant depends either of subtyping being
preserved by conjunction or of the validity of assertion (5.16).

52

Chapter 6

Conclusions

This last chapter summarizes the work developed and points out future possible developments.

6.1 Achievements

Right from the beginning it was clear that a logic to express spatial properties of processes would be useful.
Achieving the right combination of operators and semantics and defining a suitable compatible subtyping
relation proved to be an extensive and complex process. Also, being able to derive the motivation example
was a constant requirement which increased the amount of obstacles to deal with. Nevertheless, we were
able to define a logic based on:

• a syntax capable of expressing both spatial and behavioural properties of processes;

• a semantics defined using two different relations over processes;

• a deductive system based on types, having its power focused on a subtyping relation.

In addition, important properties of the logic were proved. This ensures its usefulness. In the course of
this process, other results came to light helping to further characterize the logic. Namely, it was proved:

• that every process has a type;

• weak consistency and completeness results;

• the correctness of several subtyping rules.

6.2 Future work

During the research process it was necessary to make some decisions which impact was not totally visible
at the time. Looking back, it seems as though other alternatives were equally possible, however leading
to necessarily different results. Some of them are worthwhile further investigating. This work is left to be
done in the future.

Some of these issues are addressed in the following.

53

Treatment of variables and semantics: In sections 3.3.1 and 3.2.2, the satisfaction relation uses envi-
ronments to map process variables into type variables. In fact, it demands a one-to-one correspondence.
This decision was to simplify the treatment of recursion, but it is rather abusive. Instead, it would be more
reasonable to consider each type variable to be satisfied by a set of process variables, i.e., defining valua-

tion. Moreover, an alternative definition of semantics should be considered. For instance, it would be more
natural to define satisfaction through definitions of valuation and denotation.

Interpretation of prefix: In definition 3.2.13, the interpretation of the prefix operator requires that every
π-derivative of a process satisfying π.A, must be bisimilar. This condition is rather demanding. Instead,
one could require that any π-derivative of a process satisfying π.A must satisfy A.

Recursive types: Recursive types are still an open field of discussion nowadays, due to their complexity.
Therefore, this is an aspect that, most certainly, will be worthwhile discussing in a future approach. Nev-
ertheless, in definition 3.2.13, recursive types are interpreted using structural congruence. This choice was
made to simplify the work. Instead, type recursion could have been defined as a fixed point of an operator
as is done in [CC03].

Subtyping rules: The rules listed throughout section 3.3.2 suffice to ensure completeness and to derive the
motivating example. But, most probably, there are rules which can be derived from others and therefore
should be dropped. On the other hand, most probably, there are rules yet to be devise which generalize
some of the rules considered, for instance the twelfth rule of proposition 3.3.11. In other words, the set of
rules presented is not the minimal one.

Conjunction rule: The rule adopted for conjunction, was deliberately considered in the infinitary case to
achieve completeness of the modality �A. Instead, giving up completeness, one could consider two sepa-
rate rules: a global binary rule for conjunction and a local infinitary rule for the conjunction [t]A, where t

is a sequence of actions.

54

Bibliography

[Cai03] Luı́s Caires. Behavioral and Spatial Properties in a Logic for the π-Calculus. In I. Walukiwicz,
editor, Proc. of Foundations of Software Science and Computation Structures’04. Lecture Notes
in Computer Science, Springer Verlag, 2003.

[CC03] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part I). Journal of Information and

Computation, 186(2):194–235, 2003.

[CC04] L. Caires and L. Cardelli. A Spatial Logic for Concurrency (Part II). Journal of Theoretical

Computer Science (Germany), 2004.

[CV06] L. Caires and H. T. Vieira. Extensionality of Spatial Observations in Distributed Systems. 2006.

[GG03] L.Cardelli, P. Gardner and G. Ghelli. Manipulating trees with hidden labels. In A. D. Gordon, edi-
tor, Proc. of Foundations of Software Science and Computation Structures (FoSSaCS’03). Lecture
Notes in Computer Science, Springer-Verlag, 2003.

[Han94] Chris Hankin. Lambda calculi: a guide for computer scientists. Oxford: Clarendon Press, 1994.

[Hoa85] C. A. R. Hoare. Communication and Sequential Processes. Prentice Hall, 1985.

[IK04] A. Igarashi and N. Kobayashi. A Generic Type System for the π-Calculus. Theoretical Computer

Science, 1–3(311):121–163, 2004.

[IO01] S. Ishtiaq and P. O’Hearn. BI as an Assertion Language for Mutable Data Structures. In 28th

ACM Symp. on Principles of Programming Languages, 2001.

[LG00] L.Cardelli and A. D. Gordon. Anytime, Anywhere. Modal Logics for Mobile Ambients. In 27th

ACM Symp. on Principles of Programming Languages, pages 365–377. ACM, 2000.

[Mil89] Robin Milner. Communication and concurrency. New York : Prentice Hall, 1989.

[Mil99] Robin Milner. Communicating and mobile systems : the π-calculus. Cambridge University Press,
c1999.

[OP99] P. O’Hearn and D. Pym. The Logic of Bunched Implications. The Bulletin of Symbolic Logic,
5(2):215–243, 1999.

[Pie02] Benjamin Pierce. Types and Programming languages. The MIT Press, 2002.

[PW92] R. Milner, J. Parrow and D. Walker. A Calculus of Mobile Processes, parts I and II. Information

and Computation, 100(1):1–77, 1992.

55

[RR01] S. K. Rajamani and J. Rehof. A Behavioral Module System for the π-Calculus. In SAS’01: 8th

International Static Analysis Symposium (Paris, France), LNCS. Springer, 2001.

[RV00] A. Ravara and V. Vasconcelos. Typing Non-Uniform Concurrent Objects. In C. Palamidessi,
editor, CONCURR’00, volume 1877 of Lecture Notes in Computer Science, pages 474–488.
Springer-Verlag, 2000.

[SW01] D. Sangiorgi and D. Walker. The π-Calculus: A Theory of Mobile Processes. Cambridge Univer-
sity Press, 2001.

56

