
What’s TyCO, After All?

Maxime Gamboni

April 20, 2009

Abstract

We study the expressive power of asynchronous π-calculus with
nested variants (πVa), of uniform and non-uniform TyCO by means of
encodings.

I was given a draft of this report and had to make the necessary
changes to the theory in order to make the theorems true, and prove
them

Uniform TyCO can be seen as a sub-calculus of πVa , the only dif-
ference being that πVa requires a separate construct for analysing an
input while in TyCO input and value analysis are tightly bound. Still,
we can give an encoding (embedding) that is fully abstract and good.

We propose an encoding from local πVa to TyCO and show that it
is fully abstract.

1 Introduction

A Question of Expressive Power TyCO is an asynchronous name-
passing process calculus for typed concurrent objects, proposed by Vascon-
celos [Vas94]. In comparison to a standard π-calculus [MPW92], TyCO-
processes are indeed more like objects in the sense that every communication
exchanges a structured value, reminiscent of method invocation, consisting
of an name tagged with a label. More recently, Sangiorgi conceived a π-cal-
culus equipped with labeled values, called variants, which has been brought
up as a suitable vehicle for the description, by means of encodings, of the
semantics of typed higher-level object calculi [San98]. Apparently, TyCO is
just an asynchronous version of the π-calculus with variants, which we refer
to as πVa . Indeed, as we will show in this paper, TyCO represents a proper

1

sub-calculus of πVa in a precise sense. The obvious question arises, whether
this sub-calculus is less expressive.

My Diploma Project

I was given a draft of this report, containing chapters one to five, ie

• syntax and semantics of the calculi
• receptiveness theory applied to TyCO
• an encoding of πVa to TyCO

I had to make necessary changes to the theory to make the theorems true
and write their proofs, in order to have a fully abstract encoding of πVa to
TyCO with the proof of this fact.

Here is a list of most important changes and additions that I did :

1. Case Reduction Relation
We tried three different semantics for handling case reduction (see Def-
inition 2.2.1).
The original semantics was handling it as part of Structural Congruence
(Definition 2.1.1) but it was breaking subject congruence (2.1.3).
We tried to put it as a τ -transition but the full abstraction of TyCO-πVa
embedding (Proposition 3.0.3) worked for weak equivalences only.
So we created this directional congruence � (Definition 2.2.1)

2. Linear Weakening
In the receptiveness theory applied to TyCO (section 3), we had weak-
ening on uniform names only, but the type soundness (Proposition
4.1.6) was broken in the following case :
Let Θ `R P = (νa) (a!lk(νb).A | a?{lj(xj)=Pj | j∈J}) with a linear.

P
τ−−→ (νa) (νb) (A | Pj{b/xj

}) = P ′.
(R-Res) of Table 5 requires a to be in Γl and ∆l for the subprocess
restricted by (νa) , where a has been consumed and is no longer free.
So without linear weakening there is no Θ′ with Θ′ `R P ′.

3. Undecidability of (R-Link)
We had introduced the concept of Dynamic Links to avoid extrusion
of plain names (Section 4.1)
I spent a few weeks to prove its (receptive) typability (Table 7) before
seeing that it is undecidable (so I made it an axiom) (A partial proof
is given in the appendix B.6)

2

4. Definition of Receptive Equivalences
I adapted the definition of weak receptive bisimulation (4.2.6) to strong
receptive bisimulation and expansion (4.2.7 and 4.2.8)

5. Made the Nested Encoding Syntax-Directed
The encoding from πVa to TyCO was type-directed but that was not
necessary so it could be simplified.

6. Proofs
I wrote the appendix B containing the proof of most lemmas, proposi-
tions and theorem.

7. and more
The above changes required updating some propositions

There is a rule missing in the operational semantics (Table 2) for free
communication:

(FCom1)
P1

c!v−−−→ P ′1 P2
c?v−−−→ P ′2

P1|P2
τ−−→ (P ′1|P ′2)

The absence of this rule breaks the full-abstraction of the πVa -TyCO for
some kind of processes, as explained in Proposition 5.2.6 and Theorem 5.2.7.

It seems however that adding this rule would keep all propositions valid
and make the side condition of πVa -TyCO operational correspondence (Propo-
sition 5.2.6) unnecessary.

Finally, I did not have time to fix the non-local encoding that is mentioned
in the last section.

The Contribution of this Paper

We set out to formally underline the similarity—and difference—between the
two calculi. We do so by supplying two mutual encodings and studying their
properties. First, the usual syntax presentation of the two calculi is changed
such that they become very much alike. Then, we present a straightforward
encoding from TyCO into πVa that makes explicit that (i) the former is a sub-
calculus of the latter, in that TyCO only knows values with precisely one level
of label nesting; (ii) the difference in the atomicity of communication bears
no problems, at least in the standard uniform setting. As a side-effect, the
encoding allows to import to TyCO the theory of πVa .

One Answer We first present an encoding of a Local πVa into TyCO, where
local means that outputs are bound and a process can’t receive on a received

3

name. This shows that nested variants can be encoded in one-level-only
variants . We prove that this encoding is indeed fully abstract with respect to
≈ in the source and ≈R in the target, which is defined on an adaptation to our
asynchronous setting of Sangiorgi’s theory of receptiveness [San99a, San99b].
So, yes, although TyCO is a proper sub-calculus of πVa , no expressive power
is lost in the above formal sense.

We then give hints on the way the local encoding can be modified to work
with non-local terms as well.

2 Preliminaries

2.1 Syntax

Terms Let a, b, c, x ∈ N be names. Let l ∈ L be a label. Let J range
over finite indexing sets. We assume the convention that names are used
as channels a or variables x. A value v is a name optionally tagged with
one or more labels. Then, processes P for both πVa and TyCO are given by
the grammar in Table 1 for a common part such that their difference only
arises for the definition of normal processes: in essence, output and input
in TyCO always mention simply labeled values, while in πVa the exchanged
values could be just names or arbitrarily nested variant values. This, of
course, is also represented in the admitted type expressions. Finally, TyCO
input is destructive. while πVa needs a case operator as explicit destructor for
variant values.

We make the standard assumptions on operator precedence and use the
standard definition of free names fn(P) and bound names bn(P) of a pro-
cess P , considering the operators for restriction, input, replication, and case
analysis, as binders for the names x, xj.

Definition 2.1.1. Structural congruence, written ≡, is the smallest relation
congruence satisfying the axioms below:

• P ≡ Q, if P is α-convertible to Q;
• P |0 ≡ P , P |Q ≡ Q|P , (P |Q)|R ≡ P |(Q|R);
• (νa) 0 ≡ 0, (νa) (νb)P ≡ (νb) (νa)P ,
• (νa) (P |Q) ≡ P |(νa)Q, if a 6∈ fn(P);

The difference in atomicity of communication shows up already in the def-
inition of errors in the two calculi, both of which are based on non-matching

4

Common Part

P ::= 0 inactive process∣∣ N normal process∣∣ P |P parallel composition∣∣ (νx)P restriction

πVa
N ::= a!v output∣∣ a?(x).P input∣∣ a?∗(x).P replicated input∣∣ case v of {lj(xj)=Pj | j∈J} variant destructor

v ::= a name∣∣ l〈v〉 labeled value

T ::= X type variable∣∣ [T] channel type∣∣ {lj:Tj | j∈J} variant type∣∣ µX.T recursive type

TyCO

N ::= a!l〈b〉 “invocation”∣∣ a?{lj(xj)=Pj | j∈J} “object”∣∣ a?∗{lj(xj)=Pj | j∈J} “replicated object”

T ::= X type variable∣∣ [{lj:Tj | j∈J}] object type∣∣ µX.T recursive type

Table 1: Syntax

5

labels: while πVa checks for the availability of a label only when performing
an explicit case analysis on a possibly formerly received labeled value, TyCO
checks for the availability of a (method) label already when trying to trans-
mit a labeled value. In πVa and uniform TyCO, this subtle difference does
not play an important role, but non-uniformity exploits it.

Definition 2.1.2 (Errors).

1. Errorπ
def
= { P ∈ πVa | P ≡ (νx̃) (case l〈v〉 of {lj(xj)=Pj | j∈J} |Q)

and l 6= lj for all j∈J }
2. ErrorT

def
= {P ∈ TyCO |

(
P ≡ (νx̃) (a!l〈b〉 | a?{lj(xj)=Pj | j∈J} |Q)
or P ≡ (νx̃) (a!l〈b〉 | a?∗{lj(xj)=Pj | j∈J} |Q)

)
and l 6= lj for all j∈J }

Note that the notions of error need to be refined in a polyadic setting to
accommodate for arity mismatches.

Types In πVa , we have free nesting of type constructors, which means that

T1
def
= [[T]]

T2
def
= {l1:{k1:T1, k2:T2}, l2:T3}

are well-formed types. In contrast, types in TyCO are such that there is strict
alternation between channel and variant types, as expressed in the shape of
object types:

• each channel carries a branching structure, and
• each type inside a label is a channel type (or a base type).

This notation also indicates the tightly joint occurrence of communication
and selection in TyCO. In particular, the πVa -types T1 and T2 mentioned
above can not be formed within TyCO.

Type equality T1=T2, in the context of recursive types, holds if T1 and
T2 denote the same infinite tree unfolding. Trees have nodes of type channel
[· · ·] with exactly one outgoing edge (monadic) and nodes of type variant
{· · ·} with labeled outgoing edges for each variant tag. The leaves are empty
variants, i.e., without outgoing edges.

6

Simple Type System Judgments are of the form Γ `S P , where Γ is a
finite partial function from names to types covering all the free names of P .
Judgments are generated by the rules in Table 10 of Appendix A for TyCO
and πVa in a standard and completely analogous fashion. A TyCO (or πVa)
process P is called simply well-typed if there is a typing context Γ such that
Γ `S P can be derived from the typing rules of TyCO (or πVa) in Table 10.

Typing is preserved under structural congruence.

Lemma 2.1.3 (Subject Congruence). If Σ `S P ≡ Q, then Σ `S Q.

Typing guarantees the absence of current errors.

Proposition 2.1.4 (Absence of Errors). If Σ `S P , then P 6∈ Error.

Originally, πVa was introduced with a subtyping system based on the
directions in which channel names can be used by processes.

In this paper, for simplicity, we omit subtyping completely; we strongly
conjecture that our formal comparison of the two calculi would also be valid
in the context of subtyping.

In the remainder of the paper, we only consider simply well-typed terms.
Moreover, whenever we consider a well-typed term in πVa , we follow the con-
vention to use the name u to denote variant variables, i.e., names of type
variant that occur in binding position of input, replication, or case constructs.

2.2 Operational Semantics

We need a relation for processing case reductions in πVa .

Definition 2.2.1. Case Reduction, written �, is defined like this :

• case lk〈v〉 of {lj(xj)=Pj | j∈J}� Pk{v/xk
}, if k∈J .

• if P � P ′ then (for any process Q and name a)

– P | Q� P ′ | Q,
– Q | P � Q | P ′ and
– (νa)P � (νa)P ′.

We give the operational semantics as a labeled transition system gener-
ated by the rules in Table 2, which uses many rules commonly for TyCO and
πVa , assuming that labels are of the form:

µ ::= τ
∣∣ c?v

∣∣ (νb) c!v
∣∣ c!v

7

Common Part

(Out)
−

c!v
c!v−−−→ 0

(Open)
P

c!v−−−→ P ′

(νb)P
(νb) c!v
−−−−−−→ P ′

b ∈ n(v)\{c}

(Com1)
P1

(νb) c!v
−−−−−−→ P ′1 P2

c?v−−−→ P ′2
P1|P2

τ−−→ (νb) (P ′1|P ′2)
b 6∈ fn(P2)

(Par1)
P1

µ−−→ P ′1
P1 | P2

µ−−→ P ′1 | P2

bn(µ) ∩ fn(P2) = ∅

(Res)
P

µ−−→ P ′

(νa)P
µ−−→ (νa)P ′

a 6∈ n(µ)

(Alpha)
P alpha-convertible to P ′ P ′

µ−−→ P ′′

P
µ−−→ P ′′

8

πVa

(Inp)
−

c?(x).P
c?v−−−→ P{v/x}

(Rep)
−

c?∗(x).P
c?v−−−→ P{v/x} | c?∗(x).P

(P-Case)
Pk{v/xk

} µ−−→ Q k ∈ J
case lk〈v〉 of {lj(xj)=Pj | j∈J}

µ−−→ Q

TyCO

(Inp)
k ∈ J

c?{lj(xj)=Pj | j∈J}
c?lk〈v〉−−−−−→ Pk{v/xk

}

(Rep)
k ∈ J

c?∗{lj(xj)=Pj | j∈J}
c?lk〈v〉−−−−−→ Pk{v/xk

} | c?∗{lj(xj)=Pj | j∈J}

Table 2: Labeled Transition System

9

where TyCO-transition labels arise as special cases for v = lk〈b〉. (Note that
this implies that there will never be more than one name restricted on a
transition label.) As expected, we only need separate rules for dealing with
input, replication, and case analysis, in the respective calculi.

The name in a value (there is always exactly one) is written n(v).
In (νb) c!v we require that c 6∈ n(v).
The definitions of fn(µ), bn(µ) and n(µ) are as follows :

• fn(τ) = bn(τ) = ∅,
• fn(c?v) = {c}, bn(c?v) = n(v),
• fn((νb) c!v) = {c}, bn((νb) c!v) = {b},
• fn(c!v) = {c} ∪ n(v), bn(c!v) = ∅,
• n(µ) = fn(µ) ∪ bn(µ).

Note that in our semantics case analysis does not take a step, as opposed
to [San98], which simplifies our technical work later on.

Substitution P{a/b} is defined in the standard capture avoiding way. As
usual, τ -transitions are often referred to as reductions while omitting the
τ . The relation =⇒ is the reflexive-transitive closure of −→, while

µ
==⇒ is

=⇒ µ−−→ =⇒.
The merits of the simple type systems in both TyCO and πVa are that well-

typedness is preserved under reduction, and thus that well-typed processes
can never lead to an error state.

Proposition 2.2.2. Let Σ `S P .
If P � P ′, then there is Σ′ with Σ′ `S P ′.

Proposition 2.2.3 (Subject Reduction). Let Σ `S P . If P −→ P ′, then
there is Σ′ with Σ′ `S P ′.

A more detailed version is found in appendix : See Proposition A.0.3

Corollary 2.2.4 (Type Safety). If Σ `S P =⇒ P ′, then P ′ 6∈ Error.

A TyCO process is typable with our type system if, and only if, it is
typable with Vasconcelos’ type system [Vas94].

The following Lemma tells that case reduction is somehow “transparent” :

Lemma 2.2.5. 1. If P � P0
µ−−→ P ′0 then either P

µ−−→ P ′0 or ∃P ′ s.t.

P
µ−−→ P ′� P ′0)

10

2. If P
µ−−→ P ′ and P � P0 then either P0

µ−−→ P ′ or ∃P ′0 s.t. P0
µ−−→ P ′0

and P ′� P ′0.

Proof. In Appendix : B.2

Corollary 2.2.6. If P � P ′ then P ∼ P ′.

2.3 Behavioral Semantics

We will use the concept of process contexts of which the definition is stan-
dard :

Definition 2.3.1 (Process Contexts). A Process Context C[·] is a process
which contains exactly one instance of a hole [·], i.e. the syntax is as follows :

C ::= [·]
∣∣ C|P

∣∣ P |C
∣∣ (νx)C

∣∣ . . .
(input and case expression omitted, they similarly take care that exactly

one hole is present in the process syntax)
The application C[P] of a process P to a context C[·] is defined by re-

placing [·] by P in the definition of C[·].

We will use the standard (synchronous) definitions of strong (∼) and weak
(≈) bisimulation, barbed bisimulation (≈̇) and barbed congruence (∼=).

They can for instance be found in [Bor98].

2.4 Properties of Encodings

In this paper, we present several encodings, i.e., inductively defined mappings
from the syntax of some source calculus into the syntax of some target calcu-
lus. Apart from mere compositionality, there are several other requirements
to the usefulness of an encoding, which we here recall rather informally:

• An encoding is called fully abstract if it preserves (full) and reflects
(abstract) standard equivalences.
• An encoding is good if it is name-preserving and distributed (like in Ta-

ble 3, parallel composition is translated into the mere parallel composi-
tion of the translated components), as well as deadlock- and divergence-
free, which refers to criteria introduced by Palamidessi to the domain
of encodings between π-calculi [Pal97].

11

[[0]]
def
= 0

[[P1|P2]]
def
= [[P1]] | [[P2]]

[[(νx)P]]
def
= (νx) [[P]]

Table 3: Distributed Encodings

[[a!l〈b〉]] def
= a!l〈b〉

[[a?{lj(xj)=Pj | j∈J}]]
def
= a?(u).caseu of {lj(x)=[[Pj]] | j∈J}

[[a?∗{lj(xj)=Pj | j∈J}]]
def
= a?∗(u).caseu of {lj(x)=[[Pj]] | j∈J}

[[T]]
def
= T

Table 4: Encoding of TyCO into πVa

While the former criterion is interesting for more theoretical purposes and to
prove properties of source terms by means of translation into an “underly-
ing” calculus, the latter indicates the actual implementability of the source
within the target. Often, one can only achieve fully abstract encodings at
the expense of goodness (c.f. [NP00, Nes00]).

In this paper, the source and target calculi are quite similar: all our
encodings build on a common core, as shown in Table 3.

3 Embedding TyCO into πVa

Uniform TyCO resembles just a particular sub-calculus of nested πVa . In
addition to the core mapping in Table 3, the encoding clauses of Table 4,
where the variable u is assumed to be fresh, make explicit the fact that
communication of a labeled value and selection of a continuation based on a
case analysis, which are performed atomically in TyCO, have to be modeled
as separate subsequent operations in πVa , which naturally appears solely on
the receiver side of communication. The trivial translation of types underlines
the fact that the encoding represents an embedding of the source language
TyCO into the target language πVa .

This encoding is both good and fully abstract, with respect to any kind of

12

equivalence and type-respecting contexts. Note that the encoding trivially
preserves types and well-typedness of terms.

The formal statements build on the exhibition of an operational corre-
spondence result between the transitions of terms and the transitions of their
translations.

Proposition 3.0.1. Let P be a TyCO term.

• If P
µ−−→ P ′ where µ is either an input or a τ , then [[P]]

µ−−→� [[P ′]].

• If P
µ−−→ P ′ where µ is neither an input nor a τ , then [[P]]

µ−−→ [[P ′]].

• If [[P]]
µ−−→ Q, where µ is either a?l〈b〉 or τ , then there is P ′ s.t.

P
µ−−→ P ′ and Q� [[P ′]].

• If [[P]]
µ−−→ Q, where µ is neither an input nor a τ , then there is P ′

s.t. P
µ−−→ P ′ and [[P ′]] = Q.

Proof. In Appendix: B.1

The correspondence of transitions above encoding is very tight, admittedly
because we use a semantics where case analysis does not take a step, otherwise
there would be additional steps involved to “perform” the case analysis.

In that case we would lose full abstraction w.r.t strong equivalences as
shows this example : Let X = (a?v.P)|(a?v.P) and Y = a?v.(P |a?v.P). In
the case of Y the first input at a has to be “fully processed” (i.e. the case
analysis must be done) before another input at a can start. In the case of X
we can start the second input before the first one is complete.

We would however have weak operational correspondence and full ab-
straction w.r.t weak equivalences anyway because a case analysis step is de-
terministic and independent, i.e., case analysis does not interfere with any
other term.

Note that we get deadlock- and divergence-freedom as a corollary of the
Proposition 3.0.1, so the encoding is “good”.

Let P denote TyCO ∪ πVa and generalize ∼ to this setting.

Proposition 3.0.2. Let P be a TyCO term. Then P ∼ [[P]].

Proof. In Appendix : B.3.

The encoding is fully abstract with respect to any behavioral equivalence,
again because of Proposition 3.0.1, and also with respect to structural con-
gruence.

13

Proposition 3.0.3 (Full Abstraction). Let P1, P2 be TyCO terms. Let R ∈
{≡,∼,∼=}. Then P1 R P2 iff [[P1]] R [[P2]].

Proof. The proof for ≡ is in appendix : B.4.
The proof for ∼ and ∼= come from 3.0.2 :
P ∼ [[P]] ∼= [[Q]] ∼ Q implies P ∼= Q and [[P]] ∼ P ∼= Q ∼ [[Q]] implies

[[P]] ∼= [[Q]]. The proof for ∼ works the same way.

4 Receptive TyCO

In order to reason formally about an encoding of πVa into TyCO, as we will
show in the next section, we build upon the theory of uniform receptiveness,
as proposed by Sangiorgi [San99a, San99b]. Receptiveness is a property of a
name in a π-calculus term. Two different versions have been studied: uni-
form and linear receptiveness. A name u is uniform in a process P , if (1) at
any time P is ready to accept inputs at u and (2) the input offer at u is
functional, i.e., all messages received by P at u are applied to the same con-
tinuation [San99a]. A name l is linear in P , if P offers just a single input
at l, but it does so immediately. Names that are neither required to be
linear or uniform are called plain names The main contribution of [San99a]
was a receptiveness type system that guarantees the above semantic con-
ditions on uniform and linear names (while putting no constraint at all on
plain names) and, moreover, dedicated notions of barbed process equivalences
(and labeled characterizations thereof) that only consider process contexts
that maintain—by requiring well-typedness—the receptiveness criteria also
for the composite process. The resulting notions of equivalence are strictly
coarser than the standard notions, because they consider, by definition, fewer
contexts in which terms are required to behave the same. Consequently, more
terms can be equated, which is very useful in many encodings of the π-cal-
culus literature, and also in our case.

Uniform and linear receptiveness have been studied separately, but the
technical development is very similar, and they can be combined in a straight-
forward manner as exemplified in the application of [San99b].

For clarity, we follow a convention on meta-variables for names, distin-
guishing the three distinct cases of plain (p), uniform (u), and linear (l)
names; if we do not care about receptiveness we use meta-variables for any
name (a, b, x, z). Uniform and linear names are also commonly referred to as
receptive (r) names, as opposed to plain names.

14

In this section, we transfer the receptiveness theory from π-calculus to
TyCO. In doing so, we have to both specialize and generalize the setting.
The specialization is due to the fact that TyCO employs asynchronous out-
put only, while the π-calculus of [San99a] builds on synchronous output. The
generalization is due to the fact that (i) TyCO includes a richer value lan-
guage, and (2) Sangiorgi only considered the special cases, where receptive
names always carry plain names, while our application requires the transmis-
sion of receptive names on receptive names: of the nine theoretically possible
combinations of communication, we precisely use “uniform on plain”, “uni-
form on linear”, and “linear on uniform”, but it is then not much more work
to present the receptiveness type system in full generality. Interestingly,
the generalization is rather smooth, while the specialization to asynchronous
output required a bit more work.

4.1 Receptive Types

Following the above-mentioned convention for plain/uniform/linear names,

we assume N
def
= Np ⊕Nu ⊕Nl. For convenience, if A ⊆ N then we define

Au
def
= A ∩Nu and Al

def
= A ∩Nl. Additionally, Ar

def
= A ∩ (Nl ∪Nu).

Auxiliary Syntax Labeled receptive bisimilarity, as introduced in Defini-
tion 4.2.9, builds on the notion of discreet processes, which never exhibit a
free output of any receptive name. Discreetness is guaranteed by the typa-
bility of processes exclusively using rules for bound output. This technique
is slightly trickier to achieve in a setting where there is no primitive output
prefix construct. Therefore, we introduce additional syntactic constructs to
the grammar defining TyCO processes

P ::= . . .∣∣ a!l(νb).P bound output prefix∣∣ a� b dynamic link

that can be defined within the given calculus as derived operators as follows:
bound output a!l(νb).Pb (see Boreale [Bor98] for its first use within an
asynchronous calculus) is ever only going to be used with Pb being a (possibly
replicated) input at channel b, such that

a!l(νb).Pb
def
= (νb) (a!l〈b〉 | Pb)

15

holds; dynamic links are defined according to Sangiorgi [San96] as

a� b
def
=

{
a?∗{lj(x) = b!lj(νz).z � x | j ∈ J} if a ∈ Nu ∪Np

a?{lj(x) = b!lj(νz).z � x | j ∈ J} if a ∈ Nl

where the definition is “polymorphic” in the labels lj and the J set (which
must match the type of a and b). In this paper, we will use it both with non-
branching and branching inputs at a. We introduce dynamic links because
of the fact that discreetness must be guaranteed recursively in the case of the
transmission of “receptive over receptive” names, while for Sangiorgi [San98]
static links were sufficient.

Receptiveness Type System Judgments ∆l; Γl; ∆u; Γu `R P , where
Γl ∪ ∆l ⊆ Nl and Γu ∪ ∆u ⊆ Nu, are such that ∆ = ∆l ∪ ∆u denotes
admitted inputs on receptive names, while Γ = Γl ∪ Γu denotes admitted
outputs on receptive names, so fn(P)l = fn(P) ∩Nl ⊆ ∆l ∪ Γl, fn(P)u =
fn(P) ∩Nu ⊆ ∆u ∪ Γu, and fn(P)r = fn(P)l ∪ fn(P)u. We sometimes also
abbreviate judgments to ∆; Γ `R P or even to Θ `R P . Note that there is
some weakening of judgments, both in the position of Γu and ∆l, Γl. This
is because outputs on uniform names may occur arbitrarily often, even not
at all. Weakening on linear names was introduced to handle the case where
a linear name was restricted, after a transfer is made over that name the
restriction is still there but not the input and the output. By x 6∈ Γ, we
abbreviate that x ∈ Nt implies x 6∈ Γt for t ∈ {l, u}.

Judgments are generated by the typing rules in Tables 5–7, where the
last table contains only rules that are derivable from the others (with a slight
exception in the case of (R-Link), as we shall see), if we admit free outputs
within terms, i.e., rule (R-Out). We find it convenient to collapse similar
rules into one rule schema and to use a case analysis on the kind of name
that is restricted on or exchanged in an action rather than let the number of
rules explode. Such schemas also allow us to pinpoint the differences between
the individual cases. The rules in Table 5 are straightforward: rule (R-Par)
requires the disjointness on all Γ/∆-components but Γu, because there shall
be precisely one receiver for any receptive name, and there shall not be more
than one output on a linear name. Rule (R-Res) adds the restricted name
to both the output and the input set of the respective kind.

The rules in Table 6 concern the recording of increased capabilities (only
for use in outputs) of a process when receiving a receptive name, which is

16

∆l = Γl

∆l; Γl; ∅; Γu `R 0
(R-Nil)

{a}l ∩ {b}l = ∅ Γl = ∆l ⊕ {a, b}l {a, b}u ⊆ Γu

∆l; Γl; ∅; Γu `R a!l〈b〉 (R-Out)

∆1l; Γ1l; ∆1u; Γu `R P1 ∆2l; Γ2l; ∆2u; Γu `R P2

∆1l⊕∆2l; Γ1l⊕Γ2l; ∆1u⊕∆2u; Γu `R P1|P2
(R-Par)

a 6∈ Γ ∪∆
a ∈ Np ⇒ ∆l; Γl; ∆u; Γu `R P
a ∈ Nu ⇒ ∆l; Γl; ∆u, a; Γu, a `R P
a ∈ Nl ⇒ ∆l, a; Γl, a; ∆u; Γu `R P

∆l; Γl; ∆u; Γu `R (νa)P
(R-Res)

Table 5: Receptive Types — Basic Rules

complicated by the fact that the reception may itself be on some receptive
name. The Φl symbol is for permitting weakening on linear names.

Reception on a plain name is possible for both input and replication. In
contrast, reception on a linear or uniform name is only possible for input or
replication, respectively: a linear name could not be linear if it was replicated,
and it could not be statically guaranteed to behave uniformly if it was used
in a single input. Note that the rules imply the locality property of receptive
names, which becomes clear when recalling that a receptive name cannot be
activated only after transmission—it must be active from the moment of its
“birth”.

The rules in Table 7 do not offer many more surprises, because bound
output acts very much like a binder itself, which is clear considering that it
is essentially a restricted term, where one (output) capability is immediately
passed on. Note, however, that the continuation process Pb of our auxil-
iary notation for bound outputs immediately provides an input capability of
appropriate (linear or uniform) kind when required. (In fact, if b ∈ Np or
b ∈ Nu, then with Pb = b?∗{lj(xj)=Pj | j∈J} the typability premise implies
Γl = ∅.) The derivability of that rule is in Appendix (B.5).

Finally, concerning the rule (R-Link). Note that, unlike the two other

17

a 6∈ Nu ∆l = {a}l a 6∈ Γl

(∀j∈J)

xj 6∈ Γ ∪∆ ∪ Φ
xj ∈ Np =⇒ ∅; Γl; ∅; Γu `R Pj
xj ∈ Nu =⇒ ∅; Γl; ∅; Γu, xj `R Pj
xj ∈ Nl =⇒ ∅; Γl, xj; ∅; Γu `R Pj

∆l ⊕ Φl; Γl ⊕ Φl; ∅; Γu `R a?{lj(xj)=Pj | j∈J}

(R-Inp)

a 6∈ Nl ∆l = Γl {a}u = ∆u

(∀j∈J)

xj 6∈ Γ ∪∆
xj ∈ Np =⇒ ∅; ∅; ∅; Γu `R Pj
xj ∈ Nu =⇒ ∅; ∅; ∅; Γu, xj `R Pj
xj ∈ Nl =⇒ ∅; ∅, xj; ∅; Γu `R Pj

∆l; Γl; ∆u; Γu `R a?∗{lj(xj)=Pj | j∈J}

(R-Rep)

Table 6: Receptive Types — Input Rules

rules in Table 7, it is not entirely derivable from the other rules because of the
recursive nature of dynamic links. Actually, as shown in more details in the
proof (Section B.6) the part that is undecidable is Γl = {b}l so we take it as
a rule. it is also easy to show that the admission of the case b ∈ Nl∧a 6∈ Nl

would not be derivable. Note that we only intend to prevent the free output
of receptive names, so we add rule (R-Pout), a special case of (R-Out) for
the free output of plain names.

Lemma 4.1.1. Let ∆l; Γl; ∆u; Γu `R P .

1. (Weakening) If Φ ∩ bn(P) = ∅, then
∆l ⊕ Φl; Γl ⊕ Φl; ∆u; Γu ⊕ Φu `R P .

2. (Strengthening) then
∆ ∩ fn(P); Γ ∩ fn(P) `R P .

Proof. In Appendix : B.7

Lemma 4.1.2 (Congruence). If Θ1 `R P and P ≡ Q then there is Θ2 with
Θ2 `R P,Q.

Lemma 4.1.3 (Free names). If ∆l; Γl; ∆u; Γu `R P , then fn(P)u ⊆ Γu∪∆u

and fn(P)l ⊆ Γl ∪∆l and ∆u ⊆ fn(P)u.

18

b ∈ Np Γl = ∆l ⊕ {a}l {a}u ⊆ Γu

∆l; Γl; ∅; Γu `R a!l〈b〉 (R-Pout)

b 6∈ Γ ∪ Φl Γl = ∆l ⊕ {a}l {a}u ⊆ Γu b ∈ Np =⇒ ∅; Γl\{a}l; ∅; Γu `R Pb
b ∈ Nu =⇒ ∅; Γl\{a}l; ∅, b; Γu, b `R Pb
b ∈ Nl =⇒ ∅, b; Γl\{a}l; ∅; Γu `R Pb

Φl; Γl ⊕ Φl; ∅; Γu `R a!l(νb).Pb

(R-Bout)

b ∈ Nl ⇒ a ∈ Nl {b}u ⊆ Γu

{a}l ⊕ Φl; {b}l ⊕ Φl; {a}u; Γu `R a� b
(R-Link)

Table 7: Receptive Types — Discreetness Rules

Proof. In Appendix : B.7

Lemma 4.1.4 (Type substitution). Let ∆l; Γl; ∆u; Γu `R P .

1. ∆; Γ `R P{p/p′}.
2. If r /∈ ∆ ∪ Γ and r′ ∈ Γ−∆, then ∆; (Γ− r′), r `R P{r/r′}.
3. If r /∈ ∆ ∪ Γ and r′ ∈ ∆ ∩ Γ, then (∆− r′), r; (Γ− r′), r `R P{r/r′}.

The following proposition needs to respect the type, in contrast to Da-
vide’s setting, where receptive always carries plain

Proposition 4.1.5 (Input receptiveness). Let ∆; Γ `R P .
If r ∈ ∆l ∩ fn(P) or r ∈ ∆u, then ∀b∀l “with type matching the one of r”

and b 6∈ Γl : ∃Q : P
r?l〈b〉
−−−−−→ Q.

Proposition 4.1.6 (Type soundness). Let ∆l; Γl; ∆u; Γu `R P .

1. If P
a?l〈b〉
−−−−−→ Q with {b}l∩Γl = ∅ and b’s type matching the one of a,

then {a}u ⊆ ∆u, {a}l ⊆ ∆l,
and ∆l\{a}l; Γl∪{b}l; ∆u; Γu∪{b}u `R Q.

2. If P
a!l〈b〉
−−−−→ Q,

then {a, b}u ⊆ Γu, {a, b}l ⊆ Γl,
and ∆l; Γl\{a, b}l; ∆u; Γu `R Q.

19

3. If P
(νb) a!l〈b〉
−−−−−−−→ Q,

Let Φl = Γl ∩ {b}. Then
∆l \ Φl; Γl \ Φl; ∆u; Γu `R P ,
{a}u ⊆ Γu, {b}u ∩ Γu = ∅, {a}l ⊆ Γl

and ∆l \ Φl∪{b}l; Γl \ Φl\{a}l; ∆u∪{b}u; Γu∪{b}u `R Q.

4. If P
τ−−→ Q, then either ∆l; Γl; ∆u; Γu `R Q.

or ∃l ∈ ∆l ∩ Γl with ∆l−l; Γl−l; ∆u; Γu `R Q.

Proof. In Appendix : B.8

Some comments on the soundness:

• In case of free input : the “{b}l∩Γl = ∅” condition will always be
respected by a well-typed observer.
• In the case of bound output, the b name might be present in ∆l and

Γl by weakening, so it must be removed from both to allow putting it
back in ∆l

• in the case of free input, b may be already occurring in ∆l

4.2 Receptive Congruence

Barbed congruence under receptiveness, as introduced by Sangiorgi [San99b],
is defined as barbed bisimulation under completing contexts. A process is
complete if it includes itself the receivers required for all outputs on or of re-
ceptive names such that no receptive name can occur free in output position.

Our completeness notion merges [San99a]’s completeness on linear names
and semi-completeness on uniform names.

Definition 4.2.1 (Completeness). A process P is complete if there are
∆l,∆u, and Γu such that Γu ⊆ ∆u and ∆l; ∅; ∆u; Γu `R P . A context C[·] is
complete on (∆; Γ), if C[P] is complete for all P with ∆; Γ `R P .

Lemma 4.2.2 (Completeness preservation). Let P be complete. Then:

1. any Q ≡ P is complete;

2. if P
µ−−→ Q with µ being an output, or a τ -action, or an input with

plain object, then Q is complete;

3. if P
a?l〈r〉
−−−−−→ Q with r fresh and v plain, then (νr) (r � v | Q) is

complete.

20

Definition 4.2.3 (Receptive Barbed Congruence). Let ∆; Γ `R P,Q.
Then, P and Q are receptive barbed congruent on (∆; Γ), written P ∼=R Q, if
for each context C[·], which is complete on (∆; Γ), it holds that C[P] ≈̇ C[Q].

Labeled bisimilarity characterizes barbed congruence under the proviso
that there are no free outputs of receptive names. We can guarantee that by
means of receptive typability ignoring the rule for free output.

Definition 4.2.4 (Discreetness). A process P is called discreet if there are
Γ and ∆ with ∆; Γ `R P without using rule (R-Out), but instead using the
additional rules in Table 7.

Lemma 4.2.5 (Discreetness Preservation). Let P be discreet. Then:

1. if P
µ−−→ Q with µ being an output, or a τ -action, or an input with

plain object, then Q is discreet;

2. if P
a?l〈r〉
−−−−−→ Q with r fresh, then Q is discreet.

3. any Q ≡ P is discreet.

The notion of receptive labeled bisimulation is now, with the adapted
definition of discreetness, a mere replay of Sangiorgi’s [San99a].

Definition 4.2.6 (Weak Receptive Bisimulation). A symmetric relation R
on complete discreet processes is a weak receptive bisimulation, if P R Q
implies:

1. if P
µ−−→ P ′ with bn(µ) fresh, and µ is an output with plain subject

or an input with plain object, then there is Q′ with Q
µ

==⇒ Q′ and
P ′ R Q′.

2. if P
τ−−→ P ′, then there is Q′ with Q =⇒ Q′ and P ′ R Q′.

3. if P
a?l〈r〉
−−−−−→ P ′ with r fresh, then, for some plain and fresh name t,

there are Q′ and Q′′ with

(a) Q
a?l〈r〉

=====⇒ Q′,
(b) (νr) (r � t | Q′) =⇒ Q′′, and
(c) (νr) (r � t | P ′) R Q′′.

Note that we do not have to consider outputs with receptive subjects, be-
cause—by completeness—the receivers on such names are within the term,
so a well-typed observer will not be able to receive on them itself. Moreover,

21

with respect to receptiveness, output with receptive objects are no problem,
because—by discreetness—they are always bound and provide the receiver
within the term itself immediately afterwards. Note further that the name t
plays the role of Sangiorgi’s trigger names [San99a].

Here are definitions of the stronger equivalences :

Definition 4.2.7 (Receptive Expansion). A relation R is a receptive expan-
sion if P R Q implies :

1. P
µ−−→ P ′ with µ as in point 1. in the above definition implies there is

Q′ such that Q
µ

==⇒ Q′ and P ′ R Q′.

2. P
τ−−→ P ′ implies there is Q′ such that Q =⇒ Q′ and P ′ R Q′.

3. P
µ−−→ P ′ with µ as in point 3. in the above definition implies there

are Q′ and Q′′ such that Q
µ

==⇒ Q′, (νr) (r � t | Q′) =⇒ Q′′ and
(νr) (r � t | P ′) R Q′′, for some fresh and plain t.

4. Q
µ−−→ Q′ with µ as in point 1. in the above definition implies there is

P’ such that P
µ−−→ P ′ and P ′ R Q′.

5. Q
τ−−→ Q′ implies either P R Q′ or there is P ′ such that P

τ−−→ P ′ with
P ′ R Q′.

6. Q
µ−−→ Q′ with µ as in point 3. in the above definition implies there is

P’ such that P
µ−−→ P ′ and (νr) (r � t | P ′) R (νr) (r � t | Q′), for

some fresh and plain t.

Definition 4.2.8 (Strong Receptive Bisimulation). The corresponding strong
definition is as follows :

A symmetric relation R on complete discreet processes is a strong recep-
tive bisimulation, if P R Q implies:

1. if P
µ−−→ P ′ with bn(µ) fresh, and µ is an output with plain subject,

τ or an input with plain object, then there is Q′ with Q
µ−−→ Q′ and

P ′ R Q′.

2. if P
a?l〈r〉
−−−−−→ P ′ with r fresh, then, for some plain and fresh name t,

there is Q′ with Q
a?l〈r〉
−−−−−→ Q′ and (νr) (r � t | P ′) R (νr) (r �

t | Q′).

Definition 4.2.9 (Labeled Receptive Bisimilarity / Expansion). P and Q
are strong/weak receptive bisimilar, written P ∼R Q or P ≈R Q, respec-
tively, if there is a strong/weak bisimulation R such that P R Q.

22

Q receptive-expands P , written Q &R P if there is a receptive expansion
R such that P R Q.

• labeled vs. barbed

Lemma 4.2.10 (Congruence). Consider P and Q discreet and complete.
Then, with C[·] a context such that C[P] and C[Q] are discreet and com-

plete and R∈ {∼R,&R,≈R} :

• C[P] R C[Q] iff P R Q

Proposition 4.2.11 (Replication). Having u ∈ Nu, v ∈ Np and P and Q
discreet such that

∆P l; ∅; ∆P u; Γu, u `R P and ∆Ql
; ∅; ∆Qu

; Γu, u `R Q :
If the following conditions (which are necessary and sufficient for the

processes of the below pair to be complete) hold :

• Γu ⊆ ∆P u ⊕∆Qu

• ∆P l ∩∆Ql
= ∅ and u 6∈ ∆P u ∪∆Qu

Then:

(νu) (u� v | P | Q) ∼R (νu) (u� v | P) | (νu) (u� v | Q)

Proof. In Appendix : B.9

5 Translating πVa into TyCO:

Nested Variants as non-nested variants

We present a generalization of an encoding of Lπ (Local π), the asynchronous
π-calculus with output-only mobility [Mer00], into πI, the π-calculus with
internal-only mobility [San96], that has first been studied by Boreale [Bor98],
then by Merro and Sangiorgi [MS98]. Here, the source language is Local πVa ,
i.e., Lπ extended with nested labeled values, while the target language is
TyCO, as we know by § 3 for well-typed settings, is just πVa with only flat
variants. In fact, our encoding uses only the subset of TyCO that is both
local and internal, which is a promising setting, because it has been shown

23

[[[T]]]
def
= [{c:[[T]]}]

[[{lj:Tj | j∈J}]]
def
= [{d:[{lj:[[Tj]] | j∈J}]}]

[[µX.T]]
def
= µX.[[T]]

[[X]]
def
= X

Table 8: Encoding Nested Variant Types

that only when using this restricted target language the above encoding is
known to be fully abstract with respect to barbed congruence [MS98].

We can rather straightforwardly enhance our encoding to also encompass
non-local terms (Section 5.3). The reason for considering local calculi only is
that we need a stronger theory, the theory of receptiveness[San99a, San99b],
to prove nice results about non-local terms.

5.1 Translating Types

When translating the free nesting of πVa into the alternating nesting of TyCO,
additional ‘levels’ must be introduced in order to conform to the alternation.

Each type after translation is a channel containing a variant type with a
single label that indicate the kind of original type.

We introduce two labels, c and d, for respectively channel types and
variant types.

The encoding [[]] of Table 8 translates πVa -types into TyCO-types. The
first clause shows how to translate a channel type (with a c layer and then
we recurse on the inner type) The second clause shows how to translate a
variant type (with one additional d layer and then we recurse on the type
expected by each label). This additional d level illustrates the protocol used
by the encoding for accessing an encoded variant value :

A variant value (say l〈v〉) is represented by a name that can receive d
messages, which will be answered by a message with the highest level label
(l) and a new name representing v, the labelled value.

Recursive types and the respective variables are translated homomorphi-
cally.

24

[[a!v]]
def
= a!c(νu).[[v]]u

[[b]]u
def
= u� b

[[l〈v〉]]u
def
= u?∗{d(r)=r!l(νu′).[[v]]u′}

[[a?(x).P]]
def
= a?{c(x)=[[P]]}

[[a?∗(x).P]]
def
= a?∗{c(x)=[[P]]}

[[case v of {lj(xj)=Pj | j∈J}]]
def
= (νu)

(
[[v]]u |

u!d(νr).r?{lj(xj)=[[Pj]] | j∈J}
)

Table 9: Encoding Nested Variants — Local Source Language

5.2 Translating Local Terms

We recall the idea of encoding the higher-order π-calculus into first-order
π-calculus [San93], where values are not transmitted themselves, but only
private references to them. We apply the same idea here in that complex
values—variants—are not transmitted themselves, but only private refer-
ences to them. (In fact, already the encoding Lπ → πI, which we intend
to generalize here to labeled values, builds on that idea.)

The clauses in Table 9 encode nested variants into flat variants: it gen-
eralizes the previous ones for Lπ by the encoding of values, using label c : if
it is a name, then mere forwarders are created, if it is a variant, then a local
(receptive) resource is created instead that follows the protocol of stepwise
variant decomposition, using label d. The encoding generates forwarders
for variants with only one single label (in TyCO-terminology: single-method
objects): l = d. The reply to a d-request, however, will go through a branch-
ing dynamic link. In resources representing labeled values, each accepted
d-request creates a new resource for the embedded value of the next layer.
The advantage over shared resources is for reasoning purposes: no extrusion
of the sub-resource has to be considered for subsequent d-access to the same
layer.

Example 5.2.1. This one drove us to want a single translation clause for
the case of case, instead of two different ones for names and variants. Let
us keep it for some time in the paper, just for reference.

25

Let Σ `S P,Q for

P
def
= a?(x).b!x

Q
def
= a?(x).casex of {l(z)=b!l〈z〉}

Then P ≈ Q, because after reception of any well-typed (and closed w.r.t.
variant variables) value v, the case construct can be eliminated by means of
structural congruence, freeing the output of precisely the previously received v.

However, [[P]] 6≈ [[Q]], since

[[P]]
a?v−−−→ ↓b!

[[Q]]
a?v−−−→ ↓v!

(where v can only be a name) would be the only two barbs after input of v.

Proposition 5.2.2. If Σ `S P then

1. [[Σ]] `S [[P]],
2. ∅; ∅; ∅; ∅ `R [[P]], and
3. [[P]] is discreet and complete.

Proof. 1. in Appendix: B.10
2. We first prove ∅; ∅; {u}; {u} `R [[v]]u by induction on v and then we

see that each rule of the encoding produces a process that can be typed
under ∅ `R [[P]].

3. The completeness is a direct consequence of point 2 and its proof didn’t
use (R-Out) so we have discreetness as well.

Lemma 5.2.3. Let P and Q be two processes. Then P ≡ Q iff [[P]] ≡ [[Q]].

Proposition 5.2.4 (Replication). Having u ∈ Nu and P , Q discreet with
fn(P)r ∪ fn(Q)r ⊆ {u}

(νu) ([[v]]u | P | Q) ∼R (νu) ([[v]]u | P) | (νu) ([[v]]u | Q)

Proof. The proof works the the same way as 4.2.11, from the fact that the
only observable input of [[v]]u is at u and that only output it does is either
at a name transmitted to u or at n(v) (similarly to u� t. The behaviour of
[[v]]u is given in more details in lemma B.14.1)

26

In order to deal with input- and τ -transitions in the operational corre-
spondence, we need a substitution lemma that relates those actions in the
source and target languages, respectively. As closure requirement, we impose
the natural constraint that substituting entities do not contain free variant
variables.

Note that substitution, operational correspondence and full abstraction
only work on a subset of πVa processes, as will be explained in next section
in more detail.

Lemma 5.2.5 (Substitution). Let a and u be different. Let P be a process
that does not input on x.

1. (νu) (a� u | [[v]]u) &R [[v]]a

2. (νu) ([[P]]{u/x} | [[b]]u) &R [[P{b/x}]]

Proof. 1. Exhibit the relation up to context and up to expansion. (ap-
pendix B.11)

2. By induction on the structure of P (appendix B.12)

Proposition 5.2.6 (Operational correspondence). Let P be a πVa -term that
doesn’t receive on received names and that doesn’t contain a a!v | a?(x) pair,
with Σ `S P .

1. If P � P ′ then [[P]]
τ−−→ τ−−→ Q &R [[P ′]].

2. Let P
µ−−→ P ′.

(a) If µ = a!v,

then [[P]]
a!c (νu)

======⇒ Q
with ∅; ∅; {u}; {u} `R Q &R [[P ′]] | [[v]]u.

(b) If µ = (νb) a!v,

then [[P]]
a!c (νu)

======⇒ Q
with ∅; ∅; {u}; {u} `R Q &R (νb) ([[P ′]] | [[v]]u).

(c) If µ = a?v (n(v) fresh),

then [[P]]
a?c 〈u〉

=====⇒ Q
with ∅; ∅; ∅; ∅ `R (νu) (Q | [[v]]u) &R [[P ′]].

(d) If µ = τ ,
then [[P]]

τ
==⇒ Q

with ∅; ∅; ∅; ∅ `R Q &R [[P ′]].

27

3. Let [[P]]
µ−−→ Q.

Then µ is one of the following :

(a) If µ = a!c(νu), then either

i. P
a!v−−−→ P ′, for some v

with ∅; ∅; {u}; {u} `R Q ≡ [[P ′]] | [[v]]u, or

ii. P
(νb) a!v
−−−−−−→ P ′, for some b and v

with ∅; ∅; {u}; {u} `R Q ≡ (νb) ([[P ′]] | [[v]]u).

(b) If µ = a?c〈u〉, then P
a?v−−−→ P ′, for some v

with ∅; ∅; ∅; ∅ `R (νu) (Q | [[v]]u) &R [[P ′]],
(c) If µ = τ then either

i. P
τ−−→ P ′

with ∅; ∅; ∅; ∅ `R Q &R [[P ′]], or

ii. P � P ′ and Q
τ−−→ Q′ with Q′ &R [[P ′]].

Proof. In Appendix : B.13

Theorem 5.2.7 (Full Abstraction). Let Σ `S P1, P2 be processes of the πVa
subset mentioned above.

Then P1 ≈ P2 iff [[P1]] ≈R [[P2]].

Proof. In Appendix : B.14

5.3 Translating Non-Local Terms

As briefly told in the previous section, a problem of the above encoding is
that the substitution lemma is only valid for dealing with translations of
local terms in the source language. For example, if we want to match the
input transition (with all possible occurrences of the bound name x in input
subject and output subject and object position)

Q = d?(x).(a!x | x!a | x?(y).0︸ ︷︷ ︸
P

)
d?b−−−→ P{b/x}

by its translation

[[Q]] =
d?u−−−→ [[P]]{u/x}
= ([[a!x]] | [[x!a]] | [[x?(y).0]]){u/x}
= ([[a!x]] | [[x!a]] | x?{c(y)=[[0]]}){u/x}

28

then we observe that the substitution would create a receiver at u in addition
to the uniform one imposed by [[b]]u in the above substitution lemma—thus
breaking uniform receptiveness at u. This situation can only arise in cases
that terms may receive on received names, thus in non-local terms.

Another problem is that the operational semantics only allow transmis-
sion of bound names, i.e. a!b | a?(x).P does not allow transmitting b over
a because it is not restricted. However, because the encoding creates only
bound outputs, the above expression gets translated to

a!c(νu).[[b]]u | a?{c(x)=[[P]]}
which allows the transfer to take place.
In order to accommodate these problems of translating non-local terms,

we will need a slight variant of the previous encoding.

6 Conclusion

As mentionned in the introduction, this whole paper was written with a rule
for free-comm. missing in the operational semantics. It seems to preserve
all propositions and lemma correct, and if this is the case then the addi-
tional condition on Proposition 5.2.6 can be removed, so we should get full
abstraction on LπVa (Local πVa) processes.

In the original paper (which I got at the start of my project) the exten-
sion of the encoding for full πVa was done using something called “semantic
substitution”, which I will not detail here as I didn’t have time to work on
it.

If it works (and we hope it does!) this would give an encoding from πVa to
TyCO that is fully abstract with respect to weak bisimulation, which would
mean that indeed having nested variants and separate case analysis does not
provide additional expressive power.

A Simple Type Systems

The table 10 gives typing rules for πVa and TyCO terms. Note that the usual
subtyping rules are expressed by the k ∈ J in some rules.

Similarly to receptive typing, the rules for bound output and dynamic
links can be derived from the others.

29

Common Part
−

Σ `S 0
(S-Nil)

−
Σ, a:T `S a:T

(S-Nam)

Σ, x:T1 `S P T1 = T2

Σ, x:T2 `S P
(S-Equ1)

Σ `S v:T1 T1 = T2

Σ `S v:T2
(S-Equ2)

Σ, x:T `S P
Σ `S (νx)P

(S-Res)
Σ `S P1 Σ `S P2

Σ `S P1|P2
(S-Par)

πVa
Σ `S a:[T] Σ `S v:T

Σ `S a!v
(SP-Out)

Σ `S a:[T] Σ, x:T `S P
Σ `S a?(x).P

(SP-Inp)

Σ `S a:[T] Σ, x:T `S P
Σ `S a?∗(x)P

(SP-Rep)

(∀j∈J) Σ, xj:Tj `S Pj Σ `S v : {lj:Tj | j∈J}
Σ `S case v of {lj(xj)=Pj | j∈J}

(SP-Case)

k∈J Σ `S v:Tk
Σ `S lk〈v〉 : {lj:Tj | j∈J}

(SP-Vval)

TyCO
Σ `S a : [{lj:Tj | j∈J}] k∈J Σ `S b:Tk

Σ `S a!lk〈b〉
(ST-Vout)

Σ `S a : [{lj:Tj | j∈J}] (∀j∈J) Σ, xj:Tj `S Pj
Σ `S a?{lj(xj)=Pj | j∈J}

(ST-Vinp)

Σ `S a : [{lj:Tj | j∈J}] (∀j∈J) Σ, xj:Tj `S Pj
Σ `S a?∗{lj(xj)=Pj | j∈J}

(ST-Rep)

Table 10: Simple Types for πVa and TyCO

30

Lemma A.0.1 (Substitution). Let P be a πVa -term with Σ `S P . If Σ{v/x}
is defined (i.e., type-correct), then Σ{v/x} `S P{v/x}.

The following lemmas hold for both πVa - and TyCO-terms.

Lemma A.0.2 (Typability of sub-terms). If Σ `S P and Q is a sub-term
of P then ∃Σ′ Σ′ `S Q.

Proposition A.0.3 (Subject Reduction in πVa and TyCO). Let Σ `S P .

1. If P −→ P ′, then Σ `S P ′.

2. If P
a!v−−−→ P ′, then Σ `S P ′.

3. If P
(νb) a!v
−−−−−−→ P ′, then Σ, b:T `S P ′ for some T .

4. Let P be a πVa process and Q a TyCO process.

(a) If P
a?v−−−→ P ′ and Σ, a:[T] `S v:T , then Σ, bv:T

′ `S P ′ for some
T ′.

(b) If Q
a?l〈b〉
−−−−−→ Q′ and Σ, a : [{lj:Tj | j∈J}] `S b:T , where l = lj

and T = Tj for some j∈J , then Σ, b:T `S P ′

The notation bv is a shorthand for extracting the name—there is exactly
one—sitting inside v.

Σ `S a:[{lj:Tj | j∈J}] k∈J Σ, b:Tk `S P
Σ `S a!lk(νb).P

(ST-Bout)

Σ `S a, b : [T]
Σ `S a� b

(ST-Link)

Table 11: Simple TyCO Types — Derived Rules

B Proofs

B.1 TyCO to πVa Operational Correspondence (Propo-
sition 3.0.1)

Lemma B.1.1 (Free Name and Substitution Homomorphism). Let P be a
TyCO process. Then :

31

• fn(P) = fn([[P]])
• [[P]]{a/b} = [[P{a/b}]]

Proof. By induction on the structure of P (the encoding only introduces
fresh bound names for translation of input expressions)

For shortness we will write P
(µ)
� P ′ meaning the following :

1. If µ is τ or an input, then P � P ′

2. Otherwise P = P ′.

First the proof of the first part of the Proposition :

We want to prove that P
µ−−→ P ′ implies [[P]]

µ−−→
(µ)
� [[P ′]], for all P .

For each rule of the (TyCO) operational semantics, we assume we have
a particular instance that match the premises and any side conditions, and
(induction hypothesis) that the Proposition is true in the transitions (if any)
in the premises of this instance.

We then prove that the Proposition is true on the transition that instance
generates.

• (Alpha) : Assume P ≡α P ′
µ−−→ P ′′ and [[P ′]]

µ−−→ P̃ ′′
(µ)
� [[P ′′]]

(where ≡α stands for α-equivalence).
We have (≡-full abstraction, of which the proof is in the next subsection
and does not use this Proposition), P ≡α P ′ implies [[P]] ≡α [[P ′]].

So, applying (Alpha), P
µ−−→ P ′′ and [[P]]

µ−−→ P̃ ′′
(µ)
� [[P ′′]].

• (Out) : This is a base case as there are no transition in the premises
in the rule.

For any transition c!l〈x〉
c!l〈x〉
−−−−→ 0 it generates we can also get the

corresponding πVa one : [[c!l〈x〉]] = c!l〈x〉
c!l〈x〉
−−−−→ 0 = [[0]]

• (Open) : Let P
c!l〈x〉
−−−−→ P ′ with c 6= x (required to apply the rule) and

(by induction hypothesis) [[P]]
c!l〈x〉
−−−−→ [[P ′]].

The transition provided by (Open) is

(νx)P
(νx) c!l〈x〉
−−−−−−−−→ P ′ and

[[(νx)P]] = (νx) [[P]] (distributed encoding)
(νx) c!l〈x〉
−−−−−−−−→ [[P ′]] ((Open), the side condition still applies because c 6=
x)

32

• (Com1) : Let P1

(νx) c!l〈x〉
−−−−−−−−→ P ′1, P2

c?l〈x〉
−−−−−→ P ′2 with x 6∈ fn(P2).

By induction hypothesis, [[P1]]
(νx) c!l〈x〉
−−−−−−−−→ [[P ′1]] and [[P2]]

c?l〈x〉
−−−−−→

P̃ ′2 � [[P ′2]].

The transition produced by the rule is P1 | P2
τ−−→ (νx)P ′1 | P ′2.

Then, [[P1 | P2]] = [[P1]] | [[P2]]
τ−−→ (νx) [[P ′1]] | P̃ ′2. (The side condi-

tion is true because x 6∈ fn(P2) = fn([[P2]]))
� (νx) [[P ′1]] | [[P ′2]] = [[(νx)P ′1 | P ′2]].

• (Par1) : Let P1
µ−−→ P ′1 with bn(µ) ∩ fn(P2) = ∅ and (induction hy-

pothesis) [[P1]]
µ−−→ P̃ ′1

(µ)
� [[P ′1]].

Then: P1 | P2
µ−−→ P ′1 | P2 and (because fn(P2) = fn([[P2]]), the side

condition is still true in the πVa side) [[P1 | P2]] = [[P1]] | [[P2]]
µ−−→

P̃ ′1 | [[P2]]
(µ)
� [[P ′1]] | [[P2]] = [[P ′1 | P2]].

• (Res) : Let P
µ−−→ P ′ and (by induction) [[P]]

µ−−→ P̃ ′
(µ)
� [[P ′]], with

a 6∈ n(µ).

The rule yields (νa)P
µ−−→ (νa)P ′ and [[(νa)P]] = (νa) [[P]]

µ−−→

(νa) P̃ ′
(µ)
� (νa) [[P ′]] = [[(νa)P ′]]. (the side condition a 6∈ n(µ) is the

same on both the TyCO and πVa side)
• (Inp) : (This is a base case as there are no transitions in the premises)

Let k ∈ J . We then have c?{lj(xj)=Pj | j∈J}
c?lk〈v〉−−−−−→ Pk{v/xk

}, and
[[c?{lj(xj)=Pj | j∈J}]] = c?(u).caseu of {lj(xj)=[[Pj]] | j∈J}
c?lk〈v〉−−−−−→ case lk〈v〉 of {lj(xj)=[[Pj]] | j∈J}� [[Pk]]{v/xk

}
= [[Pk{v/xk

}]]
• (Rep) : This is similar to (Inp) (and is a base case also). Let k ∈ J .

We then have c?∗{lj(xj)=Pj | j∈J}
c?lk〈v〉−−−−−→

(Pk{v/xk
}) | c?∗{lj(xj)=Pj | j∈J}, and [[c?∗{lj(xj)=Pj | j∈J}]] =

c?∗(u).caseu of {lj(xj)=[[Pj]] | j∈J}
c?lk〈v〉−−−−−→

case lk〈v〉 of {lj(xj)=[[Pj]] | j∈J} |
c?∗(u).caseu of {lj(xj)=[[Pj]] | j∈J}�

[[Pk]]{v/xk
} | c?∗(u).caseu of {lj(xj)=[[Pj]] | j∈J} =

[[Pk{v/xk
}]] | [[c?∗{lj(xj)=Pj | j∈J}]] =

[[Pk{v/xk
} | c?∗{lj(xj)=Pj | j∈J}]].

33

Using the notation introduced above, the second part of the proposition
can be expressed like this :

If [[P]]
µ−−→ Q then there is P ′ such that P

µ−−→ P ′ and Q
(µ)
� [[P ′]].

The second part of the proposition is proven in a similar way but working
on the πVa operational semantics. Note however that, in the rules (Inp) and
(Rep) we require the input actions to input a labeled value because there is

no
c?u−−−→ transition in TyCO.

• (Alpha) : Let P̃ ≡α [[P ′]]
µ−−→ Q, and (for some P ′′, induction hy-

pothesis) P ′
µ−−→ P ′′ with Q

(µ)
� [[P ′′]].

The generated transition is P̃
µ−−→ Q. Because we are only interested

in transitions from an encoded term (otherwise the Proposition doesn’t

say anything) we will additionally assume that there is P s.t. P̃ = [[P]].

So [[P]]
µ−−→ Q is the resulting transition.

Because the encoding is ≡-fully abstract, [[P]] ≡α [[P ′]] implies P ≡α
P ′. So, by (Alpha), P

µ−−→ P ′′. We already had Q
(µ)
� [[P ′′]] by

hypothesis.

• (Out) : (Base case) [[c!l〈x〉]] = c!l〈x〉
c!l〈x〉
−−−−→ 0 = [[0]] and

c!l〈x〉
c!l〈x〉
−−−−→ 0.

• (Open) : Let [[P]]
c!l〈x〉
−−−−→ P̃ ′ with c 6= x (required for applying

(Open)) and (induction hypothesis) P
c!l〈x〉
−−−−→ P ′, P̃ ′ = [[P ′]].

(Open) yields (the side condition is fulfilled by c 6= x) [[(νx)P]] =

(νx) [[P]]
(νx) c!l〈x〉
−−−−−−−−→ P̃ ′ and (also applying (Open) - the side condition

is the same) (νx)P
(νx) c!l〈x〉
−−−−−−−−→ P ′.

• (Com1) :

Let [[P1]]
(νx) c!l〈x〉
−−−−−−−−→ P̃ ′1 and [[P2]]

c?l〈x〉
−−−−−→ P̃ ′2 with x 6∈ fn([[P2]]) (which

is required for applying the rule).

By induction hypothesis P1

(νx) c!l〈x〉
−−−−−−−−→ P ′1, P2

c?l〈x〉
−−−−−→ P ′2 and P̃ ′1 =

[[P ′1]], P̃ ′2 � [[P ′2]]

The rule yields [[P1 | P2]] = [[P1]] | [[P2]]
τ−−→ (νx) P̃ ′1 | P̃ ′2 which �

(νx) [[P ′1]] | [[P ′2]] = [[(νx)P ′1 | P ′2]] and P1 | P2
τ−−→ (νx)P ′1 | P ′2. The

side condition holds in both case because fn([[P2]]) = fn(P2).

• (Par1) : Let [[P1]]
µ−−→ P̃ ′1 with bn(µ) ∩ fn(P2) = ∅.

34

By induction hypothesis, P̃ ′1
(µ)
� [[P ′1]] and P1

µ−−→ P ′1.

Then: [[P1 | P2]] = [[P1]] | [[P2]]
µ−−→ P̃ ′1 | [[P2]]

(µ)
� [[P ′1]] | [[P2]] =

[[P ′1 | P2]] and P1 | P2
µ−−→ P ′1 | P2.

• (Res) : Let a 6∈ n(µ) and [[P]]
µ−−→ P̃ ′ and (i. h.) � [[P ′]] and

P
µ−−→ P ′.

(Res) yields [[(νa)P]] = (νa) [[P]]
µ−−→ (νa) P̃ ′

(µ)
� (νa) [[P ′]]

= [[(νa)P ′]] and (νa)P
µ−−→ (νa)P ′.

• (Inp) : This is a base case as there are no transitions in the premises.

A transition [[P]]
µ−−→ P̃ ′ produced by this rule has to be of the form

c?(u).caseu of {lj(xj)=[[Pj]] | j∈J}
c?lk 〈x〉−−−−−→

case lk〈x〉 of {lj(xj)=[[Pj]] | j∈J} = P̃ ′

(so P = c?{lj(xj)=Pj | j∈J}).
Then
P̃ ′� [[Pk]]{x/xk

} = [[Pk{x/xk
}]] and

P = c?{lj(xj)=Pj | j∈J}
c?lk 〈x〉−−−−−→ Pk{x/xk

} (using TyCO’s (Inp)).
• (Rep) :

This one is similar to (Inp), just keeping the original process P in
parallel.
• (P-Case) :

All transitions produced by this rule are on a process that is a case
statement and we can easily check that the encoding never produces
such a statement (it does, but only prefixed by an input which is not
the case here) which means that the proposition does not apply in this
case.

B.2 Case Reduction “Transparency” (Lemma 2.2.5)

1. The first case occurs if the µ transition involves a subprocess of the
expression Pk that was contained in the case expression that was re-

duced in P � P0. (“involves” means here that the proof of P0
µ−−→ P ′0

applies (Out), (Inp) or (Rep) to it). In that case, rule (P-Case) can
be applied on that expression, and have the case expression itself have
the same transition as that of Pk. Inserting that step in the proof of

P0
µ−−→ P ′0 gives the proof of P

µ−−→ P ′0.
The second case occurs if that case expression is not involved in the

35

proof of P0
µ−−→ P ′0 (“not involved” means that it only appears as P2 in

some applications of (Par1)), then the proof of P
µ−−→ P ′ works exactly

the same way (possibly using (Alpha) to avoid name collisions in other
branches of the case expression).
Because the case expression was preserved, we then have P ′� P ′0.

2. If the proof of P
µ−−→ P ′ required (P-Case) doing the P � P0 reduc-

tion then P0
µ−−→ P ′ was actually a part of that proof.

Otherwise, if P
µ−−→ P ′ doesn’t reduce that case expression then it can

be still be reduced in P ′ (so we get P ′� P ′0) and the proof of P
µ−−→ P ′

can be directly transposed to P0
µ−−→ P ′0 (and in this case the sets of

free names will only shrink so no (Alpha) will be needed)

B.3 TyCO to πVa Embedding bisimilarity (Proposition
3.0.2)

First a proof of the “only if” part.
In the following, �∗ is the transitive reflexive closure of �.
Let R relate TyCO and πVa processes (P,Q) s.t. Q�∗ [[P]].
We will prove that the symmetric closure of R is a strong bisimulation.

• Let P R Q and suppose P
µ−−→ P ′.

By 3.0.1, [[P]]
µ−−→ P̃ ′

(µ)
� [[P ′]].

Repeatedly applying 2.2.5 over Q �∗ [[P]]
µ−−→ P̃ ′, we get Q

µ−−→

Q′�∗ P̃ ′
(µ)
� [[P ′]] so P ′ R Q′.

• Now, let P R Q and Q
µ−−→ Q′.

Repeatedly applying 2.2.5 on Q�∗ [[P]], [[P]]
µ−−→ Q′′ and Q′�∗ Q′′.

By 3.0.1, P
µ−−→ P ′ and Q′′

(µ)
� [[P ′]] so Q′�∗ [[P ′]] and P ′ R Q′.

B.4 TyCO to πVa ≡-Full Abstraction (Prop. 3.0.3)

Let’s first introduce a restricted structural congruence relation :
A ≡ω B is true if we have A ≡ B without using α-renaming.
The encoding has three properties that will help for the proof.

1. For any (TyCO) context C[·] there is a (πVa) context C ′[·] such that

36

∀P : [[C[P]]] = C ′[[[P]]] and
∀P,Q : [[P]] = C ′[Q] implies ∃P ′([[P ′]] = Q)

2. It doesn’t create parallel composition or restriction operators, which,
together with the fact that it is a distributed encoding, implies that
[[P]] = A|B implies ∃!A′, B′(P = A′|B′) (so [[A′]] = A and [[B′]] = B),
and [[P]] = (νa)A implies ∃!A′(P = (νa)A′) (so [[A′]] = A).

3. It is injective, ie [[P]] = [[Q]] implies P = Q.

Translating C[·] into C ′[·] for point 1 is done with the same rules as the
encoding and adding a rule translating a hole into a hole.

Then checking that each rule of the encoding respects point 2 is easy.
To prove the last property we can just see that if two processes differ then

the encoding will produce different processes as well :
If they are using a different syntactic construct then those produced by

the encoding will be different. If they are using the same syntactic construct
but with different names then the names will differ accordingly on the πVa
side.

Alpha-convertibility is preserved because fn([[P]]) = fn(P).
The last two properties imply that ∀P,Q, P ≡ω Q implies [[P]] ≡ω [[Q]],

and ∀P,Q, [[P]] ≡ω Q implies ∃Q′(P ≡ω Q′ and [[Q′]] ≡α Q). (We don’t
have equality because of the u name introduced in the translation of input
expressions)

As an example, here’s the proof for the case X|Y ≡ω Y |X.
[[P]] = [[X]]|[[Y]] ≡ [[Y]]|[[X]] = [[Y |X]] = [[Q]].
On the other direction :
[[P]] = A|B ≡ω B|A = Q. Then there are A′ and B′ such that P = A′|B′

and [[A′]] = A and [[B′]] = B so we have Q′ = B′|A′ and we clearly see
P ≡ω Q′.

Property number one extends the proof to the closure as a congruence.

B.5 R-Bout (Table 7)

We will see what are the conditions for a typing of a!l(νb).Pb, (νb) (a!l〈b〉|Pb).
Both input and output rules allow weakening on linear names but we will

do it on the output side only because it is simpler and leads to the same
result (so we instantiate Φ to ∅ in the input rules).

This will actually lead to a rule that is stricter than necessary but that will
look consistent with the other rules. However it just means that weakening

37

that could be done with (Inp) or (Rep) for Pb will have to be done at (R-
Bout)-time and will yield to the same result.

• Let ∆bl; Γbl; ∆bu; Γbu `R Pb.

Because Pb is an input at channel b, the input rules will require
∆bl = {b}l, ∆bu = {b}u and b 6∈ Γbl
For the left component of the parallel composition we have (assuming

Φl ∩ {a, b}l = ∅) :

• Φl; Φl ⊕ {a, b}l; ∅; Γbu `R a!l〈b〉

With condition that {a, b}u ⊆ Γbu and {a}l ∩ {b}l = ∅.
Φl ∩ {a, b}l = ∅ implies b 6∈ Φl so ∆bl ∩ Φl = ∅.
To be able to apply the (R-Par) rule we also need
Γbl ∩ (Φl ∪ {a, b}l) = ∅.
After parallel composition we get :

• {b}l ⊕ Φl; Γbl ⊕ Φl ⊕ {a, b}l; {b}u; Γbu `R a!l〈b〉 | Pb

The conditions of the (R-Res) are fulfilled (If b is receptive then the
above judgment puts it into both Γ and ∆).

Therefore we obtain the following judgment for the complete process :
Φl; Γbl ⊕ Φl ⊕ {a, b}l \ {b}l; ∅; Γbu \ {b}u `R a!l(νb).Pb
which is equivalent to (thank to {a}l ∩ {b}l = ∅)
Φl; Γbl ⊕ Φl ⊕ {a}l; ∅; Γbu \ {b}u `R a!l(νb).Pb
Defining Γl = Γbl ⊕ {a}l and Γu = Γbu \ {b}u, this now matches the

(R-Bout) rule.

B.6 R-Link (Table 7)

Assume we have ∆0l; Γ0l; ∆0u; Γ0u `R z � x.
We will then give the typing for a � b which is defined to be either

a?∗{lj(x) = b!lj(νz).z � x | j ∈ J} (for a non-linear) or a?{lj(x) =
b!lj(νz).z � x | j ∈ J} for a linear. z is fresh.

With hypothesis ∆0l = {z}l, {b, z}l ∩Γ0l = ∅, ∆0u = {z}u and {b, z}u ⊆
Γ0u, we have (using (R-Bout)) :
∅; Γ0l ∪ {b}l; ∅; Γ0u \ {z}u `R b!l(νz).z � x.

38

Then, if a is non-linear, under hypothesis b 6∈ Nl, Γ0l = {x}l and {x}u ⊆
Γ0u \ {z}u, we have (using (R-Rep)) :
{a}l ⊕ Φl; Φl; {a}u; Γ0u \ {x, z}u `R a� b.
If a is linear, under hypothesis a 6∈ Γ0l ∪ {b}l, {x}l ⊆ Γ0l ∪ {b}l and

{x}u ⊆ Γ0u \ {z}u, we have (using (R-Inp)) :
{a}l ⊕ Φl; (Γ0l ∪ {b}l) \ {x}l ⊕ Φl; {a}u; Γ0u \ {x, z}u `R a� b. Note

that the hypothesis implies that if a and b are linear then they are different
Summing up all hypothesis we get the following :
The conditions for {a}l ⊕ Φl; Γl ⊕ Φl; {a}u; Γu `R a� b are :
a 6∈ Nl ⇒ b 6∈ Nl, {a, z}l ∩ Γl = ∅, {b}l ⊆ Γl, {b}u ⊆ Γu and
{z}l; Γl \ {b}l ∪ {x}l; {z}u; Γu ∪ {x, z}u `R z � x
We have {b}l ⊆ Γl, and actually we require (as a rule) Γl = {b}l because

it would not make sense to have other names in it : such a name would not
be introduced by a rule ((R-Bout) or (R-Inp)) but just preserved from one
recursion level to another. This undecidability arises from the fact that the
definition of dynamic links is recursive and there may not be a base case that
“initializes” Γl to ∅.

B.7 Weakening/Strengthening (Lemma 4.1.1)

In this proof we will give the exact conditions under which Θ `R P is a valid
judgment and we will get a proof of Lemma 4.1.3 for free.

We will prove that for all type-correct P there is one strongest judgment
∆0; Γ0 `R P with ∆0∪Γ0 = fn(P)r and a set of names Φ̃ ⊆ bn(P) such that

∆l; Γl; ∆u; Γu `R P iff, for some Φ :

• Φ ∩ Φ̃ = ∅
• ∆l = ∆0l ⊕ Φl

• Γl = Γ0l ⊕ Φl

• ∆0u = ∆u

• Γu = Γ0u ⊕ Φu

The reason why Φ̃ is not always equal to bn(P) is that if the binding of a
linear name is “deep enough” then that name can be put (linear weakening)

in ∆l and Γl. However, Φ̃u = bn(P)u. This will be explained in more details
below.

We will show that the lemma is true for the conclusion of all the receptive
typing rules, under hypothesis that it is true in the premises.

39

• (R-Nil)
The (R-Nil) rule allows a typing of 0 for any ∆l = Γl pair and for
any Γu.
So for 0 the strongest judgment is ∅; ∅; ∅; ∅ `R 0 and Φ̃ = ∅.
• (R-Out)

Let P = a!l〈b〉. We have Φl; {a, b}l ⊕ Φl; Φu; {a, b}u ⊕ Φu `R P for

any Φ so the strongest judgment is ∅; {a, b}l; ∅; {a, b}u `R P and Φ̃ = ∅.
We have fn(P) = {a, b} so the free names requirement holds
• (R-Par)

Let P = P1|P2. Let ∆il; Γil; ∆iu; Γiu `R Pi for i ∈ {1, 2} be the

strongest judgment for Pi, and let Φ̃i be the corresponding restriction
set. Note that Γ1u and Γ2u can be different.
A valid judgment for Pi will then be as follows :
For both i = 1, 2, Φi is chosen not intersecting Φ̃i.
∆il ⊕ Φil; Γil ⊕ Φil; ∆iu; Γiu ⊕ Φiu `R Pi.
To be able to apply (R-Par) Φi must be chosen in a way that Γ1u ⊕
Φ1u = Γ2u ⊕ Φ2u (let’s call the resulting set Γu)
So there is Φ0 such that
Φ1u = Γ1u \ Γ2u ⊕ Φ0

Φ2u = Γ2u \ Γ1u ⊕ Φ0

We then have Γu = Γ1u ⊕ Γ2u ⊕ Φ0 with Φ0 not intersecting Φ̃u =
Φ̃1u ∪ Φ̃2u.
Because (R-Par) requires linear sets to be disjoint instead of equal the
only additional constraint on Φil is that they must be disjoint from
each other.
Define Φ = Φ1l ⊕ Φ2l ⊕ Φ0.
We then have ∆1l ⊕∆2l ⊕ Φl; Γ1l ⊕ Γ2l ⊕ Φl; ∆1u ⊕∆2u; Γu ⊕ Φu `R

P .
Setting Φ = ∅ gives the strongest judgment.
As fn(P) = fn(P1) ∪ fn(P2) the free names requirement holds.
Because both Φ1l and Φ2l can provide their own linear weakening we
have Φ̃l = Φ̃1l ∩ Φ̃2l. (and the uniform subset is the one already given
above)
• (R-Res)

Let P = (νa)P0. Let ∆?
l; Γ?l; ∆?

u; Γ?u `R P0 the strongest judgment for

P0 and Φ̃? defined appropriately.
Let then ∆l ⊕ Φl; Γl ⊕ Φl; ∆u; Γu ⊕ Φu `R P0 be a valid judgment.

40

(R-Res) will then yield
∆l \ {a}l ⊕ Φl; Γl \ {a}l ⊕ Φl; ∆u \ {a}u; Γu{a}u ⊕ Φu `R P .
So the strongest judgment of P is obtained setting Φ to ∅ and is
∆l \ {a}l; Γl \ {a}l; ∆u \ {a}u; Γu \ {a}u `R P .
We have fn(P) = fn(P0) \ {a} = (∆ \ {a}) ∪ (Γ \ {a}), as required.
Because {a}l was a subset of ∆l and Γl, and {a}u of ∆u and Γu, a
could not be in Φl or Φu. Because it has been removed by (R-Res)

this constraint must be enforced for P : Φ̃ is defined to Φ̃? ∪ {a}.
• (R-Inp)

Let Θ `R P = a?{lj(xj)=Pj | j∈J}.
For each j, let ∅; Γ?l ∪ {xj}l; ∅; Γ?j u `R Pj be the strongest judgment

for Pj and Φ̃j the corresponding restriction set.
This Γ?l must be the same for all, as requested by (R-Inp), because all
have an empty ∆?

l so no linear weakening can be used to have them
share the same Γl.
However each may have a different Γ?j u because uniform weakening can
make them all equal :

Let Γ?u =
⋃
j∈J

(
Γ?j u \ {xj}u

)
We have to make the union because these were all strongest judgment
so the Γ?j u can only be extended. We know we will not hit any Φ̃j

because we had assumed that P was typable.
With Φ not intersecting the set of xj, applying (R-Inp) we get :
{a}l ⊕ Φl; Γ?l ⊕ Φl; ∅; Γ?u `R P
Taking Φ = ∅ we get the strongest judgment for P . The only constraint
on Φ being not to contain any xj, the corresponding Φ̃ can be defined
to {xj | j ∈ J}.
Note that (R-Inp) allows to put in Φ a name bound in one or more Pj.
Concerning free names :
By induction, fn(Pj)r = Γ?l ∪ {xj}l ∪ Γ?j u
So
fn(P)r = {a}r ∪

⋃
j∈J fn(Pj) \ xj = {a}r ∪ Γ?l ∪ Γ?u

which is what was required.
• (R-Rep)

This case works in a similar way to the previous one . . .

41

B.8 Type Soundness (4.1.6)

All entries in this proposition are of the following form :

Based on some µ, if ∆; Γ `R P and P
µ−−→ Q then there are ∆0, Γ0, ∆1,

Γ1, ∆−, Γ−, ∆+, Γ+ such that
∆ \∆0; Γ \ Γ0 `R P ,
∆1 ⊆ ∆ and Γ1 ⊆ Γ,
(∆ \∆0) ∪∆+ \∆−; (Γ \∆0) ∪ Γ+ \ Γ− `R Q.
And for each entry these sets are always defined such that

• ∆0 ∪ Γ0 ⊆ bn(µ)
• Either: ∆1 ∪ Γ1 ⊆ n(µ)

Or: (only if µ = τ) ∆1 = Γ1 = {a} for some a
• ∆− ⊆ ∆1 and ∆+ ⊆ ∆0 (and the same for Γ...)

Knowing this we can show that all transition rules preserve the proposi-
tion :

We consider an instance (any side conditions being true) of each opera-
tional semantic rule, and assume that the full (type soundness) proposition
is true for all transitions in the premises of that rule and then show that it
is true for any transition produced by that rule.

Because the proposition only applies on typable processes and opera-
tional semantics only produce transitions of typable processes if those in the
premises are themselves typable we will assume that for all transitions that
we consider the source process is typable.

For shortness, When a set is empty it will not be mentioned.

• (Out)
According to (R-Out), Φl; {a, b}l ⊕ Φl; ∅; {a, b}u ⊕ Φu `R a!l〈b〉 (a 6=
b). We also have Φl; Φl; ∅; {a, b}u ⊕ Φu `R 0.
So for P = a!l〈b〉, Γ1 = {a, b}r and Γ− = {a, b}l match.
• (Open)

Let P
a!l〈b〉
−−−−→ Q (a 6= b). By induction there is Θ such that

∆l; Γl, {a, b}l; ∆u; Γu, {a, b}u `R P .
∆l; Γl; ∆u; Γu, {a, b}u `R Q.
For typing (νb)P , rule (R-Res) requires the following :
{b}l ⊆ ∆l and {b}u ⊆ ∆u.
And yields :

42

∆l \ {b}l; Γl, {a}l; ∆u \ {b}u; Γu, {a}u `R (νb)P .

So the result is (for (νb)P
(νb) a!l〈b〉
−−−−−−−→ Q) obtained from (R-Res) re-

quirements and checking the differences between the typings of (νb)P
and Q :
∆0 = {b}, Γ0 = {b}, Γ1 = {a}r, ∆+ = {b}r, Γ−l = {a}l and Γ+

u = {b}u.
• (Com1)

Let P1

(νb) a!l〈b〉
−−−−−−−→ P ′1 and P2

a?l〈b〉
−−−−−→ P ′2.

By induction (on the two above transitions), and applying (R-Par),
we have
∆l, {a}l; Γl, {a}l; ∆u, {a}u; Γu, {a}u `R P1 | P2 and
∆l, {b}l; Γl, {b}l; ∆u, {a, b}u; Γu, {a, b}u `R P ′1 | P ′2.
We also know that b is not in Γ.
Applying (R-Res),
∆l; Γl; ∆u, {a}u; Γu, {a}u `R (νb)P ′1 | P ′2.
The transition returned by (Com1) is P = P1 | P2

τ−−→ (νb)P ′1 | P ′2 =
Q.
So, comparing the typings of P and Q (and dropping the fact that b is
not in Γ, because it doesn’t change)
We have ∆1

l = Γ1
l = ∆−l = Γ−l = {a}l and ∆1

u = Γ1
u = {a}u as stated in

the entry of the Proposition.
• (Par1)

Let P
µ−−→ P ′ with Γ0, ∆0, Γ1, etc, defined accordingly.

Let ∆P l; ΓP l; ∆P u; ΓP u `R P and
∆Ql

; ΓQl
; ∆Qu

; ΓQu
`R Q that fulfills the requirements of (R-Par)

(i.e. with ΓP u = ΓQu
and the three other set pairs disjoints) and such

that bn(µ) ∩ fn(Q) = ∅, as required by (Par1).

We then have ∆l; Γl; ∆u; Γu `R P |Q and P |Q µ−−→ P ′|Q, with ∆l =
∆P l⊕∆Ql

(and the same for the two next sets, and Γu = ΓP u = ΓQu
).

Because ∆P ⊆ ∆ and ΓP ⊆ Γ, the inclusion property of ∆1 and Γ1 are
preserved for ∆ and Γ.
We have Γ0 ∪ ∆0 ⊆ bn(µ) so because of the side condition of (Par),
(Γ0 ∪∆0) ∩ fn(Q) = ∅ as well, which (4.1.1) implies that if they are in
∆Q and ΓQl

then they can be removed :
With Φl = (Γ0 ∪∆0),
∆Ql

\ Φl; ΓQl
\ Φl; ∆Qu

; ΓQu
`R Q

(This is the Φl in point number 3). So Γ0 and ∆0 are preserved for ∆

43

and Γ.
By induction we had ∆P \∆− ∪∆+; ΓP \ Γ− ∪ Γ+ `R P ′. So by (R-
Par) (with P ′ = P ′|Q),
∆Q ⊕ (∆P \∆− ∪∆+); ΓQ ∪ (ΓP \ Γ− ∪ Γ+) `R P ′. (as usual, Γ are
disjoint in linear names and equal in uniform names).
Because ∆+ ⊆ ∆0 and ∆− ⊆ ∆1, the above is equivalent to (moving
the brackets)
(∆Q ⊕∆P) \∆− ∪∆+; (ΓQ ∪ ΓP) \ Γ− ∪ Γ+ `R P ′ which in turn is :
∆ \∆− ∪∆+; Γ \ Γ− ∪ Γ+ `R P ′.
So (Γ and ∆)(+ and −) are preserved as well.
• (Res)

Let P
µ−−→ P ′ and Θ `R (νa)P with a 6∈ n(µ).

Because restriction only hides a from Θ, Γ0 and ∆0 are preserved from
P to (νa)P , and so are Γ+ and ∆+.
Concerning ∆1 and Γ1 there are two cases.

First, if µ = τ and, for P
µ−−→ P ′, ∆1 = Γ1 = ∆− = Γ−{a} (a ∈ Nl),

we have :
∆l, a; Γl, a; ∆u; Γu `R P, P ′, and ∆l; Γl; ∆u; Γu `R (νa)P, (νa)P ′.
Basically, Before restricting, the transition was “consuming” the single
input/output capability of a, and after restricting this change is hidden.
So after restricting we have Γ1 = ∆1 = Γ− = ∆− = ∅ (the other sets
still empty of course).
Otherwise, we will have a 6∈ (Γ1 ∪∆1) so it is preserved, and so are Γ+

and ∆1.
• (Inp)

This rule produces a transition of the form :

P = a?{lj(xj)=Pj | j∈J}
a?lk〈b〉−−−−−→ Pk{b/xk

} = P ′,
So we have to prove that Γ0

l = Γ+
l = {b}l, Γ0

u = Γ+
u = {b}u, ∆1

l = ∆−l =
{a}l, ∆1

u = {a}u, knowing that b 6∈ Γl.
Γ0 = {b}r is precisely the side condition of 4.1.6.1.
Rule (R-Inp) states that a typing of P will be as follows:
{a}l; Γl; ∅; Γu `R P provided that (the substitution has been applied
already in the following)
∅; Γl, {b}l; ∅; Γu, {b}u `R P ′.
Because a 6∈ Nu is a condition of (R-Inp), we have ∆1

u = {a}u = ∅ ⊆
∆u.
The other required properties are clearly visible in these typings.

44

• (Rep)

Let P = a?∗{lj(xj)=Pj | j∈J}
a?lk〈b〉−−−−−→ P | Pk{b/xk

} = P ′.
Like for (Inp), we have to prove Γ0

l = Γ+
l = {b}l, Γ0

u = Γ+
u = {b}u,

∆1
l = ∆−l = {a}l, ∆1

u = {a}u, knowing that b 6∈ Γl.
Γ0 = {b}r is immediate, as before.
The typings of P and P ′ will be as follows (using (R-Rep) and (R-
Par))
∅; Γl; {a}u; Γu `R P
∅; Γl, {b}l; {a}u; Γu, {b}u `R P ′.
Because a 6∈ Nl is a condition of (R-Rep), we have ∆1

l = {a}l = ∅ ⊆
∆l.
Again, the other required properties are clearly visible in these typings.

B.9 Replication Proposition (4.2.11)

• A first requirement is that all process pairs of the form given in the
Proposition are complete and discreet.
Using the conditions of the Proposition we can derive
∆P l ⊕∆Ql

; ∅; ∆P u ⊕∆Qu
; Γu `R (νu) (u� v | P | Q) and

∆P l ⊕∆Ql
; ∅; ∆P u ⊕∆Qu

; Γu `R (νu) (u� v | P)(νu) (u� v | Q)
We also have Γu ⊆ ∆P u ⊕∆Qu

Which implies that both processes are complete. They are also discreet
because P and Q are, and the two above judgments did not make use
of (R-Out).
• Directly applying Completeness and Discreetness Preservation Lemmas

we see that for any complete and discreet processes P and Q, for any
relation R, the processes P ′ and Q′ of clause 1 (or (νr) (r � t | P ′)
and (νr) (r � t | Q′) in clause 2) described by Proposition 4.2.8 will
be complete and discreet as well.
• Now let R0 be the set of pairs of the form(

(νu) (u � v | P | Q) ; (νu) (u � v | P) | (νu) (u � v | Q)
)

where
P and Q satisfy the conditions of the Proposition.
Let R=

{
(X, Y) | ∃X0, Y0|X ≡ X0 and Y ≡ Y0 and (X0 R0 Y0 or

Y0 R0 X0)
}

We will prove that R satisfies the conditions of Definition 4.2.8 where
the initial P R Q is replaced by P R0 Q, and then prove that this is
enough for R to be a strong receptive bisimulation, which then directly

45

implies the proposition.
• We will look all possible transitions of X and Y where X R0 Y and
P and Q are the corresponding sub-processes as defined above. By
the symmetry of X and Y , for all below transitions P and Q can be
exchanged.

– If P
µ−−→ P ′ where bn(µ) ∩ (fn(Q) ∪ {u, v}) = ∅ and u 6∈ n(µ)

(which are required by (Par) and (Res) for both X and Y), and
µ matches clause 1 of 4.2.8,

(νu) (u� v | P | Q)
µ−−→ (νu) (u� v | P ′ | Q) and

(νu) (u� v | P) | (νu) (u� v | Q)
µ−−→

(νu) (u� v | P ′) | (νu) (u� v | Q)

– If P
a?l〈r〉
−−−−−→ P ′ with r fresh and a 6= u,

(νu) (u� v | P | Q)
a?l〈r〉
−−−−−→ (νu) (u� v | P ′ | Q).

(νr) (r � t | ((νu) (u� v | P ′ | Q))) ≡
(νu) (νr) (r � t | u� v | P ′ | Q) ≡
(νu) (u� v | ((νr) r � t | P ′) | Q)
We can do the same on the other member of the pair :

(νu) (u� v | P) | (νu) (u� v | Q)
a?l〈r〉
−−−−−→

(νu) (u � v | P ′) | (νu) (u � v | Q) (this whole process is the
Q′ of 4.2.8).
Then,
(νr) (r � t | ((νu) (u� v | P ′) | (νu) (u� v | Q))) ≡
((νu) (νr) r � t | u� v | P ′) | (νu) (u� v | Q) ≡
((νu)u� v | ((νr) r � t | P ′)) | (νu) (u� v | Q).
We see that this process and the one above are related by R0

so the ones before starting the sequences of ≡ are related by R,
which is what was requested for this case.

– If P
(νx) c!l〈x〉
−−−−−−−−→ P ′ and Q

c?l〈x〉
−−−−−→ Q′, and x 6∈ fn(Q), then

(νu) (u� v | P | Q)
τ−−→ (νu) (u� v | P ′ | Q′) and (νu) (u�

v | P) | (νu) (u � v|Q)
τ−−→ (νu) (u � v|P ′) | (νu) (u �

v | Q′)
– If P

(νx)u!l〈x〉
−−−−−−−−→ P ′ and x 6∈ {u, v} then

(νu) (u � v | P | Q)
τ−−→ (νu) (((νx)u � v|v!l(νz).z �

x|P ′)|Q)
which is structurally congruent to (having x 6∈ fn(u� v))

46

(νu) ((u� v | (νx) (v!l(νz).z � x | P ′))|Q)
For the other member of the pair,

(νu) (u� v | P) | (νu) (u� v | Q)
τ−−→

(νu) ((νx)u� v | v!l(νz).z � x | P ′) | (νu) (u� v | Q) ≡
((νu)u� v | (νx) v!l(νz).z � x | P ′) | ((νu) (u� v | Q))
Therefore, in both cases, P was transformed into (νx) v!l(νz).z �
x|P ′.

• We still have to prove that the weakened version of Definition 4.2.8 used
is enough for having X ∼R Y . For this, knowing that R0 satisfies that
weakened condition, R indeed is a receptive bisimulation. This follows

quite easily from X ≡ Y and X
µ−−→ X ′ implying that ∃Y ′(Y µ−−→ Y ′

and X ′ ≡ Y ′) and ∀C[·](C[X] ≡ C[Y]) :
Let X R Y . Then there are X0 and Y0 such that X ≡ X0 R0 Y0 ≡ Y .

– If X
µ−−→ X ′ with µ as specified in clause 1 of 4.2.8, then, from

X ≡ X0 there is X ′0 such that X0
µ−−→ X ′0 and X ′ ≡ X ′0.

From X0 R0 Y0 and X0
µ−−→ X ′0, there is Y ′0 such that Y0

µ−−→ Y ′0
and X ′0 R Y ′0 (note that it is R, not R0).

From Y0 ≡ Y and Y0
µ−−→ Y ′0 , there is Y ′ such that Y

µ−−→ Y ′0 and
Y ′0 ≡ Y ′.
X ′ ≡ X ′0 R Y ′0 ≡ Y ′ implies X ′ R Y ′.

– If X
µ−−→ X ′ with µ as specified in clause 2, then, from X ≡ X0

and X
µ−−→ X ′, there is X ′0 such that X0

µ−−→ X ′0 and (νr) (r �
t | X ′) ≡ (νr) (r � t | X ′0).
From X0 R0 Y0 and X0

µ−−→ X ′0, there is Y ′0 such that Y0
µ−−→ Y ′0

and (νr) (r � t | X ′0) R (νr) (r � t | Y ′0).

Then, there is Y ′ such that Y
µ−−→ Y ′ and Y ′0 ≡ Y ′.

So (νr) (r � t | X ′) R (νr) (r � t | Y ′).

B.10 πVa - TyCO Encoding Typability (Prop. 5.2.2.1)

Lemma B.10.1. If Σ `S v:T then [[Σ]], u:[[T]] `S [[v]]u.

Proof. We will work by induction on v.
Let Σ `S v = a:T be a simple name.
Then [[v]]u = u� v and [[Σ]], u:[[T]] `S v:[[T]], u:[[T]] so [[Σ]], u:[[T]] `S

[[v]]u.

47

Now let Σ `S v = lk〈w〉:{lj:Tj | j∈J} (where k ∈ J and Σ `S w:Tk).
Then [[v]]u = u?∗{d(r)=r!lk(νu′).[[w]]u′} and
[[Σ]] `S v:[{d:[{lj:[[Tj]] | j∈J}]}].
We have [[Σ]], x:[{{lj:[[Tj]] | j∈J}}], u:[[T]], `S w:[[Tk]] (the additional

hypothesis will be used below; Adding an entry in the hypothesis of a deriv-
able typing judgment will keep it correct) so by induction hypothesis,

[[Σ]], x:[{lj:[[Tj]] | j∈J}], u:[[T]], u′:[[Tk]] `S [[w]]u′ .
The (ST-Bout) rule yields
[[Σ]], x:[{lj:[[Tj]] | j∈J}], u:[[T]] `S x!lk(νu′).[[w]]u′

Then applying (ST-Rep) with a set J containing a single index j for
which lj = d :

[[Σ]], u:[[T]] `S u?∗{d(r)=r!lk(νu′).[[w]]u′}, which is [[v]]u.

The proof of 5.2.2.1 itself will work by induction on the process structure.

• P = 0 is trivial.
• P = P1 | P2. Σ `S P has to be derived from Σ `S Pi, for both
i = 1, 2. By induction hypothesis, [[Σ]] `S [[Pi]] for both i = 1, 2 so
Σ `S [[P1]] | [[P2]] = [[P1 | P2]].
• P = (νa)P1. Σ `S (νa)P1 implies (through (S-Res)) there is T such

that Σ, a:T `S P1 so by induction [[Σ]], a:[[T]] `S [[P1]] and applying
(S-Res) again [[Σ]] `S (νa) [[P]] = [[(νa)P]].
• P = a!v. Σ `S P implies there is T such that Σ `S (a:[T] and v:T).

The type encoding rules tell that [[Σ]] `S a:[{c:[[T]]}], v:[[T]].
Lemma B.10.1 implies that [[Σ]], u:[[T]] `S [[v]]u.
So by (S-Bout) [[Σ]] `S a!c(νu).[[v]]u which is [[a!v]].
• P = a?(x).P1.

So we have a T such that Σ `S a:[T] and Σ, x:T `S P1.
[[Σ]] `S a:[{ta :[[T]]}].
By induction, [[Σ]], x:[[T]] `S [[P1]].
So [[Σ]] `S a?{c(x)=[[P1]]} which is [[P]].
• P = a?∗(x).P1 : The proof is identical to the above one, only using

(ST-Rep) instead of (ST-Vout).
• P = case v of {lj(xj)=Pj | j∈J}.

Then we have T = {lj:Tj | j∈J} such that Σ `S v:T . We have to
prove the typability of (νu)

(
[[v]]u | u!d(νr).r?{lj(xj)=[[Pj]] | j∈J}

)
under [[Σ]].

48

By (SP-Case), Σ, x:Tj `S Pj, for all j ∈ J .
By induction (and adding types for bound names),
[[Σ]], u:[[T]], r:[{lj:[[Tj]] | j∈J}], xj:[[Tj]] `S [[Pj]] for all j ∈ J .
By (ST-Vinp) :
[[Σ]], u:[[T]], r:[{lj:[[Tj]] | j∈J}] `S r?{lj(xj)=[[Pj]] | j∈J}.
[[T]] being [{d:[{lj:[[Tj]] | j∈J}]}], we can apply (ST-Bout) :
[[Σ]], u:[[T]] `S u!d(νr).r?{lj(xj)=[[Pj]] | j∈J}.
Because Σ `S v:T , [[Σ]] `S v:[[T]]. Lemma B.10.1 then gives
[[Σ]], u:[[T]] `S [[v]]u.
So we can apply (S-Par) :
[[Σ]], u:[[T]] `S [[v]]u | u!d(νr).r?{lj(xj)=[[Pj]] | j∈J}.
Finally, (S-Res) :
[[Σ]] `S [[P]].

B.11 Substitution part I (Lemma 5.2.5.1)

Let R be the relation expressed by the lemma (X R Y iff there are a ∈ Nu,
u ∈ Nu and v ∈ Np such that X = [[v]]a and Y = (νu) (a� u | [[v]]u)).

Having P R Q and P
µ−−→ P ′, and if µ is an input with receptive object

r then P ′′ = (νr) (r � t | P ′) otherwise P ′′ = P ′, we prove :

There are µ2 and C[·] s.t. P ′′
µ2−−−→ (P | C[P ′′′]), Q

µ−−→ Q′, Q′′
µ2

===⇒
(Q | C[Q′′′]) with P ′′′ R Q′′′. (Q′′ being Q′ with a trigger name if µ = a?l〈r〉)

Similarly if Q
µ−−→ Q′ then P

µ−−→ P ′, P ′′
µ2−−−→ (P | C[P ′′′]) and Q′′

µ2
===⇒

(Q | C[Q′′′]) with P ′′′ R Q′′′, P ′′ and Q′′ being defined as above. (Note that
in both cases the weak transitions are on the Q side only).

The additional µ2 and τ transition sequences are independent, which
means that several instances of these transition sequences can be running
simultaneously without interfering with each other, and they are determin-
istic, which means that once µ occurred, that sequence of transition is the
only one available, i.e. no “choice” is made in it.

We will afterwards prove that for any relation R satisfying these proper-
ties P R Q implies Q &R P .

The lemma has two cases, whether v is a simple name a or a labeled value
l〈w〉.

We will first prove the case where v is a simple name.
Let P = a� v and Q = (νu) (a� u | u� v).
The only transition provided by either process is an input at a :

49

First the case of a plain name received on a.
By definition of dynamic links :

P
a?d 〈c〉
−−−−−→ P | v!d(νy).y � c

v!d(νy)
−−−−−−→ P | y � c

On the Q side :

Q
a?d 〈c〉
−−−−−→ (νu) (a� u | u� v | u!d(νt).t� c)

τ−−→≡
(νu) (a� u | u� v) | (νt) (v!d(νy).y � t | t� c) =

Q | v!d(νy).(νt) (y � t | t� c)
v!d(νy)
−−−−−−→ Q | (νt) (y � t | t� c).

And we have y � c R (νt) (y � t | t � c) as required (using a simple
context C[·] = [·])

Now the case where a receptive name is sent on a :

P
a?d 〈x〉
−−−−−→ P | v!d(νy).y � x.

We need to put a trigger name (t fresh and plain) to make that process
complete, as specified by 4.2.7.3 :

(νx)P | v!d(νy).y � x | x � t
v!d(νy)
−−−−−−→≡ P | (νx) y � x | x � t =

P | C[y � x], where C[·] = (νx) ([·] | x� t)
Concerning Q :

Q
a?d 〈x〉
−−−−−→ (νu) (a� u | u� v | u!d(νz).z � x). Adding link to t :

(νx) (νu) (a� u | u� v | u!d(νz).z � x | x� t)
τ−−→

(νx) (νu) (a� u | u� v | v!d(νy).(νz) y � z | z � x | x� t)
v!d(νy)
−−−−−−→

(νu) (a� u | u� v) | (νz) (νx) (y � z | z � x | x� t)
which can be rewritten (≡) as
Q | (νx) ((νz) y � z | z � x) | x� t =
Q | C[((νz) y � z | z � x)]
We have y � x R (νz) (y � z | z � x) which is what we required.
Now the case where v is a labeled value. Let v = l〈w〉.
We have P = a?∗{d(x)=x!l(νy).[[w]]y} and
Q = (νu) (a� u | u?∗{d(x)=x!l(νz).[[w]]z}).
The only available transition on either process is an input at a. First the

case where a plain name is transmitted.
on the P -side :

P
a?d 〈c〉
−−−−−→ P | c!l(νy).[[w]]y

c!l(νy)
−−−−−→ P | [[w]]y

Concerning Q :

P
a?d 〈c〉
−−−−−→ (νu) (a� u | u?∗{d(x)=x!l(νz).[[w]]z} | u!d(νr).r � c)

τ−−→
(Note that r ∈ Nl)
Transmitting r on u (and renaming z to z′ to avoid duplicates) :

50

(νru) (a� u | u?∗{d(x)=x!l(νz).[[w]]z} | r!l(νz′).[[w]]z′ | r � c)
τ−−→

Transmitting z′ on r :
(νz′ru) (a� u | u?∗{d(x)=x!l(νz).[[w]]z} | c!l(νy).y � z′ | [[w]]z′)
c!l(νy)
−−−−−→
(νz′ru) (a� u | u?∗{d(x)=x!l(νz).[[w]]z} | y � z′ | [[w]]z′).
r has been “consumed” so its restriction can be removed through ≡. Also

moving the brackets to reach an interesting result we get :
Q | ((νz′) y � z′ | [[w]]z′).
The right component of the composition is related by R with the corre-

sponding one for P .
The development in case of a receptive name received on a is very similar,

there will just be one additional forwarding, much like in the case v = a.
Here is now an outline of a proof that the proof technique we used was

valid.
Let R̃ be the set of pairs
(C1[P1] | C2[P2] | . . . | Cn[Pn] ; C1[Q1] | C2[Q2] | . . . | Cn[Qn])
where ∀1 ≤ i ≤ n, Pi R Qi. We require the contexts to be of the form

(νx̃) ([·] | x̃� t̃).

Let XR̃Y and X
µ−−→ X ′

We won’t handle the case of an interaction between two terms of the
parallel composition because each term listens on a name that was created
fresh.

Now, if this transition happens inside Ci[Pi] then we can apply the proper-

ties ofR and see that we fall back on an (X ′;Y ′) pair of R̃ because combining
two contexts of the above form yields one context of the same form.

B.12 Substitution part II (Lemma 5.2.5.2)

This is proven by induction on the structure of P .
We will assume that x ∈ fn(P) otherwise neither substitution does any-

thing and we’d just have to prove (νu) ([[P]] | [[b]]u) &R [[P]]. Because
u 6∈ fn([[P]]) (as u is uniform) and u is restricted, [[b]]u couldn’t be triggered
so we’d have ∼R.

• P = 0
Because neither (νu) (0 | [[b]]u) nor 0 have any transition, the first one
trivially receptive-expands the second one.

51

• P = P1|P2.
Using the replication proposition (5.2.4) we get :
(νu) ([[P1|P2]]{u/x} | [[b]]u) =
(νu) (([[P1]]{u/x}|[[P2]]{u/x}) | [[b]]u) ∼R

((νu) ([[P1]]{u/x} | [[b]]u)) | ((νu) ([[P2]]{u/x} | [[b]]u)).
We assume (by induction) that the lemma is true for both Pi :
(νu) ([[Pi]]{u/x} | [[b]]u) &R [[Pi{b/x}]].
So, applying 4.2.10 twice on the expression above :
((νu) ([[P1]]{u/x} | [[b]]u)) | ((νu) ([[P2]]{u/x} | [[b]]u)) &R

([[P1{b/x}]]) | ((νu) ([[P2]]{u/x} | [[b]]u)) &R

([[P1{b/x}]]) | ([[P2{b/x}]]) =
[[(P1 | P2){b/x}]] = [[P{b/x}]].
Because we have X ∼R&R&R Y implies X &R Y the lemma is proven
for this case.
• P = (νa)P0

x ∈ fn(P) implies x 6= a.
If b = a then alpha-renaming can be used (by definition of substitution)
to avoid capture and we fall back on the general case. So, assuming
b 6= a :
By induction we suppose that the lemma is true for P0.
(νu) ([[P0]]{u/x} | [[b]]u) &R [[(P0{b/x})]]
The congruence properties give :
(νa) (νu) ([[P0]]{u/x} | [[b]]u) &R (νa) [[P0{b/x}]]
We have a ∈ Np and u ∈ Nu so a 6= u and we also have a 6∈ {b, x} so
the restriction can be pushed inside :
(νu) ([[(νa)P0]]{u/x} | [[b]]u) &R (νa) [[((νa)P0){b/x}]].
• P = a!v
x ∈ fn(P) implies either x = a or x ∈ n(v).
If x = a (In which case b has to be a simple name) :
we want to prove
(νu) ([[a!v]]{u/a}|u� b) &R [[b!v]]
Applying the encoding (calling X and Y the two sides of the expres-
sion) :
X = (νu) (u!c(νs).[[v]]s | u� b) &R b!c(νr).[[v]]r = Y .
X has exactly one transition which is to send s over u which yields
(νu) (b!c(νr).[[v]]r | u � b) where the forwarding can’t be activated
anymore so we have

52

X
τ−−→∼R Y which implies X &R Y as required.

We now suppose x ∈ n(v) (which contains exactly one name, ie we have
v = l1〈· · · ln〈x〉〉)
We want to prove (νu) ([[a!v]]{u/x} | [[b]]u) &R [[a!v{b/x}]].
Applying the encoding :
(νu) (a!c(νr).[[v]]r{u/x} | [[b]]u) &R a!c(νr).[[v{b/x}]]r.

Both sides have exactly one transition which is
a!c (νr)
−−−−−−→ and leads to :

(νu) ([[v]]r{u/x} | [[b]]u) &R [[v{b/x}]]r (1)

Let r′ be that fresh name that is used as a private reference to x in
[[v]]r (i.e. the last step of the development of [[v]]r is [[x]]r′ , and let
Cv[·] be the context defined by [[v{[·]/x}]]r where [[[·]]]r′ is [·].
We then have [[v]]r = Cv[r

′ � x].
(1) can then be rewritten as

(νu) (Cv[r
′ � u] | [[b]]u) &R Cv[[[b]]r′] (2)

The left hand side process is bisimilar to the corresponding one where
[[b]]u is moved inside the context, as we show now.
If v = x (ie v is a simple name) then Cv[·] = [·] and there is nothing to
change.
If v = l〈w〉 for some w, we have
(νu) (Cv[r

′ � u] | [[b]]u) = (νu) (r?∗{d(a)=a!l(νz).[[w]]z{u/x}} | [[b]]u).
Because there can only be input at u once there has been input at r,
we can move the restriction and [[b]]u after the input prefix :
(νu) (r?∗{d(a)=a!l(νz).[[w]]z{u/x}} | [[b]]u) ∼R

r?∗{d(a)=a!l(νz).(νu) ([[w]]z{u/x} | [[b]]u)}.
Doing the same operation for each layer (each corresponding to one
label in v) we have
(νu) (Cv[r

′ � u] | [[b]]u) ∼R Cv[(νu) r′ � u | [[b]]u].
Applying it on (2) :
Cv[(νu) (r′ � u | [[b]]u)] &R Cv[[[b]]r′]
By Lemma 4.2.10, this is true if the parameters of Cv[·] are related by
&R :
(νu) (r′ � u | [[b]]u) &R [[b]]r′ .
This is true by 5.2.5.1
• P = a?(v).P0

53

We have a 6∈ {x, v} because by hypothesis a ∈ fn(P) and P does not
receive on x.
We want to prove the following :
(νu) (a?{c(v)=[[P0]]{u/x}} | [[b]]u) &R a?{c(v)=[[P0{b/x}]]}
Similarly to the other cases we can move [[b]]u inside the input expres-
sion because no output at u can be done before any input at a :
a?{c(v)=(νu) ([[P0]]{u/x} | [[b]]u)} &R a?{c(v)=[[P0{b/x}]]}.
By 4.2.10 this is true if the same without the input prefix is true :
(νu) ([[P0]]{u/x} | [[b]]u) &R [[P0{b/x}]]. This is our induction hypothe-
sis.
• P = case v of {lj(xj)=Pj | j∈J}

We want to prove :
(νu)

(
(νt) [[v]]t | t!d(νa).a?{lj(xj) = [[Pj]] | j ∈ J}

)
{u/x} | [[b]]u

&R

(
(νt) [[v{b/x}]]t | t!d(νa).a?{lj(xj) = [[Pj{b/x}]] | j ∈ J}

)
Two cases : We either have v = x or v 6= x.

– v = x
We have [[v]]t = t� x so the whole expression is as follows :
(νu)

(
(νt) t� u | t!d(νr).r?{lj(xj) = [[Pj]]{u/x} | j ∈ J} | [[b]]u

)
&R (νt) (t!d(νr).r?{lj(xj) = [[Pj{b/x}]] | j ∈ J} | [[b]]t).

Let B be the process such that [[v]]u
u?d 〈r〉
−−−−−→≡ [[v]]u|B. We have

b 6∈ fn(B) and [[v]]t
t?d 〈r〉
−−−−−→≡ B (because t is linear)

If we transmit r over t in the left hand side it gets into
(νr) (νu)

(
u!d(νs).s� r | r?{lj(xj) = [[Pj]]{u/x} | j ∈ J} | [[b]]u

)
Removing the link :
&R (νu)

(
u!d(νr).r?{lj(xj) = [[Pj]]{u/x} | j ∈ J} | [[b]]u

)
.

Then transmitting r over u yields :
τ−−→ (νu)

(
r?{lj(xj) = [[Pj]]{u/x} | j ∈ J} | [[b]]u | B

)
Because u is only present in the input expression we can move u
into it :
∼R r?{lj(xj) = (νu) ([[Pj]]{u/x} | [[b]]u) | j ∈ J} | B
Concerning the right hand side :
(νt) (t!d(νr).r?{lj(xj) = [[Pj{b/x}]] | j ∈ J} | [[b]]t)
Transmitting r over t yields :
τ−−→ (νt) (r?{lj(xj) = [[Pj{b/x}]] | j ∈ J} | B)

because t has been consumed :
≡ r?{lj(xj) = [[Pj{b/x}]] | j ∈ J} | B

54

So to sum up we want to prove :
r?{lj(xj) = (νu) ([[Pj]]{u/x} | [[b]]u) | j ∈ J} | B &R

r?{lj(xj) = [[Pj{b/x}]] | j ∈ J} | B
which is true by induction hypothesis and &R-congruence.

– x 6∈ n(v)
In this case the u-related part (in the left hand side) can be moved
inside the input expression and then we use congruence lemma :
(νt) [[v]]t | t!d(νa).a?{lj(xj) = (νu) [[Pj]]{u/x} | [[b]]u | j ∈
J} &R (νt) [[v]]t | t!d(νa).a?{lj(xj) = [[Pj{b/x}]] | j ∈ J}
is true if
(νu) [[Pj]]{u/x} | [[b]]u &R [[Pj{b/x}]] which is true by induction
hypothesis.

B.13 πVa to TyCO Operational Correspondence (5.2.6)

1. Let P � P ′. We then have (by definition of �)
P ≡ (νx̃) case lk〈w〉 of {lj(xj)=Pj | j∈J} | P0 with k ∈ J and P ′ ≡
Pk{w/xk

}
So [[P]] ≡ (νx̃) (νr) ([[lk〈w〉]]r | r!d(νa).a?{lj(xj)=[[Pj]] | j∈J})|[[P0]]
= (νx̃) (νr) (r?{d(a) = a!lk(νs).[[w]]s} |

r!d(νa).a?{lj(xj)=[[Pj]] | j∈J}) | [[P0]]
We can transmit a over r :
(νx̃) (νr) (νa) (a!lk(νs).[[w]]s} | a?{lj(xj)=[[Pj]] | j∈J} | [[P0]])
Then s over a :
(νx̃) (νr) (νa) (((νs) [[w]]s | [[Pk]]{s/xk

}) | [[P0]])
By 5.2.5.2, (νs) [[w]]s | [[Pk]]{s/xk

} &R [[Pk{w/xk
}]] and by 4.2.10 this

can be applied to the whole process which is then &R

(νx̃) (νr) (νa) ([[Pk{w/xk
}]] | [[P0]]) ≡

(νx̃) ([[Pk{w/xk
}]] | [[P0]]) ≡ [[P ′]]

which is what we wanted.
Applying this many times we get : if P �∗ P̃ ′ then [[P]] =⇒&R [[P̃ ′]].

2. We will now prove each entry of point 2 assuming that P
µ−−→ P ′ did not

make use of (P-Case), then apply point 1 and show that it preserves
the results.
We can easily prove that if P

µ−−→ P ′ then there is P̃ ′ such that P �∗

P̃ ′
µ−−→ P ′ where the proof of P̃ ′

µ−−→ P ′ doesn’t make use of (P-Case)

(this is done by performing the case analysis required by P
µ−−→ P ′

55

in P �∗ P̃ ′ itself, and then no further case analysis is required so

(P-Case) isn’t used in P̃ ′
µ−−→ P ′)

(a) If P �∗ P̃ ′
a!v−−−→ P ′ then the proof used (Out), and possibly

some (Par1) and (Res) so we have P̃ ′ ≡ (νx̃) a!v | P0 with
({a}, n(v)) ∩ x̃ = ∅.
Then, [[P̃ ′]] ≡ (νx̃) a!c(νu).[[v]]u | [[P0]]

a!c (νu)
−−−−−−→≡

[[v]]u | (νx̃) [[P0]].

We also have P ′ ≡ (νx̃)P0 so [[P̃ ′]]
a!c (νu)
−−−−−−→≡ ([[v]]u | [[P ′]]).

So we have [[P]] =⇒&R

a!c (νu)
−−−−−−→≡ ([[v]]u | [[P ′]]) and then

[[P]]
a!c (νu)

======⇒&R ([[v]]u | [[P ′]])
(b) P �∗ P̃ ′

(νb) a!v
−−−−−−→ P ′

Then P̃ ′ ≡ (νx̃) a!v | P0 with a 6∈ x̃ and b ∈ x̃.

So, [[P̃ ′]] ≡ (νx̃) a!c(νu).[[v]]u | [[P0]]
a!c (νu)
−−−−−−→≡

[[v]]u | (νx̃) [[P0]].
We also have P ′ ≡ (νx̃ \ {b})P0 so

[[P̃ ′]]
a!c (νu)
−−−−−−→≡ (νb) ([[v]]u | [[P ′]]).

(We have to put back the restriction on b because the encoded
side does not extrude the scope of plain names)
Similarly to free output, adding case-reductions we get

[[P]]
a!c (νu)

======⇒&R (νb) ([[v]]u | [[P ′]])
(c) P �∗ P̃ ′

a?v−−−→ P ′ with n(v) fresh.
This case is more complex than other ones because receptive ex-
pansion would introduce a trigger name etc so we can’t use point
2 of this proposition like in the other cases. We need to know
dome details about the process structure.
The case reductions from P to P̃ ′ will select subprocesses of P and
apply some substitutions on them. Doing prior alpha renaming to
make bound names fresh we can define P0 to be the same as P̃ ′

before the substitutions took place : P̃ ′ = P0{w̃/̃r}.
On the encoded side we have [[P]] =⇒ (νũ) ([[w̃]]ũ | [[P0]]{ũ/̃r}).
We will then assume P0 = a?(y).Q, with a 6∈ r̃
So we have [[P]] =⇒ (νũ) ([[w̃]]ũ | a?{c(y)=[[Q]]}{ũ/̃r})
There may be additional restrictions and compositions but they
are preserved during the whole process, just as in the cases handled

56

previously, so we dropped them for clarity. If we have a replicated
input instead, then the proof is the same but just keeping the
replicated input instead of consuming it after the input took place.

P̃ ′
a?v−−−→ Q{w̃/̃r}{v/y} and, using (P-Case),

P
a?v−−−→ Q{w̃/̃r}{v/y} = P ′

And we have [[P]]
a?c 〈u〉

=====⇒ (νũ) ([[w̃]]ũ | [[Q]]{ũ/̃r}{u/y}) = Q′.
In the encoded side, to mimic an encoding of a transmission of v
we introduce an encoding of v from u :
(νũ) (νu) ([[v]]u | [[w̃]]ũ | [[Q]]{ũ/̃r}{u/y})
Applying 5.2.5.1 as many times as required (once for each x̃ and
once for r. Because all ũ and u were chosen fresh there is no name
collision problem), we have (νu) ([[v]]u | Q′) &R [[P ′]].

3. (a) Let [[P]]
a!c (νu)
−−−−−−→ Q.

The only output generated by the encoding is the [[a!v]] rule, and
the only rules that will keep this output available are [[P1|P2]] and
[[(νa)P]]. So we have P ≡ (νx̃) a!v | R.
Let n(v) = {b}.
Note that we can have b ∈ x̃ !
We have [[P]] ≡ (νx̃) (a!c(νu).[[v]]u | [[R]]).

[[P]]
a!c (νu)
−−−−−−→ (νx̃) ([[v]]u | [[R]]) = Q

First case, if b 6∈ x̃, we get

P
a!v−−−→≡ (νx̃)R = P ′ and Q ≡ [[P ′]]|[[v]]u

Second case, if b ∈ x̃, we have to use rule (Open) and get

P
(νb) a!v
−−−−−−→≡ (νx̃ \ b)R = P ′ and Q ≡ (νb) ([[P ′]]|[[v]]u).

(b) Let [[P]]
a?c 〈u〉
−−−−−→ Q.

The only rules of the encoding that generate an (observable) in-
put are [[a?(x).P]] and [[a?∗(x).P]] and the input availability is
preserved by parallel composition and restriction, just like the
previous case.
We will handle the replicated case only, the single input one is
similar. So we have :

• P ≡ (νx̃) (a?∗(x).P0 | R)

• P
a?(v)
−−−−→ (νx̃) (a?∗(x).P0 | P0{v/x} | R) = P ′

• [[P]] ≡ (νx̃) (a?∗{c(x)=[[P0]]} | [[R]])

57

• [[P]]
a?c 〈u〉
−−−−−→≡ (νx̃) (a?∗{c(x)=[[P0]]} | [[P0]]{u/x} | [[R]]) =

Q

Making v available on the encoded side we get
(νu) ([[v]]u | Q) ≡
(νu) ([[v]]u | (νx̃) (a?∗{c(x)=[[P0]]} | [[P0]]{u/x} | [[R]])) ≡
(νx̃) (a?∗{c(x)=[[P0]]} | (νu) ([[v]]u | [[P0]]{u/x}) | [[R]]) &R

(νx̃) (a?∗{c(x)=[[P0]]} | (νu) ([[P0{v/x}]] | [[R]]) |) ≡ [[P ′]]

(c) Let [[P]]
τ−−→ Q.

This can happen because of an input/output pair transcripted
from the source (πVa) process or a transmission of the r name over
u in the process encoding a case expression.
So we have P ≡ (νx̃) (Pi | Po | R), where Pi does the input and
Po does the output.
[[P]] ≡ (νx̃) ([[Pi]] | [[Po]] | [[R]]) with

[[Pi]]
a?c 〈u〉
−−−−−→ Qi and [[Po]]

a!c (νu)
−−−−−−→ Qo which gives [[P]]

τ−−→
(νx̃) (((νu)Qi | Qo) | [[R]]) = Q
We now assume that the output of Po is bound, as specified in the
lemma
Using the previously proven points of this lemma we have

Po
(νb) a!v
−−−−−−→ P ′o and Pi

a?(v)
−−−−→ P ′i , with

Qo ≡ (νb) ([[P ′o]]|[[v]]u) and (νu) (Qi|[[v]]u) &R [[P ′i]]
So the transition on the source side is
P

τ−−→≡ (νx̃) (((νb)P ′i | P ′o) | R) = P ′.
We now compare it with Q :
The relation between Qo and P ′o gives
Q ≡ (νx̃) (((νu)Qi | ((νb) ([[P ′o]]|[[v]]u))) | [[R]])
We have b 6∈ fn(Qi) so
Q ≡ (νx̃) (((νu, b)Qi | [[P ′o]] | [[v]]u) | [[R]])
Because u 6∈ fn(P ′o) (no encoded process has free receptive names)
Q ≡ (νx̃) (((νb) ((νu)Qi | [[v]]u) | [[P ′o]]) | [[R]])
Applying the Qi - P ′i relation above :
Q &R (νx̃) (((νb) [[P ′i]] | [[P ′o]]) | [[R]]) = [[P ′]]
Which is completes the proof in the case of a communication on
names of the original process.
We now prove the case where the transition is handling a case
reduction.

58

We have P ≡ (νx̃) case lk〈w〉 of {lj(xj)=Pj | j∈J} | R. (k ∈ J).
The rest follows just as in point 1 of this proof.

B.14 πVa -TyCO Encoding Full Abstraction (5.2.7)

For shortness we will assume that we are working on processes for which 5.2.6
holds and not mention its side conditions.

We first prove that the set of pairs ([[P1]]; [[P2]]) with P1 ≈ P2 is a recep-
tive bisimilarity up to context.

All cases work the same way, starting from a transition on the TyCO side
we first apply point 3 of the operational correspondence to get the behavior
on the πVa side, then use the definition of weak bisimilarity to move from the

1 side to the 2 side and then apply point 2 of the operational correspondence
to get the behavior of [[P2]]. In all cases the resulting processes Q1 and Q2

are weakly receptive bisimilar respectively to C[[[P ′1]]] and C[[[P ′2]]], for some
context.

Let P1 ≈ P2 and [[P1]]
µ−−→ Q1.

1. µ = a!c(νu) :
This might be for a bound output or a free output on the πVa side. We
will assume it is bound output, and the proof in case of free output is
the same just removing the restriction.
By 5.2.6.3, there are b, v and P ′1 such that (νb) ([[P ′1]] | [[v]]u) ≡ Q1

and P1

(νb) a!v
−−−−−−→ P ′1.

By ≈, there is P ′2 s.t. P2
(νb) a!v

======⇒ P ′2 with P ′1 ≈ P ′2.
By 5.2.6.2 (both input and τ cases), there is Q2 s.t.
Q2 &R (νb) ([[P ′2]] | [[v]]u).

2. µ = a?c〈u〉 :

By 5.2.6.3, P1

a?(v)
−−−−→ P ′1 with (νu) ([[v]]u | Q1) &R [[P ′1]].

By ≈, P2

a?(v)
−−−−→ P ′2 with P ′1 ≈ P ′2.

By 5.2.6.2, [[P2]]
a?c 〈u〉

=====⇒ Q2 with (νu) ([[v]]u | [[Q2]]) &R [[P ′2]].
Taking v = t (t being some fresh trigger name), we meet the require-
ments of weak receptive bisimilarity (using identity instead of =⇒ in
clause (b)).

3. µ = τ :

59

By 5.2.6.3, we either have P1
τ−−→ P ′1 with Q1 &R [[P ′1]] or P1 � P ′1,

Q1
τ−−→ Q′1 with Q′1 &R [[P ′1]].

In first case, weak bisimilarity gives P2 =⇒ P ′2 with P ′1 ≈ P ′2. In second
case we have P ′1 ≈ P2 (because A� B implies A ∼ B, as a consequence
of lemma 2.2.5). In that second case, let P ′2 = P2.

So, by 5.2.6.2, [[P2]]
Q2

===⇒ with Q2 &R [[P ′2]]

We will now prove the other direction.
On the encoded side the values aren’t directly transmitted, fresh refer-

ences u are used instead. This means that when a value is sent, no matter
what it is and if it is bound or not, the transition on the encoded side will
be the same.

However the contents of this value can then be accessed by sending a d
message to u, and the result of this must be preserved by the [[Pi]] weak
receptive bisimilarity.

Lemma B.14.1. Let P1 = (νx̃1) ([[v1]]u | R1) ≈R (νx̃2) ([[v2]]u | R2) = P2

(u ∈ Nu)
Let n(vi) = {bi}.
We then have v1 = v2 (so b1 = b2) and b1 ∈ x̃1 iff b2 ∈ x̃2.

Proof. Three cases.

1. v1 = b1 and b1 6∈ x̃1, then
We send a query to u with a fresh t :

P1 = (νx̃1) (u� b1 | R1)
u?d 〈t〉
−−−−−→

The answer is an output at b1 with a new name t′ :

(νx̃1) (u� b1 | b1!d(νr).r � t | R1)
b1!d(νr)
−−−−−−→

We check that this name is linked to “our” name (t) sending a query
to it :

(νx̃1) (u� b1 | r � t | R1)
r?l〈t′〉
−−−−−→

As an answer we get an output at our fresh t which is what we required.

(νx̃1) (u� b1 | t!l(νr′).r′ � t′ | R1)
t!l(νr′)
−−−−−−→.

2. if v1 = l〈w〉.
We send a query to u with a fresh t :

P1 = (νx̃1) (u?{d(a) = a!l(νs).[[w]]s} | R1)
u?d 〈t〉
−−−−−→

As answer there is an output at t with a reference to the embedded
value w :

60

(νx̃1) (u?{d(a) = a!l(νs).[[w]]s} | t!l(νs).[[w]]s} | R1)
t!l(νs)
−−−−−→

The same protocol can be ran to analyse the w value :
(νx̃1) (u?{d(a) = a!l(νs).[[w]]s} | [[w]]s | R1) ≡
(νx̃1) ([[w]]s | ([[v]]u|R1))

3. v1 is a simple name that is part of x̃1, then we can’t get an answer to

a query at u (
u?d 〈t〉
−−−−−→), ie no transition involving t in output can occur

after this one.

If we have P1 ≈R P2 then P2 must have the same sequence of transitions,
so, because all three cases can always be distinguished from each other, we
must have the same values v1 v2, up to alpha-renaming in case b1 is bound
in x̃1 (in which case b2 must be bound as well otherwise P2 would respond
in case 1 instead of case 3)

We assume [[P1]] ≈R [[P2]]. Let P1
µ−−→ P ′1.

1. µ = a!v or µ = (νb) a!v

By 5.2.6.2, we have [[P1]]
a!c (νu)

======⇒ Q1 with Q1 &R (νb) ([[P ′1]] | [[v]]u)
or the same without the restriction.

By ≈R, we have [[P2]]
a!c (νu)

======⇒ Q2 with Q2 ≈R Q1.
The only observable output of an encoded process is produced by the
[[a!v]] rule, and it is kept observable by parallel composition and re-
striction so we have

[[P2]] ≡ (νx̃) (a!c(νu).[[w]]u | [[R]])
a!c (νu)
−−−−−−→

(νx̃) ([[w]]u | R) ≈R (νb) ([[v]]u | [[P ′1]])(or without the (νb)) (3)

Applying the above lemma we get n(w) ⊆ x̃ if and only if the b restric-
tion is there, and v = w up to alpha-renaming in case it is restricted.

We have P2 ≡ (νx̃) (a!w | R)
µ−−→ (νx̃ \ n(w))R = P ′2

Removing the v encoding and if needed the restricted name from both
sides of (3) we get [[P ′2]] = (νx̃ \ n(w))R ≈R [[P ′1]]

2. µ = a?(v)

By 5.2.6.2, [[P1]]
a?c 〈u〉

=====⇒ Q1 with (νu) ([[v]]u | Q1) &R [[P ′1]].

By ≈R, [[P2]]
a?c 〈u〉

=====⇒ Q2, (νu) (u � t | Q2) =⇒ (νu) (u � t | Q′2) (t
fresh) with (νu) (u� t | Q1) ≈R (νu) (u� t | Q′2).

61

We can replace u � t by (νt) (u � t | [[v]]t) and still have the same
transitions and the latter, by 5.2.5.1, &R [[v]]u.
This gives (νu) ([[v]]u | Q2) =⇒ (νu) ([[v]]u | Q′′2) (we can haveQ′2 6= Q′′2)
with (νu) ([[v]]u | Q1) ≈R (νu) ([[v]]u | Q′′2).

5.2.6.3 gives P2
a?(v)

====⇒ P ′2 with (νu) ([[v]]u | Q2) &R [[P ′2]].
The additional transitions (νu) ([[v]]u | Q2) =⇒ (νu) ([[v]]u | Q′′2) have
to be reflected :
[[P ′2]] =⇒ P̃ ′′2 ≈R (νu) ([[v]]u | Q′′2) and operational correspondence gives

P ′2 =⇒ P ′′2 and [[P ′′2]] ≈R P̃
′′
2 .

As a summary we have P2
a?(v)

====⇒ P ′′2 ≈R P̃ ′′2 ≈R (νu) ([[v]]u | Q′′2) ≈R

(νu) ([[v]]u | Q1) &R [[P ′1]]
3. µ = τ

5.2.6.1 can be weakened like this : if P � P ′ then [[P]] &R [[P ′]] (that
is because the two τ transitions used to process the case reduction work
internally and are deterministic)
So the τ case of 5.2.6.3 can be weakened like this : ∀P,Q.[[P]] =⇒ Q
implies there is P ′ with P =⇒ P ′ and Q &R [[P ′]].
By 5.2.6.2, [[P1]]

τ
==⇒ Q1 with Q1 &R [[P ′1]].

By ≈R, [[P2]] =⇒ Q2 with Q1 ≈R Q2.
Using the weakened τ operational correspondence we get
P2 =⇒ P ′2 with Q2 &R [[P ′2]].
So [[P ′1]] ≈R [[P ′2]].

References

[Bor98] M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Cal-
culi. Theoretical Computer Science, 195(2):205–226, 1998. An extended ab-
stract appeared in Proceedings of CONCUR ’96, LNCS 1119: 163–178.

[Mer00] M. Merro. Locality in the π-calculus and applications to distributed objects.
PhD thesis, Ecole des Mines, France, October 2000.

[MPW92] R. Milner, J. Parrow and D. Walker. A Calculus of Mobile Processes, Part I/II.
Information and Computation, 100:1–77, Sept. 1992.

[MS98] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In K. G.
Larsen, S. Skyum and G. Winskel, eds, Proceedings of ICALP ’98, volume 1443
of LNCS, pages 856–867. Springer, July 1998.

[Nes00] U. Nestmann. What Is a ‘Good’ Encoding of Guarded Choice? Information
and Computation, 156:287–319, 2000. An extended abstract appeared in the
Proceedings of EXPRESS ’97, volume 7 of ENTCS.

62

[NP00] U. Nestmann and B. C. Pierce. Decoding Choice Encodings. Information and
Computation, October/November 2000. To appear. Available as report BRICS-
RS-99-42, Universities of Aalborg and Århus, Denmark, 1999.

[Pal97] C. Palamidessi. Comparing the Expressive Power of the Synchronous and the
Asynchronous π-calculus. In Proceedings of POPL ’97, pages 256–265. ACM,
Jan. 1997.

[San93] D. Sangiorgi. From π-calculus to Higher-Order π-calculus — and back. In
M.-C. Gaudel and J.-P. Jouannaud, eds, Proceedings of TAPSOFT ’93, volume
668 of LNCS, pages 151–166. Springer, 1993.

[San96] D. Sangiorgi. π-Calculus, Internal Mobility and Agent-Passing Calculi. Theoret-
ical Computer Science, 167(1,2):235–274, 1996. Also as Rapport de Recherche
RR-2539, INRIA Sophia-Antipolis, 1995. Extracts of parts of the material con-
tained in this paper can be found in Proceedings of TAPSOFT ’95 and ICALP
’95.

[San98] D. Sangiorgi. An Interpretation of Typed Objects into Typed π-Calculus. In-
formation and Computation, 143(1):34–73, 1998. Earlier version published as
Rapport de Recherche RR-3000, INRIA Sophia-Antipolis, August 1996, and
presented at FOOL 3.

[San99a] D. Sangiorgi. The Name Discipline of Uniform Receptiveness. Theoretical Com-
puter Science, 221(1–2):457–493, 1999. An abstract appeared in the Proceedings
of ICALP ’97 , LNCS 1256, pages 303–313.

[San99b] D. Sangiorgi. The Typed π-Calculus at work: A Proof of Jones’s Parallelisa-
tion Theorem on Concurrent Objects. Theory and Practice of Object-Oriented
Systems, 5(1), 1999. An early version was included in the Informal proceedings
of FOOL 4, January 1997.

[Vas94] V. T. Vasconcelos. A process-calculus approach to typed concurrent objects.
PhD thesis, Keio University, 1994.

63

