
Activeness and Responsiveness in Mobile Processes

Maxime Gamboni∗ ‡, António Ravara‡

‡SQIG, Instituto de Telecomunicações and Mathematics Department, IST, Technical University of Lisbon
Tel. +351-218417148 Fax. +351-218499242

E-mail: maxime@gamboni.org, amar@math.ist.utl.pt

Abstract — In mobile processes, a channel can be ac-
tive (able of sending/receiving) or responsive (provide a
reply to, or parameters for, a request), or both. It has a
multiplicity such as ω (usable arbitrarily many times) or
plain (unrestricted behaviour).

The context the process will be running in is sim-
ilarly described, specifying to what extent third-party
processes may interfere.

We outline semantic definitions of the properties, and
a sound, compositional, type system enjoying subject-
reduction, which verifies that, in a given process, chan-
nels behave as specified, and indicates, when applicable,
what should be provided to the process before the prop-
erties hold.

I. INTRODUCTION

When reasoning about process behaviour one often
needs to know (or enforce) certain properties of (to) given
names, but not to all of them, and moreover, different names
may require different properties. Furthermore, imposing
properties on names instead of on processes allows more
liberal process behaviour (e.g., a process may have deter-
ministic names without being deterministic itself). This ap-
proach eases the verification of liveness properties, and is,
for instance, often crucial to ensure full abstraction results
when defining calculi encodings, like for checking the cor-
rectness of an encoding of non-deterministic processes han-
dling deterministic values. The setting of our work is the
(polyadic) π-calculus [MPW92, Mil93]. Specifically, chan-
nel properties described in the current work are activeness
(ability to send or receive) and responsiveness (ability to
provide a reply to, or parameters for, a request).

In addition to non-homogeneity (having processes inter-
act both at highly constrained and at unconstrained chan-
nels), a process may interact on channels whose remote side
are assumed to be provided by the environment (through
process composition), which means that we need a descrip-
tion of the environment behaviour before any guarantees

∗This work is partially supported by SQIG - IT and IST, Portugal,
by Fundação para a Ciência e a Tecnologia (via CLC and the project
Space-Time-Types, POSC/EIA/55582/2004), as well as Sensoria (IST-
2005-16004).

can be given about the process. Such a description is in-
cluded in process types and channel types. Each channel
may also have multiplicity constraints on both input and
output polars. For instance, channels to be used as uni-
form servers are ω (used uniformly and an arbitrary num-
ber of times) on input and plain (not having any constraint)
on output. Finally, to each channel is associated a contract
specifying both what to expect of the remote side and what
should be provided locally. Given a process P , a set of
channel types Σ and optional multiplicity information, the
type system either fails (in case the process doesn’t match
the requirements), or builds a process type Γ containing Σ
and a dependency network Ξ, that indicates which channels
are active (resp., responsive), and, when applicable, what
is additionally required from the environment. In all cases,
that dependency network satisfies the semantic definitions
of activeness and responsiveness.

Our main contributions are: (1) a channel-based ap-
proach, providing a non-homogeneous combination of
properties of channels; (2) the possibility of describing the
intended behaviour of a process context to guarantee a (con-
ditional) property; (3) a notion of activeness, which pro-
vides stronger guarantees than ((non-)uniform) receptive-
ness of Amadio et al. and Acciai and Boreale’s responsive-
ness, as well as a notion of conditional activeness which
generalises them. (4) a sound type checking system that
is compositional (in the sense that applying to a process a
constructor does not imply to retype the whole process). We
illustrate the main technical notions with running examples
that we incrementally analyse. These examples also high-
light the expressiveness of our approach since they are not
fully or correctly analysed by related approaches. The in-
terested reader may find the precise definitions, results and
proofs in a technical report [GR09].

II. CALCULUS

A. Processes

Our target calculus is the choice-free synchronous
polyadic π-calculus, where processes P have inputs
a(ỹ).P , outputs a〈x̃〉.P , parallel composition P1|P2, bind-
ing (νx)P , replication !P and the idle process 0. We use
an early labelled transition system adapted from [SW01],

1

and labels, ranged over by µ, are inputs a(x̃), outputs
(νz̃) a〈x̃〉 and reductions τ .Consider the following running
example:

P1 = a.b〈tu〉 | t.ū.s̄ (1)

We show in the next sections that s is (output) active
provided that, in the process environment, either a is output
active and b input active and responsive, or t is output active
and u input active.

B. Types

Channel Types describe the behaviour of a process at a
channel, and process types describe the behaviour of a pro-
cess globally. To a name a is associated a channel type
recording the parameter types and multiplicities, as well as
a protocol describing how a’s input and output may nego-
tiate receivers (and senders) at the parameters. A resource
(ranged by α, β, γ) is a property k at a port p, and is writ-
ten pk, k being one of A (activeness — a receiver or sender
is available at the port) and R (responsiveness — inputs
respond to the queries they receive, and outputs provide re-
ceivers at their parameters). In (1), s̄A becomes available
only after t̄A and uA are provided. This information is
written (t̄AuA) < s̄A. A channel type (ranged over by
σ) is written (σ̃; ξI ; ξO), where σ̃ is the channel types of
the parameters and ξI and ξO form the protocol, describ-
ing what is provided by the input and the output side of the
channel, respectively. For example (1), a, t, u and s have
the parameterless type σ0 = (∅; ∅; ∅), and b has the type
σb =

(
σ0σ0; 1̄F

A, 2
F
A; 1, 2̄

)
. As the parameters on b’s input

side are declared plain and active, any b input must provide
at least one (t-output and u-input).

A process type is very similar to a channel type, except
that it refers to channels by their name rather than by num-
bers. Indeed, the type of a process P is similar to what
would be the type of channel z in z(x̃).P , where x̃ = fn(P)
and z 6∈ x̃. The process corresponds to the input side of the
z channel, and the output side of that channels abstracts the
environment of the process. The process type for example
(1) is Γ1, equal to

((a, t, u, s) :σ0, b :σb ; aA, āA<b̄A, āAbAR<t̄A,

āAbAR<uA, (t̄AuA)|(āAbAR)<s̄A ; (ab̄tūs̄)0bωās) (2)

where the dependency statement for s̄A formalises the de-
scription of (1) given in the introduction.

A product operator for process types, describes the effect
of composing two processes. For instance, composing (2)
with a type for

a.! b(xy).x.y (3)

yields a process type where s̄A’s dependency is 0.

C. Typed Transition System

We lift the transition system on typed processes, to rule
out transitions that force the process to behave badly, and
obtain good safety properties for labelled transitions, as
well as predict the effect of a transition on a process. The
predicted effect of a µ-transition on a process with type Γ
is given by Γ \ µ. A typed process being a pair formed by a
process type and a process, we write (Γ;P)

µ
−−→ (Γ′;P ′) if

P
µ
−−→ P ′ and Γ′ = Γ \ µ is well-defined. Taking example

(1) but (as will be justified later) with āA and bAR added in
the remote side of Γ1 (2). (Γ1;P1)

a−−→ (Γ′1; b〈tu〉 | t.u.s),
where Γ′1 is like Γ1 but with ¬a0

A and ¬ā0
A replacing

aA and ā1
A in the local and remote components, respec-

tively. (Γ′1; b〈tu〉 | t.u.s)
b〈tu〉
−−−−−→ (Γ′′1 ; t.u.s), where b̄’s

local multiplicities change from 1 to 0 and b̄A drops.
Then, t̄A, uA moves from the local to the remote side:
it’s no longer a local assumption of remote behaviour,
but an actual remote behaviour, and we obtain Γ′′1 =(
Σ; (t̄AuA)|(āAbAR)<s̄A,¬(t̄AuA); (aābtūs̄)0bω t̄FAu

F
As

)
.

III. SEMANTIC PROPERTIES

A. Activeness

An activeness strategy for a port p is a function map-
ping processes to transition label-process pairs (if f(P) =
(µ;P ′) then (Γ;P)

µ
−−→ (Γ′;P ′)) that “shows the way”

to a process where it is immediately available. We say
that p is active in P if there is a strategy f such that,
in any transition sequence that follows f an infinite num-
ber of times, p eventually becomes immediately available.
To prove availability of a resource γ conditional on some
ε we modify the process type to declare that ε is avail-
able in the remote side, then prove that γ is available
without conditions in the resulting typed process. For ex-
ample, to prove the āA&bAR < s̄A statement in (2),
let Γs̄ be equal to Γ1 but with 0āA and 0bAR added
to ΞR. Then f defined as follows is a strategy for s̄.
∀Q ∈ {t.ū.s̄ , ū.s̄ , s̄}: f(a.b〈tu〉|Q) = (a; b〈tu〉|Q) and
f(b〈tu〉|Q) = (b〈tu〉;Q). Then, f(t.ū.s̄) = (t; ū.s̄),
f(ū.s̄) = (ū; s̄) and f(P ′) = (∅;P ′) in all other cases.
The strategy is to first send the request on b̄ and then con-
sume s̄’s prefixes. It might be tempting to try consuming s̄’s
prefixes directly but t̄A and uA are only made available in
ΞR by the b〈tu〉 transition, as seen in the previous section.

B. Responsiveness

To show responsiveness of a port p we replace the en-
tire dependency network of the process type by just 0pR,

2

and require the type to be valid for any transition sequence
starting from that type. The effect of the transitions µ̃ will
extend that statement to include all the expected behaviour
of P at p. Well-chosen transition sequences µ̃′ permit “ex-
ploring” any part of the channel type. For example, (taking
a : σa), b is responsive in (3) — the effect of the transition

sequence
ā−−→

b(tu)
−−−−−→ expands (using σa’s input side) 0bR

into {0t̄A, tA < ūA}, and both statements can be verified
on the resulting process t̄.u.

IV. TYPE SYSTEM

A. Labelled Dependencies

Responsiveness must be computed assuming the remote
side is available and respects the channel type. So in (1),
when computing b̄R’s dependencies, t̄A is assumed to be
available, although, when considered on its own, t̄A de-
pends on both bA and bR. We use the label annotations
l : and ¬l : to describe this. A labelled dependency l : ε is
equivalent to ε on its own except that, inside ε, dependen-
cies marked with a conditional dependency ¬l : ε′ are irrel-
evant and treated like 0. Reciprocally, that conditional de-
pendency is equivalent to ε′ unless found in a region marked
with l, in which case it is equivalent to 0.

Example (1) may now be described with l : (tAūA) ≤
b̄R, ¬l : (āAbAR) < t̄A, (t̄A&¬l : (āAbAR)) < uA,
0tA and t̄A < ūA. Substituting tA by 0 and ūA by t̄A in
the output responsiveness statement gives l : (t̄A) ≤ b̄R as
before. Substituting t̄A by ¬l : bAR yields l : (¬l : bAR) <
b̄R which is equivalent (by simplifying the labels) to 0b̄R,
i.e. b is output responsive in the process.

B. Typing

The typing derivation for (1) is as follows: Process
b〈tu〉 has type

(
b : σb; ; b1b̄1

)
� b̄A � l : 0b̄R � ¬l :

bAR < (t̄FA, u
F
A) � ¬l : bA.∅, where the terms respec-

tively stand for b’s type and multiplicities, b’s output
activeness, output responsiveness (vacuously satis-
fied as σb doesn’t have properties on the output side),
the expected answer (obtained from σb and depend-
ing on remote activeness and responsiveness), and the
(empty) continuation. Composing the factors yields(
b : σb; b̄A, l : 0b̄R,¬l : bAR < (t̄FA, u

F
A); t1t̄0u0ū1b1b̄0

)
.

For a.b〈tu〉, the type system just adds a statement 0aA,
and adds a āA < dependency to b̄A, t̄A and uA. We sim-
ilarly obtain

(
tus : σ0; tA, t̄A < ūA, t̄AuA < s̄A; s0s̄1

)
for t.ū.s̄. The multiplicities for t and u are automati-
cally obtained thanks to b〈tu〉. Finally, composing the
two statements we get Γ1 as given in (2). The depen-

dencies for s̄A are obtained by substituting t̄A < with
(t̄A <)|(aA&¬l : bAR <) and similarly for uA.

C. Properties

In addition to type soundness, the type system enjoys
weak subject reduction for labelled transitions. Given
(Γ;P)

µ
−−→ (Γ2;P ′), if (Γ;P) is accepted by the type sys-

tem, there is a strengthening Γ′ of Γ2 (with possibly less
dependencies) that is accepted by the type system for P ′.

V. CONCLUSIONS AND RELATED WORK

In this paper we outlined a notation for channel and pro-
cess types in the π-calculus, semantics for activeness and
responsiveness, and a (sound) type system analysing such
process behaviour. Dependency networks in process types
accurately specify the interface of the process with the en-
vironment, so that having typed P and Q independently,
their types can be composed to obtain P |Q’s type without
needing to type check from scratch. Labelled dependencies
permit improving the accuracy of a type checking analysis
by breaking dependency transitivity where it is not relevant.
One strong point of our work is a high expressiveness —
not only the types of all papers we surveyed (except channel
usages [Kob02]) can be encoded in our notation, it allows a
more detailed specification of the protocol used on a chan-
nel and capabilities being transmitted. Another strong point
is detailed process types constructed by the type system —
rather than merely rejecting or accepting a process, the type
system will say separately for each resource if it is available
or not, or if it requires additional resources to be provided
by a third-party process.

In brief, we compare our work to other closely related.
Sangiorgi’s uniform receptiveness [San99]. A name x is

uniformly receptive for a process P if: (1) at any time P is
ready to accept an input at x, at least as long as processes
could send messages at x; (2) the input offer at x is func-
tional. A type discipline checks linear and persistent names.
Receptive names corresponds, in our terminology, to input
active names. The type system is typing what we call strong
activeness (only identity strategies are considered), and ty-
pability in our type system strictly implies in his.

Amadio et al.’s type discipline of non-uniform receptive-
ness entails message deliverability (every emitted message
has the possibility of being received) [ABL02]. Type disci-
pline enforces every resource to be persistent. All names are
(in our terminology) plain output and non-uniform strong
active ω input. Their work is mainly interesting in the dis-
tributed setting [ABL03] — restricting it to a local setting
would reduce to the essentially syntactic check that all out-
puts have at least one corresponding unguarded input. How-

3

ever, non-uniform ω-activeness can’t be presently charac-
terised in our type system.

Acciai and Boreale’s responsiveness [AB08a]. An agent
uses a channel name r responsively if a communication
along r is guaranteed eventually to take place. Respon-
siveness is achieved by combining techniques for dead-
lock and livelock avoidance with linearity and receptive-
ness. Their setting is simpler and less expressive than ours,
in that it works on monadic synchronous π, I/O alternating
and doesn’t consider combinations of active and non-active
names. On the other hand, their type system is more pow-
erful, in that it handles unbounded recursion.

Acciai and Boreale’s spatial and behavioural type sys-
tem [AB08b] combines ideas from spatial logics and from
[IK01]. Their systems relies on spatial model checking, but
properties — both safety and liveness ones — are checked
against types rather than against processes. Implementation
and complexity issues, as well as the degree of complete-
ness of the approach, are not treated, but naturally one ex-
pects a type checking system to be simple to implement and
be of low complexity.

Kobayashi’s TyPiCal [Kob08] is an implementation of a
lock-freedom type system. Although it also performs ter-
mination and information flow analysis we are particularly
interested in its lock-freedom analysis. This property is
related to activeness: p is livelock-free if and only if the
complement port p̄ is active. Channel usages are more gen-
eral than our multiplicities, and tell for a particular channel
how many times the input and output ports are used, and
in what order. There is no subsumption relation either way
between our system and the one implemented by TyPiCal.
On the one hand, the usage information is strictly more ex-
pressive than multiplicities. This permits for instance TyPi-
Cal to handle locks correctly, unlike our system that would
dismiss locks as plain and unreliable names. On the other
hand, labelled dependencies permit an accurate analysis of
processes such as (1). TyPiCal incorrectly marks the b in-
put as unreliable (not livelock-free). Finally, TyPiCal does
not handle recursive types that would be required to analyse
processes like a〈a〉 or ! a(x).x〈a〉 but we believe it would
be a rather simple extension, as was the case for our system.

Igarashi and Kobayashi’s Generic Type System [IK01]
is a framework for type-checking various safety properties
such as deadlock-freedom or race-freedom. It works with
abstract processes — a simplified form of the target pro-
cess — and soundness theorems establishing that if the ab-
straction is well-behaved then so is the actual process. It
is particularly useful for safety properties as subject reduc-
tion is proven once and for all. In contrast, our type system
is focused on liveness properties like activeness or termi-
nation so that showing the validity of a dependency analy-
sis done on the abstract process and the correspondence be-
tween activeness in the abstract process and the actual one

would likely require the same amount of work as starting
from scratch.

REFERENCES

[AB08a] L. Acciai and M. Boreale. Responsiveness in process calculi.
Theoretical Computer Science, 409(1):59–93, 2008.

[AB08b] L. Acciai and M. Boreale. Spatial and Behavioral Types in
the Pi-Calculus. In Proceedings of the 19th international con-
ference on Concurrency Theory, volume LNCS 5201, pages
372–386. Springer, 2008.

[ABL02] R. M. Amadio, G. Boudol and C. Lhoussaine. On message
deliverability and non-uniform receptivity. Fundamentæ Infor-
matica, 53(2):105–129, 2002.

[ABL03] R. M. Amadio, G. Boudol and C. Lhoussaine. The receptive
distributed π-calculus. ACM Transactions on Programming
Languages and Systems, 25(5):549–577, 2003.

[GR09] M. Gamboni and A. Ravara. Non-Homogeneous Channel Be-
haviour in Mobile Processes. Technical Report, SQIG —
IT and IST, Technical University of Lisbon, Portugal, 2009.
http://gamboni.org/files/incremental.pdf.

[IK01] A. Igarashi and N. Kobayashi. A generic type system for the
Pi-calculus. ACM SIGPLAN Notices, 36(3):128–141, 2001.

[Kob02] N. Kobayashi. Type systems for concurrent programs. In Pro-
ceedings of UNU/IIST 10th Anniversary Colloquium, volume
2757 of LNCS, pages 439–453. Springer, 2002.

[Kob08] N. Kobayashi. TyPiCal 1.6.2, 2008.
http://www.kb.ecei.tohoku.ac.jp/ koba/typical/.

[Mil93] R. Milner. The Polyadic π-Calculus: A Tutorial. In Logic
and Algebra of Specification, Proceedings of the International
NATO Summer School (Marktoberdorf, Germany, 1991), vol-
ume 94 of NATO ASI Series F. Springer, 1993.

[MPW92] R. Milner, J. Parrow and D. Walker. A calculus of mobile pro-
cesses, I and II. Information and Computation, 100(1):1–77,
1992.

[San99] D. Sangiorgi. The Name Discipline of Uniform Receptiveness.
Theoretical Computer Science, 221(1–2):457–493, 1999.

[SW01] D. Sangiorgi and D. Walker. PI-Calculus: A Theory of Mobile
Processes. Cambridge University Press, 2001.

4

