
Responsive Choice in Mobile Processes

Maxime Gamboni and António Ravara

May 25, 2009

Responsiveness

In the π-calculus [MPW92], activeness is the ability
to get in contact with a process through a partic-
ular channel, and responsiveness is the ability to
conduct a conversation, or session, through that
channel. The latter is of course strongly depen-
dent on the type of the channel. These have been
widely studied concepts, dating back from San-
giorgi’s receptiveness [San99], and closely related
to Acciai and Boreale’s responsiveness [AB08] or
Kobayashi’s livelock freedom [Kob02]. A common
approach is to ensure there are no livelocks by as-
signing levels to name occurrences, effectively cal-
culating in which order they become active.

We are particularly interested in conditional ac-
tiveness, specifically in statements such as γ / ε,
where γ and ε are logical statements on channel ac-
tiveness, and the whole meaning “γ holds provided
ε is made available (e.g. through parallel compo-
sition)”. In terms of levels this could be thought
as an inequality whose unknowns are the channel
levels. This permits analysing several components
of a system individually, and then predict the be-
haviour of the whole by composing the components’
types.

Choices

In this work we integrate the concept of choice to
activeness and responsiveness.

Choices are a fundamental way of representing
data in the basic π-calculus (although there are ex-
tensions that include data such as numbers as prim-
itives). For example, Milner’s encoding of Boolean
values represents Boolean values as receivers on two
parameter channels: True replies to queries with a
signal on the first parameter (! b(tf).t̄) and False
with a signal on the second parameter (! b(tf).f̄).

We say those two processes are instances of (inter-
nal) choice because they “decide” to send a sig-
nal to one of the parameters rather than to the
other. A Random Boolean could be implemented
as ! b(tf).(νx) (x̄ | (x.t̄+x.f̄)), in which the choice
is performed “at run-time” by the sum (“+”).

A choice made by one process may cause branch-
ing (also called external choice) in another process.

Branching is typically implemented with the π-
calculus sum operator, as in b(νtf).(t.P+f.Q),
which executes P if b is True, and Q if b is False.
For example, the “r = a and b” logical circuit can
be implemented as follows:

! r(tf).a(νt′f ′).(t′.b〈tf〉+f ′.f̄), (1)

We first query a. If it returns true (t′) then r
returns the same as b. If it returns false instead, r
itself returns false (f). So, depending on a and b’s
behaviour, either a signal will either be sent on t,
or one will be sent on f (but never both).

To the best of our knowledge, no existing work
deals with this kind of processes. The usual ap-
proach of assigning a single numerical level to name
occurrences would not work well here because, as
t may never get triggered (in case r returns false),
it would require an infinite level, and similarly f
would require an infinite level as well. We need a
typing system able to capture the fact that exactly
one of t̄ and f̄ will eventually get triggered when r is
queried. Kobayashi’s Generic Type System [IK01]
does include choice into its types but is targeted
on safety properties such as deadlock-freedom or
race-freedom.

Our Approach

In contrast to level-based analysis, dependency-
based systems as we have explored in the past

1



[GR09] are naturally expanded with choice and
branching operators.

We chose to focus on choice itself, leaving out fea-
tures like recursivity [AB08] and complex channel
usages such as locks [Kob02], which have already
been well studied.

Channel Types describe, both for the input and
output halves, which capabilities (input or output)
of the parameters may be used, and what are the
activeness requirements. In addition they specify
what choices may be done using a logical disjunc-
tion operator “∨”, and what branching they must
offer, using the branching operator “+”.

The input side of a Boolean channel has type

(1̄A, 2̄0) ∨ (1̄0, 2̄A), (2)

that says that either the first parameter (“1”) must
be output (“1̄”) active (“A”), and the second pa-
rameter unused (“2̄0”), or (“∨”) the opposite (note
that the “∨” operator is exclusive).

The output side has type

1A + 2A, (3)

which has a similar meaning, but on the input side
of the parameters, and with the additional con-
straint that inputs at the parameters (“1” and “2”)
must be the guards of a sum (“+”).

A Boolean channel is now said input (resp., out-
put) responsive if its input (resp., output) halves
respect the protocol outlined above.

Process Types are similar to channel types, but
refer to actual channel names rather than parame-
ter numbers. They also specify free names’ channel
types but we omit them here for space reasons. It is
now easy to see that (1) can be described with the
statement rR/ (aAR ∧ bAR) (r is responsive if both
a and b are active and responsive). If the input on a
channel is active and responsive then it will behave
according to the protocol specified in the channel
type whenever queries are sent to it. Formally, for
the b〈tf〉 process, this is written (t̄A ∨ f̄A)/ bAR,
where the left side is just (3) with t and f replacing
1 and 2 (omitting terms with a zero exponent).

A sum t′.T + f ′.F is considered to have the type
(t′A+f ′

A) ∧ (ΓT / t̄′A ∨ ΓF / f̄ ′
A) (where ΓT and ΓF

are respectively the types of T and F ): The pro-
cess offers a branching t′+f ′ and, in addition (“∧”)
chooses (“∨”) one of ΓT and ΓF depending respec-
tively on a message on t′ and on one sent on f ′.

The decoupling between the guards and the con-
tinuations is done to make explicit which channels
must be used to make the process branch. In the
example (1) the bracketed portion (t′.b〈tf〉+f ′.f̄)
has type (t′A+f ′

A) ∧ ((t̄A ∨ f̄A)/ bAR ∨ f̄A).
Adding the request to a breaks the branching

(and subsequently hides t′ and f ′ as they are
bound), and this becomes

(t̄A ∨ f̄A)/ (bAR ∧ aAR). (4)

Now r is responsive if it behaves according to the
protocol given in (2), which is written rR/(t̄A∨f̄A).
Composing with (4) collapses the dependency chain
and we obtain rR/ (bAR ∧ aAR), as required.

Conclusion

In this short presentation we outlined our current
research on integrating choice and responsiveness,
which permits statically guaranteeing responsive-
ness on process constructs that are necessary for
encoding data, but that could not be analysed by
existing works. Moreover, conditional properties
permit analysing components of a system individ-
ually. We are developing a general type notation,
formal semantics and a sound type system which
are able to recognise most common kinds of data
encodings such as Booleans, numbers, lists, and so
on, as well as any non-recursive function on them.

References
[AB08] L. Acciai and M. Boreale. Responsiveness in

process calculi. Theoretical Computer Science,
409(1):59–93, 2008.

[GR09] M. Gamboni and A. Ravara. Activeness and Re-
sponsiveness in Mobile Processes. In 7th Con-
ference on Telecommunications, pages 429–432.
Instituto de Telecomunicações, 2009.

[IK01] A. Igarashi and N. Kobayashi. A generic type
system for the Pi-calculus. ACM SIGPLAN No-
tices, 36(3):128–141, 2001.

[Kob02] N. Kobayashi. A type system for lock-
free processes. Information and Computation,
177(2):122–159, 2002.

[MPW92] R. Milner, J. Parrow and D. Walker. A calculus
of mobile processes, I and II. Information and
Computation, 100(1):1–77, 1992.

[San99] D. Sangiorgi. The Name Discipline of Uniform
Receptiveness. Theoretical Computer Science,
221(1–2):457–493, 1999.

2


