
Universidade Técnica de Lisboa

Instituto Superior Técnico

Departamento de Matemática

π-calculus with polyadic synchronization

Joana Martinho

Trabalho Final de Curso

Licenciatura em Matemática Aplicada e Computação

Supervisors:

Prof. António Ravara
Prof. Luca Aceto

October 27, 2004

i

Abstract

In this report we present the calculus for communicating systems, CCS, which is used
to describe and analyse the behaviour of interactive concurrent systems. We also present
a development of CCS - the π-calculus - in which the mobility of processes can also be
asserted. In addition, we consider and compare ways in which the equality of processes
can be established, focusing mainly on the bisimulation technique and its variants.

In this report we also study the π-calculus with polyadic synchronization: an extension
of the π-calculus that generalizes the synchronization mechanism by allowing channels to be
sequences of names. In particular, we extend the π-calculus with polyadic synchronization
with cryptographic primitives and then prove the last can be encoded in the regular π-
calculus with polyadic synchronization. Further, we prove that the proposed encoding is
sound and complete with respect to barbed congruence which we show coincides with early
congruence.

Keywords

CCS

π-calculus

bisimilarity

polyadic synchronization

expressivity

spi-calculus

matching

cryptographic primitives

ii

Contents

Acknowledgements 1

Introduction 3

1 CCS 7

1.1 Syntax . 7

1.2 Labelled Transition Semantics . 8

1.3 Observational Semantics . 10

1.3.1 Bisimulation and Expansion . 10

1.3.2 Up to Techniques . 13

2 π-calculus 19

2.1 Syntax . 19

2.2 Labelled Transition Semantics . 22

2.2.1 Late Labelled Transition Semantics 22

2.2.2 Early Labelled Transition Semantics 25

2.2.3 Late vs. Early Labelled Transition Semantics 27

2.3 Observational Semantics . 29

2.3.1 Observational Semantics defined on the Late Rules 29

2.3.2 Observational Semantics defined on the Early Rules 33

2.3.3 Late vs. Early Observational Semantics 35

3 π-calculus with polyadic synchronization 37

3.1 Syntax . 37

3.2 Late Labelled Transition Semantics . 40

3.3 Observational Semantics . 42

4 Spi-calculus 59

4.1 Syntax . 59

4.2 Late Labelled Transition Semantics . 61

4.3 Observational Semantics . 61

iii

iv CONTENTS

5 Encodings 73
5.1 Correctness of Encodings . 73
5.2 Encoding of Match . 75
5.3 Encoding of Cryptographic Primitives . 77

6 Conclusions and future work 89

Appendix 91

Bibliography 93

List of Tables

1.1 CCS rules . 9

2.1 Actions in the π-calculus . 20
2.2 Processes in the π-calculus . 21
2.3 Late transition rules . 23
2.4 Early1 transition rules . 26
2.5 Early2 transition rules . 26

3.1 Actions in the π-calculus with polyadic synchronization 38
3.2 Processes in the π-calculus with polyadic synchronization 38
3.3 Late transition rules . 41

4.1 Evaluation in the spi-calculus . 62
4.2 Early transition rules . 63

5.1 Late transition rules for the cryptographic constructs 78

v

vi LIST OF TABLES

Acknowledgements

I would like to thank my supervisors Luca Aceto and António Ravara for their guidance,
support and patience during the past year. I would also like to thank Pedro Resende at
IST, The Wednesday Morning Club at the Faculty of Sciences of the University of Lisbon,
Hans Hüttel at Aalborg University, Marco Carbone, Michel Boreale and Mogens Nielsen
for useful comments on the matters discussed here.

This report represents not only part of my knowledge in the particular area of con-
currency, but also the culmination of an education that has lasted for the better part of
my life. I have been lucky enough to share it with very good people: colleagues, teachers,
students, staff. I sincerely hope a general thank you will do to express my gratitude.

My gratitude is extended to all my friends who (like family) put up with my absence for
long periods of time, with my forever changing moods, and with my mumbling of theories
I hardly ever believe myself. Annabella, Gonçalo and Ana Lara at IST and the ‘gang’
outside IST shared with me their contagious optimism particularly when there seemed to
be no light at the end of the tunnel which made it all the more special. In addition, I thank
Thomas for providing me with a shelter whenever I came to Aalborg, with a huge dose of
patience to hear me out as I prepared for the presentations, and with his usual tenderness.
Last but not least, I thank you, Maria, for believing.

Still, when it comes to actually living with me, no one does it better than my family:
parents, big brother, aunt and cousin (aka Puto).

In loving memory of Madrinha who left me – me, a 17 year-old unbeliever – with an
undying faith in humanity.

1

2 LIST OF TABLES

Introduction

The Calculus of Communicating Systems - CCS - was introduced in [13] to describe and
analyse the behaviour of interactive concurrent systems. Simultaneously, several tech-
niques to relate processes were put forth. Of these, we focus on the notions of bisimulation
[1, 4], which equates processes if a correspondence between their transitions can be made;
expansion [6], which relates processes that differ in the number of internal steps; and up
to techniques [7, 8] than can reduce considerably the size of the mentioned relations.

The π-calculus was introduced in [1] and it differs from CCS because it deals with the
dynamic change of the connectivity - the mobility - of processes. The expression of mo-
bility is achieved by considering action prefixes that represent either sending (output) or
receiving (input) a name, or making a silent transition, and thus allowing the communica-
tion of names.

The π-calculus with polyadic synchronization proposed in [10] is an extension of the π-
calculus in [1] that generalizes the synchronization mechanism by allowing channel names
to be composite. The model of interaction among processes is, as in the π-calculus, based
on handshaking, i.e., the simultaneous execution of input/output actions. The fact that
in the π-calculus with polyadic synchronization communication is only established if the
channel vectors match element-wise, enhances its expressive power with respect to the π-
calculus. In particular, in [10] it is shown that the matching construct can be encoded in
the π-calculus with polyadic synchronization but not in the π-calculus. In addition, it is
also proven that the higher the degree of synchronization (i.e. the maximum length of the
channel vectors), the higher the expressive power of the calculus.

The cryptographic π-calculus with polyadic synchronization introduced in [10] is an exten-
sion of the π-calculus with polyadic synchronization with cryptographic primitives. Much
like the spi-calculus introduced in [12] - an extension of the π-calculus with constructs
that allow for encryption and decryption of messages - the cryptographic π-calculus with
polyadic synchronization can be used to model security protocols.

3

4 LIST OF TABLES

Goals and Contribution of the Report

The main goal of the present work is to prove that the π-calculus with polyadic syn-
chronization is sufficiently expressive to model security protocols. In order to achieve this
goal, we study the π-calculus with polyadic synchronization, extend it with cryptographic
primitives, and then prove that we can encode the last calculus in the first. Further, the
encoding we propose is sound and complete with respect to barbed congruence. We struc-
tured the presentation of our approach to the problem at hand in the following manner:

• In Chapter 1, we introduce the syntax and the labelled transition semantics of CCS.
In Section 1.3 we present the observational semantics of CCS divided into two sub-
sections: the first refers to the notions of strong bisimulation, weak bisimulation, and
expansion; the second to up to techniques. The importance of these techniques lies
in the reduction of the size of the relations of bisimulation and expansion. In partic-
ular, we introduce some results which were to our knowledge unknown so far, such as
the fact that although the notions of weak bisimulation up to weak bisimilarity are
equivalent, one of the relations immediately satisfies the requirements of the other
relation.

• In Chapter 2, we intuitively explain by means of an example why the π-calculus can
be seen as a development of CCS. In Section 2.1 we introduce the syntax of the
π-calculus and in Section 2.2 we present two different notions of labelled transition
semantics known in the literature. In addition, we analyse four different notions of
bisimulation in both transition semantics and relate them to one another.

• In Chapter 3 we introduce the syntax and late labelled transition semantics of the
π-calculus with polyadic synchronization as first proposed in [10]. In Section 3.3 we
define for the π-calculus with polyadic synchronization four known notions of equiv-
alence in the π-calculus: ground, late, early and open bisimilarity. In addition, we
compare these notions and reach an equivalent result to that known in the literature
for the π-calculus. Also in Section 3.3 we introduce the notions of barbed bisimilarity,
equivalence and congruence, and conclude the last coincides with early congruence.
Although relying on a similar result obtained for the π-calculus in [16], the proof
of the coincidence of the notions in the π-calculus with polyadic synchronization
requires several adjustments and is, to our knowledge, an original result.

• In Chapter 4 we study the spi-calculus originally introduced in [12], but we rely
on the syntax and operational semantics of the spi-calculus proposed in [23]. Our
aim is to understand this calculus, used to model and reason about cryptographic
protocols, so as to have some leverage to study the cryptographic π-calculus with
polyadic synchronization. We synthesize some of the results in [23] and [24], add a
few relevant examples, and conclude our analysis with a diagram relating contextual
equivalences with bisimilarity notions. In particular, we study the idea behind the
proof of the coincidence of barbed equivalence with alley bisimulation.

LIST OF TABLES 5

• In Chapter 5 we introduce the notion of encoding and correctness. In Section 5.2
we study in great detail the encoding of the match construct in the π-calculus with
polyadic synchronization in [10]; this constitutes a separation result between the π-
calculus and the π-calculus with polyadic synchronization. In Section 5.3 we extend
the π-calculus with polyadic synchronization with cryptographic primitives as pro-
posed in [10]. In addition, we give an operational semantics of the new calculus (to
our knowledge, this had never been done before), and analyse in detail a crypto-
graphic protocol. We rely on a proposal in [10] for the encoding of the cryptographic
constructs in the π-calculus with polyadic synchronization and prove that a similar
encoding is both sound and complete with respect to barbed congruence. To our
knowledge, this result is original; and it constitutes evidence that the π-calculus with
polyadic synchronization can be used to model security protocols.

• In Chapter 6, we present the general ideas for improvement and development of the
work done so far.

Outline of the Report

The report is divided in six chapters covering:

- the study of CCS;

- the study of the π-calculus;

- the study of the π-calculus with polyadic synchronization;

- the study of the spi-calculus;

- the encoding of the matching and cryptographic constructs into the π-calculus with
polyadic synchronization;

- the conclusions of the report and the identification of possible avenues for the future
development of the work done so far.

6 LIST OF TABLES

Chapter 1

CCS

1.1 Syntax

In this section we briefly present the Calculus of Communicating Systems - CCS - as
introduced in [7].

Definition 1.1.1 CCS processes
Let Act = L ∪ {τ} be a set of actions where L is a set of names (ranged over by a, b, c...)
and respective co-names (a, b, c...) and τ is the silent action. Act is ranged over by α.
Let L be a countable subset of L and L the set of co-names of names in L.
A relabelling function f : L → L is such that f(a) = f(a) for all a ∈ L and f(τ) = τ .
Let K be a countable set of process constants, with K as typical element.
Let I be an indexing set.
The class of processes Proc ranged over by P , Q, is defined by the following grammar:
P ::= K constant

0 inaction
|α.P prefix
|P\L restriction
|P [f] relabel
|P |P parallel composition
|
∑

i∈I Pi infinite sum

We now provide a brief explanation of the processes defined above:

• K is a process constant and it is assumed that for every constant K ∈ K there is a

defining equation K
def
= P . This mechanism allows us to represent infinite behaviour.

• The process 0 represents the inactive process.

• The process α.P evolves into P after performing an action α.

7

8 CHAPTER 1. CCS

• The process P\L, where L ⊆ L, is unable to perform actions in L. However, a
process P\L can perform a τ action which results from communication possibly over
a name in L between P ’s parallel components (if any). In any case, the process P\L
can perform actions α which are not in L, since the these are not restricted.

• The process P [f] represents the process P to which the relabelling function f was
applied.

• The parallel composition P |Q allows for P and Q to evolve independently and to
synchronize with each other.

• The infinite sum is used to express non-determinism; thus
∑

i∈I Pi has the possibility
of acting exclusively as one of the Pi’s. Once a process Pj, where j ∈ I, performs an
action, the possible actions by other processes Pi where i 6= j and i ∈ I are discarded.
Also, note that 0 =

∑
i∈I Pi, where I = ∅ since no transitions are possible. Further,

note that we use the notation P +Q to represent the summation of processes P and
Q.

Decreasing order precedence of operators is as follows: restriction and relabelling, pre-
fix, parallel composition and summation.

1.2 Labelled Transition Semantics

In this section, we introduce the labelled transition semantics of CCS.

Definition 1.2.1 Labelled transition relation
The labelled transition relation →⊆ Proc×Act× Proc is the smallest relation generated
by the set of rules in Table 1.1.

We now provide a brief explanation of the CCS rules.

- The rule Sumj determines that an action of a process Pj, where j ∈ I, is also an
action of

∑
i∈I Pi.

- The rule Par1 [resp Par2] determines that an action of a process P is also an action
of P |Q [resp Q|P].

- The rule Comm determines that a process that can perform a transition labelled by
a name can synchronize with a process that can perform a transition labelled by its
respective co-name, by performing a τ action.

- The rule Res determines the actions informally described in Section 1.1.

- The rule Rel determines that an action α of a process P is a relabelled action f [α]
of a relabelled process P [f].

1.2. LABELLED TRANSITION SEMANTICS 9

(Act)
−−

α.P
α−→ P

(Sumj)
Pj

α−→ P ′
j∑

i∈I Pi
α−→ P ′

j

where j ∈ I

(Par1)
P

α−→ P ′

P |Q α−→ P ′|Q
(Par2)

P
α−→ P ′

Q|P α−→ Q|P ′

(Comm)
P

α−→ P ′ Q
α−→ Q′

P |Q τ−→ P ′|Q′

(Res)
P

α−→ P ′

P\L α−→ P ′\L
where α, α 6∈ L

(Rel)
P

α−→ P ′

P [f]
f [α]−→ P ′[f]

(Con)
P

α−→ P ′

K
α−→ P ′

where K
def
= P

Table 1.1: CCS rules

10 CHAPTER 1. CCS

- The rule Con determines that each constant has the same actions as those of the
defining expression.

We finish this section by providing an example of a CCS process and all of its possible
transitions and respective derivatives. The following example represents a buffer of capacity
two.

Example 1.2.2 Let L = {in0, in1, out0, out1,mid0,mid1}, and f , g be relabelling func-
tions such that f(ini) = ini, f(outi) = midi, f(midi) = midi, g(ini) = midi, g(outi) = outi
and g(midi) = midi, where i = 0, 1. Let K = {C,C0, C1} where each process constant is
defined as follows:

C
def
= in0.C0 + in1.C1

C0
def
= out0.C

C1
def
= out1.C

Then, we can represent all possible transitions of the process (C[f]|C[g])\L, where
L = {mid0,mid1} as follows:

(C1[f]|C0[g])\L
out0−→ (C1[f]|C[g])\L out1←− (C1[f]|C1[g])\L

in1 ↑ in1 ↑ ↘ τ in1 ↑

(C[f]|C0[g])\L
out0−→ (C[f]|C[g])\L out1−→ (C[f]|C1[g])\L

↓ in0 ↖ τ ↓ in0 ↓ in0

(C0[f]|C0[g])\L
out0−→ (C0[f]|C[g])\L out1←− (C0[f]|C1[g])\L

1.3 Observational Semantics

1.3.1 Bisimulation and Expansion

In this section we follow [7] and introduce different notions of bisimulation, a technique
that equates two processes if a correspondence between their transitions can be made. In
addition, we also introduce the notion of expansion following [6], a technique that relates
processes with different amounts of internal steps.

We start by presenting the notions of strong and weak bisimilarity which differ in the
fact that the latter allows for some abstraction from internal actions. In particular, an
internal action of a process can be matched by zero or more internal actions of the other
process and vice versa.

1.3. OBSERVATIONAL SEMANTICS 11

Definition 1.3.1 Strong bisimilarity
A binary symmetric relation S is a strong bisimulation if PSQ implies for all α ∈ Act:

- if P
α−→ P ′ then there is a Q′ such that Q

α−→ Q′ and P ′SQ′.

Two processes are strongly bisimilar if PSQ for a strong bisimulation S. Strong bisimi-
larity, written ∼, is the largest strong bisimulation.1

We now present a result which is frequently used in proofs concerning bisimulations;
we assume (as it has been proven) similar results for the other notions of bisimilarity
introduced in this report hold.

Proposition 1.3.2 ∼ is an equivalence relation.

Proof: We need to prove the following properties:

reflexivity : holds because the identity relation, Id, is itself a strong bisimulation.

symmetry : holds because by definition strong bisimulation are symmetric relations.

transitivity : holds because the composition of strong bisimulations is itself a strong
bisimulation.

2

Before we introduce the notion of weak bisimilarity, we must explain the notation
which we will use. Thus, we write P

ε
=⇒ P ′ if and only if P (

τ−→)∗P ′, i.e., P evolves into
P ′ through an arbitrary number of τ actions. In addition, we write P

α
=⇒ P ′ if and only

if P
ε

=⇒ P1
α−→ P2

ε
=⇒ P ′ for some P1, P2. Further, α̂ is defined as ε if α = τ , and as α if

α 6= τ . We write P
ε−→ P ′ if either P = P ′ or P

τ−→ P ′.

Definition 1.3.3 Weak bisimilarity
A binary symmetric relation S is a weak bisimulation if PSQ implies for all α ∈ Act:

- if P
α−→ P ′ then there is a Q′ such that Q

α̂
=⇒ Q′ and P ′SQ′.

Two processes are weakly bisimilar if PSQ for a weak bisimulation S. Weak bisimilarity,
written ≈, is the largest weak bisimulation.

We now note that two processes which are strongly bisimilar are also weakly bisimilar,
but the converse does not always hold as seen in Example 1.3.5.

Proposition 1.3.4 If P ∼ Q then P ≈ Q.

Proof: Straightforward from the definitions of strong and weak bisimilarity.

1the existence and uniqueness of the largest bisimulation is a corollary of Knöster-Tarski’s Fixed Point
Theorem.

12 CHAPTER 1. CCS

2

In order to better understand the reason why given two weakly bisimilar processes P
and Q, these are not necessarily strongly bisimilar, we provide the following example.

Example 1.3.5 Let P = a.0 and Q = τ.a.0 . Then, P and Q are not strongly bisimilar

because Q
τ−→ and P

τ

6−→. However, P and Q are weakly bisimilar because P
a−→ 0 can

be matched by Q
a

=⇒ 0 , and Q
τ−→ a.0

a−→ 0 can be matched by P
ε

=⇒ a.0
a−→ 0 .

The notion of expansion was introduced in [6] and also studied in [8], and relates
processes that may differ in the number of internal steps. A process Q expands a process
P if Q performs at least as many internal actions as P . The formal definition is given
below:

Definition 1.3.6 Expansion
S is an expansion if PSQ implies that:

- if P
α−→ P ′ then there is a Q′ such that Q

α
=⇒ Q′ and P ′SQ′.

- if Q
α−→ Q′ then there is a P ′ such that P

α̂−→ P ′ and P ′SQ′.

A process Q expands a process P , written ≤, if PSQ for some expansion S.

Proposition 1.3.7 ≤ is a preorder relation.

Proof: We prove that reflexivity and transitivity hold in a similar manner to the proof
of Proposition 1.3.2.

2

The symmetry property does not hold since a process P can expand a process Q, but
Q does not necessarily expand P . We now provide an example of two processes that reflect
this result. We will resort to the same example to prove that a process may expand another
but the two processes do not need to be strongly bisimilar.

Example 1.3.8 Let P = 0 and Q = τ.0 . Then Q expands P since Q
τ−→ Q′ = 0 and

P
τ̂−→ P ′, where P = P ′ and Q′ expands P ′. However, P does not expand Q since Q

τ−→
but P

τ

6=⇒.

We will now study the relation between the notions of bisimulation introduced so far
and the notion of expansion.

Proposition 1.3.9 ∼⊂≤

Proof: We divide the proof into two parts.

i) If S is a strong bisimulation then S is an expansion.
By hypothesis we have PSQ for some strong bisimulation S. Then:

1.3. OBSERVATIONAL SEMANTICS 13

* if P
α−→ P ′ then there is a Q′ such that Q

α−→ Q′ and P ′SQ′. Thus, we have that

there is a Q′′ = Q′ such that Q
τm

−→ α−→ τn

−→ Q′′, i.e., Q
α

=⇒ Q′′, where n = m = 0.
The first condition of expansion is then satisfied.

* if Q
α−→ Q′ then there is a P ′ such that P

α−→ P ′ and P ′SQ′. Thus, we have that

there is a P ′′ = P ′ such that P
α̂−→ P ′′, and the second condition of expansion is

then satisfied.

ii) We now prove that the inclusion is strict.
Let P = 0 and Q = τ.0 . Then, P and Q are not strongly bisimilar since Q

τ−→ but

P
τ

6−→. However, Q expands P since Q
τ−→ Q′ = 0 and P

τ̂−→ P ′, where P = P ′ and Q′

expands P ′.

2

Proposition 1.3.10 ≤⊂≈

Proof: We split the proof into two parts.

i) If S is an expansion then S is a weak bisimulation.
By hypothesis we have that PSQ for some expansion S. Then:

* if P
α−→ P ′ then there is a Q′ such that Q

α
=⇒ Q′ and P ′SQ′. Thus, there is a

Q′′ = Q′ such that Q
α̂

=⇒ Q′′ and P ′SQ′′.

* if Q
α−→ Q′ then there is a P ′ such that P

α̂−→ P ′ and P ′SQ′. Thus, we have that

there is a P ′′ = P ′ such that P
τm

−→ α̂−→ τm

−→ P ′, i.e., P
α̂

=⇒ P ′, where n = m = 0.

Thus, if S is an expansion then S is a weak bisimulation.

ii) We now prove that the inclusion is strict.

Let P = τ.0 and Q = 0 . Then, Q does not expand P since P
τ−→ but Q

τ

6=⇒. However,

P and Q are weakly bisimilar because if P
τ−→ 0 then Q

τ̂
=⇒ Q = 0 .

2

1.3.2 Up to Techniques

We now introduce the notions of strong bisimulation up to v and of weak bisimulation up
to ≈ as presented in [7]. Both notions are important because we want to be able to view
two processes as strongly bisimilar [resp. weakly bisimilar] without having to include in
the bisimulation relation the pairs of processes that are identical up to ∼ [resp. up to ≈],
as stated in Proposition 1.3.12.

14 CHAPTER 1. CCS

Definition 1.3.11 Strong bisimulation up to ∼
A binary symmetric relation S is a strong bisimulation up to ∼ if PSQ implies for all
α ∈ Act

- if P
α−→ P ′ then there is a Q′ such that Q

α−→ Q′ and P ′ ∼ S ∼ Q′.

Proposition 1.3.12 If S is a strong bisimulation up to ∼, then S ⊆∼.

Proof: We divide the proof into two parts.

i) If S is a strong bisimulation up to ∼, then ∼ S ∼ is a strong bisimulation, and therefore
∼ S ∼⊂∼.
Let P ∼ S ∼ Q and P

α−→ P1.
We know that P ∼ S ∼ Q iff there are P ′, Q′ such that P ∼ P ′SQ′ ∼ Q.
By definition of strong bisimilarity, for some P and P ′, Q and Q′

P ∼ P ′ P ′ S Q′ Q′ ∼ Q
↓ α ↓ α ↓ α ↓ α ↓ α ↓ α

P1 ∼ P ′
1 P ′

1 ∼ P ′′
1 S Q′′

1 ∼ Q′
1 Q′

1 ∼ Q1

Then, by transitivity of ∼ we have that

P ∼ S ∼ Q
↓ α ↓ α

P1 ∼ S ∼ Q1

Since ∼ S ∼ is symmetric, ∼ S ∼ is a strong bisimulation.

ii) If S is a strong bisimulation up to ∼, then S ⊂∼ S ∼.
Since Id ⊂∼, we have that: PSQ implies P ∼ PSQ ∼ Q, i.e., P ∼ S ∼ Q.

2

In order to highlight the importance of the up to techniques, we present the following
example from [7].

Example 1.3.13 Consider the unary semaphor given by S1
0

def
= in.S1

1 and S1
1

def
= out.S1

0 ,

and the binary semaphor given by S2
0

def
= in.S2

1 , S
2
1

def
= in.S2

2 + out.S2
0 and S2

2

def
= out.S2

1 .
In order to prove that a binary semaphor behaves like two unary semaphors running in
parallel (no two copies of S1

0 can communicate with each other), we build the strong bisim-
ulation S = {(S1

0 |S1
0 , S

2
0), (S1

1 |S1
0 , S

2
1), (S1

0 |S1
1 , S

2
1), (S1

1 |S1
1 , S

2
2)}.

However, there seems to be some redundancy in the pairs (S1
1 |S1

0 , S
2
1) and (S1

0 |S1
1 , S

2
1) since

S1
1 |S1

0 ∼ S1
0 |S1

1 and the second members are identical.
By building a strong bisimulation up to ∼, we need not represent both the pairs, thus re-
ducing the size of the relation: S ′ = {(S1

0 |S1
0 , S

2
0), (S1

1 |S1
0 , S

2
1), (S1

1 |S1
1 , S

2
2)}.

1.3. OBSERVATIONAL SEMANTICS 15

The first candidate of weak bisimulation up to ≈ was introduced in [7] as follows. How-
ever, it was proven independently by Sjödin and Jonsson that processes weakly bisimilar
up to ≈ need not be weakly bisimilar.

Definition 1.3.14 Weak bisimulation up to ≈
A binary symmetric relation S is a weak bisimulation up to ≈ if PSQ implies for all
α ∈ Act

- if P
α−→ P ′ then there is a Q′ such that Q

α̂
=⇒ Q′ and P ′ ≈ S ≈ Q′.

Proposition 1.3.15 There is a weak bisimulation up to ≈ as defined in Definition 1.3.14,
S, such that S 6⊆≈.

Proof: Let S = {(τ.a.0 ,0)}.
Then, S is a weak bisimulation up to ≈ according to Definition 1.3.14 because:

τ.a.0 S 0
↓ τ ⇓ ε

a.0 ≈ τ.a.0S0 ≈ 0

However, τ.a.0 6≈ 0 because τ.a.0 can perform a visible action a and 0 cannot.

2

The revised version of [7] presents another candidate for weak bisimulation up to ≈, as
does [8]. Before we present these alternatives, we introduce some lemmas that will allow
us to prove that, using these definitions, two processes that are weakly bisimilar up to ≈
are also weakly bisimilar.

Lemma 1.3.16 If P ≈ Q and P
τk

−→ P ′, then there is a Q′ such that Q
τ̂

=⇒ Q′ and
P ′ ≈ Q′.

Proof: The proof is done by induction on k. By hypothesis, we have that P ≈ Q and

P
τk

−→ P ′.

- k = 0 : Obvious because then P = P ′ and since P ≈ Q, by definition of ≈, we have

that Q
τ̂

=⇒ Q′ and P ′ ≈ Q′.

- k → k + 1 : By induction hypothesis, the result holds for k. By hypothesis P ≈ Q

and P
τk+1

−→ P ′, that is, there is a P ′
1 such that P

τ−→ P ′
1

τk

−→ P1.

Then, by definition of ≈ we have that there is a Q′
1 such that Q

τ̂
=⇒ Q′

1 and P ′
1 ≈ Q′

1.

By induction hypothesis, we also have that there is a Q1 such that Q′
1

τ̂
=⇒ Q1 and

P1 ≈ Q1.

Thus, if P ≈ Q and P
τk

−→ P1 then there is a Q1 such that Q
τ̂

=⇒ Q1 and P1 ≈ Q1.

16 CHAPTER 1. CCS

2

Lemma 1.3.17 If P ≈ Q and P
α̂

=⇒ P ′, then there is a Q′ such that Q
α̂

=⇒ Q′ and
P ′ ≈ Q′.

Proof: By hypothesis P ≈ Q and P
α̂

=⇒ P ′, i.e., P
τn

−→ P1
α−→ P2

τm

−→ P ′.

Since P ≈ Q and P
τn

−→ P1, we can apply Lemma 1.3.16 and conclude that there is a Q1

such that Q
τ̂

=⇒ Q1 and P1 ≈ Q1.
By hypothesis P1

α−→ P2 and P1 ≈ Q1 so, by definition of ≈, there is a Q2 such that

Q1
α̂

=⇒ Q2 and P2 ≈ Q2.

Since P2 ≈ Q2 and P2
τm

−→ P ′, we can once again apply Lemma 1.3.16 and conclude that

there is a Q′ such that Q2
τ̂

=⇒ Q′ and P ′ ≈ Q′.

Thus, if P ≈ Q and P
τn

−→ P1
α−→ P2

τm

−→ P ′, then there is a Q′ such that Q
τ̂

=⇒ α̂
=⇒ τ̂

=⇒ Q′

and P ′ ≈ Q′.

2

Definition 1.3.18 Weak bisimulation up to ≈
A binary symmetric relation S1 is a weak bisimulation up to ≈ if PS1Q implies for all
α ∈ Act

- if P
α

=⇒ P ′ then there is a Q′ such that Q
α̂

=⇒ Q′ and P ′ ≈ S1 ≈ Q′.

Proposition 1.3.19 If S1 is a weak bisimulation up to ≈ as just defined, then S1 ⊆≈.

Proof: Similar to that of Proposition 1.3.12, but resorting to Lemma 1.3.17.

2

Definition 1.3.20 Weak bisimulation up to ≈
A binary symmetric relation S2 is a weak bisimulation up to ≈ if PS2Q implies for all
α ∈ Act

- if P
α−→ P ′ then there is a Q′ such that Q

α̂
=⇒ Q′ and P ′ ∼ S2 ≈ Q′.

Proposition 1.3.21 If S2 is a weak bisimulation up to ≈ as just defined, then S2 ⊆≈.

Proof: We split the proof into two parts.

i) If S2 is a weak bisimulation up to ≈ as just defined, then ∼ S2 ≈ is a weak bisim-
ulation, and therefore ∼ S2 ≈⊂≈.
Let P ∼ S2 ≈ Q and P

α−→ P1.
We know that P ∼ S2 ≈ Q iff there are P ′, Q′ such that P ∼ P ′S2Q

′ ≈ Q.
By definitions of strong and weak bisimilarity, for some P and P ′, Q and Q′ respectively,

1.3. OBSERVATIONAL SEMANTICS 17

and by Lemma 1.3.17 we have that:

P ∼ P ′ P ′ S2 Q′ Q′ ≈ Q
↓ α ↓ α ↓ α ⇓ α̂ ⇓ α̂ ⇓ α̂

P1 ∼ P ′
1 P ′

1 ∼ P ′′
1 S2 Q′′

1 ≈ Q′
1 Q′

1 ≈ Q1

Then, by transitivity of ∼ and ≈ we have that

P ∼ S2 ≈ Q
↓ α ⇓ α̂

P1 ∼ S2 ≈ Q1

i.e., ∼ S2 ≈ is a weak bisimulation.

ii) If S2 is a weak bisimulation up to ≈, then S2 ⊂∼ S2 ≈.
Since Id ⊂∼ and Id ⊂≈, we have that PS2Q implies P ∼ PS2Q ≈ Q, i.e., P ∼ S2 ≈ Q.

2

Intuitively the first candidate for weak bisimulation up to ≈ seems less demanding
than the second one that makes use of strong bisimilarity. Nevertheless, both notions are
equivalent in the sense that if two processes P and Q are weakly bisimilar up to ≈, then
we can build a weak bisimulation S such that PSQ as proven in Propositions 1.3.19 and
1.3.21. Further, any weak bisimulation is a weak bisimulation up to ≈.

Lemma 1.3.22 If P ∼ Q and P
αk

−→ P ′, then there is a Q′ such that Q
αk

−→ Q′ and
P ′ ∼ Q′.

Proof: By induction on k.

- k = 0 : Obvious because then P = P ′, Q = Q′ and P ′ = P ∼ Q = Q′.

- k → k + 1 : We have as an hypothesis that P
αk+1

−→ P ′, i.e., there is a P1 such that

P
α−→ P1

αk

−→ P ′.
Since P ∼ Q and P

α−→ P1, by definition of ∼ we have that Q
α−→ Q1 and P1 ∼ Q1.

By induction hypothesis we have that if P1
αk

−→ P ′ and P1 ∼ Q1 then Q1
αk

−→ Q′ and
P ′ ∼ Q′.

Thus, if P ∼ Q and P
α−→ P1

αk

−→ P ′ then Q
α−→ Q1

αk

−→ Q′ and P ′ ∼ Q′.

2

Lemma 1.3.23 Let S2 be a weak bisimulation up to ≈ in the sense of Definition 1.3.20.

If PS2Q and P
αk

−→ P1, then there is a Q1 such that Q
α̂k

=⇒ Q1 and P1 ∼ S2 ≈ Q1.

Proof: By induction on k.

18 CHAPTER 1. CCS

- k = 0 : Then P = P1 and there is a Q1 = Q such that P1 = P ∼ S2 ≈ Q = Q1.

- k → k + 1 : As an hypothesis we have that P
α−→ P ′

1
αk

−→ P1.

Since PS2Q, there is a Q′
1 such that Q

α̂
=⇒ Q′

1 and P ′
1 ∼ S2 ≈ Q′

1. Thus, there are
P ′′

1 , Q′′
1 such that P ′′

1 S2Q
′′
1, P

′
1 ∼ P ′′

1 and Q′′
1 ≈ Q′

1.

Since P ′
1 ∼ P ′′

1 if P ′
1

αk

−→ P1, we can apply Lemma 1.3.22 and conclude that there is

a P ′′′
1 such that P ′′

1
αk

−→ P ′′′
1 and P1 ∼ P ′′′

1 .

By induction hypothesis, if P ′′
1

αk

−→ P ′′′
1 then there is a Q′′′

1 such that Q′′
1

α̂k

=⇒ Q′′′
1 and

P ′′′
1 ∼ S2 ≈ Q′′′

1 .

Since Q′′
1 ≈ Q′

1 and Q′′
1

α̂k

=⇒ Q′′′
1 we can apply Lemma 1.3.17 and conclude that there

is a Q1 such that Q′
1

α̂k

=⇒ Q1 and Q′′′
1 ≈ Q1.

Thus, if PS2Q and P
αk

−→ P1 then there are Q′
1, Q1 such that Q

α̂
=⇒ Q′

1
α̂k

=⇒ Q1 and
P1 ∼ P ′′′

1 ∼ S2 ≈ Q′′′
1 ≈ Q1. By transitivity of ∼ and ≈, we have that if PS2Q and

P
αk

−→ P1 then there is a Q1 such that Q
α̂k

=⇒ Q1 and P1 ∼ S2 ≈ Q1.

2

Proposition 1.3.24 Let S2 be a weak bisimulation up to ≈ in the sense of Definition
1.3.20. Then S2 is also a weak bisimulation up to ≈ in the sense of Definition 1.3.18.

Proof: Given P and Q weakly bisimilar up to ≈ in the sense of Definition 1.3.20, we
intend to prove that the relation also satisfies the requirements of Definition 1.3.18.

By hypothesis we have that P
α

=⇒ P ′, that is P
αk

−→ P1, where αi = α and αj = τ for
j 6= i and i, j < k.

By applying Lemma 1.3.23 we know that there is a Q1 such that Q
α̂k

=⇒ Q1 and P1 ∼ S2 ≈
Q1. Thus, there are P ′

1 and Q′
1 such that P1 ∼ P ′

1S2Q
′
1 ≈ Q1. From Proposition 1.3.4 we

know that if P1 ∼ P ′
1 then P1 ≈ P ′

1. We can then conclude that P1 ≈ S2 ≈ Q1.

2

Similarly to what we have already done for the strong and weak bisimilarity, we now
introduce the notion of expansion up to ≤. This notion and the result that relates it to
that of ≤ follow [8].

Definition 1.3.25 Expansion up to ≤
S is an expansion up to ≤ if PSQ implies for all α ∈ Act:

- if P
α−→ P ′ then there is a Q′ such that Q

α
=⇒ Q′ and P ′ ∼ S ≤ Q′.

- if Q
α−→ Q′ then there is a P ′ such that P

α̂−→ P ′ and P ′ ≤ S ≤ Q′.

Proposition 1.3.26 If S is an expansion up to ≤ then S ⊆≤.

Proof: Similar to those of Proposition 1.3.12 and Proposition 1.3.21.

2

Chapter 2

π-calculus

2.1 Syntax

In this section we introduce the syntax of the π-calculus following [1]. We delay our
explanation as to why the π-calculus can be seen as a development of CCS to the end of
this section.

Definition 2.1.1 Processes
Let N be a countable set of names and let x, y range over N .
The class of processes P ranged over by P , Q, is defined by the following grammar:
P ::= 0 inaction
|π.P prefix
| !P replication
| (νy)P restriction
| [x = y]P match
|P |P parallel composition
|P + P choice

where prefixes π are given by:
π ::= τ silent action
|x(y) input
|xy output

We now provide a brief explanation of the processes defined above:

• The process 0 represents the inactive process.

• The τ -prefixed process τ .P can evolve into P by some internal action. The input-
prefix of process x(y).P binds the free occurrences of y in P (it is therefore called a
bound input), and behaves as P where a name received along x substitutes y. The
output-prefixed process xy.P outputs the name y along x and then proceeds as P .

• The replication process !P represents an unbounded number of copies of P running
in parallel, and is used to describe processes with infinite behaviour.

19

20 CHAPTER 2. π-CALCULUS

Action Description fn(α) bn(α) n(α)
τ internal action ∅ ∅ ∅
xy free output {x, y} ∅ {x, y}
x(y) bound output {x} {y} {x, y}
xy free input {x, y} ∅ {x, y}
x(y) bound input {x} {y} {x, y}

Table 2.1: Actions in the π-calculus

• The restricted process (νy)P represents the process that makes a new, private name
y whose scope is P (i.e. bound in P) and then behaves as P .

• The matching process [x = y]P behaves as P if the match is successful – that is if
x = y – and as 0 otherwise.

• The parallel composition P |Q allows for P and Q to evolve independently and to
synchronize with each other.

• The choice construct is used to express non-determinism; thus P +Q has the possi-
bility of acting either as P or as Q but not as both.

Operator precedence is the order listed in the definition of the class of processes, where
the operator choice has the lowest precedence.

We are now interested in defining the possible ways in which a process P can evolve
into a process Q by performing an action α. We use a transition relation →⊆ P×Act×P ,
where P is the set of processes and Act is the set of actions. If (P, α,Q) is an element in
this relation then it can be denoted by P

α−→ Q. There are five possible kinds of actions
in the presented calculus which we introduce as in [2] in Table 2.1, where we also make use
of the definitions of free and bound names in actions which we now introduce.

Definition 2.1.2 Bound and free names (Action)
Let bn(α) denote the set of bound names, and fn(α) the set of free names in the action
α as defined in Table 2.1, and n(α) represents the union of the names used.

The τ -action describes an internal (also called invisible) action. The free input action
corresponds to an early instantiation of an input parameter, in opposition to the bound in-
put action where the bound parameter can be instantiated at a later time. The free output
action represents the transmission of a free name along another name, while in the bound
output action the transmitted parameter is bound; this is essential to scope extrusion, a
notion which will be explained in detail in Section 2.2.

We now introduce the formal definitions of free and bound names in a process.

2.1. SYNTAX 21

Process Description fn(P) bn(P) n(P)
0 inaction ∅ ∅ ∅
π.Q prefix fn(α) ∪ fn(Q)\bn(α) bn(α) ∪ bn(Q) n(α) ∪ n(Q)
!Q replication fn(Q) bn(Q) n(Q)

(νy)Q restriction fn(Q)\{y} {y} ∪ bn(Q) {y} ∪ n(Q)
[x = y]Q match fn(Q) ∪ {x, y} bn(Q) {x, y} ∪ n(Q)
Q1|Q2 parallel composition fn(Q1, Q2) bn(Q1, Q2) n(Q1, Q2)
Q1 +Q2 choice fn(Q1, Q2) bn(Q1, Q2) n(Q1, Q2)

Table 2.2: Processes in the π-calculus

Definition 2.1.3 Bound and free names (Process)
We denote the set of bound names in a process by bn(P), and the set of free names by
fn(P) defined inductively in Tables 2.1 and 2.2. The set of both bound and free names in
a process is denoted by n(P). In addition, the notation fn(P,Q) is used to describe the
union of fn(P) with fn(Q).

At this point it is also useful to define the notion of substitution and of α-convertibility
because we intend to identify processes or actions which differ only in the bound names.
Both substitution and α-convertibility may require renaming to avoid capture of free names.
We express these notions in the same manner these are presented in [3].

Definition 2.1.4 Substitution
1) We use σ to range over substitutions, and write xσ for σ applied to x. In particular, if
σ = {w/z} then σ applied to z is w, i.e., zσ = w.
2) {y1, ..., yn/x1, ..., xn} denotes the simultaneous substitution σ such that xiσ = yi for
each i, and xσ = x for x 6∈ {x1, ..., xn}, where xi are distinct.

Definition 2.1.5 α-convertibility
We define α-convertibility after introducing the concept of substitutions applied to processes
and renaming.
1) If a name w does not occur in the process P , then P{w/z} is the process obtained by
replacing each free occurrences of z in P by w.
2) A change of bound names in a process P is the replacement of a subterm x(z).Q of P
by x(w)Q{w/z}, or the replacement of a subterm (νz)Q of P by (νw)Q{w/z}, where in
each case w does not occur in Q. Note that N is countable, thus a fresh name w is always
available.
3) We can now say that processes P and Q are α-convertible, written P =α Q, if Q can
be obtained from P by a finite number of changes of bound names.

Now that we have defined the syntax and given an intuitive idea of the meaning of the
operators, we can now attempt to explain where CCS and the π-calculus differ and what
sort of consequences do these differences imply.

22 CHAPTER 2. π-CALCULUS

Example 2.1.6 Consider the following situation in which we want to send a collection of
names from one process to another. In order to simplify our reasoning, we consider that the
amount of names to be transferred is two. We might be tempted to define such processes as
P = x(y1).x(y2).P1 and Q = x(z1).x(z2).Q1. However, this is a rather problematic solution
since by putting P and Q in parallel with another process also outputting a pair of names
Q′ = x(z′1).x(z

′
2).Q

′
1, P might end up receiving part of the collection of names from Q and

part from Q′ which is undesirable.
The solution to this problem can be obtained by simply taking advantage of the π-calculus
potential: mobility. Thus, we can consider the processes P = x(w).w(y1).w(y2).P

′ and
Q = (νw)(x(w).w(z1).w(z2).Q1); intuitively Q creates a fresh name w and sends it over to
P that now waits for the collection of names to be transmitted over w1.

Observe that such a construction would be very difficult in CCS since a name is either
restricted or not, and cannot be passed on to another process.

2.2 Labelled Transition Semantics

In this section, we present three sets of rules each defining an operational semantics for the
π-calculus. The first was introduced in [1] and corresponds to the late instantiation of the
input. The others were proposed in [2] and in [3] and correspond to early instantiation.

The late transition relation and the early one are defined as the smallest relations gen-
erated by the set of rules late in Table 2.3 and early in Tables 2.4 and 2.5, respectively. In
order to distinguish the two, we refer to transitions P

α−→ Q in the late view as P
α−→L Q;

and in the early one as P
α−→E1 Q and P

α−→E2 Q.

2.2.1 Late Labelled Transition Semantics

The late transition relation is generated by the set of rules in Table 2.32 and corresponds
to the late instantiation of the input.

We now present a brief explanation of each of the rules included in Table 2.3.

- The rules OUTPUT, TAU and INPUT determine the actions which we informally
described in Section 2.1.

1The possibility to send and receive more than one name is described in a version of this calculus called
the polyadic π-calculus. In this small example we have present the idea for the encoding of the polyadic
π-calculus into the π-calculus.

2Note that not included in the table are four rules: the symmetric form CH2 of CH1 which has Q + P
instead of P + Q, and the symmetric forms PAR2, COMM2, CLOSE2 of PAR1, COMM1, CLOSE1 in
which the roles of the left and right components are swapped.

2.2. LABELLED TRANSITION SEMANTICS 23

(OUTUP)

−

xy.P
xy−→ P

(TAU)
−

τ.P
τ−→ P

(INPUT)

−

x(y).P
x(y)−→ P

(CH1)
P

α−→ P ′

P +Q
α−→ P ′

(PAR1)
P

α−→ P ′

P |Q α−→ P ′|Q
where bn(α) ∩ fn(Q) = ∅

(RES)
P

α−→ P ′

(νy)P
α−→ (νy)P ′

where y 6∈ n(α)

(MATCH)
P

α−→ P ′

[x = x]P
α−→ P ′

(REP-ACT)
P

α−→ P ′

!P
α−→ P ′|!P

(REP-COMM)
P

xy−→ P ′ P
x(z)−→ P ′′

!P
τ−→ (P ′|P ′′{y/z})|!P

(REP-CLOSE)
P

x(y)−→ P ′ P
x(y)−→ P ′′

!P
τ−→ (νy)(P ′|P ′′)|!P

where y 6∈ fn(P)

(OPEN)
P

xy−→ P ′

(νy)P
x(y)−→ P ′

where y 6= x

(CLOSE1)
P

x(y)−→ P ′ Q
x(y)−→ Q′

P |Q τ−→ (νy)(P ′|Q′)
(COMM1)

P
xy−→ P ′ Q

x(z)−→ Q′

P |Q τ−→ P ′|Q′{y/z}

(CONV)
P

α−→ P ′

Q
α−→ P ′

if Q =α P

Table 2.3: Late transition rules

24 CHAPTER 2. π-CALCULUS

- The rule CH1 [resp. CH2] determines that an action of P is also an action of P +Q
[resp. Q+ P].

- Although we identify α-convertible processes, we nevertheless introduce the rule
CONV in order to clarify the derivation tree in the forthcoming example.

- The rule PAR1 [resp. PAR2] determines that an action of P is also an action of P |Q
[resp. Q|P]. The side condition of the rule is necessary to avoid name captures which
come from joint application of the rules PAR and COMM.

- The rule RES determines that an action of P is also an action of P ′ where a new
private name y is created, having as its scope P .

- The rule MATCH determines that an action of a process P is also an action of a
process P ′ where P is the result of a successful match, i.e., P ′ = [x = x]P .

- The rule OPEN determines that a free-output action xy of P is a bound output
action of (νy)P , given that y 6= x.

- The rule CLOSE determines that a process capable of sending a bound name y along
x and another process capable of receiving y via x can synchronize by performing an
internal action τ . The resulting parallel composition is bound in y.

- The rule COMM determines that a free output-prefixed process can synchronize with
a bound input-prefixed one by performing an internal action. In the resulting parallel
composition, the name bound by the input-prefixed process is instantiated with the
received name.

- The rules REP-ACT, REP-COMM and REP-CLOSE are used to determine the
behaviour of replication. The rule REP-ACT determines that an action of P is also
an action of an unbounded number of copies of P running in parallel. The rule REP-
COMM and REP-CLOSE determine the synchronization of two copies of P . Note
that these three rules could be replaced by the rule

(REP)
P |!P α−→ P ′

!P
α−→ P ′

We prefer to use the rules presented in Table 2.3 because the use of REP determines
that if P has one α transition then !P has α transitions to infinitely many different
processes.

We now present an example, similar to that in [5], of the undesirable consequences of
disregarding the side condition of the PAR rules. The example considers the rule PAR1,
but the same sort of reasoning could be used for PAR2.

2.2. LABELLED TRANSITION SEMANTICS 25

Example 2.2.1 Consider the process P = (S|Q)|R, where S = x(y).y(w), Q = y(w).z(w)
and R = xz. We expect S to synchronize with R in such a way that P

τ−→ (z(w)|y(w).z(w))|0 .

−−
x(u).u(w)

x(u)−→ u(w)
INPUT

x(y).y(w)
x(u)−→ u(w)

CONV

x(y).y(w)|y(w).z(w)
x(u)−→ u(w)|y(w).z(w)

PAR1
−−

xz
xz−→ 0

OUPUT

P
τ−→ (z(w)|y(w).z(w))|0

COMM

However, if we violate the side condition of the PAR1 rule, P evolves into a substan-
tially different process.

−−
x(y).y(w)

x(y)−→ y(w)
INPUT

x(y).y(w)|y(w).z(w)
x(y)−→ y(w)|y(w).z(w)

PAR1
−−

xz
xz−→ 0

OUPUT

P
τ−→ (z(w)|z(w).z(w))|0

COMM

Also note that the joint use of the OPEN and CLOSE rules allows for scope extrusion:
a restricted name can be sent and its scope extended to include the process that received
it. As an example consider the situation given in the end of Section 2.1.

2.2.2 Early Labelled Transition Semantics

In the literature, we find two alternatives for defining the early transition relation based
on two different sets of rules. The first, presented in [2], is obtained from the set of late
rules by adding the E-INPUT rule and replacing the COMM rule with E-COMM as seen
in Table 2.4. The second, presented in [3] is obtained from the set of late rules by replacing
the COMM, INPUT, CLOSE, REP-COMM and REP-CLOSE rules as seen in Table 2.5.

We now provide a brief description of the EARLY1 and EARLY2 rules.

- The rule E-INPUT determines that a bound name y can be instantiated when in-
ferring an input transition from x(y).P . Note that in the late transition relation no
rule generates free input actions.

- The rule E-COMM determines that a free output-prefixed process can synchronize
with a free input-prefixed process by performing an internal action. Note that in
the late transition relation instantiation was done at this point, but using these rules
instantiation is done when applying the rule E-INPUT.

26 CHAPTER 2. π-CALCULUS

(E-INPUT)
−

x(y).P
xw−→ P{w/y}

(E-COMM)
P

xy−→ P ′ Q
xy−→ Q′

P |Q τ−→ P ′|Q′

Table 2.4: Early1 transition rules

(E-INPUT)
−

x(y).P
xw−→ P{w/y}

(E-COMM)
P

xy−→ P ′ Q
xy−→ Q′

P |Q τ−→ P ′|Q′

(E-CLOSE)
P

x(z)−→ P ′ Q
xz−→ Q′

P |Q τ−→ (νz)(P ′|Q′)
where z 6∈ fn(Q)

(E-REP-COMM)
P

xy−→ P ′ P
xy−→ P ′′

!P
τ−→ (P ′|P ′′)|!P

(E-REP-CLOSE)
P

x(y)−→ P ′ P
xy−→ P ′′

!P
τ−→ (νy)(P ′|P ′′)|!P

where y 6∈ fn(P)

Table 2.5: Early2 transition rules

2.2. LABELLED TRANSITION SEMANTICS 27

- The rule E-CLOSE allows for scope extrusion (if applied with the rule OPEN) in the
case of free input.

- The rules REP-COMM and REP-CLOSE determine the synchronization of two copies
of a process.

2.2.3 Late vs. Early Labelled Transition Semantics

The core difference between the early transition relations and the late transition relation is
that in the first case it is possible to generate free input transitions. The main consequence
of this definition of early transition relations is that using EARLY2 it is not possible to gen-
erate bound input transitions because the rule INPUT is replaced by E-INPUT (as a result
it is necessary to redefine all the rules concerning communication). Nevertheless, the early
transition relation induced by the set of rules EARLY2 has the advantage that a process
x(y).P can only evolve into P by applying the E-INPUT rule, while using the set of rules
EARLY1 it can also evolve into P{w/y} through an action xw by applying the INPUT rule.

Example 2.2.2 In order to highlight the differences in the early and late transition rela-
tions we recall Example 2.2.1. As done before, we present the derivation that corresponds
to the synchronization of S and R, now using the early transition relations defined using
the EARLY1 rules. Note that the same derivation can be obtained using the EARLY2
rules. Also observe that in these circumstances there is no need to introduce a name u (as
in the late transition relation) since instantiation is done when applying the rule E-INPUT.

−−
x(y).y(w)

xz−→ z(w)
E-INPUT

x(y).y(w)|y(w).z(w)
xz−→ z(w)|y(w).z(w)

PAR1
−−

xz
xz−→ 0

OUPUT

P
τ−→ (z(w)|y(w).z(w))|0

E-COMM

We introduce the notion of depth which will be of use in proving the lemma that relates
early and late transition relations.

Definition 2.2.3 Depth
The depth of a derivation is defined inductively as follows.
We consider that each rule presented in Tables 2.3, 2.4 or 2.5 is composed of a set of
premises and a conclusion, and call axiom any rule where the set of premises is empty.

- depth(axiom) = 1

- depth(rule) = 1 +Max(depth(premise))

28 CHAPTER 2. π-CALCULUS

We now present a lemma that shows how the transitions in the early view relate to those
in the late and vice versa. This result is extremely important because it will also allow us
to relate different notions of bisimulations in both views in Sections 2.3.1 and 2.3.2. It was
presented in [2] applied to the early transition relation defined by the EARLY1 rules. The
same Lemma is presented in [3] without statement 3 since bound input transitions cannot
be generated for the relation defined by the EARLY2 rules.

Lemma 2.2.4

1. P
xy−→E P ′ iff P

xy−→L P
′

2. P
x(y)−→E P ′ iff P

x(y)−→L P
′

3. P
x(y)−→E P ′ iff P

x(y)−→L P
′

4. P
xy−→E P ′ iff ∃P ′′, w such that P

x(w)−→L P
′′withP ′ = P ′′{y/w}

5. P
τ−→E P ′ iff P

τ−→L P
′

Proof: All proofs can be done by induction on the depth n of a derivation. We only
present the detailed proof of statement 4.

(⇒) Thesis: If P
xy−→E P ′ then ∃P ′′, w such that P

x(w)−→L P
′′ with P ′ = P ′′{y/w}.

n=1:
Hypothesis: Suppose P = x(z).Q and P

xy−→E Q{y/z} is inferred by E-INPUT.
Then there are two possible situations:

1. P
x(z)−→L Q can be inferred by INPUT, and Q{y/z} = Q{y/z}.

2. P1 =α P , i.e., P1 is obtained from P by replacing x(z).Q with x(w).Q{w/z},
where w 6∈ fn(Q). Then, P

x(w)−→L Q{w/z} can be inferred by INPUT, and
Q{w/z}{y/w} = Q{y/z}.

Induction Hypothesis: If the depth of the derivation is n then the thesis holds.
n→ n+ 1: case analysis on the last rule used in the proof

- CH1,CH2
Hypothesis Suppose P = P1 + P2 and P

xy−→E P ′ is inferred by CH1 [resp CH2]

from P1
xy−→E P ′ [resp P2

xy−→E P ′].

By induction hypothesis, we know that if P1
xy−→E P ′ [resp P2

xy−→E P ′] there

is a derivation of depth n such that P1
x(w)−→L P ′′ [resp P2

x(w)−→L P ′′] with P ′ =

P ′′{y/w}. Then, P
x(w)−→L P

′′ can be inferred by CH1 [resp CH2] from P1
x(w)−→L P

′′

[resp P2
x(w)−→ P ′′], where P ′ = P ′′{y/w}.

2.3. OBSERVATIONAL SEMANTICS 29

- PAR1, PAR2, RES, MATCH, REP-ACT
Similar reasoning.

(⇐) Thesis: If ∃P ′′, w such that P
x(w)−→L P

′′ then P
xy−→E P ′ with P ′ = P ′′{y/w}.

n=1:

Hypothesis: Suppose P = x(z).Q and P
x(w)−→L Q

′ is inferred by INPUT.

Then, P
xy−→E Q{y/z} can be inferred by E-INPUT. We know that Q{y/z} =

Q′{y/w} because either Q′ = Q and w = z or Q′ = Q{w/z} for some w 6∈ fn(Q).
Since w 6∈ fn(Q), we have that Q{w/z}{y/w} = Q{y/z}. Induction Hypothesis: If
the length of the derivation is n then the thesis holds.
n→ n+ 1: case analysis on the last rule used in the proof

- CH1,CH2

Hypothesis Suppose P = P1 + P2 and P
x(w)−→L Q

′ is inferred by CH1 [resp CH2]

from P1
x(w)−→L Q

′ [resp P2
x(w)−→L Q

′].

By induction hypothesis, we know that if P1
x(w)−→L Q

′ [respP2
x(w)−→L Q

′] there is

a derivation of length n such that P1
xy−→E Q{y/z} [resp P2

xy−→E Q{y/z}] with

Q′{y/w} = Q{y/z}. Then, P
xy−→E Q{y/z} can be inferred by CH1 [resp CH2]

from P1
xy−→E Q{y/z} [resp P2

xy−→ Q{y/z}].
- PAR1, PAR2, RES, MATCH, REP-ACT

Similar reasoning.

2

2.3 Observational Semantics

2.3.1 Observational Semantics defined on the Late Rules

In this section we present several notions of bisimulation that have been introduced for the
π-calculus.
First, we consider the notion ofground bisimulation, a rather simplistic way of comparing
processes since it requires no name instantiation.

Definition 2.3.1 Ground bisimilarity
A binary symmetric relation S is a ground bisimulation if PSQ implies:

- if P
α−→ P ′ with bn(α) 6∈ fn(P,Q), then there is a Q′ such that Q

α−→ Q′ and P ′SQ′.

Two processes P and Q are ground bisimilar if PSQ for some ground bisimulation S.
Ground bisimilarity, written ∼g

L, is the largest symmetric relation S such that S is a
ground bisimulation.

30 CHAPTER 2. π-CALCULUS

Unfortunately, ground bisimulation is not preserved by parallel composition as seen in
the following example.

Example 2.3.2 Let P = z(w).[w = y]xx.0 and Q = z(w).0. These two processes are
ground bisimilar because they both become inactive after performing an input action. How-
ever, if we run P and Q in parallel with zy, P can perform an internal action and evolve
into a process (through a successful match) capable of performing an output action, while
Q cannot.

We now introduce different notions of bisimulation that distinguish processes under
instantiation. Note that checking bisimulation becomes expensive because name instanti-
ation can cause a state explosion problem in the verification.
The first of these notions was introduced in [1] and requires that the derivatives of the
involved processes continue to simulate each other in the case of input for all instantiations
of the bound parameter. It is named late because the choice of the instantiation is done
after the choice of the derivative.

Definition 2.3.3 Late bisimilarity
A binary symmetric relation S is a late bisimulation if PSQ implies:

- if P
α−→ P ′ where α = xy, x(y), or τ and bn(α) 6∈ fn(P,Q), then there is a Q′ such

that Q
α−→ Q′ and P ′SQ′.

- if P
x(y)−→ P ′ where y 6∈ fn(P,Q), then there is a Q′ such that Q

x(y)−→ Q′ and for each
w P ′{w/y}SQ′{w/y}.

Two processes P and Q are late bisimilar if PSQ for some late bisimulation S. Late bisim-
ilarity, written ∼l

L, is the largest symmetric relation S such that S is a late bisimulation.

Early bisimulation was introduced in [1] and requires that in case of input for each
instantiation of the bound parameter there are derivatives of the involved processes that
continue to simulate. It is named early because the choice of the instantiation is done
before the choice of the derivative.

Definition 2.3.4 Early bisimilarity
A binary symmetric relation S is an early bisimulation if PSQ implies:

- if P
α−→ P ′ where α = xy, x(y), or τ and bn(α) 6∈ fn(P,Q), then there is a Q′ such

that Q
α−→ Q′ and P ′SQ′.

- if P
x(y)−→ P ′ where y 6∈ fn(P,Q), then for each w, there is a Q′ such that Q

x(y)−→ Q′

and P ′{w/y}SQ′{w/y}.

Two processes P and Q are early bisimilar if PSQ for some early bisimulation S. Early
bisimilarity, written ∼e

L, is the largest symmetric relation S such that S is an early bisim-
ulation.

2.3. OBSERVATIONAL SEMANTICS 31

Unfortunately, both late and early bisimulations are not congruences since they are not
preserved by input prefixing. We present an example of this next. In addition, note that
both notions of bisimulation are preserved by all the other operators.

Example 2.3.5 Let P = [z = y]τ.0 and Q = 0 .
Then P and Q are both early and late bisimilar since they are both incapable of performing
any action. However, if we consider the input-prefixed processes P ′ = x(y).P and Q′ =

x(y).Q, then Q′ x(y)−→ 0 but P ′ x(y)−→ [z = y]τ.0 = P ′
1. For w = z we have that P ′

1{z/y}
τ−→

and 0 cannot match it. Thus, P and Q are neither late nor early bisimilar.

Early and late congruences are obtained by closing the equivalences over all name
substitutions.

Definition 2.3.6 Late congruence
P and Q are late congruent, written P'l

LQ if Pσ∼l
LQσ for all substitutions σ.

Definition 2.3.7 Early congruence
P and Q are early congruent, written P'e

LQ if Pσ∼e
LQσ for all substitutions σ.

Open bisimulation was introduced and proven to be a full congruence, that is, preserved
by all operators, in [4]. The difference between this and the previous notions of bisimula-
tion is that here name instantiation is part of the recursive call. The drawback of using
open bisimilarity is that it requires quantification over all substitutions, and is therefore
expensive to check.

Definition 2.3.8 Open bisimilarity
A binary symmetric relation S is an open bisimulation if PSQ implies for every substitution
σ

- if Pσ
α−→ P ′ with bn(α) 6∈ fn(Pσ,Qσ), then there is a Q′ such that Qσ

α−→ Q′ and
P ′SQ′.

Two processes P and Q are open bisimilar if PSQ for some open bisimulation S. Open
bisimilarity, written ∼o

L is the largest symmetric relation S such that S is an open bisim-
ulation.

Hierarchy

The relationship among ground, late, early and open bisimilarities is summarized in Corol-
lary 2.3.19. The propositions and respective proofs are presented below, as are the examples
that prove the strictness of the inclusions (based on those presented in [5]).

In order to prove that if two processes are open bisimilar they are also late bisimilar
we need to introduce the following Lemma.

32 CHAPTER 2. π-CALCULUS

Lemma 2.3.9 If P∼o
LQ, then Pσ∼o

LQσ, for all σ.

Proof: Let P1 = Pσ1 and Q1 = Qσ1, where σ1 is a substitution.
Hypothesis Suppose P∼o

LQ and for some σ2 P1σ2
α−→ P ′.

Thesis Q1σ2
α−→ Q′ and P ′∼o

LQ′.
Since P∼o

LQ, we know that for all σ if Pσ
α−→ P ′ then there is a Q′ such that Qσ

α−→ Q′

and P ′∼o
LQ′. Since the composition of two substitutions σ1σ2 is a substitution itself,

we know that that for all σ2 if Pσ1σ2
α−→ P ′ then Qσ1σ2

α−→ Q′ and P ′∼o
LQ′. Thus,

Pσ1∼o
LQσ1, for all σ1.

2

Proposition 2.3.10 ∼o
L ⊂ ∼l

L

Proof: Hypothesis P∼o
LQ.

Thesis ∼o
L is a late bisimulation.

By definition of open bisimulation, for all substitutions σ if Pσ
α−→ P ′ then there is a Q′

such that Qσ
α−→ Q′ and P ′∼o

LQ′.
We satisfy the first condition of late bisimilarity immediately since for α = xy, x(y), τ and
bn(α) 6∈ fn(P,Q) we can consider the identity substitution σ.

In order to satisfy the second condition of late bisimilarity we must prove that if P
x(y)−→ P ′

where y 6∈ fn(P,Q) then there is aQ′ such thatQ
x(y)−→ Q′ and for all w P ′{w/y}∼o

LQ′{w/y}.
Since P∼o

LQ, we know that if P
x(y)−→ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that

Q
x(y)−→ Q′ and P ′∼o

LQ′. From Lemma 2.3.9 we also know that P ′σ∼o
LQ′σ, for all σ. In

particular, P ′{w/y}∼o
LQ′{w/y}, for all w.

In order to prove that the inclusion is strict consider the processes P = x(y).(τ.τ + τ)
and Q = x(y).(τ.τ + τ + τ.[y = z]τ).

Note that P and Q are late bisimilar because if P
x(y)−→ P ′ = τ.τ + τ then Q

x(y)−→ Q′ =
τ.τ + τ + τ.[y = z]τ and for all w P ′{w/y}SQ′{w/y} since τ.[y = z]τ{w 6= z/y} ∼ τ and
τ.[y = z]τ{z/y} ∼ τ.τ , in which case Q′ = τ.τ + τ + τ or Q′ = τ.τ + τ + τ.τ and the
transitions of both can be matched by P ′.

However, if Q
x(y)−→ τ−→ [y = z]τ = Q′ then P

x(y)−→ τ−→ τ = P ′
1 or P

x(y)−→ τ−→ 0 = P ′
2. We

consider both cases: if σ = {z/y} then Q′{z/y} τ−→ but P ′
2

τ

6−→; if σ = {w 6= z/y} then

Q′{w/y}
τ

6−→ but P ′
1

τ−→. Thus, it is not true that for all substitutions σ if Qσ
α−→ Q′

then Pσ
α−→ P ′, i.e., P and Q are not open bisimilar.

2

Proposition 2.3.11 ∼l
L ⊂ ∼e

L

2.3. OBSERVATIONAL SEMANTICS 33

Proof: We prove that ∼l
L is an early bisimulation. The first condition of both notions

of bisimulation is identical.

Hypothesis Suppose P∼l
LQ and P

x(y)−→ P ′, where y 6∈ fn(P,Q).

Then, by definition of late bisimilarity, there is a Q′ such that Q
x(y)−→ Q′ and for all

w P ′{w/y}∼l
LQ′{w/y}. Let Q1 = Q′. Then, for each w there is a Q′, Q1, such that

Q
x(y)−→ Q′ and P ′{w/y}∼l

LQ′{w/y}

In order to prove that the inclusion is strict consider the processes P = x(y).τ + x(y)
and Q = P + x(y).[y = z]τ .

Note that P and Q are early bisimilar since for each w if Q
x(y)−→ Q′ = [y = z]τ , i.e., Q′{w =

z/y} or Q′{w 6= z/y} can be matched by P ′
1 or P ′

2, respectively, where P
x(y)−→ τ = P ′

1 and

P
x(y)−→ 0 = P ′

2.
However, P and Q are not late bisimilar because if we consider w = z then Q′{z/y} cannot
be matched by P ′

2{z/y}, and if we consider w 6= z then Q′{w/y} cannot be matched by
P ′

1{w/y}, i.e., there is no derivative P ′ of P such that P ′{w/y} is late bisimilar to Q′{w/y}
for each name w.

2

Proposition 2.3.12 ∼e
L ⊂ ∼g

L

Proof: We prove that ∼e
L is a ground bisimulation. The first condition of early bisimu-

lation is in the condition of ground bisimulation.

Hypothesis Suppose P∼e
LQ and P

x(y)−→ P ′ where y 6∈ fn(P,Q).

By definition of early bisimilarity, then for each w, there is a Q′ such that Q
x(y)−→ Q′ and

P ′{w/y}∼e
LQ′{w/y}. Let w = y. Then, if P

x(y)−→ P ′ where y 6∈ fn(P,Q), there is a Q′

such that Q
x(y)−→ Q′ and P ′∼e

LQ′, i.e., P and Q are ground bisimilar.

In order to prove that the inclusion is strict consider the processes in Example 2.3.5,
i.e., P ′ = x(y).[z = y]τ and Q′ = x(y) which we have proven are not early bisimilar.
However, P and Q are ground bisimilar since after performing an input transition they
both become inactive.

2

2.3.2 Observational Semantics defined on the Early Rules

Using the late transition rules it is not possible to generate transitions labelled with free
inputs, in contrast to the early transition rules where E-INPUT allows for an instantiation
to any name w through a free input action. Thus, we need to consider this possibility when
defining the different notions of bisimilarity presented in Section 2.3.1.

34 CHAPTER 2. π-CALCULUS

Since the early transition relation defined by the EARLY2 rules does not allow for bound
input transitions, the only notion of bisimulations worth defining in this relation is ground
bisimulation. We will deal with this notion of bisimulation at a later time.
We can consider in the early transition relation defined by the EARLY1 rules, the notions
of ground bisimulation and early bisimulation. Both open and late bisimilarity cannot
require anything of free input transitions P

xy−→ Q because different instances of input can
be simulated by different Q. Thus, we will only present the definitions of early and ground
bisimilarity in the early transition relation based on the EARLY1 rules.

Definition 2.3.13 Early bisimilarity
A binary symmetric relation S is an early bisimulation if PSQ implies:

- if P
α−→ P ′ where α = xy, x(y), τ , or xy and bn(α) 6∈ fn(P,Q), then there is a Q′

such that Q
α−→ Q′ and P ′SQ′.

- if P
x(y)−→ P ′ where y 6∈ fn(P,Q), then for each w, there is a Q′ such that Q

x(y)−→ Q′

and P ′{w/y}SQ′{w/y}.

Two processes P and Q are early bisimilar if PSQ for some early bisimulation S. Early
bisimilarity, written ∼e

E, is the largest symmetric relation S such that S is an early bisim-
ulation.

Definition 2.3.14 Ground bisimilarity
A binary symmetric relation S is a ground bisimulation if PSQ implies:

- if P
α−→ P ′ with bn(α) 6∈ fn(P,Q), then there is a Q′ such that Q

α−→ Q′ and P ′SQ′.

Two processes P and Q are ground bisimilar if PSQ for some ground bisimulation S.
Ground bisimilarity, written ∼g

E, is the largest symmetric relation S such that S is a
ground bisimulation.

In order to prove both bisimilarities coincide for the early transition rules, we present
a Corollary of statements 3 and 4 in Lemma 2.2.4 which we will use in the proof of an
intermediary result.

Corollary 2.3.15 P
xy−→E P ′ iff ∃P ′′, w such that P

x(w)−→E P ′′withP ′ = P ′′{y/w}.

The following result was presented in [2].

Lemma 2.3.16 The following statements are equivalent on any relation S, where PSQ:
a) if P

xy−→E P ′ then there is a Q′ such that Q
xy−→E Q′ and P ′SQ′.

b) if P
x(y)−→E P ′′ then for each w there is a Q′′ such that Q

x(y)−→E Q′′ and P ′′{w/y}SQ′′{w/y}.

2.3. OBSERVATIONAL SEMANTICS 35

Proof: Suppose if P
xy−→ P ′ then there is a Q′ such that Q

xy−→ Q′ and P ′SQ′, we call this
condition (*). We now have from Corollary 2.3.15 that (*) is equivalent to if ∃P ′′, w such

that P
x(w)−→E P ′′ with P ′ = P ′′{y/w} then Q′ exists such that Q

xy−→ Q′ and P ′′{y/w}SQ′.

Once again applying Corollary 2.3.15, we know that (*) is equivalent to Q
xy−→E Q′ iff

∃Q′′, w′ such that Q
x(w′)−→E Q′′ with Q′ = Q′′{y/w′}. Since w′ is bound in Q we can apply

α-conversion to Q, assuming without loss of generality that w does not occur in Q′ to

state that ∃Q′′, w such that Q
x(w)−→E Q′′ with Q′ = Q′′{y/w}. Thus, (*) is equivalent to

if P
x(y)−→ P ′′ where y 6∈ fn(P,Q), then for each w, Q′′ exists such that Q

x(y)−→ Q′′ and
P ′′{w/y}SQ′′{w/y}.

2

We can now conclude that the free input condition on the definition of early bisimula-
tion is redundant in the presence of the requirement of bound input. Thus, the definition
of alternative bisimulation in [2] which disregards free inputs is equivalent to the one pre-
sented here.

In addition, we can now prove that ground and early bisimilarity defined on the early
transition relation coincide.

Proposition 2.3.17 ∼e
E coincides with ∼g

E

Proof: For α = τ, x(y), xy the requirements are identical.
From Lemma 2.3.16 we have that the condition on free inputs of ground bisimilarity co-
incides with that of bound inputs of early bisimilarity. Also, note that the condition of
bound inputs of ground bisimilarity is a particular case of that of free inputs and can
be disregarded. Thus, the definition of ground bisimulation is the same for both early
transition relations.

2

2.3.3 Late vs. Early Observational Semantics

We have seen in Sections 2.3.1 and 2.3.2 some of the relations between bisimilarity defined
on the early transition rules and on the late transition rules. We now present another
result that relates early bisimulation in the different set of rules.

Proposition 2.3.18 ∼e
E coincides with ∼e

L.

Proof: For α = τ, xy, x(y) or x(y), where bn(α) 6∈ fn(P,Q), the first conditions on both
∼e

E and ∼e
L are identical.

From Lemma 2.3.16 we know that for α = xy the condition of the definition of early
bisimilarity is redundant, thus both definitions coincide.

36 CHAPTER 2. π-CALCULUS

2

Corollary 2.3.19 The relations between bisimulations defined on the early and late tran-
sition rules is presented in the table below, where → stands for strict inclusion and ↔ for
coincidence.

∼g
L ∼g

E

↑ l
∼e

L ↔ ∼e
E

↑
∼l

L

↑
∼o

L

Chapter 3

π-calculus with polyadic
synchronization

The π-calculus with polyadic synchronization as introduced in [10] is a variant of the
π-calculus where the channels can consist of sequences of names and communication is
establish if and only if the channel vectors match element-wise.1

3.1 Syntax

In this section we introduce the syntax of the calculus in detail and also mention some of
the main differences between this and the π-calculus. These differences will be explained
in further detail in subsequent sections throughout this chapter.

Definition 3.1.1 Processes
Let N be a countable set of names and x, x1, ..., xk, y range over N for some k ∈ N.
The class of processes PS, ranged over P , Q is defined by the following grammar:
P ::= 0 inaction
|π.P prefix
| !P replication
| (νx)P restriction
|P |P parallel composition
|P + P choice

where the prefixes π are given by:
π ::= τ silent action
|x1 · ... · xk(y) input
|x1 · ... · xky output

Decreasing order precedence of operators follows that of the definition, where the prefix
operator has the highest precedence.

1We call π-calculus with biadic synchronization to the particular case of the π-calculus with polyadic
synchronization where the composite channels have at most two names.

37

38 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

Action Description fn(α) bn(α) n(α)
τ internal action ∅ ∅ ∅
uy free output n(u) ∪ {y} ∅ n(u) ∪ {y}
u(y) bound output n(u) {y} n(u) ∪ {y}
u(y) input n(u) {y} n(u) ∪ {y}

Table 3.1: Actions in the π-calculus with polyadic synchronization

Process Description fn(P) bn(P) n(P)
0 inaction ∅ ∅ ∅
π.Q prefix fn(π) ∪ (fn(Q)\bn(π)) bn(π) ∪ bn(Q) n(π) ∪ n(Q)
!Q replication fn(Q) bn(Q) n(Q)

(νy)Q restriction fn(Q)\{y} {y} ∪ bn(Q) {y} ∪ n(Q)
(Q1|Q2) parallel composition fn(Q1, Q2) bn(Q1, Q2) n(Q1, Q2)

(Q1 +Q2) choice fn(Q1, Q2) bn(Q1, Q2) n(Q1, Q2)

Table 3.2: Processes in the π-calculus with polyadic synchronization

Note that we use the notation a for a.0 , and that we use (νz, w)P for (νz)(νw)P .

All operators used here are also present in the π-calculus and their behaviour is as
expected. Nonetheless, note that restriction is made on names as in the π-calculus and not
on vectors of names: this allows for partial restriction.

One should also note that in the π-calculus with polyadic synchronization we do not
need to include the match operator since it can be encoded in the calculus. This is not
possible in a ‘sensible’ manner using the original π-calculus that, therefore, takes the match
operator as a primitive. This separation result between the two calculi was proven in [10];
we refer to it again in detail in Section 5.2.

As in the π-calculus, there are four possible kinds of actions α in the present calculus
as seen in Table 3.1. We let bn(α) denote the set of bound names in α, fn(α) the set
of free names in α and n(α) the set of all names in α. We let u = x1 · ... · xk and
u = x1 · ... · xk, where k ∈ N, represent respectively the input and output channel vectors.
Then, fn(u) = fn(u) = n(u) = n(u) = {x1, ..., xk}, and bn(u) = bn(u) = ∅.

The notions of bound and free names in a process P , denoted by bn(P) and fn(P)
respectively, follow those of the π-calculus. We now represent that definition in Table 3.2,
where n(P) represents the names in the process P . Note that we use the following notation:
fn(P1, P2) = fn(P1)∪fn(P2), bn(P1, P2) = bn(P1)∪bn(P2), and n(P1, P2) = n(P1)∪n(P2).

3.1. SYNTAX 39

Substitution and α-convertibility are defined as in the π-calculus [3], though we now
require that the latter takes into account the possibility of composite channels. Nonetheless,
we provide the formal definitions next.

Definition 3.1.2 Substitution
Let w 6∈ bn(P) where P ∈ PS. The substitution σ = {w/z} applied to process P , written
Pσ or P{w/z}, is the process obtained by replacing each free occurrence of z in P by w.
The simultaneous substitution σ = {w1, ..., wn/x1, ..., xn} for distinct xi applied to process
P where w1, ..., wn 6∈ bn(P), also written Pσ, is the process obtained by simultaneously
replacing each free occurrence of xi in P by wi where 1 ≤ i ≤ n and n ∈ N.

Note that given a substitution σ = {w/z} we denote the result of applying σ to z as
σ(z). In this case, we then have that σ(z) = w.

Definition 3.1.3 α-convertibility
Let u = x1 · ... ·xk where k ∈ N. A change of bound names in a process P is the replacement
of a subterm u(z).Q of P by u(w).Q{w/z} or the replacement of a subterm (νz)Q of P by
(νw)Q{w/z} where in each case w does not occur in Q.
Two processes P and Q are α-convertible, written P =α Q, if Q can be obtained from P
by a finite number of changes of bound names.

Note that substitution may imply the renaming via α-conversion of bound actions to
avoid unwanted captures of free names. We now present an example that shows the danger
of performing the substitution σ = {w/z} in a process P such that w ∈ bn(P).

Example 3.1.4 Let P = w(w).wz. By definition of substitution P{w/z} =α

(w(v).vz){w/z} = w(v).vw where we have performed the renaming of bound names so
as to respect the conditions of substitution. We easily notice that the occurrences of w are
still free, so the former z was not captured. However, if we do not perform the renaming
operation, we have that P{w/z} = w(w).ww and the former z is now bound.

The following examples show how α-convertibility can be established.

Example 3.1.5 Let P = (νy)(y·z(a)|z(y))|za. Then we can obtain through α-convertibility
the process Q = (νw)(w · z(a)|z(y))|za where we replaced the subterm (νy)P ′ of P with
(νw)P ′{w/y}, where P ′ = y · z(a)|z(y) and w is new.

Example 3.1.6 Let P = x · y(a).a(b)|x · yz. Then we can obtain through α-convertibility
the process Q = x · y(c).c(b)|x · yz where we replaced the subterm x · y(a).P ′ of P with
x · y(c).P ′{c/a} where P ′ = a(b) and c is new.

The importance of α-convertibility is illustrated in the Example 3.2.3 provided after
the introduction of the labelled transition relation of the π-calculus with polyadic synchro-
nization because only then can we fully understand the relevance of α-convertibility in the
evolution of a process.

40 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

3.2 Late Labelled Transition Semantics

In this section we introduce the late labelled transition semantics of the π-calculus with
polyadic synchronization. In addition, we provide some examples that reflect the differences
between this and the π-calculus.

Definition 3.2.1 Late labelled transition relation
Let u = x1 · ... · xk, where k ∈ N. The late labelled transition relation

α−→⊆ PS × PS,
where α is a possible action, is the smallest relation generated by the set of rules in Table
3.32.

The rules follow in a straightforward manner those of the π-calculus where we now
consider vectors of names as channels. Note once again that in the restriction rule, RES,
we consider singular and not composite names. This characteristic of the calculus and the
fact that we enforce an all-or-nothing behaviour, that is we require the match of all the
names in the vector channel to allow synchronization, we can define the notion of partial
restriction. The following example reflects the consequences of this type of restriction.

Example 3.2.2 Let P = (νx1)x1 · x2(y) and Q = x1 · x2(y). Then, P cannot perform
the input action because of the restriction in one of its channel names (although the other
is free), while Q can. Also note that this example can be generalized to channel vectors
composed of n names, i.e., where u = x1 · ... · xn, P = (νxi)u(y) and Q = u(y). Because
of the restriction on the channel name xi where i ∈ {1, ..., n}, P is unable to perform the
input action.

Now that we have introduced the labelled transition relation for processes in the π-
calculus with polyadic synchronization, we can once again reflect on the importance of
α-convertibility. The following example accounts for the relevance of this operation.

Example 3.2.3 Let P = (S|Q)|R where S = x · z(y).y(b), Q = z · y(b) and R = x · zc.
We expect S to synchronize with R in such a way that P

τ−→ (c(b)|z ·w(b))|0 , but in order
for this to be achievable we need to perform an α-conversion, else the side condition of the
PAR1 rule is not satisfied.

−−
x · z(a).a(b) x·z(a)−→ a(b)

PREFIX

x · z(y).y(b) x·z(a)−→ a(b)
CONV

x · z(y).y(b)|z · y(b) x·z(a)−→ a(b)|z · y(b)
PAR1

−−
x · zc x·zc−→ 0

PREFIX

P
τ−→ (c(b)|z · y(b))|0

COMM

2Note that not included in the table are four rules: the symmetric form CH2 of CH1 which has Q + P
instead of P + Q, and the symmetric forms PAR2, COMM2 and CLOSE2 of PAR1, COMM1, CLOSE1
in which the roles of the left and right components are swapped.

3.2. LATE LABELLED TRANSITION SEMANTICS 41

(PREFIX)
−

α.P
α−→ P

(CH1)
P

α−→ P ′

P +Q
α−→ P ′

(PAR1)
P

α−→ P ′

P |Q α−→ P ′|Q
where bn(α) ∩ fn(Q) = ∅

(RES)
P

α−→ P ′

(νy)P
α−→ (νy)P ′

where y 6∈ n(α)

(REP-ACT)
P

α−→ P ′

!P
α−→ P ′|!P

(REP-COMM)
P

uy−→ P ′ P
u(z)−→ P ′′

!P
τ−→ (P ′|P ′′{y/z})|!P

(REP-CLOSE)
P

u(y)−→ P ′ P
u(y)−→ P ′′

!P
τ−→ (νy)(P ′|P ′′)|!P

where y 6∈ fn(P)

(OPEN)
P

uy−→ P ′

(νy)P
u(y)−→ P ′

where y 6∈ n(u)

(CLOSE1)
P

u(y)−→ P ′ Q
u(y)−→ Q′

P |Q τ−→ (νy)(P ′|Q′)

(COMM1)
P

uy−→ P ′ Q
u(z)−→ Q′

P |Q τ−→ P ′|Q′{y/z}

(CONV)
P

α−→ P ′

Q
α−→ P ′

if Q =α P

Table 3.3: Late transition rules

42 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

Note that if we had not performed the α-conversion and had disrespected the side con-
dition of the PAR1 rule then P would have evolved through a τ action into c(b)|z · c(b).

3.3 Observational Semantics

In this section we seek to introduce different notions of bisimulation: a technique that
allows us to equate processes in the π-calculus with polyadic synchronization. We define
these notions of bisimulation following those known in literature [1, 4] for the π-calculus
with the necessary adjustments.

The first notion we will consider is that of ground bisimulation where there is no name
instantiation.

Definition 3.3.1 Ground bisimilarity
A binary symmetric relation S is a ground bisimulation if PSQ implies:

- if P
α−→ P ′ where bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that Q

α−→ Q′ and
P ′SQ′.

Two processes P and Q are ground bisimilar if PSQ for some ground bisimulation S.
Ground bisimilarity, written ∼g, is the largest ground bisimulation.

The notion of ground bisimilarity is very simple since a process merely has to imitate
the other in its possible transitions and vice versa without considering name instantiation.
Unfortunately, as in the π-calculus, a consequence of this is that ground bisimilarity is
not preserved by the parallel composition operator as seen in the following example. We
generalize this example to channel vectors of n names, where n ∈ N in Example 3.3.3.

Example 3.3.2 Let P = (νa)(z(w).a · wc|a · y(b)) and Q = z(w). Then both P and Q are
ground bisimilar since after performing the input action they both become inactive.
Let S = zy and consider P ′ = P |S and Q′ = Q|S. Then P ′ can perform an internal action
through synchronization between P and S and evolve into (νa)(a · yc|a·y(b)) which can also
perform an internal action. Thus P ′ can perform two consecutive internal actions while
Q′ can only perform one internal action and then becomes inactive. We can then conclude
that although P and Q are ground bisimilar, P ′ and Q′ are not ground bisimilar.

Example 3.3.3 Let u = x1 · ... · xn, P = (νxi)(z(w).u · wc|u · y(b)) where i ∈ {1, ..., n},
and Q = z(w). Then both P and Q become inactive after performing the input action, and
so P ∼g Q. Let S = zy and consider P ′ = P |S and Q′ = Q|S. Then P ′ can evolve into
(νxi)(u · yc|u · y(b)) which can perform another internal action, while Q′ can only perform
one τ action. Thus, although P ∼g Q, we have that P 6∼g Q.

3.3. OBSERVATIONAL SEMANTICS 43

In the following example we show that ground bisimilarity is not preserved by repli-
cation. Note that in the definition of P we use polyadic CCS-like prefixes a · w and a · y
where no item is being sent or expected to be received. We do this to highlight the fact
that what could be transmitted is irrelevant, the problem lies on the synchronization of
the composite channels. Thus, in general, u.P will be used as shorthand for uy.P for some
y, and u.P will be used as shorthand for u(y).P where y 6∈ fn(P).

Example 3.3.4 Let P = (νa)(z(w).a · w|a · y).zx + zy and Q = z(w) + zy, where w and
y are distinct. Then P ∼g Q, but !P 6∼g!Q since two copies of P and two copies of Q can

synchronize and the resulting processes are not bisimilar. In detail, !P
τ−→ τ−→ zx−→ P ′, but

no descendant of !Q can ever perform an output action zx.

Nonetheless, ground bisimilarity is preserved by some operators as stated and proved
in Proposition 3.3.6 just like in the π-calculus.

Lemma 3.3.5 ∼g is preserved by the restriction operator

Proof: Let P , Q ∈ PS such that P ∼g Q. We establish the proof by performing
a case analysis on the rule used to infer an action for (νx)P , where we assume that
bn(α) ∩ fn(P,Q) = ∅.

• Application of rule RES where x 6∈ n(α):

P
α−→ P ′

(νx)P
α−→ (νx)P ′

By definition of ∼g, since P
α−→ P ′ we have that Q

α−→ Q′ and P ′ ∼g Q
′. Therefore,

by application of rule RES, (νx)Q
α−→ (νx)Q′ where x 6∈ n(α).

• Application of rule OPEN where u = x1 · ... · xk for some k ∈ N and x 6∈ n(u):

P
ux−→ P ′

(νx)P
u(x)−→ P ′

By definition of ∼g, since P
ux−→ P ′ we have that Q

ux−→ Q′ and P ′ ∼g Q
′. Therefore,

by application of rule OPEN, (νx)Q
u(x)−→ Q′ where x 6∈ n(u).

2

Proposition 3.3.6 ∼g is preserved by all operators except parallel composition and repli-
cation.

Proof: We split the proof into three parts, reflecting the preservation of ground bisimi-
larity by each of the three operators.
If P , P ′, Q ∈ PS such that P ∼g Q then:

44 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

• π.P ∼g π.Q where π is a prefix: similar to proof in [1]

• P + P ′ ∼g Q+ P ′: similar to proof in [1]

• (νx)P ∼g (νx)Q: proven in Lemma 3.3.5

Examples 3.3.3, 3.3.4 prove that ground bisimilarity is not preserved by parallel com-
position nor by replication.

2

Thus the congruence properties appear to steam directly from those of the π-calculus.
However, it was also proven in [9, 14] that ground bisimilarity was a full congruence in
the asynchronous π-calculus without match and this result does not hold if we consider
the asynchronous π-calculus with polyadic synchronization as seen in Example 3.3.3. The
reason why this result does not hold is related to the fact that match does not need to be
considered as a primitive in the π-calculus with polyadic synchronization (synchronous or
asynchronous) since it can be derived.

Before we introduce other notions of bisimilarity, we state the following result which is
used in the proofs ahead together with the notion of bisimulation up to which we introduce
next. Note that the first lemma concerns the commonly denoted structural properties which
are preserved by the notion of bisimilarity.

Definition 3.3.7 Structural congruence
Structural congruence, written ≡, is the smallest congruence on the processes that satisfies
the following axioms where P , Q, R ∈ PS and z, w ∈ N . Any two processes related by
these axioms are called structurally congruent.

• P + (Q+R) ≡ (P +Q) +R

• P +Q ≡ Q+ P

• P + 0 ≡ P

• P |(Q|R) ≡ (P |Q)|R

• P |Q ≡ Q|P

• P |0 ≡ P

• (νz)(νw)P ≡ (νw)(νz)P = (νw, z)P

• (νz)0 ≡ 0

• (νz)(P |Q) ≡ P |(νz)Q if z 6∈ fn(P)

• !P ≡ P |!P

3.3. OBSERVATIONAL SEMANTICS 45

Lemma 3.3.8 3 Let P , Q ∈ PS. If P ≡ Q then P ∼g Q.

The notion of bisimulation up to follows that introduced for CCS in [7] and so does the
result presented as 3.3.10.

Definition 3.3.9 4Ground bisimulation up to ∼g

A binary symmetric relation S is a ground bisimulation up to ∼g if PSQ implies:

- if P
α−→ P ′ where bn(α) ∩ fn(P,Q) = ∅ then there is a Q′ such that Q

α−→ Q′ and
P ′ ∼g S ∼g Q

′.

Proposition 3.3.10 5 If PSQ where S is a ground bisimulation up to ∼g then PS ′Q
where S ′ is a ground bisimulation.

Proof: The proof follows that in [7] with the necessary adjustments since we are con-
sidering the π-calculus with polyadic synchronization. The proof can be split into proving
firstly that ∼g S ∼g is a ground bisimulation and secondly that S is included in ∼g S ∼g.

2

Note that we take for granted the reader remembers these notions since we use the
Lemma 3.3.8 combined with Proposition 3.3.10 so as to simplify many of the proofs
throughout the report.

We now introduce the notions of late and early bisimilarity which differ in their treat-
ment of name instantiation for input actions.

In late bisimilarity we require that the derivative of a process simulates the derivative
of the other process (and vice versa) for all possible instantiations of the bound parameter.
It is called late because the choice of the name instantiation is made after the choice of the
derivative.

Definition 3.3.11 Late bisimilarity
Let u = x1 · ... · xk where k ∈ N.
A binary symmetric relation S is a late bisimulation if PSQ implies:

- if P
α−→ P ′ where α = uy, u(y) or τ and bn(α) ∩ fn(P,Q) = ∅ then there is a Q′

such that Q
α−→ Q′ and P ′SQ′.

- if P
u(y)−→ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that Q

u(y)−→ Q′ and for each
w, P ′{w/y}SQ′{w/y}.

3The same result holds for all the notions of bisimilarity presented in this section.
4An analogous definition can be presented for all notions of bisimilarity introduced in this section.
5The same result holds for any of the notions of bisimilarity presented in this section.

46 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

Two processes P and Q are late bisimilar if PSQ for some late bisimulation S.
Late bisimilarity, written ∼l, is the largest late bisimulation.

In early bisimilarity we require that under the same possible name instantiation there
is a derivative of each of the processes that simulates the other and vice versa. It is
named early because the choice of the name instantiation is made before the choice of the
derivative.

Definition 3.3.12 Early bisimilarity
Let u = x1 · ... · xk where k ∈ N.
A binary symmetric relation S is an early bisimulation if PSQ implies:

- if P
α−→ P ′ where α = uy, u(y) or τ and bn(α) ∩ fn(P,Q) = ∅ then there is a Q′

such that Q
α−→ Q′ and P ′SQ′.

- if P
u(y)−→ P ′ where y 6∈ fn(P,Q) then for each w there is a Q′ such that Q

u(y)−→ Q′

and P ′{w/y}SQ′{w/y}.

Two processes P and Q are early bisimilar if PSQ for some early bisimulation S.
Early bisimilarity, written ∼e, is the largest early bisimulation.

Similarly to what happens in the π-calculus, in the π-calculus with polyadic synchro-
nization both late and early bisimilarity are not preserved by input prefixing. This is
evidenced by the following example where we consider processes in the π-calculus with
biadic synchronization.

Example 3.3.13 Let P = (νa)(a · zc|a · y(b)) and Q = 0 . Since both P and Q are unable
to perform any action, we have that P and Q are late and early bisimilar. Now consider the

processes P ′ = z(y).P and Q′ = z(y).0 . Then P ′ z(y)−→ P and Q′ z(y)−→ 0 , but for w = z we

have that P{w/y} τ−→ while 0
τ

6−→. Thus, P ′ and Q′ are neither early nor late bisimilar.

We can now generalize the previous example for the π-calculus with polyadic synchro-
nization, by considering channel vectors of n names, where n ∈ N.

Example 3.3.14 Let u = x1 · ... · xn, P = (νxi)(u · zc|u · y(b)) where i ∈ {1, ..., n} and
Q = 0 . Since both P and Q are inactive, we have that P ∼e Q and P ∼l Q. Now consider

the processes P ′ = z(y).P and Q′ = z(y).0 . Then P ′ z(y)−→ P and Q′ z(y)−→ 0 , and for w = z

we have that P{w/y} τ−→ while 0
τ

6−→. Thus, P ′ 6∼l Q
′ and P ′ 6∼e Q

′.

As in the π-calculus, late and early bisimilarity are preserved by all other operators as
shown in the following propositions.

Proposition 3.3.15 ∼l is preserved by all operators except input prefixing.

3.3. OBSERVATIONAL SEMANTICS 47

Proof: The proof follows that in [1] for the output prefixing, choice and parallel compo-
sition operators and [15] for the replication operator. Example 3.3.14 proves that ∼l is not
preserved by input prefixing.

2

Proposition 3.3.16 ∼e is preserved by all operators except input prefixing.

Proof: The proof is similar to that of Proposition 3.3.15 and Example 3.3.14 also shows
that ∼e is not preserved by input prefixing.

2

In the original π-calculus congruences for late and early bisimilarity were achieved by
closing the equivalences over all name substitutions [1]. We now introduce similar notions
for the π-calculus with polyadic synchronization and get similar results.

Definition 3.3.17 Late congruence
Let P , Q ∈ PS. The two processes are late congruent, written P 'l Q, if for all substitu-
tions σ we have that Pσ ∼l Qσ.

Definition 3.3.18 Early congruence
Let P , Q ∈ PS. The two processes are early congruent, written P 'e Q, if for all substi-
tutions σ we have that Pσ ∼e Qσ.

The relation between the notions of late bisimilarity and late congruence, and of early
bisimilarity and early congruence, are shown in the following propositions.

Proposition 3.3.19 'l⊂∼l

Proof: The inclusion follows directly from the definitions of late bisimilarity and late
congruence because for P , Q ∈ PS, if P 'l Q then for all substitutions σ we have that
Pσ ∼l Qσ. In particular, this is true for the identity substitution, that is, P ∼l Q.
The following example is evidence of the strictness of the inclusion. Let P , Q ∈ PS and
distinct x, y, z, w ∈ N . If P = (νw)(w · xa|w · y(b)) and Q = (νw)(w · xa|w · z(b)), then
P ∼l Q since both processes are inactive. Nonetheless, for σ = {y/x}, Pσ can perform a
τ action, but Qσ remains inactive. Thus, Pσ 6∼l Qσ, and so P 6'l Q.

2

Proposition 3.3.20 'e⊂∼e

Proof: The inclusion follows directly from the definitions of early bisimilarity and early
congruence and is similar to that of Proposition 3.3.19. The same example given in Propo-
sition 3.3.19 can be used to prove the strictness of the inclusion, since P ∼e Q but P 6'e Q.

48 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

2

The notion of open bisimilarity for the π-calculus was introduced in [4] and proven to be
a congruence relation in that calculus. We now present the same notion for the π-calculus
with polyadic synchronization.

Definition 3.3.21 Open bisimilarity
A binary symmetric relation S is an open bisimulation if PSQ implies for every substitu-
tion σ:

- If Pσ
α−→ P ′ with bn(α) ∩ fn(Pσ,Qσ) = ∅ then there is a Q′ such that Qσ

α−→ Q′

and P ′SQ′.

Two processes P and Q are open bisimilar if PSQ for some open bisimulation S.
Open bisimilarity, written ∼o, is the largest open bisimulation.

Proposition 3.3.22 ∼o is preserved by all operators

Proof: The proof follows that in [4].

2

We now analyse the relationships between the bisimulation relations previously defined
and present a general diagram that summarizes these results at the end of this section.
The results and proofs are similar to those presented for the π-calculus [1, 5].

In order to prove that the largest open bisimulation is itself a late bisimulation, which
is enough to prove that ∼o⊂∼l, we first introduce the following lemma.

Lemma 3.3.23 The relation {(Pσ,Qσ) : P ∼o Q}∪ ∼o, where σ is a substitution, is an
open bisimulation.

Proof: Let P1 = Pσ1 and Q1 = Qσ1 where σ1 is a substitution.
By hypothesis P ∼o Q and for some substitution σ2 we have that Pσ2

α−→ P ′. Since
P ∼o Q, by definition of open bisimilarity, we know that there is a Q′ such that Qσ2

α−→ Q′

and P ′ ∼o Q
′. Also, note that the composition of two substitutions is itself a substitution,

so by definition of open bisimilarity, if P ∼o Q and Pσ1σ2
α−→ P ′ then there is a Q′ such

that Qσ1σ2
α−→ Q′ and P ′ ∼o Q

′.

2

Proposition 3.3.24 ∼o⊂∼l

Proof: We split the proof in two parts, first proving that ∼o is itself a late bisimulation
and then the strictness of the inclusion.

3.3. OBSERVATIONAL SEMANTICS 49

- Let u = x1 · ... · xk for some k ∈ N, and let P , Q ∈ PS such that P ∼o Q.
By definition of open bisimilarity we know that for every substitution σ if Pσ

α−→ P ′

then there is a Q′ such that Qσ
α−→ Q′ and P ′ ∼o Q

′. Considering the substitution σ
as the identity, ∼o immediately satisfies the first condition to be a late bisimulation.

Similarly, if P
u(y)−→ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that Q

u(y)−→ Q′

and P ′ ∼o Q′ (using the identity substitution). By Lemma 3.3.23 we have that
P ′σ ∼o Q

′σ for every substitution σ. In particular, P ′{w/y} ∼o Q
′{w/y} for all w.

- In order to prove the strictness of the inclusion, consider the following processes
P = (νx)(x·y(a)|x · zb) and Q = (νy)(x·y(a)|z · yb). Then P and Q are late bisimilar
because both processes are inactive. However, P and Q are not open bisimilar since

for σ = {z/y} we have that Pσ
τ−→ but Q =α Q

′ = (νk)(x · k(a)|z · kb) and Q′σ
τ

6−→
(note that we could not apply σ directly to Q because y occurs bound in Q).

2

We shall now prove that open bisimilarity is not only a late bisimulation but also a late
congruence.

Proposition 3.3.25 ∼o⊂'l

Proof: We split the proof in two parts: first proving that ∼o is itself a late congruence,
and then proving the strictness of the inclusion.

- Let P , Q ∈ PS and P ∼o Q.
By definition of open bisimilarity we know that for every substitution σ if Pσ

α−→ P ′

then there is a Q′ such that Qσ
α−→ Q′ and P ′ ∼o Q

′. By Lemma 3.3.23 we know
that P ′σ ∼o Q

′σ, and by Proposition 3.3.24 we have that P ′σ ∼l Q
′σ. Thus, for

every substitution σ we have that Pσ ∼l Qσ, that is, P 'l Q.

- In order to prove the strictness of the inclusion, consider the following processes
P = c(a).(τ.τ + τ) and Q = (νz)c(a).(τ.τ + τ + τ.(z · a|z · b).τ). Then P and Q are

late bisimilar since if Q
c(a)−→ (νz)(τ.τ + τ + τ.(z · a|z · b).τ) then P = τ.τ + τ and

for w 6= b Q{w/a} ∼l τ or Q{b/a} ∼l τ.τ . In addition, P and Q are late congruent
since the only relevant substitutions would be σ = {b/a} or σ = {a/b} but these are
impossible because a is bound in Q. Nonetheless, P and Q are not open bisimilar.

If Q
c(a)−→ τ−→ (νz)((z · a|z · b).τ) then P

c(a)−→ τ−→ P ′
1 = τ or P

c(a)−→ 0−→ P ′
2 = τ ; but

for w 6= b then Q{w/a}
τ

6−→ but P ′
1{w/a}

τ−→, and Q{b/a} τ−→ but P ′
2{b/a}

τ

6−→.
Thus it does not hold that for all substitutions σ if Qσ

α−→ Q′ then Pσ
α−→ P ′ and

P ′ ∼o Q
′.

2

We now prove that late bisimilarity is itself an early bisimulation and present an ex-
ample that proves the reverse does not hold.

50 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

Proposition 3.3.26 ∼l⊂∼e

Proof: We split the proof in two parts, first proving that ∼l is itself an early bisimulation
and then the strictness of the inclusion.

- Let u = x1 · ... · xk for some k ∈ N, and let P , Q ∈ PS such that P ∼l Q.
The first condition of early bisimilarity is identical to that of late, so we need only
concern ourselves with the input clause.

By definition of late bisimilarity, if P
u(y)−→ P ′ and y 6∈ fn(P,Q) then there is a Q′

such that Q
u(y)−→ Q′ and for all w we have that P ′{w/y} ∼l Q

′{w/y}. Then, if

P
u(y)−→ P ′ with y 6∈ fn(P,Q) then for each w there is a Q′ such that Q

u(y)−→ Q′ and
P ′{w/y} ∼l Q

′{w/y} which corresponds to the second condition of the definition of
early bisimulation.

- In order to prove the strictness of the inclusion, consider the following processes

P = x(y).τ +x(y) and Q = P +x(y).(y ·u(a)|z · ub). Then, Q
x(y)−→ Q′ = y ·u(a)|z · ub

and P
x(y)−→ P ′

1 = τ or P
x(y)−→ P ′

2 = 0 . So, on the one hand, we have that P and Q are

not late bisimilar because for w 6= z we have that P ′
1{w/y}

τ−→ but Q′{w/y}
τ

6−→,

and for w = z we have that Q′{w/y} τ−→ but P ′
2{w/y}

τ

6−→. On the other hand, we
have that P and Q are early bisimilar since for w = z we have that P ′

1{w/y} can
match Q′{w/y}, and for w 6= z then both Q′{w/y} and P ′

2{w/y} are inactive.

2

The same result holds if we consider the notions of late and early congruences instead
of late and early bisimilarity, as shown in the following proposition.

Proposition 3.3.27 'l⊂'e

Proof: The inclusion follows directly from the definitions of late and early congruences
as well as from Proposition 3.3.26. The strictness of the inclusion is shown by the ex-
ample provided in the proof of Proposition 3.3.26. The processes P = x(y).τ + x(y) and
Q = P + x(y).(y · u(a)|z · ub) are not only early bisimilar but also early congruent. Since
the processes P and Q are not late bisimilar, by Proposition 3.3.19 P 6'l Q.

2

Our last result shows that if two processes are early bisimilar then they are also ground
bisimilar. In addition, we provide an example that proves the reverse does not hold.

Proposition 3.3.28 ∼e⊂∼g

Proof: We split the proof in two parts, first proving that ∼e is itself a ground bisimulation
and then the strictness of the inclusion.

3.3. OBSERVATIONAL SEMANTICS 51

- Let u = x1 · ... · xk for some k ∈ N, and let P , Q ∈ PS.
The first clause of early bisimulation is identical to that of ground so we need only
concern ourselves with the input clause.

By definition of early bisimilarity we have that if P
u(y)−→ P ′ where y 6∈ fn(P,Q) then

for each w there is a Q′ such that Q
u(y)−→ Q′ and P ′{w/y} ∼e Q

′{w/y}. In particular,
if we let w = y the second clause is identical to the one for ground bisimilarity in the
case of input.

- In order to prove that the inclusion is strict, consider the following processes
P = (νa)(z(w).a · wc|a · y(b)) and Q = z(w). Then, P and Q are ground bisimi-
lar because both become inactive after performing the input action. Nonetheless, P

and Q are not early bisimilar since P
z(w)−→ P ′ and Q

z(w)−→ Q′ but P ′{y/w} can perform
an internal action while Q′{y/w} can not.

2

In this section we have introduced the observational semantics of the π-calculus with
polyadic synchronization, presented several definitions of bisimulation and established the
correspondence between these relations. We now summarize these results in the following
diagram where → stands for strict inclusion ⊂.

Corollary 3.3.29

∼o → ∼l → ∼e → ∼g

↘ ↑ ↑ ↗
'l → 'e

We now prove that the contextual equivalence coincides with early bisimilarity; we rely
on a similar result obtained for the π-calculus in [16].

Definition 3.3.30 Barbs
A barb is an input or output channel. The predicate P exhibits barb β, written P ↓β, is
defined by:

- P ↓u if P can perform an input action on channel u

- P ↓u if P can perform an output action on channel u

Note that the predicate just defined concerns only visible and immediate actions, as
seen in the following example.

Example 3.3.31 Let all considered names be distinct, P = (x ·y(a)|x · yb).zc+w · xc and
Q = (νx)(x · y(a)|x · yb).zc. Then, P ↓x·y, P ↓x·y, P ↓w·x but P 6↓z. Further, Q exhibits no
barbs.

We now introduce the notion of barbed bisimilarity as proposed in [21].

52 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

Definition 3.3.32 Barbed bisimilarity
A binary symmetric relation S is a barbed bisimulation if PSQ implies:

- if P ↓β then Q ↓β for each barb β

- if P
τ−→ P ′ then there exists a Q′ such that Q

τ−→ Q′ and P ′SQ′

Two processes P and Q are barbed bisimilar if PSQ for some barbed bisimulation S.
Barbed bisimilarity, written ∼b, is the greatest barbed bisimulation.

The following example shows the difference between barbed bisimilarity and the notions
of bisimilarity introduced.

Example 3.3.33 Let P = mn.mn and Q = mn. Then, P and Q are barbed bisimilar
since their only barb is m. However, P and Q are not ground, nor late, nor early nor open

bisimilar since P
mn−→ P ′ and Q

mn−→ Q′ but P ′ and Q′ = 0 are not bisimilar since P ′ can
still perform an output action while Q′ is inactive.

Note also that barbed bisimilarity is not a congruence since it is not preserved by parallel
composition, nor by replication, nor by substitution as seen in the following examples.
Example 3.3.36 is a proposed exercise in [3].

Example 3.3.34 Let P = mn.mn, Q = mn and R = m(x). As seen in the previous
example P ∼b Q, and trivially R ∼b R. Nonetheless, P |R 6∼b Q|R since P |R τ−→ P ′ = mn
and P ′ ↓m but Q|R τ−→ 0 .

Example 3.3.35 Let P = mn.ab+m(x), Q = mn.ba+m(x) and a, b be distinct names.
Then, P and Q are barbed bisimilar since they exhibit exactly the same barbs: m and m.
Nonetheless, !P and !Q are not barbed bisimilar since two copies of P and two copies of
Q can synchronize but the resulting processes do not exhibit the same barb, i.e., !P

τ−→ P ′

and P ′ ↓a but !Q
τ−→ Q′ and Q′ ↓b.

Example 3.3.36 Let P = m|n and Q = m.n+ n.m. Then, P and Q are barbed bisimilar
since they have the same barbs. We only analyse the case when P starts: if P ↓m then
Q ↓m and if P ↓n then Q ↓n. However, if we consider the substitution σ = {n/m}, we

have that Pσ and Qσ are not barbed bisimilar, since Pσ
τ−→ but Qσ

τ

6−→.

Nonetheless, barbed bisimilarity is preserved by some operators, as shown next.

Proposition 3.3.37 ∼b is preserved by prefixing, restriction and choice operators.

Proof: Let P , Q, R ∈ PS be such that P ∼b Q, and let u = x1 · ... · xn where n ∈ N.
Then:

3.3. OBSERVATIONAL SEMANTICS 53

• α.P ∼b α.Q since by applying the rule PREFIX we can conclude that i) if α = u(y)
or uy we have that both P ↓u and Q ↓u or both P ↓u and Q ↓u respectively; ii) if
α = τ we have that τ.P

τ−→ P and τ.Q
τ−→ Q and by hypothesis P ∼b Q.

• (νx)P ∼b (νx)Q since by applying rules RES or OPEN we have that (νx)P ↓β if

and only if (νx)Q ↓β. In addition, if by applying RES (νx)P
τ−→ (νx)P ′ then we

had that P
τ−→ P ′ and since P ∼b Q we would also have that Q

τ−→ Q′ and hence
(νx)Q

τ−→ (νx)Q′ where P ′ ∼b Q
′ and so (νx)P ′ ∼b (νx)Q′ as expected.

• P + R ∼b Q + R since P + R exhibits a barb β if and only if so does P or R.
Analogously, Q + R exhibits a barb β if and only if so does Q or R. Since by
hypothesis we have that P ∼b Q, we can conclude that P +R and Q+R exhibit the
same barbs.

2

Therefore, the notion of barbed congruence was put forth in [21] while the less demand-
ing notion of barbed equivalence was presented in [16]. Note that barbed equivalence and
barbed congruence do not coincide, as shown in Example 3.3.36 since the referred processes
are barbed equivalent but not barbed congruent.

Definition 3.3.38 Barbed equivalence
Two processes P and Q are barbed equivalent, written ∼beq, if for every process R we have
that P |R ∼b Q|R.

In order to define barbed congruence we must first introduce the notion of context.

Definition 3.3.39 Context
A context is obtained when the hole [·] replaces a process in P ∈ PS. The process obtained
by replacing the [·] in C by P , where C is a context and P a process, is denoted by C[P].

Definition 3.3.40 Barbed congruence
Two processes P and Q are barbed congruent, written 'b, if for each context C[·] it holds
that C[P] ∼b C[Q].

We now extend the result that establishes an alternative definition of barbed congruence
in the π-calculus as done in [3] to the π-calculus with polyadic synchronization. The proof
of Lemma 3.3.41 relies heavily on the one presented in [3].

Lemma 3.3.41 P 'b Q if and only if Pσ ∼beq Qσ for any substitution σ

Proof:

(⇒) Let P , Q ∈ PS be such that P 'b Q. Also, let u = x1 · ... · xk where k ∈ N
and x1, ..., xk are fresh, and σ = {ỹ/z̃} be a substitution where ỹ = y1, ..., yn and
z̃ = z1, ...zn. Given C = uy1...uyn |u(z1)...u(zn).[·] |R we know that C[P] ∼b C[Q]
since both processes exhibit the same barbs. In addition, by performing n internal
actions C[P]

τ−→ ...
τ−→ Pσ|R, and the only process that does not exhibit barb u to

which C[Q] reduces in n steps is Qσ|R. Thus Pσ|R ∼b Qσ|R, that is, Pσ ∼beq Qσ.

54 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

(⇐) Let P , Q ∈ PS and σ be a substitution such that Pσ ∼beq Qσ, that is, Pσ|R ∼b Qσ|R
for any R. Since 'b is the largest congruence in ∼b it suffices to show that for any
context C we have that C[P]σ|R ∼b C[Q]σ|R. The proof is done by induction on C
and we consider only the relevant transitions.

- C = u(y).C ′ where u = x1 · ... · xk and k ∈ N. If by application of rules

PREFIX and PAR1 C[P]σ|R σ(u(y))−→ C ′[P]σ|R, then C[Q]σ|R σ(u(y))−→ C ′[Q]σ|R
and by induction hypothesis C ′[P]σ|R ∼b C

′[Q]σ|R. If by application of rule

COMM C[P]σ|R τ−→ C ′[P]σ{z/y}|R′ (where we assume R
uz−→ R′), then

C[Q]σ|R τ−→ C ′[Q]σ{z/y}|R′ and by induction hypothesis C ′[P]σ{z/y}|R′ ∼b

C ′[Q]σ{z/y}|R′. If by application of rule CLOSE C[P]σ|R τ−→ (νy)C ′[P]σ|R′

(where we assume R
u(y)−→ R′), then C[Q]σ|R τ−→ (νy)C ′[Q]σ|R′; by induction

hypothesis C ′[P]σ|R′ ∼b C
′[Q]σ|R′ and by Proposition 3.3.37 ∼b is closed under

restriction, so (νy)C ′[P]σ|R′ ∼b (νy)C ′[Q]σ|R′.

The other cases can be handled in a similar way (for C =!C ′ check [3]).

2

In [16] an alternative characterization of barbed equivalence was obtained by proving
it coincided with the notion of early bisimulation. We now extend that proof in order to
establish a similar result for the π-calculus with polyadic synchronization. Also, note that
we only establish the strong result; we believe the weak can be established also following
the proof in [16] and the one for the strong case we will present.

Before we establish the result, we will first introduce some auxiliary lemmas about
countable sets which we will rely upon but not prove. Note that we consider a set to be
countable if it is either finite or has the same cardinality as N.

Lemma 3.3.42 Countable Sets

• Every subset of a countable set is again countable.

• The countable union of countable sets is countable

In order to begin the proof, we must define the following three sets which we will use.
Firstly, let F be a finite set of pairs of names, F1 = π1(F) and F2 = π2(F) where π1, π2

represent respectively the projection of F on the first and second component of the pairs.
Also, let F1 include the free names of two processes P and Q and a finite set of names
represented by {x̃}, that is, fn(P,Q) ∪ {x̃} ⊆ F1. Also note that (a, a′) ∈ F if and only if
a ∈ F1 and a′ ∈ F2.
Secondly, let Y a countable infinite set of pairs of names, Y1 = π1(Y) and Y2 = π2(Y) be
such that (y, y′) ∈ Y if and only if y ∈ Y1 and y′ ∈ Y2. Also, Y1 must be composed of
names not present in F , that is, if we let n(F) and n(Y) denote the set of names which
occur in F and Y respectively, then n(Y) ∩ n(F) = ∅.

3.3. OBSERVATIONAL SEMANTICS 55

Thirdly, let H〈F 〉 be a set of pairs of channels built from the names in F1; we will prove
H is countable. In addition, let H1 = π1(H) and H2 = π2(H) be such that (c, c′′) ∈ H
if and only if c ∈ H1 and c′′ ∈ H2 . The set H1 is the union of the composite channels
built from all possible permutations of subsets of F1 which are denoted by !P(F1), i.e.,
H1 = ∪A∈!P(F1)make−channel(A) wheremake−channel(a1, ..., an) = a1·...·an. By Lemma
3.3.42 every subset of F1 is countable (because F1 is countable) and P(F1) = ∪A⊆F1A is
also countable since it is a countable union of countable sets. Thus, H1 is a countable set
of composite channels.

Theorem 3.3.43 ∼e coincides with ∼beq

Proof:

(⇒) We prove that ∼e is a barbed bisimulation. Let u = x1 · ... · xn where n ∈ N and let
P , Q ∈ PS be such that PSQ where S is an early bisimulation. Then, if:

1. P
u(y)−→ P ′ then P ↓u and since P and Q are early bisimilar for each w there is a

Q′ such that Q
u(y)−→ Q′ and P ′{w/y}SQ′{w/y}. Thus, since Q

u(y)−→ Q′, we have
that Q ↓u.

2. P
α−→ P ′ where α = uy or u(y) then P ↓u and since P and Q are early bisimilar

there is a Q′ such that Q
α−→ Q′ which implies that Q ↓u.

3. P
τ−→ P ′ since P and Q are early bisimilar there is a Q′ such that Q

τ−→ Q′

(and P ′SQ′). Note that to P ′ and Q′ we can apply the same reasoning as to
the P and Q we started from till a visible action is performed by both processes
(or their descendants) like in case 1 or 2, or till both processes are inactive.

Therefore, we can conclude that P and Q are barbed bisimilar. Since early bisimu-
lation is preserved by all operators except input prefixing (Lemma 3.3.16), we have
that for any R, P |R ∼e Q|R, and thus P |R ∼b Q|R. We then comply with the
necessary requirements of barbed equivalence and establish that P ∼beq Q.

(⇐) In order to establish this result we will prove that the relation S = {(P,Q) : F, Y, x̃
exist such that (νx̃)CF,Y [P] ∼b (νx̃)CF,Y [Q]} where x̃, F , H〈F 〉, Y are related as
explained before, is an early bisimulation.
The context C[·] is defined as C[·] = [·] |V 〈F, Y 〉 where:

V 〈F, Y 〉 =∑
(c,c′′)∈H〈F 〉

∑
(b,b′)∈F∪(y,y′)

cb.(c′′ + b′ + in+ V 〈F ∪ (y, y′), Y \(y, y′)〉) (3.1)

+
∑

(c,c′′)∈H〈F 〉

c(y).(c′′+y′+out+V 〈F ∪(y, y′), Y \(y, y′)〉+(νt)
∑

(b,b′)∈F

(t · b|t·y).b′ (3.2)

56 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

The first 3.1 and second 3.2 summands are used to test respectively the input and
output actions of P or Q6. Note in 3.1 that all possible inputs are considered in the
inner summation just like early bisimulation requires. In 3.2 the last term in the
summation concerns the case of bound output in which the outputted name will not
be found in H, as opposed to the case of free output. Further, notice that the names
in, out are not in n(P,Q), these names are used to show which type of action (input
or output, respectively) was performed.
The relation between F and Y can now be further analysed, since the names taken
from Y are used to augment F (and hence H) by via of name-communication. Note
that on the definition of V 〈F, Y 〉 the pair (y, y′) is drawn from Y .
We now prove the core of the theorem by splitting the proof into the four possible
actions of P .

1. If P
τ−→ P ′, then we can infer that (νx̃)CF,Y [P] = (νx̃)(P |V 〈F, Y 〉) τ−→

(νx̃)(P ′|V 〈F, Y 〉) = R. Since by hypothesis (νx̃)CF,Y [P] ∼b (νx̃)CF,Y [Q]},
then (νx̃)CF,Y [Q]

τ−→ T , and R may have as barbs only c such that c ∈ H1,
and so should T . Note that (νx̃)CF,Y [Q] could have performed a τ action by i)
interaction between V 〈F, Y 〉 and process Q where Q performed an input action;
ii) interaction between V 〈F, Y 〉 and process Q where Q performed an free or
bound output action; iii) there is no interaction with V 〈F, Y 〉 and Q performs
a τ action by itself. Both i) and ii) are impossible since at least T ↓in or T ↓out

and {in, out} ∩H1 = ∅. Thus, (νx̃)CF,Y [Q]
τ−→ T = (νx̃)(Q′|V 〈F, Y 〉), that is

Q
τ−→ Q′ and (P ′, Q′) ∈ S.

2. If P
c(y)−→ P ′, then we can infer that (νx̃)CF,Y [P] = (νx̃)(P |V 〈F, Y 〉) τ−→

(νx̃)(P ′{b/y}|V1) = R where V1 = c′′+b′+in+V 〈F ∪(y, y′), Y \(y, y′)〉. Then, R
has as barbs at least c′′, b′, and in. Note that (νx̃)CF,Y [Q] could have performed
a τ action by the i), ii) and iii) reasons mentioned in case 1. The situation ii)
where Q performed a free or bound output is impossible since in that case
T ↓out but R 6↓out. The situation iii) is impossible since in that case, e.g., T 6↓b′ .
The only possible situation is then if Q performed an input action of the type
α = c1(b1). Note that the following equalities have to hold c1 = c and b1 = b so

that T ↓c′′ and T ↓b′ as R can. Thus, we have that if P
c(y)−→ P ′ then for every

possible b we have that Q
c(y)−→ Q′ and R ∼b T , that is, (P ′{b/y}, Q′{b/y}) ∈ S.

3. If P
cz−→ P ′, then we can infer that (νx̃)CF,Y [P] = (νx̃)(P |V 〈F, Y 〉) τ−→

(νx̃)(P ′|V2) = R where V2 = c′′+z′+out+V 〈F, Y 〉+(νt)
∑

(b,b′)∈F (t · b|t·y).b′ and

t is fresh, while z ∈ fn(P) ⊆ F1. Then, R has as barbs at least c′′, z′ and out.
Since by hypothesis (νx̃)CF,Y [P] ∼b (νx̃)CF,Y [Q]}, then (νx̃)CF,Y [Q]

τ−→ T
and T should have the same barbs as R. Note that (νx̃)CF,Y [Q] could have
performed a τ action by the i), ii) and iii) reasons mentioned in case 1. The

6Note that the summations in 3.1 and 3.2 are finite.

3.3. OBSERVATIONAL SEMANTICS 57

situation i) is impossible since T ↓in but R 6↓in, and the situation iii) is impossi-
ble since, e.g., T 6↓c′′ . Then we are in a situation where Q has to do an output on
the same channel as P (so it has c′′ as a barb too), but we must still prove the
output has to be free. This happens because since P performed a free output,
R can do a τ action from the last summation in V2 and the resulting process has
as an unique barb z′. However, if Q performs a bound output, the summation
in V2 is an inactive process, and even if (νx̃)CF,Y [Q] performs a τ action by the
cases i), ii) and iii), in both ii) and iii) the resulting process would have either
in or out as a barb. In the case of i) then there would be no interaction with
V 〈F, Y 〉, and so the resulting process would not have z′ as a barb. Thus, Q has
to perform α = cz as did P .

4. If P
c(y)−→ P ′, then we can infer that (νx̃)CF,Y [P] = (νx̃)(P |V 〈F, Y 〉) τ−→

(νx̃)(νy)(P ′|V3) = R where V3 = c′′ + y′ + out + V 〈F ∪ (y, y′), Y \(y, y′)〉 +
(νt)

∑
(b,b′)∈F (t · b|t · y).b′. The rest of the proof is very similar to case 3 where

the difference between bound and free output is analysed.

2

Corollary 3.3.44 'e coincides with 'b

Proof: Let P , Q ∈ PS.

(⇒) If P 'e Q then by Definition 3.3.18 Pσ ∼e Qσ for any substitution σ. By Theorem
3.3.43 we know that Pσ ∼beq Qσ, and by Lemma 3.3.41 P 'b Q.

(⇐) If P 'b Q then by Lemma 3.3.41 we know that Pσ ∼beq Qσ for any substitution σ.
By Theorem 3.3.43 we have that Pσ ∼e Qσ, and therefore P 'e Q.

2

58 CHAPTER 3. π-CALCULUS WITH POLYADIC SYNCHRONIZATION

Chapter 4

Spi-calculus

The spi-calculus was introduced in [12] as an extension of the π-calculus with cryptographic
primitives, and it is designed to model and analyse security protocols.

4.1 Syntax

In this section we introduce the syntax of a variant of the spi-calculus that was originally
presented in [12]. The spi-calculus used is the one in [23] following that presented in [24].
We start by defining the set of messages, expressions, and decryption-free expressions, and
by explaining their role in the spi-calculus syntax.

Definition 4.1.1 Messages
Let N be a countable set of names ranged over a, b, c,..., k, l,..., x, y, z. The set of
messages M ranged over M , N is defined by the following grammar:
M ::= a name
| {M}k shared-key encryption

Note that the names are untyped and so can be used as channels, keys, variables or
cipher texts. In order to simplify our examples, we often let a, b, c represent channels or
cipher texts, k, l represent keys, and x, y, z represent variables. Also note that although
we allow nested encryption, we require that on the encryption of the cipher text M under
the key n, n is a name. As an example, we do not allow messages of the type {a}{b}k

.

Definition 4.1.2 Expressions
Let N be a countable set of names. The set of expressions E ranged over η, ζ is defined
by the following grammar:
η ::= a name
| {η}η encryption
| decη(η) decryption

The set of decryption-free expressions D ranged over δ, ε is defined by the following gram-
mar:
δ ::= a name
| {δ}δ encryption

59

60 CHAPTER 4. SPI-CALCULUS

Note that when considering expressions these may be the result of arbitrary encryptions
and decryptions, while messages are decryption-free and the encryption is done under a
key (name). The introduction of decryption-free expressions allows us to ensure that de-
cryption constructs occur only in the ‘let’ operator of processes (See Definition 4.1.4).

We now introduce the set of logical formulae which are used as Boolean guards for spi-
calculus processes - a generalization of the matching construct present in the π-calculus.

Definition 4.1.3 Formulae
Let z ∈ N and η, ζ ∈ E. The set of logical formulae Φ ranged over φ, ψ is defined by the
following grammar:
φ ::= tt true
|name(η) name predicate
| [η = ζ] equality
| let z = η in φ decryption
|φ ∧ φ conjunction
| ¬φ negation

The name predicate name(η) checks whether the argument η is or not a plain name.
The decryption operator let z = η in φ, binds the value of η (calculated through the rules
in Table 4.1) to z within φ.

Definition 4.1.4 Processes
Let n, x ∈ N , δ ∈ D, ζ ∈ E and φ ∈ Φ. The class of processes Pspi ranged over P , Q is
defined by the following grammar:
P ::= 0 inaction
|π.P prefix
| !P replication
| (νn)P restriction
|P |P parallel composition
|P + P choice
|φP Boolean guard
| let x = ζ inP decryption

where the prefixes π are given by:
π ::= δ(x) input

| δδ output

As a brief explanation of some of the constructs not present in the π-calculus, note
that, as would be expected, the process φP behaves as P if and only if φ evaluates to true.
In addition, note that if the evaluation of ζ fails in a process like let x = ζ inP 1 the whole
process is stuck. Also note that x is bound in let x = ζ inP ; the other constructs behave

1The reader already familiar with the spi-calculus should note that the ‘let’ construct is equivalent to
the originally proposed ‘case of’. Thus, processes like let x = deck(M) inP and caseM of {x}k in P are
the same.

4.2. LATE LABELLED TRANSITION SEMANTICS 61

exactly as in the π-calculus.

In the spi-calculus we consider three possible actions: the internal action τ , the free
input action aM and the output action (νb̃)a〈M〉 where {a, b̃} ⊆ N and M ∈ M. When-
ever {b̃} = ∅ we write a〈M〉 instead of (νb̃)a〈M〉. We will also note that only names are
allowed as channels, otherwise the process performing the action is stuck.

The notion of substitution follows that of the π-calculus with the sole difference that
instead of considering substitutions as mappings of N to N , we consider mappings of N
to M, where N is the set of names and M the set of messages. The formal definition of
substitution is presented in Section 4.3. The notion of α-conversion follows that presented
in Chapter 3 for the π-calculus with polyadic synchronization.

4.2 Late Labelled Transition Semantics

In this section we introduce the early labelled transition semantics following [23] instead
of [24]. This choice is based on the fact that while in [24] two sets of operational semantics
(one for the processes and one for the environment) are developed, in [23] the environment
behaviour is built into the definition of bisimulation, following the work in [22].

In order to establish a transition relation based on a set of rules, we must first be able
to evaluate expressions and Boolean guards. Following [23], the evaluation function for
expressions e(·) : E → M ∪ {⊥} and formulae e(·) : Φ → {tt, ff} is defined recursively
according to Table 4.12.

We now introduce the early labelled transition relation for the spi-calculus.

Definition 4.2.1 Early labelled transition relation
The early labelled transition relation

α−→⊆ PS × PS, where α is a possible action, is the
smallest relation generated by the set of rules in Table 4.2.

Most of the rules come straightforwardly from the π-calculus. The rules S-GUARD
and S-LET establishing the behaviour of process of the type φP and let z = ζ inP have
been described in Section 4.1 when we described these constructs.

4.3 Observational Semantics

In this section we present a notion of bisimulation that takes into account the behaviour
of the environment. Although several notions of bisimulation have been put forth, we rely
on that of alley bisimulation since it was proven it coincides with barbed equivalence [See

2It should be clear that the first three rules correspond to the evaluation of expressions and the rest to
the evaluation of formulae.

62 CHAPTER 4. SPI-CALCULUS

e(a) = a

e({η}ζ) =

{
{M}k if e(η) = M ∈M and e(ζ) = k ∈ N
⊥ otherwise

e(decζ(η)) =

{
M if e(η) = {M}k ∈M and e(ζ) = k ∈ N
⊥ otherwise

e(tt) = tt
e(φ ∧ ψ) = e(φ) ∧ e(ψ)
e(¬φ) = ¬e(φ)

e(let z = ζ in φ) =

{
e(φ{M/z}) if e(ζ) = M ∈M
ff otherwise

e(name(ζ)) =

{
tt if ζ ∈ N
ff otherwise

e([ζ = η]) =

{
tt if ζ = η ∈M
ff otherwise

Table 4.1: Evaluation in the spi-calculus

Corollary 4.3.27]. In order to introduce this notion, we must first describe in detail the
environment, so as to be able to compare the processes.

We rely on a set of assumptions that are generally accepted and referred to in the
literature (e.g. [24, 23]) and which we now enumerate.

1. A message {M}k can only be decrypted using k, and can only be produced by
encrypting M under k. If k is kept secret, then no attacker can guess or forge k.

2. There is enough redundancy in the structure of messages to tell whether the decryp-
tion of a message with a given key has actually succeeded or not.

3. There is enough redundancy in the structure of messages to tell their role (name or
compound cipher text).

4. The only way to form a new key is to get a fresh name from a primitive set of names.

Note that Assumption 3 is necessary since, as mentioned earlier, we only allow channels
to be names.

We now present concepts that are important to understand the role of the environment.
We start by formally introducing the definition of substitution and other useful notation.

Definition 4.3.1 Substitution
A substitution σ is a finite partial map from the set of names N to the set of messagesM.
The domain and codomain of substitution σ are written dom(σ) and range(σ) respectively.
We write σ{M/x} for σ ∪ {(x,M)} where x /∈ dom(σ).

4.3. OBSERVATIONAL SEMANTICS 63

(S-OUT)
−

aM.P
a〈M〉−→ P

(S-INP)

−
a(x).P

aM−→ P{M/x}

(S-CH1)
P

α−→ P ′

P +Q
α−→ P ′

(S-CH2)
P

α−→ P ′

Q+ P
α−→ P ′

(S-PAR1)
P

α−→ P ′

P |Q α−→ P ′|Q
(S-PAR2)

P
α−→ P ′

Q|P α−→ Q|P ′
where bn(α) ∩ fn(Q) = ∅

(S-RES)
P

α−→ P ′

(νm)P
α−→ (νm)P ′

where m 6∈ n(α)

(S-REP-ACT)
P

α−→ P ′

!P
α−→ P ′|!P

where bn(α) ∩ fn(P) = ∅

(S-REP-COMM)
P

(νñ)m〈M〉−→ P ′ P
m(x)−→ P ′′

!P
τ−→ ((νñ)(P ′|P ′′))|!P

where ñ 6∈ fn(P)

(S-OPEN)
P

(νñ)m〈M〉−→ P ′

(νk)P
(νñ,k)m〈M〉−→ P ′

where k 6∈ {m, ñ}, k ∈ n(M)

(S-COMM1)
P

(νñ)m〈M〉−→ P ′ Q
m(M)−→ Q′

P |Q τ−→ (νñ)(P ′|Q′)
(S-COMM2)

P
(νñ)m〈M〉−→ P ′ Q

m(M)−→ Q′

Q|P τ−→ (νñ)(Q′|P ′)
where ñ 6∈ fn(Q)

(S-GUARD)
P

α−→ P ′

φP
α−→ P ′

if e(φ) = tt

(S-LET)
P{e(ζ)/z} α−→ P ′

let z = ζ inP
α−→ P ′

if e(ζ) 6= ⊥

(S-CONV)
P

α−→ P ′

Q
α−→ P ′

if Q =α P

Table 4.2: Early transition rules

64 CHAPTER 4. SPI-CALCULUS

Following the idea in [24] that it is possible to obtain an irreducible message after
decrypting it using known keys, we present the notion of analysis, irreducibility and of
core as introduced in [23]. Any set of messages, in particular the messages in the codomain
of a substitution, may be reduced via decryption using the notion of analysis. The set of
irreducibles contains only the messages that cannot be further reduced.

Definition 4.3.2 Analysis / Irreducibility
Let S ⊆M, where M is the set of messages. The analysis A(S) is the smallest subset of
M containing S and satisfying

(SET-DEC)
{M}k ∈ A(S) k ∈ A(S)

M ∈ A(S)

The irreducibles I(S) are defined as I(S) = A(S)\{{M}k : k ∈ A(S)}.

Definition 4.3.3 Core
Let σ be a substitution, and I(σ), A(σ) be shorthand for I(range(σ)) and A(range(σ)).
Then, for each message M ,

coreσ(M) =

{
coreσ(M ′) if M = {M ′}a and a ∈ I(σ)
M otherwise

Also, we introduce the following notation by letting C(σ, x) = coreσ(σ(x)).

Note that with the auxiliary notion of C(σ, x), we can define the irreducibles in an
alternative way: I(σ) = {C(σ, x) : x ∈ dom(σ)}.

In the following examples we show how the concepts just introduced work in practice.

Example 4.3.4 Let S = {k, {{a}k}k, {{b}h}k, {{c}k}h, {k}k}, where a, b, c, h, k ∈ N .
Then, A(S) = S ∪ {{a}k, a, {b}h, k} = {k, {{a}k}k, {{b}h}k, {{c}k}h, {k}k, {a}k, a, {b}h}
and I(S) = A(S)\{ {{a}k}k, {{b}h}k, {k}k, {a}k } = {k, {{c}k}h, a, {b}h}.

Example 4.3.5 Let σ = {k/x1, {{a}k}k/x2, {{b}h}k/x3, {{c}k}h/x4, {k}k/x5}. Then,
coreσ(k) = k, coreσ({{a}k}k) = coreσ({a}k) = coreσ(a) = a, coreσ({{b}h}k) = coreσ({b}h) =
{b}h, coreσ({{c}k}h) = {{c}k}h and coreσ({k}k) = coreσ(k) = k. Therefore, I(σ) =
I(range(σ)) = {C(σ, xi) : xi ∈ dom(σ)} = {k, a, {b}h, {{c}k}h}.

We now introduce the definition of consistency based on the notion that two substitu-
tions are consistent if they decrypt messages in precisely corresponding ways. In addition,
we consider a stronger notion of consistency also proposed in [24]. The notions of consistent
and strongly consistent environments lead to the notions of alley and trellis bisimulation
respectively, which we will introduce afterwards.

4.3. OBSERVATIONAL SEMANTICS 65

Definition 4.3.6 Consistent environments
A pair of substitutions (σ, ρ) is consistent, written σ ∼ ρ if and only if

1. dom(σ) = dom(ρ) = {x1, ..., xn} where n ∈ N

2. C(σ, xi) ∈ N if and only if C(ρ, xi) ∈ N

3. C(σ, xi) = C(σ, xj) if and only if C(ρ, xi) = C(ρ, xj)

4. for each i = 1, 2, ..., n there is a tuple ı̃ = ı1, ..., ın such that
σ(xi) = {...{C(σ, xi)}C(σ,xı1)...}C(σ,xım)

ρ(xi) = {...{C(ρ, xi)}C(ρ,xı1)...}C(ρ,xım)

Definition 4.3.7 Strongly consistent environments
A pair of substitutions (σ, ρ) is strongly consistent, written σ ∼s ρ if and only if σ ∼ ρ
and whenever C(σ, xi) ∈ N or C(ρ, xi) ∈ N then C(σ, xi) = C(ρ, xi).

We now compare with respect to consistency several environment, the first three are
cited from [23].

Example 4.3.8 Consider the following environments:

σ1 = {a/x1, {b}a/x2, {{c}a}k/x3}

σ2 = {a/x1, {b}a/x2, {{d}k}k/x3}

σ3 = {a/x1, {c}a/x2, {{c}k}k/x3}

σ4 = {d/x1, {b}k/x2}

σ5 = {a/x1, {{b}b}k/x2}

• σ1 ∼ σ2 since 1. dom(σ1) = dom(σ2) = {x1, x2, x3}; 2. C(σ1, x1) = a ∈ N ⇔
C(σ2, x1) = a ∈ N and C(σ1, x2) = b ∈ N ⇔ C(σ2, x2) = b ∈ N ; 3. not
applicable; 4. σ1(x1) = a = σ2(x1), σ1(x2) = {b}a = {C(σ1, x2)}C(σ1,x1) and
σ2(x2) = {b}a = {C(σ2, x2)}C(σ2,x1), σ1(x3) = {{c}a}k = C(σ1, x3) and σ2(x3) =
{{d}k}k = C(σ2, x3). Note that if both σ1 and σ2 acquire knowledge of k, i.e.,
σ′1 = σ1{k/x4} and σ′2 = σ2{k/x4}, then σ′1 6∼ σ′2. The problem resides on the
fact that σ′1(x3) = {{c}a}k = {{C(σ′1, x3)}C(σ′

1,x1)}C(σ′
1,x4) but σ′2(x3) = {{d}k}k =

{{C(σ′2, x3)}C(σ′
2,x4)}C(σ′

2(x4)), that is the decryptions are not made in the same way,
thus violating condition 4.

• σ1 ∼ σ3 since 1. dom(σ1) = dom(σ3); 2. C(σ1, x1) = a ∈ N ⇔ C(σ3, x1) = a ∈ N
and C(σ1, x2) = b ∈ N ⇔ C(σ3, x2) = c ∈ N ; 3. not applicable; 4. σ1(x1) = a =
σ3(x1), σ1(x2) = {b}a = {C(σ1, x2)}C(σ1,x1) and σ3(x2) = {c}a = {C(σ3, x2)}C(σ3,x1),
σ1(x3) = {{c}a}k = C(σ1, x3) and σ3(x3) = {{c}k}k = C(σ3, x3). Note that if
both σ1 and σ3 acquire knowledge of k, i.e., σ′1 = σ1{k/x4} and σ′3 = σ3{k/x4},
then σ′1 6∼ σ′3. The problem resides on the fact that C(σ′3, x2) = C(σ′3, x3) = c but
C(σ′1, x2) = b 6= c = C(σ′1, x3), thus violating condition 3.

66 CHAPTER 4. SPI-CALCULUS

• σ2 ∼ σ3 since 1. dom(σ2) = dom(σ3); 2. C(σ2, x1) = a ∈ N ⇔ C(σ3, x1) = a ∈ N
and C(σ2, x2) = b ∈ N ⇔ C(σ3, x2) = c ∈ N ; 3. not applicable; 4. σ2(x1) = a =
σ3(x1), σ2(x2) = {b}a = {C(σ2, x2)}C(σ2,x1) and σ3(x2) = {c}a = {C(σ3, x2)}C(σ3,x1),
σ2(x3) = {{d}k}k = C(σ2, x3) and σ3(x3) = {{c}k}k = C(σ3, x3). Note that if
both σ2 and σ3 acquire knowledge of k, i.e., σ′2 = σ2{k/x4} and σ′3 = σ3{k/x4},
then σ′2 6∼ σ′3. The problem resides on the fact that C(σ′3, x2) = C(σ′3, x3) = c but
C(σ′2, x2) = b 6= d = C(σ′2, x3), thus violating condition 3.

• σ4 ∼ σ5 since 1. dom(σ4) = dom(σ5); 2. C(σ4, x1) = a ∈ N ⇔ C(σ5, x1) = d ∈ N ;
3. not applicable; 4. σ4(x1) = a and σ5(x1) = d, σ4(x2) = {b}k and σ5(x2) = {{b}b}k.
Note that if both σ4 and σ5 acquire knowledge of k, i.e., σ′4 = σ4{k/x3} and σ′5 =
σ5{k/x3}, then σ′4 6∼ σ′5. The problem resides on the fact that C(σ′4, x2) = b ∈ N but
C(σ′5, x2) = {b}b 6∈ N , thus violating condition 2.

• σ4 6∼ σ1, σ4 6∼ σ2, σ4 6∼ σ3, σ5 6∼ σ1, σ5 6∼ σ2, σ5 6∼ σ3 since dom(σ4) = dom(σ5) 6=
dom(σ1) = dom(σ2) = dom(σ3), thus violating condition 1.

Note that for two environments to be consistent it is not necessary that their knowledge
of names is identical as seen in Example 4.3.8 in the case where σ4 ∼ σ5, whereas for two
environments to be strongly consistent it is so. Therefore, of the environments considered
in Example 4.3.8, σ1 ∼s σ2 but σ1 6∼s σ3 and σ2 6∼s σ3 since C(σ1, x2) = C(σ2, x2) = b 6=
c = C(σ3, x2). It is immediate that σ4 6∼s σ5. In addition, note that if σ 6∼ ρ then σ 6∼s ρ
by definition of consistent and strongly consistent environments.

We now introduce the notion of synthesis of consistent environments as in [23] which
will be used in the definition of alley bisimulation.

Definition 4.3.9 Synthesis
If σ ∼ ρ we write (σ, ρ) ` M ↔ N if and only if there is a ζ such that n(ζ) ⊆ dom(σ),
e(σ(ζ)) = M and e(ρ(ζ)) = N . The synthesis of a consistent pair of substitutions (σ, ρ) is
defined as S(σ, ρ) = {(M,N) : (σ, ρ) `M ↔ N}.

We now present the notion of consistent and strongly consistent alley relation, which
will allow us to define the notions of alley bisimulation and trellis bisimulation used to
compare processes.

Definition 4.3.10 Consistent alley relation
Let (σ, ρ) be a substitution pair, and P , Q ∈ Pspi. An alley process pair is a triple
((σ, ρ), P,Q) with dom(σ) = dom(ρ). An alley relation R is a set of alley process pairs. We
write (σ, ρ) ` PRQ if ((σ, ρ), P,Q) ∈ R. An alley relation R is consistent if (σ, ρ) ` PRQ
implies that σ ∼ ρ, and strongly consistent if (σ, ρ) ` PRQ implies that σ ∼s ρ.

Unlike what was done in Chapter 3, here we introduce the weak versions of the equiv-
alence relations. Therefore, we must abstract from the internal actions of processes by
considering transitions of the type =⇒ which represent an unbounded number of succes-
sive τ actions (possibly zero), and

α
=⇒ which represent the transition(s) =⇒ α−→=⇒.

4.3. OBSERVATIONAL SEMANTICS 67

Definition 4.3.11 Weak alley bisimilarity
A consistent symmetric alley relation R is an alley bisimulation if (σ, ρ) ` PRQ implies:

- if P
τ−→ P ′ then there is a Q′ such that Q =⇒ Q′ and (σ, ρ) ` P ′RQ′

- if P
a M−→ P ′ and there are ζ, b̃, b such that e(σ(ζ)) = M with (σ, ρ) ` a ↔ b,

{b̃} = n(ζ)\dom(σ) and {b̃}∩fn(P,Q, σ, ρ) = ∅, then there exist c̃, Q′ with {c̃} ⊂ N ,

|{c̃}| = |{b̃}|, {c̃}∩ dom(σ) = ∅ such that Q
b e(ρ(ζ))
=⇒ Q′ and (σ{b̃/c̃}, ρ{b̃/c̃}) ` P ′RQ′

- if P
(νc̃)a〈M〉−→ P ′ with fn(P, σ) ∩ {c̃} = ∅ and (σ, ρ) ` a ↔ b then there are Q′, N , d̃,

x with fn(Q, ρ) ∩ {d̃} = ∅ such that Q
(νd̃)b〈N〉
=⇒ Q′ and (σ{M/x}, ρ{N/x}) ` P ′RQ′

Given a pair of substitutions (σ, ρ), two processes P and Q are weakly alley bisimilar if
PRQ for some alley bisimulation R. Alley bisimilarity, written ≈a, is the largest alley
bisimulation.

With respect to the definition of alley bisimulation just presented, note that when an
internal action is performed nothing is revealed so the environments remain unchanged,
when an input action is performed the environments are extended with the new names
created, and when an output action is performed the environments are extended with the
new messages.

Definition 4.3.12 Weak trellis bisimilarity
A weak trellis bisimulation is a strongly consistent alley bisimulation. Given a pair of
substitutions (σ, ρ), two processes P and Q are weakly trellis bisimilar if PRQ for some
trellis bisimulation R. Trellis bisimilarity, written ≈t, is the largest trellis bisimulation.

Note that since strongly consistent environments are also consistent, then whenever
two processes are trellis bisimilar they are also alley bisimilar. The opposite is not true, as
seen in the Example 4.3.14.

We now examine some of the examples mentioned in [23]3 and in [24].

Example 4.3.13 Let σ = ρ = {a/x1}, P = (νn, k, l)a{{n}k}l.P ′ and Q = (νn, k)a{n}k.Q′

where P ′ = Q′ = (νm)am. An alley bisimulation relating P and Q is given by
R = {((σ, ρ), P,Q),
((σ{{{n}k}l/x2}, ρ{{n}k/x2}), P ′, Q′),
((σ{{{n}k}l/x2,m/x3}, ρ{{n}k/x2,m/x3}),0 ,0)}.
In other words, if P

(νn,k,l)a〈{{n}k}l〉−→ P ′ and (σ, ρ) ` a ↔ a then Q
(νn,k)a〈{n}k〉−→ Q′ and

the resulting environments are consistent since neither k nor l are known. In addition,

P ′ (νm)a〈m〉−→ 0 and Q′ (νm)a〈m〉−→ 0 and the resulting environments are once again consistent.

3The examples proposed are used to differentiate the notion of hedged bisimulation therein introduced
(and proven to coincide with alley bisimulation) from other notions of bisimulation introduced for the
spi-calculus.

68 CHAPTER 4. SPI-CALCULUS

Further, note that the pairs of environments considered are actually strongly consistent,
whereby the relation presented is not only an alley bisimulation but also a trellis bisimula-
tion.

Example 4.3.14 Let σ = ρ = {a/x1}, P = (νm, k, l)a{{m}l}k.(am + al) and Q =
(νm, k)a{m}k.am. An alley bisimulation relating P and Q is given by
R = {((σ, ρ), P,Q),
((σ{{{m}l}k/x2}, ρ{{m}k/x2}), am+ al, am),
((σ{{{m}l}k/x2,m/x3}, ρ{{m}k/x2,m/x3}),0 ,0),
((σ{{{m}l}k/x2, l/x3}, ρ{{m}k/x2,m/x3}),0 ,0)}.
In particular note that, given P ′ = am + al and Q′ = am, whether P ′ a〈m〉−→ 0 or P ′ a〈l〉−→ 0

it can be matched by Q′ a〈m〉−→ 0 since l and m can not be distinguished by the environment
(this because k is kept secret). Nonetheless, P 6≈t Q since the environments resulting from

the transitions P ′ a〈l〉−→ 0 and Q′ a〈m〉−→ 0 are not strongly consistent because m 6= l.

Example 4.3.15 Let σ = ρ = {a/x1}, P = (νk, n)a{n}k.P ′ where P ′ = (νm)am, and
Q = (νk, n)a{n}k.Q′ where Q′ = an and n 6= a. An alley bisimulation relating P and Q is
given by
R = {((σ, ρ), P,Q),
((σ{{n}k/x2}, ρ{{n}k/x2}), P ′, Q′),
((σ{{n}k/x2,m/x3}, ρ{{n}k/x2, n/x3}),0 ,0)}.
Note that the two processes are alley bisimilar since the environments do not distinguish
between the cipher text n (since k is not revealed) and name m. Nonetheless, the two
processes are not trellis bisimilar since the environments are not strongly consistent because
m 6= n.

The next three examples were proposed in [24] in order to highlight certain particular-
ities of the introduced notion of alley bisimulation.

Example 4.3.16 Let σ = ρ = {a/x1, b/x2, c/x3} where a, b, c are distinct, P = (νk)a{b}k.ak
and Q = (νk)a{c}k.ak. Then P and Q are not alley bisimilar since P

(νk)a〈{b}k〉−→ P ′ = ak and

Q
(νk)a〈{c}k〉−→ Q′ = ak where (σ, ρ) is extended to (σ′, ρ′) = (σ{{b}k/x4}, ρ{{c}k/x4}). Note

that so far there is no inconsistency in the environments. However, when k is revealed, i.e.,

P ′ a〈k〉−→ 0 and Q′ a〈k〉−→ 0 then (σ′, ρ′) is extended to (σ′′, ρ′′) = (σ′{k/x5}, ρ′{k/x5}) which
is no longer consistent. Although dom(σ′′) = dom(ρ′′) and for i ∈ {1, ..., 5} C(σ′′, xi) ∈ N
if and only if C(ρ′′, xi) ∈ N , it is not true for i, j ∈ {1, ..., 5} that C(σ′′, xi) = C(σ′′, xj) if
and only if C(ρ′′, xi) = C(ρ′′, xj). In particular, C(σ′′, x2) = C(σ′′, x4) = b but C(ρ′′, x2) =
b 6= c = C(ρ′′, x4); this is caused by the revelation of the cipher texts once the key k is
known.

Example 4.3.17 Let σ = ρ = {c/x1}, P = (νa, k)c{k}k.ca and Q = (νa, k)c{{k}a}k.ca.
A consistent alley bisimulation relating P and Q is given by

4.3. OBSERVATIONAL SEMANTICS 69

R = {((σ, ρ), P,Q),
((σ{{k}k/x2}, ρ{{{k}a}k/x2}), (νa)ca =α (νb)cb, ca),
((σ{{k}k/x2, b/x3}, ρ{{{k}a}k/x2, a/x3}),0 ,0)}.
Since the ‘external’ encryption key k is not revealed, the consistency of the environments is
preserved. Also, note that we did an α-conversion on the process resulting from the output
transition of P : P ′ = (νa)ca =α (νb)cb so as to distinguish the name a (renamed to b)
which occurs restricted in P ′ from that which appears free in Q′ = ca.

Example 4.3.18 Let σ = ρ = {c/x1}, P = (νa, k)c{k}k.ca.ac and Q = (νa, k)c{{k}a}k.ca.ac.
A consistent alley bisimulation relating P and Q is given by
R = {((σ, ρ), P,Q),
((σ{{k}k/x2}, ρ{{{k}a}k/x2}), (νa)ca.ac =α (νb)cb.bc, ca.ac),
((σ{{k}k/x2, b/x3}, ρ{{{k}a}k/x2, a/x3}, bc, ac),
((σ{{k}k/x2, b/x3, c/x4}, ρ{{{k}a}k/x2, a/x3, c/x4},0 ,0)}.
Once again, note that we did an α-conversion on the process resulting from the output tran-
sition of P : P ′ = (νa)ca.ac =α (νb)cb.bc so as to distinguish the name a that is restricted
in P ′ from that which appears free in Q′ = ca.ac.

We now introduce the notions of weak barbed bisimilarity and weak barbed equivalence
in a similar way as these were introduced in Chapter 1. A generalized version of the latter
was shown to coincide with weak early bisimulation for the spi-calculus in [24]. Note that
P ⇓u or P ⇓u if P

α
=⇒ where α = u(y) or α ∈ {uy, u(y)} respectively.

Definition 4.3.19 Weak barbed bisimilarity
A binary symmetric relation S is a weak barbed bisimulation if PSQ implies:

- if P↓β then Q⇓β for each barb β

- if P
τ−→ P ′ then there is a Q′ such that Q =⇒ Q′ and P ′SQ′

Two processes P and Q are weakly barbed bisimilar if PSQ for some weak barbed bisim-
ulation S. Weak barbed bisimilarity, written ≈b, is the largest barbed bisimulation.

Definition 4.3.20 Weak barbed equivalence
Two processes P and Q are weakly barbed equivalent, written P ≈beq Q, if for every
process R we have that P |R ≈b Q|R.

Note that, as with the strong versions, ≈beq⊂≈b but the opposite inclusion does not
hold. In addition, note that ∼beq⊂≈beq and ∼b⊂≈b, that is, two processes (strongly)
barbed equivalent [resp. bisimilar] are also weakly barbed equivalent [resp. bisimilar].

We now introduce the notion of generalized barbed equivalence and prove that it coin-
cides with the notion of barbed equivalence under certain conditions, following the result
mentioned in [24].

70 CHAPTER 4. SPI-CALCULUS

Definition 4.3.21 Generalized barbed bisimilarity
Let P , Q ∈ Pspi and (σ, ρ) = ([Mi/xi]i∈I , [M

′
i/xi]i∈I) be a consistent pair of substitutions.

Let Ni = C(σ, xi) and N ′
i = C(ρ, xi) for each i ∈ I. A binary symmetric relation S of

processes is a (σ, ρ)-barbed bisimulation if PSQ implies:

- if P ↓Ni
then Q ⇓N ′

i
for each i ∈ I

- if P
τ−→ P ′ then there is a Q′ such that Q =⇒ Q′ and P ′SQ′

Two processes P and Q are (σ, ρ)-barbed bisimilar, written (σ, ρ) ` P ≈b Q, if PSQ
for some (σ, ρ)-barbed bisimulation S. (σ, ρ)-barbed bisimilarity is the largest (σ, ρ)-barbed
bisimulation.

Note that there are significant differences between the notions of barbed bisimulation
and generalized barbed bisimulation. Namely, only the names known to the environments,
Ni’s and N ′

i ’s, are checked. Second, the names Ni and N ′
i are not required to be equal.

Also note that ≈b is only closed under the contexts that can be obtained via instantiation
with σ and ρ.

Definition 4.3.22 Generalized barbed equivalence
Two processes P and Q are (σ, ρ)-barbed equivalent, written (σ, ρ) ` P ≈beq Q, if for every
process R with fn(R) ⊆ dom(σ)we have that (σ, ρ) ` P |Rσ ≈b Q|Rρ.

The following proposition relates the notions of barbed equivalence and generalized
barbed equivalence and was proposed in [24]. Note that σV = {x′1/x1, ...x

′
n/xn} if

V = {x′1, ..., x′n} where n ∈ N.

Proposition 4.3.23 P ≈beq Q if and only if (σV , σV) ` P ≈beq Q for some V containing
fn(P,Q).

We only provide the idea behind the proof of this result, which relies on the following
considerations: i) the processes P and Q being compared perform every visible action com-
pared on the same channel, else condition 3. for a consistent environment [See Definition
4.3.6] is violated. ii) the environments can not be extended by output actions from P and
Q with a and b where a 6= b and a, b ∈ fn(P,Q) since a process put in parallel with both
P and Q distinguishes them. As an example, let P = ca and Q = cb; if R = c(x).x then
P |R τ−→↓a and Q|R τ−→↓b but a 6= b. iii) the environments can not be extended by output
actions from P and Q with a and b where a 6= b and a ∈ fn(P) or b ∈ fn(Q) exclusively,
since a process put in parallel with both P and Q distinguishes them. As an example, let
P = ca and Q = (νb)cb; if R = c(x).x then P |R τ−→↓a but Q|R τ−→6↓a.

We now introduce the notion of structurally image-finite processes so we can present
the main result of [24]: the coincidence between alley bisimulation and barbed equivalence.

4.3. OBSERVATIONAL SEMANTICS 71

Definition 4.3.24 Structurally image-finite process
A process P ∈ Pspi is structurally image-finite if for each visible trace s4 the set of equiv-

alence classes {P ′ : P
s

=⇒ P ′/≡} is finite, where the structural equivalence ≡ was defined
in Definition 3.3.7.

Proposition 4.3.25 Let P , Q ∈ Pspi and σ, ρ be consistent environments. If (σ, ρ) `
P ≈a Q then (σ, ρ) ` P ≈beq Q (soundness). If P , Q are structurally image-finite processes,
whenever (σ, ρ) ` P ≈beq Q then (σ, ρ) ` P ≈a Q (completeness).

Note that, in particular, the following result holds since if σ = ρ, (σ, ρ) is a consistent
environment-pair:

Corollary 4.3.26 Let P , Q ∈ Pspi be structurally image-finite processes such that
fn(P,Q) ⊆ V . Then, (σV , σV) ` P ≈a Q if and only if (σV , σV) ` P ≈beq Q.

The following result is a combination of Corollary 4.3.26 with Proposition 4.3.23.

Corollary 4.3.27 Let P , Q ∈ Pspi be structurally image-finite processes such that
fn(P,Q) ⊆ V . Then, (σV , σV) ` P ≈a Q if and only if P ≈beq Q.

We now recall Example 4.3.16 and analyse it with respect to barbed equivalence. Note
that we consider this particular example because P 6≈beq Q which is easy to prove when
recurring to the definition of barbed equivalence. An arbitrary proof that P ≈beq Q requires
quantification over all processes R ∈ Pspi which is difficult to accomplish. Thus, the more
important is the result in Corollary 4.3.27 which establishes the coincidence of barbed
equivalence with the more tractable notion of alley bisimulation.

Example 4.3.28 Following Example 4.3.16, let σV = {a/x1, b/x2, c/x3}, P = (νk)a{b}k.ak
and Q = (νk)a{c}k.ak. Then P 6≈beq Q since if R = a(x).a(y).let z = decy(x).z then

P |R τ−→ τ−→↓b but Q|R τ−→ τ−→↓c and b 6= c.

The following diagram exhibits the relations between the notions presented for the
spi-calculus, where → stands for strict inclusion ⊂, and ↔ for coincidence.

≈b ← ≈beq

l (σV ,σV)

≈a ← ≈t

4A trace is a sequence of visible actions α1, ..., αn, ... such that for all i 6= j, bn(αi) ∩ bn(αj) = ∅ and
for all j < i, bn(αi) ∩ fn(αj) = ∅. (These conditions are to ensure that the bound names of the trace are
fresh).

72 CHAPTER 4. SPI-CALCULUS

Chapter 5

Encodings

5.1 Correctness of Encodings

In this section we introduce the notion of encoding and study some measures of correctness
proposed in the literature. We start by formally presenting the definition of encoding.

Definition 5.1.1 Encoding
An encoding is a function [|.|] : S → T where S represents the source calculus which is
being encoded in the target calculus T .

Encodings are extremely important to determine the expressiveness of a calculus in re-
lation to another; if a calculus represents the target language of an encoding of the source
calculus then it is considered at least as expressive as the source language.

In this section, following the work in [17, 11, 18], we attempt to provide a definition of
‘good’ encoding. We rely on some notions already known but also on a certain amount of
intuition.

Definition 5.1.2 Semantic equivalence
A source term S and its translation [|S|] are semantically equivalent if S � [|S|] where �
denotes a notion of equivalence.

The former definition has two requirements that are not easily (if at all) satisfied: that
the direct comparison between term and translation is possible, and the existence of an
applicable ‘good’ equivalence relation. Intuitively, the stronger the employed equivalence,
the stronger our belief that the encoding is correct. Several possible equivalence relations
were introduced and studied in the previous sections [See Section 3.3 and Section 4.3];
nonetheless many more equivalence relations have been presented (See e.g. [16]), some of
which can be more adequate as a choice of correctness requirement for an encoding for a
certain problem.

73

74 CHAPTER 5. ENCODINGS

If a direct comparison between term and translation is not possible, it is useful to
consider the notion of full abstraction following [16]; the full abstraction problem was first
studied in [19, 20].

Definition 5.1.3 Full abstraction
Let S1, S2 be two elements of the source language and [|S1|], [|S2|] be their respective
encodings into the target language. Then full abstraction requires that S1 �s S2 if and
only if [|S1|] �t [|S2|] where �s and �t are equivalence relations in the source and target
languages respectively.

The reflection of equivalence - adequacy - provides behavioural soundness, while the
preservation of equivalence provides behavioural completeness.

In the case when full abstraction cannot be achieved for any known equivalence re-
lation, certain requirements like compositionality and the preservation of some intended
semantics may be enough to ensure the ‘quality’ of the encoding. The notions of uniform
and reasonable encoding were presented in [11], and those of strongly uniform and sensible
encoding in [10].

Definition 5.1.4 Uniform encoding
Let σ be a substitution, S1, S2 be two elements of the source language and [|S1|], [|S2|] be
their respective encodings into the language target. The encoding is uniform if the following
properties hold:

• [|S1 |S2|] = [|S1|] | [|S2|]

• [|S1σ|] = [|S1|]σ

The encoding is strongly uniform if the second condition of the uniform encoding accounts
for arbitrary substitutions, i.e., the second condition reads ∀σ ∃θ [|S1σ|] = [|S1|]θ.

Definition 5.1.5 Reasonable encoding
An encoding is reasonable if it preserves a reasonable semantics: a semantics which dis-
tinguishes two processes P and Q whenever in some computation of P the actions on a
certain intended channel are different from those in any computation of Q.

Definition 5.1.6 Sensible encoding
An encoding is sensible if it is (strongly) uniform, reasonable and distinguishes deadlocks
from livelocks.

5.2. ENCODING OF MATCH 75

5.2 Encoding of Match

Encodings are not only meaningful as a way of determining the expressivity of a calculus,
but also in establishing which operators should be considered primitives of a certain cal-
culus and which can be derived.

In this section, we prove that the match operator can be encoded in the π-calculus
with polyadic synchronization; thus, unlike in the π-calculus, it does not need to be taken
as a primitive. This fact results directly from the possibility of partial restriction in the
π-calculus with polyadic synchronization.

Note that, following [10], we do not consider the usual match operator [x = y] but
[x = y]τ instead. In this sense, a process P = [x = y]τ.P ′ can evolve, if indeed x and y
are equal, by means of an internal action into P ′; the rule MATCH is then replaced by
τ−MATCH.

P
α−→ P ′

[x = x]P
α−→ P ′

MATCH

[x = x]τ.P
τ−→ P

τ − MATCH

This definition of match has the advantage of not only making the encoding simpler, but
also that the observability of actions depends of the structure of the process and not on
the set of bindings between names and channels as seen in [10]. Thus, in the π-calculus
with the match operator [x = y]τ , any process P for any name x and any substitution σ,
can perform the action x(y), xy or x(y), if and only if Pσ can perform the action σ(x)(y),
σ(x)y or σ(x)(y) respectively. This property also holds in the π-calculus with polyadic
synchronization.

Proposition 5.2.1 Encoding of match with respect to late congruence
Let P ∈ PS such that z 6∈ fn(P). If [| [x = y]τ.P |] = (νz)(z · x|z · y.P), then [x = y]τ.P
and [| [x = y]τ.P |] are late congruent.

Proof: Let Q = [x = y]τ.P and R = (νz)(z · x|z · y.P), where P ∈ PS such that
z 6∈ fn(P), and σ be an arbitrary substitution. We show that Pσ ∼l Qσ.
We split the proof according to the behaviour of σ on x and on y.

• σ(x) 6= σ(y): both processes Qσ = [σ(x) = σ(y)]τ.(Pσ) and Rσ = (νz)(z · σ(x)|z ·
σ(y).(Pσ)) are inactive; in the first the match is unsuccessful, and in the latter the
synchronization is not possible because the channel vectors do not match element
wise.

• σ(x) = σ(y): both processes Qσ = [σ(x) = σ(y)]τ.(Pσ) and Rσ = (νz)(z · σ(x)|z ·
σ(y).(Pσ)) may perform a deterministic τ action and evolve into Pσ; in the first the
match is successful, and in the latter the τ action results from the synchronization
of the vectors. Actually, Rσ

τ−→ (νz)(0 |Pσ) ∼l Pσ since we may assume that
z 6∈ fn(Pσ).

76 CHAPTER 5. ENCODINGS

Therefore, by definition of late congruence, we have that Q 'l R, that is we have that
[x = y]τ 'l [| [x = y]τ.P |].

2

Note that the restriction on z in Proposition 5.2.1 is crucial since it prevents the input
and output transitions through z ·y and z · x, respectively, of R = (νz)(z · x|z ·y.P). Thus,
the process R can only perform the internal communication referred to in the proof of the
proposition.

We could also have opted to consider the following encoding of the match operator:
[| [x = y]P |] = (νz)(z · x|z · y.P) and prove that [x = y]P and its respective encoding
were weakly late congruent. However, it was proven in [4] for the π-calculus that the
intuitive weak version of late bisimilarity was no longer an equivalence relation. The same
result also holds for the π-calculus with polyadic synchronization since it corresponds to
the particular case of the calculus when the channel vectors are unitary. The fact that
the intuitive notion of weak late bisimilarity is not a transitive relation is also true for the
intuitive notion of weak late congruence. The example provided in [4] presents not only
weak late bisimilar processes but also weak late congruent processes such that although
P1 'l P2 and P2 'l P3, it does not hold that P1 'l P3 [See Appendix].

The definition of an alternative notion of weak late bisimilarity and subsequently of
weak late congruence only add to the complexity of the proof of Proposition 5.2.1 and
this is the reason why we prefer to follow [4] and present instead the alternative notion of
match operator.

In [10] it was also proven that the match operator cannot be derived in the π-calculus
since there was no sensible encoding of that operator. In addition, in [10] it was shown
that there is no sensible encoding of the π-calculus with polyadic synchronization into the
π-calculus 1 which yields the following result.

Corollary 5.2.2 The π-calculus with polyadic synchronization is more expressive than the
π-calculus.

Proof: The π-calculus is embedded in the π-calculus with polyadic synchronization with
the match operator. Following Proposition 5.2.1, we know that the match operator can
be derived in the π-calculus with polyadic synchronization, and thus needs not be consid-
ered as a primitive. The encoding described in that proposition is not only sensible with
respect to late congruence, which would be enough to establish the expressiveness relation
between the calculi, but the source term in the π-calculus and its respective encoding in
the π-calculus with polyadic synchronization are semantically equivalent with respect to
late congruence.

1Actually, the result is even stronger stating that the higher the degree of synchronization of a language
- the maximum length of the composite channels - the more expressive the calculus.

5.3. ENCODING OF CRYPTOGRAPHIC PRIMITIVES 77

The lack of a sensible encoding of the π-calculus into the π-calculus with polyadic synchro-
nization serves to prove that the latter is (strictly) more expressive than the first, that is,
that the expressivity of the calculi cannot be the same.

2

5.3 Encoding of Cryptographic Primitives

In this section we prove that cryptographic primitives can be encoded in the π-calculus
with polyadic synchronization; thus proving that this calculus does not need to be ex-
tended with those primitives. In Chapter 4, we analysed the spi-calculus: an extension
of the π-calculus with cryptographic primitives in order to understand the importance
and particularities of encryption and decryption of messages. The relation between the
π-calculus and spi-calculus was studied in [25] from an innovative perspective2, which re-
sulted in the establishment of an encoding of spi-calculus into π-calculus with respect to
may-testing equivalence3.

To our knowledge, the first mention of a possible encoding of a calculus with crypto-
graphic primitives into a calculus with polyadic synchronization was put forth in [12]. The
idea can be summarized in the following way: the sending of a message m encrypted under
a key k over a channel a can be seen as a · km.P . In order to receive this message, the
other party needs to know the channel where the message is being transmitted and the key,
which could be represented as a · k(m).P . There are several problems with this approach
[12, 10]; an example is that one cannot represent nested encryptions.

A solution for a different encoding of the cryptographic π-calculus with polyadic syn-
chronization into the π-calculus with polyadic synchronization was proposed in [10]. The
proposed encoding is a homomorphism, except for the following new constructs:

[| encryptm #k x inP |] = (νx)(!x · km | [|P |])

[| decrypt x #k minP |] = x · k(m).[|P |]

Note that the constructs just presented are more expressive than those proposed in [12]
since the encrypted messages are represented as names which can still be encrypted, sent
or used as keys4, and that the encryption is nondeterministic (encrypting the same message
under the same key yields different results). The first construct, encrypts the cipher text
m under k and returns the encrypted message as the fresh name x to be used in all the

2In particular, the spi-calculus processes are viewed as objects with a number of predefined methods,
and where encryption corresponds to creating an object with a special method for decryption.

3In may-testing equivalence, the basis for comparing processes is the result of experiments in which
the processes are tested by composing them with special processes. As mentioned in [25] the notion of
equivalence employed is rather weak, so we will not concern ourselves with its detailed analysis.

4Note that in the spi-calculus studied in Chapter 2 we did not consider messages of the type {a}{b}k
.

We follow the same restriction here.

78 CHAPTER 5. ENCODINGS

(ENC)
P

α−→ P ′

encryptm #k x inP
α−→ encryptm #k x inP ′

where if α ∈ {uy, u(y), u(y)} then x 6∈ n(u) and α 6= ux

(ENC-OPEN)
P

ux−→ P ′

encryptm #k x inP
u(x)−→ x · km|P ′

where x 6∈ n(u)

(DEC)

−−

decrypt x #k y inP
x·k(y)−→ P

Table 5.1: Late transition rules for the cryptographic constructs

scope embraced by P . The decryption of message x through the key k (used to encrypt the
message) binds the name m in the continuation of P to the original message. Nonetheless
we rely on a slightly different and simpler encryption construct:

[| encryptm #k x inP |] = (νx)(x · km | [|P |])

Consequently we require that encrypted messages stop being ‘available’ as soon as decryp-
tion is done. Thus, whenever we want to encrypt a certain message m under a key k twice
we have a process like P = encryptm #k x1 in encryptm #k x2 in P

′.

The transition semantics of the cryptographic π-calculus with polyadic synchronization
includes, besides the rules of the π-calculus with polyadic synchronization in Table 3.3, the
rules in Table 5.1. We now explain the reasoning behind the inclusion of each of the rules
in Table 5.1, and reiterate the side conditions of these rules.

• The rule ENC determines that an action of P is also an action of encryptm #k

x inP , thus implying that messages can be encrypted at any time. This rule has as
side conditions that if α ∈ {uy, u(y), u(y)} then x 6∈ n(u), and α 6= ux. The last case
is handled by the rule ENC-OPEN.

• The rule ENC-OPEN determines that when an encrypted message is sent over a
channel its scope is opened to include the process that receives it (via application of
rule CLOSE). Also note that once the encrypted message x is sent, the possibility
of decryption is assured since any process with knowledge of x and the key used to
encrypt it k can synchronize with it and get hold of the original message m. This
rule has as side condition that x 6∈ n(u).

5.3. ENCODING OF CRYPTOGRAPHIC PRIMITIVES 79

• The rule DEC shows that a process with knowledge of the encrypted message x and
encryption key k awaits for the sending of the original cipher text on the channel x ·k
to evolve.

The notion of structural congruence presented in Definition 3.3.7 can be extended to
make use of the new constructs with the following rules:

encryptm #k x inP ≡ encryptm #k x inQ if P ≡ Q

decrypt x #k minP ≡ decrypt x #k minQ if P ≡ Q

The notions of bisimilarity introduced in Section 3.3 can be adjusted to consider pro-
cesses in the cryptographic π-calculus with polyadic synchronization. We assume that the
notion of early congruence in the cryptographic π-calculus with polyadic synchronization
can be obtained in the same manner as in Definition 3.3.18 and that the result in Corollary
3.3.44 can be extended to the cryptographic π-calculus with polyadic synchronization.

Before we attempt to prove the soundness and completeness of the encoding, we first
analyse a cryptographic protocol proposed in [10] from the source and target language view
points.

Example 5.3.1 Consider the processes:
P = (νk)securek.public(y).decrypt y #k w inR
Q = (νm)secure(z).encryptm #z x in publicx.S
and the cryptographic protocol defined as (νsecure)(P |Q)|A where A is a possible attacker.
Intuitively the attacker can never have access to the key k since the transfer of the knowl-
edge of the key is done on a secure channel, thus we will not concern ourselves with the
process A. Obviously, we consider in the target language the following processes:
[|P |] = (νk)securek.public(y).y · k(w).[|R |]
[|Q |] = (νm)secure(z).(νx)(x · z(m)|publicx.[|S |])

We split the analysis in two, first considering the transitions in the source language and
then in the target language.5

• Source Language: Cryptographic π-calculus with polyadic synchronization

� The key is transmitted: (νsecure)(P |Q)
τ−→ (νsecure, k)(P ′|Q′), where

P ′ = public(y).decrypt y #k w inR
Q′ = (νm)encryptm #k x in publicx.S
Q1 = secure(z).encryptm #z x in publicx.S
Q′

1 = encryptm #z x in publicx.S
This transition corresponds to the following derivation tree:

5We do not include the α-conversions on the derivation trees so as to make them more legible. These
are implicit.

80 CHAPTER 5. ENCODINGS

−−
securek.public(y).decrypt y #k w inR

securek−→ P ′
PREFIX

P = (νk)securek.public(y).decrypt y #k w inR
secure(k)−→ P ′

OPEN

−−
Q1

secure(z)−→ Q′
1

PREFIX

Q
secure(z)−→ Q′

RES

P |Q τ−→ (νk)(P ′|Q′)
CLOSE1

(νsecure)(P |Q)
τ−→ (νsecure, k)(P ′|Q′)

RES

� The encrypted message is transmitted:
(νsecure, k)(P ′|Q′)

τ−→ (νsecure, k,m)(encryptm #k x in (P ′′|S)), where
P ′′ = decrypt x #k w inR
Q′′ = (νm)(x · km|S)
This transition corresponds to the following derivation tree:

−−
P ′ public(x)−→ P ′′

PREFIX

−−

publicx.S
publicx−→ S

PREFIX

encryptm #k x in publicx.S
public(x)−→ x · km|S

ENC-OPEN

Q′ public(x)−→ Q′′
RES

P ′|Q′ τ−→ (νx)(P ′′|Q′′)
CLOSE2

(νsecure, k)(P ′|Q′)
τ−→ (νsecure, k, x)(P ′′|Q′′)

RES

� The encrypted message is decrypted:
(νsecure, k, x)(P ′′|Q′′)

τ−→ (νsecure, k, x,m)(R|(0 |S)) ≡ (νsecure, k, x,m)(R|S).
This transition corresponds to the following derivation tree:

−−
P ′′ x·k(m)−→ R

DEC

−−

x · km x·km−→ 0
PREFIX

x · km|S x·km−→ 0 |S
PAR1

Q′′ x·k(m)−→ 0 |S
OPEN

P ′′|Q′′ τ−→ (νm)(R|(0 |S))
CLOSE2

(νsecure, k, x)(P ′′|Q′′)
τ−→ (νsecure, k, x,m)(R|S)

RES

• Target Language: π-calculus with polyadic synchronization

� The key is transmitted: (νsecure)([|P |] | [|Q |]) τ−→ (νsecure, k)(P ′|Q′), where
P ′ = public(y).y · k(w).[|R |]
Q′ = (νm, x)(x · km|publicx.[|S |])

5.3. ENCODING OF CRYPTOGRAPHIC PRIMITIVES 81

Q1 = secure(z).(νx)(x · zm|publicx.[|S |])
Q′

1 = (νx)(x · zm|publicx.[|S |])
This transition corresponds to the following derivation tree:

−−
securek.public(y).y · k(w).R

securek−→ P ′
PREFIX

[|P |] secure(k)−→ P ′
OPEN

−−
Q1

secure(z)−→ Q′
1

PREFIX

Q
secure(z)−→ Q′

RES

[|P |] | [|Q |] τ−→ (νk)(P ′|Q′)
CLOSE1

(νsecure)([|P |] | [|Q |]) τ−→ (νsecure, k)(P ′|Q′)
RES

� The encrypted message is transmitted:
(νsecure, k)(P ′|Q′)

τ−→ (νsecure, k, x)(x · k(w).[|R |] | (νm)(x · km | [|S |]))
This transition corresponds to the following derivation tree:

−−
P ′ public(x)−→ x · k(w).[|R|]

PREFIX

−−

publicx.[|S|] publicx−→ [|S|]
PREFIX

x · km|publicx.[|S|] publicx−→ x · km|[|S|]
PAR2

(νm)(x · km|publicx.[|S|]) publicx−→ (νm)(x · km|[|S|])
RES

Q′ public(x)−→ (νm)(x · km|[|S|])
OPEN

P ′|Q′ τ−→ (νx)(x · k(w).[|R|]|(νm)(x · km|[|S|]))
CLOSE2

(νsecure, k)(P ′|Q′)
τ−→ (νsecure, k, x)(x · k(w).[|R|]|(νm)(x · km|[|S|]))

RES

� The encrypted message is decrypted:
(νsecure, k, x)(x·k(w).[|R |] | (νm)(x · km | [|S |])) τ−→ (νsecure, k, x,m)([|R |] | [|S |])
This transition corresponds to the following derivation tree:

−−
x · k(w).[|R|] x·k(m)−→ [|R|]

PREFIX

−−

x · km x·km−→ 0
PREFIX

x · km|[|S|] x·km−→ 0 |[|S|]
PAR2

(νm)(x · km|[|S|]) x·k(m)−→ [|S|]
OPEN

x · k(w).[|R|]|(νm)(x · km|[|S|]) τ−→ (νm)([|R|]|[|S|])
CLOSE2

(νsecure, k, x)(x · k(w).[|R|]|(νm)(x · km|[|S|])) τ−→ (νsecure, k, x,m)([|R|]|[|S|])
RES

82 CHAPTER 5. ENCODINGS

Before we prove the soundness and completeness of the proposed encoding, we first
introduce the following lemma.

Lemma 5.3.2 [|Pσ |] = [|P |]σ, for any substitution σ

Proof: We split the proof according to the constructs in the cryptographic π-calculus
with polyadic synchronization. The only relevant cases are those of the new constructs.

- If P = encryptm #k x inP ′ then [|P |] = (νx)(x · km| [|P ′ |]). Let σ = {m′/m}6.
Then, Pσ = encryptm′ #k x inP ′{m′/m} and [|Pσ |] = (νx)(x · km′| [|P ′{m′/m} |])
and we have that [|Pσ |] = (νx)(x · km′| [|P ′ |]{m′/m}).
In addition, [|P |]σ = ((νx)(x · km| [|P ′ |]))σ = (νx)(x · km′| [|P ′ |]{m′/m}).

- If P = decrypt x #k y inP ′ then [|P |] = x · k(y).[|P ′ |]. Let σ = {x′/x}7. Then,
Pσ = decrypt x′ #k y inP ′{x′/x} and [|Pσ |] = x′ · k(y).[|P ′{x′/x} |] and we have
that [|Pσ |] = x′ · k(y).[|P ′ |]{x′/x}.
In addition, [|P |]σ = (x · k(y).[|P ′ |])σ = x′ · k(y).[|P ′ |]{x′/x}.

2

In order to prove the soundness and completeness of the encoding with respect to barbed
congruence - a contextual equivalence -, which we proved in Corollary 3.3.44 coincides with
early congruence, we build on successive auxiliary results. Note that we will consider as
a target language a sub-calculus of the π-calculus with polyadic synchronization without
summation (as we just saw cryptographic protocols do not necessarily make use of this
construct). We shall consider this calculus with and without cryptographic primitives (en-
coding the first in the second) because the proof is lighter.

The following lemmas show there is an operational correspondence between the actions
of the encoding and those of the process.

Lemma 5.3.3 If P is a process in the cryptographic π-calculus with polyadic synchroniza-
tion and [|P |] is its respective encoding, then8:

- if [|P |] uy−→ Q then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅, P ≡
(νñ)(uy.P1|P2) where [|P |] = (νñ)(uy.[|P1|] | [|P2|]) and Q ≡ (νñ)([|P1|] | [|P2|]). We
can also have that P ≡ (νñ)(encryptm #k x in uy.P1|P2) where x 6= y, [|P |] =
(νñ)(x · km|uy.[|P1|] | [|P2|]) and Q ≡ (νñ)(x · km | [|P1|] | [|P2|]).

6The other cases are handled in an analogous way. Note that if e.g. σ = {x/m} then we would have to
perform α-conversion.

7The other cases are handled in an analogous way. Note that if e.g. σ = {y/k} then we would have to
perform α-conversion.

8Note that the notion of structurally equivalent processes, denoted by ≡, was presented in Definition
3.3.7.

5.3. ENCODING OF CRYPTOGRAPHIC PRIMITIVES 83

- if [|P |] u(y)−→ Q then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅ and
y 6= x, P ≡ (νñ, y)(uy.P1|P2) where [|P |] = (νñ, y)(uy.[|P1|] | [|P2|]) and Q ≡
(νñ)([|P1|] | [|P2|]). We can also have that P ≡ (νñ, y)(encryptm #k x in uy.P1|P2)
where [|P |] = (νñ, y, x)(x · km|uy.[|P1|] | [|P2|]) and Q ≡ (νñ, x)(x · km | [|P1|] | [|P2|]).
If x = y we can also have that P ≡ (νñ)(encryptm #k y in uy.P1|P2) where
[|P |] = (νñ, y)(y · km|uy.[|P1|] | [|P2|]) and Q ≡ (νñ)(y · km | [|P1|] | [|P2|]).

- if [|P |] u(y)−→ Q then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅, P ≡
(νñ)(u(y).P1|P2) where [|P |] = (νñ)(u(y).[|P1|] | [|P2|]) and Q ≡ (νñ)([|P1|] | [|P2|]).
We can also have that P ≡ (νñ)(encryptm #k x in u(y).P1|P2) where [|P |] =
(νñ, x)(x · km|u(y).[|P1|] | [|P2|]) and Q ≡ (νñ, x)(x · km | [|P1|] | [|P2|]). If u = x · k,
we can also have that P ≡ (νñ)(decrypt x #k y inP1|P2), where [|P |] = (νñ)(x ·
k(y).[|P1|] | [|P2|]) and Q ≡ (νñ)([|P1|] | [|P2|]).

Proof: Follows directly from the definition of processes in the cryptographic π-calculus
with polyadic synchronization and from the transition rules.

2

Lemma 5.3.4 For any process P in the cryptographic π-calculus with polyadic synchro-
nization we have that if [|P |] α−→ Q then there is a P ′ such that P

α−→ P ′ and [|P ′|] = Q.

Proof: The proof is done by induction on the inference of the transition [|P |] α−→ Q.

1. α = uy. By Lemma 5.3.3 we have that:

i) P ≡ (νñ)(uy.P1|P2) in which case P
uy−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

ii) P ≡ (νñ)(encryptm #k x in uy.P1|P2) in which case P
uy−→ P ′ ≡ (νñ)(P1|P2)

and [|P ′|] = Q.

2. α = u(y). By Lemma 5.3.3 we have that:

i) P ≡ (νñ, y)(uy.P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

ii) P ≡ (νñ, y)(encryptm #k x in uy.P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(encryptm #k

x inP1|P2) and [|P ′|] = Q.

iii) P ≡ (νñ)(encryptm #k y in uy.P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(y · km|P1|P2)

and [|P ′|] = Q.

3. α = u(y). By Lemma 5.3.3 we have that:

i) P ≡ (νñ)(u(y).P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(P1|P2) and [|P ′|] = Q.

ii) P ≡ (νñ)(encryptm #k x in u(y).P1|P2) in which case P
u(y)−→ P ′ ≡ (νñ)(encryptm #k

x inP1|P2) and [|P ′|] = Q.

iii) u = x · k and P ≡ (νñ)(decrypt x #k y inP1|P2) in which case P
x·k(y)−→ P ′ ≡

(νñ)(P1|P2) and [|P ′|] = Q.

84 CHAPTER 5. ENCODINGS

4. α = τ . The most relevant cases in which a process can perform a τ action is by
application of rules COMM or CLOSE. In the first case, P |Q τ−→ P ′|Q′{y/z} if

P
uy−→ P ′ and Q

u(z)−→ Q′. By points 1 and 3 we know there exist P1, P
′
1, Q1, Q

′
1

such that [|P1|] = P , [|Q1|] = Q, P1
uy−→ P ′

1 where [|P ′
1|] = P ′, and Q1

u(z)−→ Q′
1 where

[|Q′
1|] = Q′. Thus, P1|Q1

τ−→ P ′
1|Q′

1{y/z} and by Lemma 5.3.2 [|P ′
1|Q′

1{y/z}|] =
[|P ′

1|] | [|Q′
1|]{y/z} = P ′|Q′{y/z}. The remaining cases follow in a similar manner.

2

Lemma 5.3.5 For any process P in the cryptographic π-calculus with polyadic synchro-
nization we have that:

- if P
uy−→ P ′ then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅, P ≡

(νñ)(uy.P1|P2) or P ≡ (νñ)(encryptm #k x in (uy.P1|P2)) where y 6= x and P ′ ≡
(νñ)(P1|P2) or P ′ ≡ (νñ)(encryptm #k x in (P1|P2)) respectively.

- if P
u(y)−→ P ′ then for some P1, P2 and some ñ such that n(u) ∩ {ñ, y} = ∅, P ≡

(νñ)(uy.P1|P2) or P ≡ (νñ, y)(encryptm #k x in (uy.P1|P2)) and P ′ ≡ (νñ)(P1|P2)
or P ′ ≡ (νñ)(encryptm #k x in (P1|P2)) respectively. In addition, we can also have
that P ≡ (νñ)(encryptm #k y in (u(y).P1|P2)) and P ′ ≡ (νñ)(x · km|P1|P2).

- if P
u(y)−→ P ′ then for some P1, P2 and some ñ such that n(u) ∩ {ñ} = ∅, P ≡

(νñ)(u(y).P1|P2) or P ≡ (νñ)(encryptm #k x in (u(y).P1|P2)) and P ′ ≡ (νñ)(P1|P2)
or P ′ ≡ (νñ)(encryptm #k x in (P1|P2)) respectively. In addition, we can also have
that u = x · k, P ≡ (νñ)(decrypt x #k y in (P1|P2)) and P ′ ≡ (νñ)(P1|P2).

Proof: Follows directly from the definition of processes in the cryptographic π-calculus
with polyadic synchronization and from the transition rules.

2

The following Lemma establishes a strong operational correspondence between the ac-
tions of a process and the actions of its encoding.

Lemma 5.3.6 For any process P in the cryptographic π-calculus with polyadic synchro-
nization, if P

α−→ P ′ then [|P |] α−→ [|P ′|]

Proof: The proof is done by induction on the inference of the transition P
α−→ P ′.

1. If α = uy, by Lemma 5.3.5 we have that P ≡ (νñ)(uy.P1|P2) or
P ≡ (νñ)(encryptm #k x in (uy.P1|P2)) where y 6= x and P ′ ≡ (νñ)(P1|P2)
or P ′ ≡ (νñ)(encryptm #k x in (P1|P2)) respectively. In the first case, [|P |] =

(νñ)(uy.[|P1|] | [|P2|]) and [|P |] uy−→ (νñ)([|P1|] | [|P2|]) = [|P ′ |]. In the second case,

[|P |] = (νñ, x)(x · km|uy.[|P1|] | [|P2|]) and [|P |] uy−→ (νñ, x)(x · km| [|P1|] | [|P2|]) =
[|P ′ |].

5.3. ENCODING OF CRYPTOGRAPHIC PRIMITIVES 85

2. If α = u(y) the reasoning is analogous, except if P ≡ (νñ)(encryptm #k y in (u(y).P1|P2))
and P ′ ≡ (νñ)(y · km|P1|P2); then [|P |] = (νñ, y)(y · km|uy.[|P1 |] | [|P2 |]) and

[|P |] u(y)−→ (νñ)(y · km| [|P1 |] | [|P2 |]) = [|P ′ |].

3. If α = u(y), by Lemma 5.3.5 we have that:
i) P ≡ (νñ)(u(y).P1|P2) and P ′ ≡ (νñ)(P1|P2). Then P = [|P |] and P ′ = [|P ′ |] so

if P
u(y)−→ P ′ so does [|P |] u(y)−→ [|P ′ |];

ii) P ≡ (νñ)(encryptm #k x in (u(y).P1|P2)) and P ′ ≡ (νñ)(encryptm #k x in (P1|P2)).

Then [|P |] = (νñ, x)(x · k(m)|u(y).[|P1|] | [|P2|]) and [|P |] u(y)−→ (νñ, x)(x · k(m)| [|P1|] | [|P2|]) =
[|P ′ |];
iii) P ≡ (νñ)(decrypt x #k y inP1|P2) and P ′ ≡ (νñ)(P1|P2). Then P

x·k(y)−→ P ′ and

since [|P |] = (νñ)(x · k(y).[|P1|] | [|P2|]) we have that [|P |] x·k(y)−→ (νñ)([|P1|] | [|P2|]) =
[|P ′ |].

4. If α = τ many rules may have been applied; we consider only the case when the rule
COMM was applied (the others are analogous). Note that P |Q τ−→ P ′|Q′{y/z} if

P
uy−→ P ′ and Q

u(z)−→ Q′. By points 1 and 3 we have that [|P |] uy−→ [|P ′|] and [|Q|] u(z)−→
[|Q′|] and by application of rule COMM [|P |] | [|Q|] τ−→ [|P ′|] | [|Q′|]{y/z} and by
Lemma 5.3.2 we have that [|P ′|] | [|Q′|]{y/z} = [|P ′|] | [|Q′{y/z}|] = [|P ′|Q′{y/z}|].

2

Lemma 5.3.7 If [|P |] ∼e [|Q |] then P ∼e Q

Proof: We prove that R = {(P,Q) : [|P |] ∼e [|Q |]} is an early bisimulation. We split
the proof according to the possible transitions of [|P |]

- α ∈ {uy, u(y)} where bn(α) ∩ fn(P,Q) = ∅. If P
α−→ P ′ then by Lemma 5.3.6 we

have that [|P |] α−→ [|P ′ |]. Since by hypothesis [|P |] ∼e [|Q |] then there is a Q′

such that [|Q |] α−→ Q′ and by Lemma 5.3.4 we have that there is a Q′′ such that
Q

α−→ Q′′ where [|Q′′ |] = Q′. By definition of ∼e we have that [|P ′ |] ∼e [|Q′′ |] and
therefore P ′RQ′′.

- α = u(y) where y 6∈ fn(P,Q). If P
α−→ P ′ then by Lemma 5.3.6 we have that

[|P |] α−→ [|P ′ |]. Since by hypothesis [|P |] ∼e [|Q |] then there is a Q′ such that
[|Q |] α−→ Q′ and by Lemma 5.3.4 we have that there is a Q′′ such that Q

α−→ Q′′

where [|Q′′ |] = Q′. By definition of ∼e we have that [|P ′ |]{w/y} ∼e [|Q′′ |]{w/y}
and by application of Lemma 5.3.2 we know that [|P ′{w/y}|] ∼e [|Q′′{w/y}|]. Thus,
P ′{w/y}RQ′′{w/y}.

- α = τ . If P
α−→ P ′ then by Lemma 5.3.6 we have that [|P |] α−→ [|P ′ |]. Since by

hypothesis [|P |] ∼e [|Q |] then there is a Q′ such that [|Q |] α−→ Q′ and by Lemma
5.3.4 we have that there is a Q′′ such that Q

α−→ Q′′ where [|Q′′ |] = Q′. By Lemma
1.3.8, definition and transitivity of ∼e we have that [|P ′ |] ∼e [|Q′′ |] and therefore
P ′RQ′′.

86 CHAPTER 5. ENCODINGS

2

Lemma 5.3.8 If [|P |] ∼beq [|Q |] then P ∼beq Q

Proof: Follows directly from Lemma 5.3.7 and Theorem 1.3.43 where it was proven that
early bisimulation coincides with barbed equivalence.

2

Theorem 5.3.9 Soundness
If [|P |] 'b [|Q |] then P 'b Q

Proof: If [|P |] 'b [|Q |] then for any substitution σ we have that [|P |]σ ∼beq [|Q |]σ.
By Lemma 5.3.2 we then know that [|Pσ |] ∼beq [|Qσ |], and by Lemma 5.3.8 we have that
Pσ ∼beq Qσ.

2

Lemma 5.3.10 If P ∼e Q then [|P |] ∼e [|Q |]

Proof: We prove that R = {([|P |], [|Q |]) : P ∼e Q} is an early bisimulation. We split
the proof according to the possible transitions of P .

- α ∈ {uy, u(y)} where bn(α) ∩ fn(P,Q) = ∅. If [|P |] α−→ P ′ then by Lemma
5.3.4 we have that there is a P ′′ such that P

α−→ P ′′ and [|P ′′ |] = P ′. Since by
hypothesis P ∼e Q there is a Q′ such that Q

α−→ Q′ and by Lemma 5.3.6 we have
that [|Q |] α−→ [|Q′ |]. By definition of ∼e we have that P ′ ∼e Q

′ and therefore
[|P ′ |]R[|Q′ |].

- α = u(y) where y 6∈ fn(P,Q). If [|P |] α−→ P ′ then by Lemma 5.3.4 we have
that there is a P ′′ such that P

α−→ P ′′ and [|P ′′ |] = P ′. Since by hypothe-
sis P ∼e Q there is a Q′ such that Q

α−→ Q′ and by Lemma 5.3.6 we have that
[|Q |] α−→ [|Q′ |]. By definition of ∼e we have that P ′{w/y} ∼e Q

′{w/y} and there-
fore [|P ′{w/y} |]R[|Q′{w/y} |]. By Lemma 5.3.2 we have that [|P ′ |]{w/y}R[|Q′ |]{w/y}.

- α = τ . If [|P |] α−→ P ′ then by Lemma 5.3.4 we have that there is a P ′′ such that
P

α−→ P ′′ and [|P ′′|] = P ′. Since by hypothesis P ∼e Q there is a Q′ such that
Q

α−→ Q′ and by Lemma 5.3.6 we have that [|Q |] α−→ [|Q′ |]. By definition of ∼e

we have that P ′ ∼e Q
′ and by Lemma 1.3.8 and transitivity of ∼e we have that

[|P ′ |]R[|Q′ |].

2

Lemma 5.3.11 If P ∼beq Q then [|P |] ∼beq [|Q |]

Proof: Follows directly from Lemma 5.3.10 and Theorem 3.3.43 where it was proven that
early bisimilarity coincides with barbed equivalence.

5.3. ENCODING OF CRYPTOGRAPHIC PRIMITIVES 87

2

Theorem 5.3.12 Completeness
If P 'b Q then [|P |] 'b [|Q |]

Proof: If P 'b Q then for any substitution σ we have that Pσ ∼beq Qσ. By Lemma
5.3.11 then [|Pσ |] ∼beq [|Qσ |] and by Lemma 5.3.2 we know that [|P |]σ ∼beq [|Q |]σ,
i.e., [|P |] 'b [|Q |].

2

88 CHAPTER 5. ENCODINGS

Chapter 6

Conclusions and future work

In the project work that is documented in this report, we have introduced CCS, and ana-
lyzed and compared different techniques to relate processes: bisimulation, expansion, and
up to techniques. We have also introduced the π-calculus as a development of CCS and ana-
lyzed its observational semantics based on different notions of labelled transition semantics.

We have studied in detail the π-calculus with polyadic synchronization proposed in [10]
where channels are vectors of names. We formally defined and compared some notions of
bisimilarity and contextual equivalences in the π-calculus with polyadic synchronization,
which to our knowledge had not been done until now.

We have studied the spi-calculus originally proposed in [12] as a model of a calculus
which is used to reason about security protocols.

We have extended the π-calculus with polyadic synchronization with cryptographic
primitives by defining the syntax and operational semantics of the calculus. Following
[10] we proposed an encoding of the new constructs for encryption and decryption of mes-
sages into the π-calculus with polyadic synchronization. Further, we proved that such
an encoding is sound and complete with respect to barbed congruence (which we also
proved coincides with early congruence). We therefore concluded that the π-calculus with
polyadic synchronization was expressive enough to be used to model security protocols,
which strengthens the hypothesis that an encoding of the spi-calculus into the π-calculus
with polyadic synchronization is possible. In addition, we could, as future work, study if
and how the π-calculus with polyadic synchronization can express properties of crypto-
graphic protocols such as authenticity and secrecy.

89

90 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Appendix

In the Appendix we prove that the intuitive weak version of late bisimilarity is not an
equivalence relation as mentioned in Section 5.2.

Definition 1 (Intuitive) weak late bisimilarity
Let u = x1 · ... · xk where k ∈ N and P , Q ∈ PS.
A binary symmetric relation S is a weak late bisimulation if PSQ implies:

- if P
α−→ P ′ where α = uy, u(y) or τ and bn(α) 6∈ fn(P,Q) then there is a Q′ such

that Q
α

=⇒ Q′ and P ′SQ′.

- if P
u(y)−→ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that Q

u(y)
=⇒ Q′ and for each

w, P ′{w/y}SQ′{w/y}.
Two processes P and Q are weakly late bisimilar if PSQ for some weak late bisimulation
S.
Weak late bisimilarity, written ≈l, is the largest weak late bisimulation.

The corresponding definition of weak late congruence is as follows.

Definition 2 Weak late congruence
Let P , Q ∈ PS. The two processes are weakly late congruent, written P ul Q, if for all
substitutions σ we have that Pσ ≈l Qσ.

We now resort to a similar example to that given in [4] which shows that in the weak
late congruence relation defined above transitivity does not hold.

Example 1 Let P1 = c(a).P ′ + c(a).(τ.P ′ + τ.dd+ τ) and P2 = c(a).(τ.P ′ + τ.dd+ τ) and
P3 = c(a).(τ.dd + τ), where P ′ = (νz)(z · a|z · b).dd. We have that P1 ≈l P2 because if

P1
c(a)−→ P ′ then P2

c(a)−→ τ−→ P ′. In addition, P2 ≈l P3 since if P2
c(a)−→ τ.P ′ + τ.dd + τ then

P3
c(a)−→ τ.dd+ τ and whether we consider the substitution {b/a} or {c/a} where c 6= b, the

derivatives are weakly late bisimilar. Nonetheless, P1 6≈l P3 because if P1
c(a)−→ P ′ then P3

cannot match it. If P3
c(a)−→ τ.dd+ τ then (νz)(z · a|z · b).dd 6≈l τ.dd+ τ ; if P3

c(a)
=⇒ dd then

(νz)(z · a|z · b).dd 6≈l dd; and finally if P3
c(a)
=⇒ 0 then ((νz)(z · a|z · b).dd){b/a} 6≈l 0 {b/a}.

Note that P1 ul P2 and P2 ul P3 also since the only relevant substitution would be of the
sort σ = {b/a} or σ = {a/b} and these are not possible because a is bound in P1, P2 and
P3. Since P1 6≈l P3, we also have that P1 6ul P3.

91

92 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

Alternative notions of weak late bisimilarity that are equivalence relations were put
forth and we now present one of these (in e.g. [4]). Weak late congruence is defined as
before, resorting to the (new) definition of weak late bisimilarity.

Definition 3 Weak late bisimilarity
Let u = x1 · ... · xk where k ∈ N and P , Q ∈ PS.
A binary symmetric relation S is a weak late bisimulation if PSQ implies:

- if P
α−→ P ′ where α = uy, u(y) or τ and bn(α) 6∈ fn(P,Q) then there is a Q′ such

that Q
α

=⇒ Q′ and P ′SQ′.

- if P
u(y)
=⇒ P ′ where y 6∈ fn(P,Q) then there is a Q′ such that Q

u(y)
=⇒ Q′ and for each

w, P ′{w/y}SQ′{w/y}.

Two processes P and Q are weakly late bisimilar if PSQ for some weak late bisimulation
S.
Weak late bisimilarity, written ≈l, is the largest weak late bisimulation.

Bibliography

[1] R. Milner, J. Parrow and D. Walker. A Calculus of Mobile Processes Part I/II.
Technical Report ECS-LFCS-89-85/86, Laboratory for Foundations of Computer Sci-
ence, University of Edinburgh, June 1989. Published in Information and Computation
100:1-77, 1992.

[2] R. Milner, J. Parrow and D. Walker. Modal Logics for Mobile Processes. In CON-
CUR’91; volume 527 of Lecture Notes in Computer Science, pp 45-60, Springer, 1991.
Available as Report ECS-LFCS-91-136, University of Edinburgh. Published in Theo-
retical Computer Science 114:149-171, 1993.

[3] D. Sangiorgi and D. Walker. The π-calculus: A Theory of Mobile Processes. Cambridge
University Press 2003 (1st edition 2001).

[4] D. Sangiorgi. A Theory of Bisimulation for the π-calculus. In Best, pp 127-142. Ex-
tended version as Report ECS-LFCS-93-270, University of Edinburgh. Revised version
in Acta Informatica 33:69-97, 1996.

[5] P. Quaglia. The π-calculus: notes on labelled semantics In Bulletin of the EATCS,
No 68, June 1999. Preliminary version as BRICS Report LS-98-4.

[6] S. Arun-Kumar and M. Hennessy. An Efficiency Preorder for Processes. In Acta
Informatica, 29:737-760, 1992. Previously published as Computer Science Report
90:05, University of Sussex.

[7] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[8] D. Sangiorgi and R. Milner. The problem of ”weak bisimulation up to”. In CON-
CUR’92: Concurrency Theory, volume 630 of Lecture Notes in Computer Science.
Springer-Verlag, 1992.

[9] M. Hansen, H. Hüttel and J. Kleist. Bisimulations for asynchronous mobile processes.
In Proceedings of the Tiblisi Symposium on Language, Logic, and Computation, 1995.
Research paper HCRC/RP-72, Human Communication Research Centre, University
of Edinburgh.

93

94 BIBLIOGRAPHY

[10] M. Carbone and S. Maffeis. On the expressive power of polyadic synchronization in
π-calculus In Nordic Journal of Computing, pp. 70-98, Volume 10, Number 2, Summer
2003.

[11] C. Palamidessi. Comparing the Expressive Power of the Synchronous and the Asyn-
chronous π-calculi. In Volume 13, Number 5 (special issue) The Difference Between
Concurrent and Sequential Computation (2), pp. 685-719, October 2003.

[12] M. Abadi and A. D. Gordon. A calculus for cryptographic protocols: The spi-calculus.
In Fourth ACM Conference on Computer and Communications Security. ACM Press,
1997.

[13] R. Milner. A Calculus of Communicating Systems. In Lecture Notes in Computer
Science, vol 92, Springer-Verlag, 1980.

[14] D. Sangiorgi. Lazy functions and mobile processes. In Technical Report RR-2515,
INRIA-Sophia Antipolis, 1995.

[15] R. Milner. The Polyadic π-calculus: a Tutorial. In Technical Report ECS-LFCS-91-
180, University of Edinburgh, October 1991.

[16] D. Sangiorgi. Expressing Mobility in Process Algebras – First-Order and Higher-Order
Paradigms. PhD thesis, LFCS, University of Edinburgh, 1993.

[17] U. Nestmann and B. C. Pierce. Decoding Choice Encodings. In Proceedings of CON-
CUR’96, vol 1119 of LNCS, pages 179-194. Springer, 1996.

[18] U. Nestmann. What is a ’Good’ Encoding of Guarded Choice? In Proceedings of
EXPRESS’97, vol 7 of ENTCS. Elsevier Science Publishers, 1997.

[19] R. Milner. Fully abstract models of typed lambda calculus. In Theoretical Computer
Science. 1977.

[20] G. D. Plotkin. LCF as a programming language. In Theoretical Computer Science.
1977.

[21] R. Milner and D. Sangiorgi. Barbed Bisimulation. In Lecture Notes in Computer
Science, Springer-Verlag, 1992.

[22] U. Frendrup, H. Hüttel and J. N. Jensen. Modal Logics for Cryptographic Processes.
In Proceedings of EXPRESS’02, vol 68(2) of ENTCS. 2002.

[23] J. Borgström and U. Nestmann. On Bisimulations for the Spi Calculus. Accepted for
publication in Mathematical Structures in Computer Science. 2004.

[24] M. Boreale, R. De Nicola and R. Pugliese. Proof Techniques for Cryptographic Pro-
cesses. In SIAM Journal on Computing. 2002.

BIBLIOGRAPHY 95

[25] M. Baldamus, J. Parrow and B. Victor. Spi Calculus Translated to π-Calculus Pre-
serving May-Testing. In Report 2003-063, Department of Information Technology,
Uppsala University, 2003.

