
What’s TyCO, After All?

Uwe Nestmann (BRICS Aalborg, DK)
António Ravara (IST Lisbon, PT)

May 2000

Abstract

uniform TyCO
!
≡ πa with flat variants

uniform TyCO
“!”
≈ πa with nested variants

non-uniform TyCO
!?

> πa with nested variants

The setting

TyCO is an name-passing process calculus featuring asynchronous commu-
nication between concurrent objects via labeled messages carrying names,
proposed by Vasconcelos [Vas94]. In comparison to a standard π-calcu-
lus [MPW92], TyCO-processes are indeed more like objects in the sense that
every communication exchanges a structured value, reminiscent of method
invocation, consisting of a name tagged with a label. More recently, Sangior-
gi conceived a π-calculus equipped with labeled values, called variants, which
has been brought up as a suitable vehicle for the description, by means of
encodings, of the semantics of typed higher-level object calculi [San98].

The two calculi have several commonly defined operators like the inactive
process 0, parallel composition P1|P2, and restriction (νa)P . However, their
constructs for communication differ. While output in TyCO is always of the
form a!l〈b〉, requesting “method” l of “object” a with “argument” b, output in
πV
a is more liberal in that a!v may send any value v, generated from names b

and arbitrary levels of (method) labels, e.g., v = l2〈l1〈b〉〉. Correspondingly,
on the receiver’s side, TyCO “objects” a?{lj(xj)=Pj}j∈J can only accept
requests for “methods”, while πV

a receivers a?(x).P may accept any value,

1



even unlabeled ones. (For recursive behaviors, both calculi offer replicated
receivers.) In order to unpack received values, πV

a is equipped with a variant

destructor case v of {lj(xj)=Pj}j∈J , which is not known—and actually not
necessary—in TyCO.

In both calculi, the exchange of values is disciplined by the use of static
type systems that know recursive types µX.T , channel types [T ] and variant
types {lj :Tj}j∈J . The type systems guarantee that communication on (“ob-
ject”) names is uniform in that at any time all the values possibly exchanged
over a name have the same type. In other words, in uniform calculi, the
“interface” of “objects” does not vary over time. The discipline of TyCO is
more restrictive, as exhibited by the fact that names always have a type of
the shape [{lj:Tj}j∈J ], where channel and variant type constructors alternate.

Two Questions of Expressive Power Apparently, TyCO seems to be
just an asynchronous version of the π-calculus with variants, which we refer
to as πV

a , but imposing a more restrictive type discipline. Indeed, as we may
show formally, TyCO represents a proper subcalculus of πV

a .
The obvious question arises, whether this subcalculus is less expressive.
Ultimately, however, we are interested in non-uniform TyCO [RL99,

RV00, Rav], proposed by Ravara, which admits that “objects” may change
their interface over time. It is instructive to try to understand the idea of
non-uniformity in TyCO by means of its standard π-calculus-counterpart.
The interesting point is that this way of explanation does not work. Non-
uniformity in TyCO is based on the fact a communication performs two
checks atomically: (i) the check of availability of a message on a channel
name; (ii) the check of current availability of a method for the requested
label mentioned in the message.

This atomicity cannot be directly mimicked in the π-calculus, so it is not
clear how to define non-uniform πV

a . There, the message needs to be accepted
independent of its label, and only afterwards can the current availability of
a method be checked. The reader may be reminded of the known discrepan-
cy of π-calculus equivalences due to the early-late distinction of input and
communication. In the early case, both the agreement on a communication
channel and the actual transfer of the value happen at the same time; in
the late case the two aspects of communication are distinguished. However,
the atomicity of communication (of a value) and selection (depending on the
label of the value) may prevent the first action, the communication from

2



happening when the second would not succeed. In contrast, the early-late
distinction just provides more observation points, but the second action (the
transfer of a value) is always possible when the first action (the agreement
on a channel) has succeeded.

The obvious question arises, whether non-uniform TyCO is more expres-
sive than πV

a , and how this expressiveness gap could be captured formally.

Our Contribution

We want to formalize the similarity—and difference—between the two calculi.
To this aim, we supply mutual encodings and study their properties.

One Observation We present a simple encoding from TyCO into πV
a that

makes explicit that (i) the former is a subcalculus of the latter, in that TyCO
only knows values with precisely one level of label nesting; (ii) the difference
in the atomicity of communication bears no problems (at least in this uniform
setting). As a side-effect, the encoding imports to TyCO the theory of πV

a .

One “Answer” We give encodings (one local, one non-local, see below)
of πV

a into TyCO, which shows that nested variants can be encoded using
only flat variants, i.e., where there is precisely one level of labeling. We are
on the verge of proving that this encoding is fully abstract with respect to
barbed congruence in the source and receptive barbed congruence in the target,
which is defined on a non-trivial adaptation to our asynchronous setting of
Sangiorgi’s theory of receptiveness [San99]. So (assuming that we succeed
in finishing our proofs), although TyCO is a proper subcalculus of πV

a , no
expressive power is lost in the above formal sense.

Our local encoding of πV
a into TyCO turns out to be a generalization of

an encoding of Lπ (Local π), the asynchronous π-calculus with output-only
mobility [Mer00], into πI, the π-calculus with internal-only mobility [San96],
that has first been studied by Boreale [Bor98], then by Merro and Sangior-
gi [MS98]. In our case, the source language is Local πV

a , i.e., Lπ extended
with nested labeled values, while the target language is TyCO, as we know
by now, is just πV

a with only flat variants. In fact, our encoding uses only
the subset of TyCO that is both local and internal, which is a promising set-
ting, because it has been shown that only when using this restricted target
language the above encoding is known to be fully abstract with respect to
barbed congruence [MS98].

3



While generalizing the encoding Lπ → πI to labeled values, we recal-
l the idea of encoding the higher-order π-calculus into first-order π-calcu-
lus [San93], where values are not transmitted themselves, but only private
references to them. We apply the same idea here in that complex val-
ues—variants—are not transmitted themselves, but only private references
to them. (In fact, already the encoding Lπ → πI resembles that idea.) Our
encoding generalizes the previous encoding of Lπ by the distinction of the
transmitted value, using labels n and v: if the value is a name, then mere
forwarders are created, if the value is a variant, then a local (receptive)
resource is created instead that implements a protocol of stepwise variant
decomposition through communication, using another label d. According
to the protocol, a client may get access to the next inner layer of a nested
variant by sending a private d-labeled (linearly receptive) return channel to
the resource, in turn receiving on this return channel an access name for a
(receptive) resource that represents the inner layer. An accompanying type
translation witnesses the fact that our encoding indeed translates the free
nesting of πV

a into the alternating nesting of TyCO.
In order to also encompass non-local terms, we must enhance our encod-

ing. The reason is that the substitution lemma (a standard statement relating
corresponding substitutions in the source and target languages) would not
carry over. Also for this encoding, we expect that full abstraction can be
proved using receptive barbed congruence.

One Conjecture With respect to the second question of expressive pow-
er, we have succeeded in providing two different encodings of non-uniform
TyCO, but they do not satisfy standard criteria that are often used to sepa-
rate two calculi apart regarding their expressiveness: an encoding should be
distributed, i.e., map parallel composition into the mere parallel composition
of its translated components, and it should be deadlock- and divergence-free;
then, we may call it a good encoding. One encoding uses a variant destruc-
tor extended with an else branch; by it it is possibly to simply resend a
received value in the case that the method label is not provided by the case.
However, this encoding immediately introduces divergence to the behavior
of translated terms that is not present in the source term. Another encoding
proceeds along the lines of an implementation of non-uniform TyCO [RL99],
but that encoding cannot be made distributed.

We strongly conjecture that there is no good encoding of non-uniform
TyCO into πV

a , but we currently do not see how to prove this.

4



References

[Bor98] M. Boreale. On the Expressiveness of Internal Mobility in Name-Passing Cal-
culi. Theoretical Computer Science, 195(2):205–226, 1998. An extended ab-
stract appeared in Proceedings of CONCUR ’96, LNCS 1119: 163–178.

[Mer00] M. Merro. Local π: A Model for Concurrent and Distributed Programming
Languages. PhD thesis, Ecole des Mines, France, 2000.

[MPW92] R. Milner, J. Parrow and D. Walker. A Calculus of Mobile Processes, Part I/II.
Information and Computation, 100:1–77, Sept. 1992.

[MS98] M. Merro and D. Sangiorgi. On Asynchrony in Name-Passing Calculi. In K. G.
Larsen, S. Skyum and G. Winskel, eds, Proceedings of ICALP ’98, volume 1443
of LNCS, pages 856–867. Springer, July 1998.

[Rav] A. Ravara. Non-Uniform Concurrent Objects in Process Calculus. PhD thesis,
to be submitted in 2000, supervised by Vasco T. Vasconcelos and Amílcar
Sernadas, IST, Universidade Técnica de Lisboa, Portugal.

[RL99] A. Ravara and L. Lopes. Programming and Implementation Issues in Non-
Uniform TyCO. Technical Report DCC-99-1, Universidade do Porto, 1999.

[RV00] A. Ravara and V. T. Vasconcelos. Typing Non-Uniform Concurrent Objects.
In Proceedings of CONCUR 2000, LNCS. Springer, 2000. To appear.

[San93] D. Sangiorgi. From π-calculus to Higher-Order π-calculus — and back. In
M.-C. Gaudel and J.-P. Jouannaud, eds, Proceedings of TAPSOFT ’93, volume
668 of LNCS, pages 151–166. Springer, 1993.

[San96] D. Sangiorgi. π-Calculus, Internal Mobility and Agent-Passing Calculi. Theoret-
ical Computer Science, 167(1,2):235–274, 1996. Also as Rapport de Recherche
RR-2539, INRIA Sophia-Antipolis, 1995. Extracts of parts of the material con-
tained in this paper can be found in Proceedings of TAPSOFT ’95 and ICALP
’95.

[San98] D. Sangiorgi. An Interpretation of Typed Objects into Typed π-Calculus. In-
formation and Computation, 143(1):34–73, 1998. Earlier version published as
Rapport de Recherche RR-3000, INRIA Sophia-Antipolis, August 1996.

[San99] D. Sangiorgi. The Name Discipline of Uniform Receptiveness. Theoretical Com-
puter Science, 221(1–2):457–493, 1999. An abstract appeared in the Proceedings
of ICALP ’97 , LNCS 1256, pages 303–313.

[Vas94] V. T. Vasconcelos. A process-calculus approach to typed concurrent objects.
PhD thesis, Keio University, 1994.

5


