
Session Types as Generic Process Types

Simon J. Gay1 Nils Gesbert1 António Ravara2

13th May 2008

1 Introduction

Session types [7, 4] are an increasingly popular technique for specifying and
verifying protocols in concurrent and distributed systems. In a setting of point-
to-point private-channel-based communication, the session type of a channel
describes the sequence and type of messages that can be sent on it. For example

& 〈service : ! [int] .?[bool] . end, quit : end〉

describes the server’s view of a channel on which a client can select either service
or quit. In the former case, the client then sends an integer and receives a
boolean; in the latter case, the protocol ends. From the client’s viewpoint, the
channel has a dual type in which the direction of messages is reversed:

⊕〈service : ?[int] . ! [bool] . end, quit : end〉

Session types provide concise specifications of protocols and allow certain prop-
erties of protocol implementations to be verified by static typechecking. Origi-
nally formulated for languages similar to pi-calculus, type systems incorporat-
ing session types have now been defined for other language paradigms including
object-oriented languages [2] and service-oriented systems [1].

The theory of session types was developed in order to analyse a particular
correctness criterion for concurrent systems: that every message is of the type
expected by the receiver, and that whenever a client selects a service, the server
offers a matching service. Igarashi and Kobayashi [5] have taken a different
approach to type-theoretic specifications of concurrent systems, by developing a
single generic type system for the pi-calculus from which numerous specific type
systems can be obtained by varying certain parameters. Their motivation is to
express the common aspects of a range of type systems, enabling much of the
work of designing typing rules and proving type soundness to be packaged into
a general theory instead of being worked out for each case. In the generic type
system, types are abstractions of processes, so that the typing rules display a
very direct correspondence between the structure of processes and the structure
of types. There is also a subtyping relation, which can be modified in order
to obtain specific type systems; this allows, for example, a choice of retaining

1Department of Computing Science, University of Glasgow
2SQIG at Instituto de Telecomunicações and Departamento de Matemática, IST, Technical

University of Lisbon

or discarding information about the order of communications. A logic is pro-
vided in which to define an ok predicate that is interpreted both as a desired
runtime property of processes and as a correctness condition for typings. This
double interpretation allows a generic type soundness theorem to be proved, but
means that type checking becomes more like model checking unless the specific
subtyping relation can be exploited to yield an efficient type checking algorithm.

Kobayashi [6, Section 10] has stated that the generic type system (GTS)
subsumes session types, although without presenting a specific construction.
The purpose of the present paper is to clarify the relationship. This is relevant
to the design of programming languages for distributed systems. For example: if
we want an object-oriented language with static typing of protocols, is it better
to work directly with session types or to develop an object-oriented formulation
of GTS? However, the present paper considers pi-calculus so that we can study
a precise question about two type systems for essentially the same language.

Kobayashi did not explain what it means for GTS to “subsume” session
types. We interpret it as defining a translation J·K from processes and type
environments in the source language into GTS, satisfying as many of the fol-
lowing conditions as possible. (1) JP K should have a similar structure to P . (2)
There should be a correspondence in both directions between the operational
semantics, ideally P −→ Q if and only if JP K −→ JQK. (3) There should be a
correspondence in both directions between typing derivations, ideally Γ ` P if
and only if JΓK . JP K. (4) Type soundness for session types should follow from
the generic type soundness theorem.

We take the source language to be the version of session types defined by Gay
and Hole [3]. This version does not include the accept/request primitives [7, 4]
and does not consider progress properties [2]. We remove recursive types, for
simplicity, and make some changes to the structural congruence relation, to
remove inessential differences compared with GTS. Three key issues remain.
First, translating the polarities in the source language: x+ and x− refer to the
two endpoints of channel x. Second, translating the labels used in branching
and selection (external and internal choice). Third, obtaining a correspondence
between subtyping in the source language and the subtyping relation which is
always present in GTS. The present paper focuses on the first two points and
does not discuss subtyping. We satisfy conditions (1–4) above in some form,
although the details are more complicated.

From now on we refer to the source language as session processes and the
target language as generic processes.

2 Translation

Processes and types. The languages share common process constructors
(inaction, parallel composition, scope restriction1, and replication), differing
basically in two ways. In session processes, (1) channels are decorated with
polarities (absent in generic processes), and processes only synchronise if the
subjects have complementary polarities; (2) there are constructors for branch,
an input labelled external choice, and select, to choose a branch of the choice.
Generic processes instead have mixed guarded sums (but no labels), and input
and output actions are decorated with events (taken from a countable set).

1Following a suggestion by Kobayashi, we have added a type annotation to ν in GTS.

2

Common Syntax C ::= 0 | (P1 | P2) | ∗P

Source Language P ::= C | (νx : S)P | xp?[y] . P | xp ! [yq] . P (xp 6= yq)
| xp . {li : Pi}n

i=1 | xp / l . P

polarities p ::= + | − | ε

Session Types S ::= end | ?[S1] . S2 | ! [S1] . S2 | & 〈li : Si〉ni=1 | ⊕ 〈li : Si〉ni=1

Target Language P ::= C | (νx̃ : τ) P |
∑n

i=1 Gi

guarded processes G ::= x ! [ỹ] . P | x?[ỹ] . P

Generic Types Γ ::= 0 |
∑n

i=1 γi | (Γ1 | Γ2) | (Γ1 & Γ2)
guarded types γ ::= x ! [τ] . Γ | x?[τ] . Γ

tuple types τ ::= (x̃)Γ

Figure 1: Syntax

Since these tags are only relevant for liveness properties like deadlock-freedom,
which we do not address in this work, we omit them.

Consider x, y from a countable set of channels, disjoint from a finite set of
N labels, ranged over by l, li. The grammars in Figure 1 define the languages of
both sessions and generic processes and types. Session processes are monadic
(for simplicity), while generic processes are polyadic (as required by the encod-
ing). A session type environment is a finite mapping from polarised channels
to session types, ∆ = xp1

1 : S1; . . . ;xpn
n : Sn. A generic type environment is a

process type Γ. We write
∏n

i=1 Pi for P1 | · · · | Pn and
∧n

i=1 Γi for Γ1& · · ·&Γn.
We consider the operational semantics of both languages based on a reduc-

tion relation. However, for session processes, instead of the original structural
congruence relation, we take the structural preorder of the generic processes.

Encoding processes and type environments. For each input-guarded la-
belled sum the translation creates a new name for every possible label, sends
them all to the channel subject of the input, and waits in an input-guarded
sum where the subjects correspond to the labels in the original process and a
fresh channel is received for the continuation of the protocol. Output selection
is encoded dually.

Polarities distinguish between the two endpoints of a channel; communica-
tion only occurs between x+ and x−. Erasing polarities would translate pro-
cesses that do not reduce into processes that reduce. However, it is possible to
solve this problem by inserting some type information into the translated pro-
cess. But when translating scope restriction, one cannot prefix the body of the
process, otherwise there would be no meaningful operational correspondence.
Therefore, for each source channel we introduce a pair of target channels, one
for each polarity, and a forwarder between them, which is in parallel with the
translated process.

Let σ be a numbering of the labels from 1 to N . For any channels p, m,
the rules in Figure 2 inductively define the forwarder from p to m following
the structure of a session type S. Consider the translation homomorphic for
common processes. The rules in Figure 3 inductively define the translation
JP KΓϕ of the session process P into a generic process, where ϕ is an injective

3

fw (p, m, end) = 0

fw (p,m,?[S1] . S2) = m?[z] . p ! [z] . fw (p, m, S2)
fw (p,m, ! [S1] . S2) = p?[z] . m ! [z] . fw (p, m, S2)

fw (p, m,& 〈li : Si〉ni=1) = p?[κ1 . . . κN] . (νλ1 . . . λN) m ! [λ̃] .∑n
i=1 λσ(li)?[m′] . (νp′ : LSi | SiM) κσ(li) ! [p′] . fw (p′,m′, Si)

fw (p, m,⊕〈li : Si〉ni=1) = m?[κ1 . . . κN] . (νλ1 . . . λN) p ! [λ̃] .∑n
i=1 λσ(li)?[p′] . (νm′ : LSi | SiM) κσ(li) ! [m′] . fw (p′,m′, Si)

Figure 2: Definition of the forwarder

Jxp ! [yq] . P KΓ,xp:![S1].S2
ϕ = ϕ(xp) ! [ϕ(yq)] . JP KΓ,xp:S2

ϕ

Jxp?[y] . P KΓ,xp:?[S1].S2
ϕ = ϕ(xp)?[z] . JP KΓ,xp:S2

ϕ+{yε 7→z}

Jxp / l . P KΓ,xp:⊕〈l:S,...〉
ϕ = ϕ(xp)?[λ1...N] . (νz : LS | SM)λσ(l) ! [z] . JP KΓ,xp:S

ϕ+{xp 7→z}

Jxp . {li : Pi}KΓ,xp:&〈li:Pi〉
ϕ = (νλ1...N)ϕ(xp) ! [λ̃] .

∑n
i=1 λσ(li)?[z] . JPiK

Γ,xp:Si

ϕ+{xp 7→z}

J(νx : S) P KΓϕ = (νp,m : (p, m)(Jp : SK |
q
m : S

y
|
q
p : S

y
| Jm : SK))

(fw (p, m, S) | JP KΓ,x+:S,x−:S
ϕ+{x+ 7→p;x− 7→m})

Figure 3: Process translation

mapping from the free polarised channels in P to channels of generic processes
and Γ is a session type environment such that Γ ` P (we omit ϕ and Γ when not
relevant). The rules in Figure 4 inductively define the translation of the session
type environment Γ to a generic type environment, where ϕ is an injective
mapping from dom(Γ) to the set of channels. Let LSM stand for (z)Jy : SKy 7→z.
The last rule uses the notion of dual session type (denoted S), which exchanges
inputs and outputs, and branch and selection [3].

3 Results

We state operational and typing correspondences.

Theorem 1. For any well-typed closed session process P , whenever P −→ Q,
then JP K −→n JQK with n = 2 or 4, depending on whether the reduction step is
a communication or a selection.

The extra steps are due to the forwarders and the encoding of labels. We
require the source process to be well-typed to ensure that the forwarders be-
have correctly. There is also a reverse correspondence. It is complicated to
state correctly, because a forwarder adds a one-place buffer to the synchronous
communication of the pi-calculus; some deadlocked processes in the session cal-
culus can, when translated, take one reduction step. In future, we would like to
obtain a full abstraction result with respect to some behavioural equivalence.

4

Jxp1
1 : S1, . . . , x

pn
n : SnKϕ = Jxp1

1 : S1Kϕ | · · · | Jxpn
n : SnKϕ

Jxp : endKϕ = 0

Jxp : ?[S1] . S2Kϕ = ϕ(xp)?[LS1M] . Jxp : S2Kϕ

Jxp : ! [S1] . S2Kϕ = ϕ(xp) ! [LS1M] . Jxp : S2Kϕ

Jxp : & 〈li : Si〉ni=1Kϕ = ϕ(xp) !
[
(λ1, . . . , λN)

∧n
i=1 λσ(li) ! [LSiM]

]
Jxp : ⊕〈li : Si〉ni=1Kϕ = ϕ(xp)?

[
(λ1, . . . , λN)

∧n
i=1 λσ(li) !

[
LSiM

]]
Figure 4: Type environment translation

Typing correspondence. Let the subtyping relation of the generic type sys-
tem be such that: (1) Sequential information about the communications on
different channels is removed (Igarashi and Kobayashi’s Sub-Divide rule); (2)
subtyping can occur beneath a prefix (input or output); (3) type 0 is a subtype
of ∗0; (4) the sum operator is idempotent. Moreover, let ok(Γ) hold if and
only if Γ is well-formed (meaning that whenever a communication is possible,
the type sent is a subtype of the one expected by the receiver) and either: Γ
reduces in one step to 0; or for any free variable x of Γ, there exists a session
type S such that Γ ↓ {x} ≥ Jx : SK |

q
x : S

y
, where ≥ is the subtyping rela-

tion and Γ ↓ {x} is the restriction of Γ to x (that is Γ with all actions whose
subject is not x removed). The first condition ensures a correct use of labels in
a branching/selection, and the second one deals with regular session channels.
Note that ok(Γ) is stable by reductions, meaning that if Γ −→ Γ′ and ok(Γ)
hold, then ok(Γ′) holds. This makes ok a proper consistency predicate.

Lemma 1.
q
p : S

y
| Jm : SK . fw (p, m, S)

Theorem 2 (Completeness). For any session process P and any corresponding
ϕ, if ∆ ` P then J∆Kϕ . JP K∆ϕ .

The ok predicate is checked in the typing rule for ν, so this theorem implies
that bound channels in JP K are used consistently.

The reverse direction is more difficult to state. GTS types more processes,
for the following reason. Sending a message of type end in the session calculus
removes the channel from the sender’s environment, but in GTS, sending a
message of type 0 does not remove any capabilities.

Theorem 3 (Soundness). Let P be a closed session process. If JP K is well-
typed in the generic type system and no type annotation of P is end, then P is
well-typed as a session process.

Since the conditions of the generic type soundness theorem hold in this
setting, we also conclude the desired runtime safety property of session types.

4 Conclusion

We have defined a translation from a system of session types for the π-calculus
into Igarashi and Kobayashi’s generic type system (GTS). We have proved cor-
respondence results between process reductions in the two systems, and between

5

typing derivations; we can also apply the generic type soundness theorem. The
translation clarifies the relationship between session types and GTS, and pro-
vides an interesting application of GTS. Because GTS can also represent more
complex behavioural properties including deadlock-freedom, embedding session
types into it may suggest ways of extending session types with such properties.

In our opinion, despite the translation into GTS, session types themselves
remain of great interest for programming language design, for several reasons.
First, session types are a high-level abstraction for structuring inter-process
communication [7]; preservation of this abstraction and the corresponding pro-
gramming primitives is very important for high-level programming. Second,
there is now a great deal of interest in session types for languages other than
the π-calculus. Applying GTS would require either translation into π-calculus,
obscuring distinctive programming abstractions, or extension of GTS to other
language, which might not be easy. Third, proofs of type soundness for session
types are conceptually fairly straightforward, even when these are liveness prop-
erties, as is frequently the case. The amount of work saved by using the generic
type soundness theorem is relatively small. Fourth, for practical languages we
are very interested in typechecking algorithms for session types; GTS does not
yield an algorithm automatically, so specific algorithms for session types need
to be developed in any case.

Acknowledgements.António Ravara is partially supported by the Portuguese
Fundação para a Ciência e a Tecnologia (via SFRH/BSAB/757/2007 and project
Space-Time-Types, POSC/EIA/55582/2004), by FEDER, by the EU IST proac-
tive initiative FET-Global Computing (project Sensoria, IST–2005–16004), and
by the EPSRC grant EP/F037368/1 “Behavioural types for object-oriented lan-
guages”. Nils Gesbert is supported by the EPSRC grant EP/F065708/1 “Engi-
neering Foundations of Web Services: Theories and Tool Support”. Simon Gay
is partially supported by both EPSRC grants. We are grateful to Lúıs Caires,
Kohei Honda, and Naoki Kobayashi for useful comments and discussions.

References

[1] M. Carbone, K. Honda, and N. Yoshida. Structured global programming for com-
munication behaviour. ESOP, LNCS 4421:2–17, 2007.

[2] M. Dezani-Ciancaglini, D. Mostrous, N. Yoshida, and S. Drossopoulou. Session
types for object-oriented languages. ECOOP, LNCS 4067:328–352, 2006.

[3] S. J. Gay and M. J. Hole. Subtyping for session types in the pi calculus. Acta
Informatica, 42(2/3):191–225, 2005.

[4] K. Honda, V. Vasconcelos, and M. Kubo. Language primitives and type discipline
for structured communication-based programming. ESOP, LNCS 1381:122–138,
1998.

[5] A. Igarashi and N. Kobayashi. A generic type system for the pi-calculus. Theoretical
Computer Science, 311(1–3):121–163, 2004.

[6] N. Kobayashi. Type systems for concurrent programs. Formal Meth-
ods at the Crossroads, LNCS 2757:439–453, 2002. Extended version at
www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf.

[7] K. Takeuchi, K. Honda, and M. Kubo. An interaction-based language and its
typing system. PARLE, LNCS 817:398–413, 1994.

6

