Operational Semantics and Type System for GNOME on
Typed Calculus of Objects *

Anténio Ravara
Departamento de Matematica, Instituto Superior Técnico.
Universidade Técnica de Lisboa, Portugal

Vasco Vasconcelos
Departamento de Informatica,
Faculdade de Ciéncias da Universidade de Lisboa, Portugal
e-mail: amar®math.ist.utl.pt, vv@di.fc.ul.pt

June 96

Abstract

We present an operational semantics and a typing assignment system for the con-
current object-oriented specification language GNOME, based on a name-passing asyn-
chronous calculus of concurrent objects, TyCO. The operational semantics is given by a
map encoding GNOME classes in TyCO agents, and thus, objects (instances of classes)
in processes (instances of agents). We propose a general approach to implement syn-
chronous communication in an asynchronous process calculus, using a commit-abort
protocol, achieving by this means the synchronization of all objects involved on a
transaction. We treat objects with internal animation, their dynamic creation and
deletion. Furthermore, the method generates a (decidable) typing assignment sys-
tem that ensures lack of runtime errors for typable programs. The type of an agent
certificates the communicating protocol of the corresponding class.

1 Introduction

We aim at an operational semantics and a safe type system for a very high level concurrent
object-oriented specification language, called GNOME [SR94, RS95], and use a calculus of
objects called TyCO (Typed Concurrent Objects) [Vas94d, Vas94c] to achieve the objec-
tive.

Process calculi has been accepted as a natural vehicle for research on the foundations
of concurrent object-oriented languages [PT95]. Following [KY94], the approach is “con-
current object-oriented programming = concurrent calculus + records”, a view analogous
to that of research on the foundations of type systems for sequential object-oriented pro-
gramming (A-calculus + records). To give a solid operational semantics for GNOME, we
choose TyCO because it is a versatile and expressive object-oriented concurrent calculus.

*Presented at the ECOOP’96 workshop on Proof-Theory of Concurrent Object-Oriented Programming

2 THE TRANSLATION 2

The language GNOME is an object-oriented formal specification language of concurrent,
interactive, and reactive systems. It is a class-based and object-based language [Weg90],
strongly typed, and with a fixed set of basic data types.

The language supports concurrency intra and inter-objects, with synchronous or asyn-
chronous communication, dynamic creation (and deletion) of objects, inheritance with
overriding, and state-dependent method invocation.

TyCO is a name-passing calculus of objects, with asynchronous communication be-
tween concurrent objects via messages carrying names. The calculus is developed along
the trends of well-known models of concurrency, as the w-calculus [Mil91, MPW92], the
v-calculus [HT91], and the actor model of computation [Agh86, HBS73].

Processes are implicitly typed: no type information is present, but it can be inferred
by a type system, similar to those of the A-calculus [Bar92, HS86], those of sequential
object-oriented programming (as, for example, in [Pie93, Bru95]), or of the w-calculus
[Mil91]. The system assigns types to names and sets of name-type pairs (called typings)
to processes, ensuring a type discipline on the use of channels, unlike the type systems
that assign types to terms. Programs (processes) are statically typed.

This type system [Vas94b, Vas94d] is inductively defined by a few typing rules, one for
each constructor of the calculus, with a weak rule and a subtyping rule. It is a formal one
(in the sense of [HS86]) verifying properties such as subject-reduction (having as corollary
that well-typed processes do not run into errors at runtime), the decidability of the typing
assignment, and the computability of the typing inference. The typing of a process consti-
tutes a communicating protocol for that process. In conclusion, it is a typing assignment
system, that gives partial correctness and partial specification.

A specification in GNOME declares a set of classes, defining an object community. The
agents resulting from the encoding of the classes, besides giving the operational semantics
of the specification, also allow its automatic type-checking. A specification is type error
free if and only if the translated agents are type error free. But for type-checking the
specification directly it seems interesting to built a typing assignment system for GNOME
specifications, similarly to [Vas94a].

The paper has two main parts: the presentation of the translation of GNOME in TyCO
in section 2, starting with a brief description of the GNOME syntax and informal semantics,
defining afterwards the syntax and the operational semantics of TyCO, and finally doing
the encoding; and the construction of type system for GNOME, based on the TyCO type
system in section 3. The conclusions and comparisons to related work are in section 4.

2 The translation

The operational semantics is obtained defining the semantic map of the language GNOME
in TyCO (as developed in [Rav96]). We encode GNOME classes in TyCO agents, and thus,
objects (instances of classes) in processes (instances of agents). The resulting agents for
given GNOME classes are very elaborated and complex, but nevertheless they confirm the
adequacy of the calculus of objects for expressing the operational semantics of (very high
level) concurrent object-oriented languages.

2 THE TRANSLATION 3

2.1 The GNOME specification language

The object-oriented GNOME language is adequate for the specification of concurrent, reac-
tive, and interactive systems. Using the terminology of Wegner [Weg90], it is a class-based
and object-based language, where classes are modules for the creation of similar objects,
and objects are encapsulation units. Objects have internal animation, and provide ser-
vices to other objects, with synchronous or asynchronous communication. FEach object is
characterized by an internal state (a set of attributes) that can change during its life-cycle,
either by self initiative, or by interaction with other objects. The behavior of an object
is determined by its internal state (state-dependent method invocation) [SCS92]. There
is concurrency intra and inter-objects, and dynamic creation (and deletion) of objects. A
fragment of the language is presented by its grammar in Figure 1.

A specification is a collection of classes, each one with a public interface and a cap-
sulated body. The interface declares the external actions (called services), with their
parameters and results. In the body there are the attributes (called slots) declarations,
and the methods of the internal and external actions. The methods can have four types
of clauses, in the following order: its enabling condition (it can be the conjunction of
several), the calling of services of other objects, the valuation of slots, and the response to
the invoker of the service (only available for external actions). The semantics of a method
execution will be explained later.

2.2 The Typed Calculus of Objects

The operational semantics is based on a name-passing calculus of objects, with asyn-
chronous communication between concurrent objects via messages carrying names.

The terms of the calculus are called processes. The basic ones are objects (or servers)
composed of labeled methods, and asynchronous labeled messages, targeting some object
and selecting one of its labeled methods. The other constructors of the calculus are the
concurrent composition of processes, and the restriction of the scope of a name to a process
(dynamic creation of names). There is also a (quite convenient, but not indispensable)
second syntactic category, called agents, denoting families of processes parameterized by
sequences of names, allowing to declare an agent once and to use it several times in a given
process, through a let constructor. The syntax of the calculus is presented in Figure 2.

The computational mechanism of the calculus is the interaction between an object
and a message, called message application, that constitutes a reduction relation. The
operational semantics is based on this reduction relation and on a congruence relation
over processes. Both relations are defined in Figure 3.

2.3 Encoding

As the encoding is a complex task, we do it by stages: we first encode classes of passive
and persistent objects, then we allow the dynamic creation and deletion of objects, and
finally we add internal animation to the objects. By this methodology, one can observe
the increasing complexity of the agent, expressing the semantic richness of a GNOME spec-
ification of an object community.

2 THE TRANSLATION 4

unit ::= spec spec_id
type_dec*

class™

end spec

type_dec ::= type type_dec_id = prim_type | type_dec_id | class_id
prim_type ::= bool | nat
class ::= class classad
interface service®
body body
end class_id
service ::= [birth | death] serv serv_id

(par par_id: type)”
(res res_id: type)”

body = (slot slot_id: type)”
(serv serv_id method)*
([death] act action_id method)”
method ::= enabling*
calling*
valuation™
responce*
enabling ::= enb condition
calling ::= call serv_id [as serv_id] of expression:class_id
(arg serv_id.par_id = expression)”
valuation ::= val slot_id < ezpression
responce ::= ret serv_id.res_td = expression

Figure 1: The GNOME grammar

One should be aware that it is not possible to define the encoding by translating the
GNOME language clause by clause. This is so because the communication between objects
in GNOME is synchronous and TyCO only has asynchronous communication. Thus, we
need a way to implement the atomic execution of a service, emulating synchronous com-
munication from asynchronous. Let us first describe the semantics of a service execution: a
service can only be executed if its enabling condition is true, and all the services requested
by this service are enabled. As the execution of a service is atomic, all clauses should
be executed “simultaneously” (only one state transition occurs). So, for the encoding we
need an operator to synchronize two processes, so that the second only starts when the
first gives it an explicit order (sequential composition, denoted by ;). We have:

PiQEver e [enb: (7)) (cfresh)

The TyCO code that implements the method of a particular service should first eval-
uate its enabling condition. If it is false the service is disabled, and a message is sent
to communicate this to the service invoker. Otherwise, the calls to other services are
tried sequentially. If any of the called services is disabled the service in question is also
disabled, and again a message is sent to communicate this to the service invoker. But if
all are enabled, the service is then enabled and the message returned informs the invoker
of this fact. Furthermore, all objects involved on the transaction corresponding to the

2 THE TRANSLATION 5

Consider a contable set of names, denoted by a,b,..., and also u,v,z,y,..., a contable set of variables over
agents, called agent-names, X,Y,...; and a set of labels, Ll b, etc. Let P,(Q,..., denote processes, and &
stand for a sequence of pairwise distinct names. The set of processes is given by the following grammar:

P = ap[h: A& - &lIh:Ay] | a<l:% | PQ | vzP |

X(#) | A(®) | letX=AinP

where A Aq,..., denote agents, whose set is defined by the grammar:

A i= (2)P | recX=A

Figure 2: Syntax of processes

Structural congruence 1s the smallest congruence relation over processes generated by the following rules:
1. P=Q,if P =, Q;
2. PQ=Q,Pand (P,Q),R=P,(Q,R);
3. M = N if the method’s record M is a permutation of N;
4. vz P,Q =vz(P,Q)if = ¢ In(Q);
5. ((£)P)(v) = P{o/z} if the lengths of & and & match;
6. rec X = A= A[X :=rec X = A];
7. let X = Ain P = P[X = A];
Message application represents the reception of a message by an object, with a method being selected. Let
C be the communication I; : ¥ of some message, and let M be the method’s record [5 : A1 & --- &1, : Ayn]

of some object; if the target of the message and the location of the object coincide then the result of the
interaction between them (denoted by M e (') is the process P;{9/&;}, where A; = (&;)P;.

Reduction is the smallest relation over processes, generated by the following rules:
P —Q since P=PP—Q,Q=0Q

I/i(al>M,a<]C,]5)—>wE(MOC,]5)

relying that every process is structural congruent to a process of the form v# P, where P is the concurrent
composition of messages, objects and applied agent-names.

Figure 3: One-step Reduction

service execution (because they have services called) should be synchronized and locked.
The object whose service was initially invoked is now waiting for the commitment of the
execution (or the abortion).

Therefore, an object has two alternating states: free, when it is available to receive
a request of one of its services, and locked, when it has received a service request (and
answered that it was enabled, after having locked all other objects it calls), and is waiting
for the commitment of the execution or for an order to abort it. This behavior corresponds
to the implementation of a commit-abort protocol (see [Tel94]).

In conclusion, the agent representing a typical class of persistent and passive objects
has two parameters: one for naming its instances, and other to store the value of its at-
tribute (we consider only one attribute per class). Instances of the class represent GNOME
objects in the free state: TyCO objects whose methods correspond to the services of the
class, each method having two arguments: the parameter and the result of the corre-

2 THE TRANSLATION 6

sponding service. When an enabled service is requested, the instance in the free state
is consumed and another object representing a locked state is created, having now two
methods: commit and abort. After the execution of one of them the object representing
the class instance in the free state is re-created.

We present now the typical structure of this kind of classes, and the corresponding
encoding we have just described:

[class Class rec Class = (self s)
interface self > [vi(pr)
if [condition] then
par p: type vey [targ:] < vi: [arg:] @1,
res r type ©1 D> ¢nb : (v1) vze [targe]] < v : [arg.] w2,
body @2 D> [enb: (v2) vir <enb:t,
CommitAbort (¢ self vy v2 s p)
& dis : v1 < abort ;
(r < dis, Class(self s))]
& dis: r < dis, Class(self s) |
else r < dis, Class(self s) £i]

serv v

slot s: type
serv v
enb condition
call v; of targi: C;
arg v1.p — arg
call v of targs: Cs
arg v2.p — argo

where CommitAbort is:

val s < val_exp CommitAbort = (selfc vy v2 s p)
ret r = ret_exp self > fommit : (r) v1 < commit : [arg:] ; vo < commit : [arg.] ;
end Class]] = (r < enb : [ret_exp], Class(c [val_exp]))

& abort : (r) v1 < abort ;v2 < abort ; (r < enb, Class(c s))]

Moving forward, we treat the dynamic creation and deletion of objects; it is necessary
to know the identities of the existing instances of each class. Thus, with a class we associate
a manager of its instances, with a list of the identifiers of those instances (a data structure
other than a list could be used). So, it is possible to create and delete objects of a given
class, and to ask about the existence of a particular object, by putting (new) names in the
list, removing names from the list, and looking for names in the list. Fach class has an
associated manager (a particular object) with three methods: birth, to create instances,
death, to delete them, and exists, to check whether a given instance is alive.

The instances of a class have the structure and behavior described in the previous
paragraphs.

In order to have classes of active objects, we finally encode internal animation (private
actions, executed nondeterministically). The process representing a GNOME object is the
parallel composition of two “engines” (objects): one receiving and queuing demands for
services (one method for each service), and another choosing randomly (with a uniform
distribution) the next activated internal actions or invoked services should be executed
(only one service, called internally). The first engine is accessible from the “environment”,
constituting the interface of the object, whereas the second is the manager of the object
animation, responsible for changing its internal state, and it is obviously capsulated.

To illustrate this architecture, we encode now an iterative version of the factorial:

2 THE TRANSLATION 7

[class Fact The TyCO code of the agents is as follows:
interface
birth serv req
par n: nat
death serv ans

Fact = (selfc 1) rec Fact
self > [birth : (nr) wvir < enb:i, NewF(i self g n l), Fact
& death : (1 7)1 < pop : i ;(r < enb, Fact)
res n': nat & exists : (1 r)if | < exists: 1 thenr < enb, Fact
body else r < dis, Fact £1i],

slot m: nat c > [req: (n r)self < birth : n r, Fact |

lot nl: Fact
SIob mi rac NewF =(selfcgpl)

se‘l;;rlriq<< req.n self > [commit : (r) vil < push :1;(r < enb, InstF(: g p [1]))
val nl < 1 & abort : (r) r < enb]

Serv ans An instance of InstF is an object of the class Fact, where:
enbn=1)
ret ans.n! — n! InstF =(self g n n!) v ans a ae ai f o Interface(self ae ans f),

act step Anim(a ae ai f o), Ae(ae a ai g self), Ai(at a),
enbn > 1 a < go: n n!,Random(o), List(f)
val nl < nn! Interface = (self ae v f) rec Int
val n < n-l self > [ans : (r) f < enqueue : v 7 ;Int

end Fact] = & kill : (0) if 0 = ae then f < clean else Int £i]

(g ¢) vl Fact(g c 1), NewSet(l)

This is the agent representing the
class: NewSet is an agent represent-
ing an empty set, with services to put,
take and verify the existence of an el-
ement in the set, and the class man-
ager 1s an instance of the agent Fact;
an instance of the class is created as
an instance of the agent NewF'.

Anim = (self ae ai f o) rec Anim
self > [go: (s1 s2)
case o < val : [2] of
1: case f < dequeue of
dequeued : (Ir) ae <1:s1 827
empty : self < go: s1 s2
esac
2 at < step: s1 82
esac, Anim

& kill : 0]
Ai = (self a) rec Ai Ae = (self a ai g i) rec Ae
self > [step : (n n!) self > [ans: (n n!r)
if [n > 1] thena < go : [n* n!] [n — 1] if [n = 1] thenvo r < enb : 0, Ans
elsea < go:nn!fi, Al elser < dis, Ae i]

& kill: 0]

Ans = self > [commit : (r) g < death; (r <l enb : nl,a < kill, ai < kill, i < kill)
& abort : (r)r < enb,a < go:nn!, Ae]

The verification of the correctness of the encoding is very simple: one can prove by
induction that both programs calculate the same values, with the same transitions on n
and n!.

This encoding can be a general approach to define operational semantics based on
concurrent calculus of objects for concurrent object-oriented languages. The commit-
abort protocol implements synchronous communication from asynchronous messages and
an operator of sequential composition. The class manager is adequate for class-based and
object-based object-oriented languages with dynamic creation (and deletion) of objects,
and the architecture of an active object can basically be the parallel composition of the
two “engines” (internal and external animation). Locally to each object we have treated
fairness: no asked service will be postponed forever and every internal action will eventu-
ally be executed, as one can easely confirm observing the behavior of the agent Anim: it is

3 THE TYPING ASSIGNMENT SYSTEM FOR GNOME 8

The typing assignment system (TS,v) is inductively defined by the following typing rules:

VAR B-X:akF X » &,0 € TS,v
~ BFPw» ' z:pc TS,y provided that BF P» I'-z:a € TS,v and a =
MsGuy BFa<dl:ow {a:8} Uv:d1 € TS,y provided that g = [li:d1,...,ln:&5]
OBJ Btab[h: A1 & -~ &l A {a:[li:dq,..., lh:ap]}UT 1 U---UT,, € TS,v provided that B+
A » a1, I1,..., BE Ay » &y, T € TSyuvand a: [lidr, ..., ln:@n] xT1 X - <XTh,n>0
ScoP BtFwvs Pw» 1 € TS,y provided that BF Pp» [s:a0 € TS,v
CoMmp BFP,Qw I'UA € TS,v provided that BF P e [, BFQ@w» A TS,y and I' < A
ABS Bt (¢)Pw» &, € TS,y provided that BF Pw» I'5:4 € TS,v
WEAK BF Pp I z:a € TS,y provided that B P» '€ TS,v and ¢ ¢ T
App BFU(®) » TU{d:a} € TS,v provided that B+ U » &,I' € TS,v, where U is an agent or an
agent-name, and I' < {v:4a}
LET BF let X=Ain P » ' UA € TS,y provided that B+ A » &4, ['B-X:aF P » A€
TS,vand I' x A
REC BF rec X=4 » a&,I' € TS,y provided that B- X:atk Aw &, ' € TS,v
V-INTRO B+ Awp Vt.o,I' € ST, v provided that B+ A » o, € TS,v and ¢ is bound in T' and/or in B
V-ELIM B+ A w ola/t],I € ST,v provided that B+ X » Vt. 0, € TS,v

In the last two rules o stands for a polymorphic type. It can replace the monomorphic type & in the other
rules, and in bases (but not in typings).

Figure 4: TyCO typing assignment system

randomly decided (with uniform distribution) if it should be executed an internal action
or an asked service.

3 The typing assignment system for GNOME

As we said before the GNOME language is strongly typed, but we aim a type system with
the set of properties of the TyCO typing assignment system. The objective is to guarantee
the absence of “message not understood” errors: no object will ever receive a message not
suitable for it, either because the invoked service doesn’t exist or because the arguments
don’t match.

There are two approaches for type-checking a GNOME specification: type-checking
the corresponding TyCO code, or directly type-checking the specification by building
to GNOME a typing assignment system from the encoding and the TyCO type system
(Figure 4). We present this second alternative.

The procedure is as follows: starting from the type information present in the specifi-
cation, we set as axioms the assignments of types to the attributes, and to the parameters
and results of the services. These axioms are added to the TyCO typing assignment sys-
tem: we use them to try to infer a type for all the expressions present in the specification
assuming there is an encoding in TyCO of the GNOME types. These expressions can be
logical, arithmetic, or attribute names. If all the expressions are typable (accordingly to
the axioms and the TyCO encoding of the GNOME types), and if it is also typable the
assignments of values, then the classes are well-typed. In this case it is possible to directly

3 THE TYPING ASSIGNMENT SYSTEM FOR GNOME 9

infer their types: they will be records whose fields have the service names, and for each
field there is a type expressing the functional behavior of that service (arguments type
and result type).

To present the typings of the three encodings developed in the previous section let us
consider that the result of a service, once it is carried in a message, has a type:

T = [dis, enb : [abort : [enb], commit : [enb : res_type]]]

This type clarifies that the caller of the service must wait for information about its en-
abledness (a disabled or enabled message). In this last case, the instance to which the
service was called is locked, and must wait for an order to abort or to commit the exe-
cution. In both cases it will send a message enb to release the caller. If the service was
executed, this message carries the result of the execution.

We can now present the final types: For the first encoding, the type of the instances
of a class with only one service v is:

t = [v:par_type — 7]

The class has two parameters, the first for naming its instances, and the second represent-
ing the attribute, and so has type: ¢ slot_type.

For the second and the third encondings, the types are the same because active and
passive objects have the same interface. The types of the main entities are:

set of instances type: [exists: ¢ —[false,true], add: ¢ —[enb], rem: —[enb]]

The first method returns a boolean; the other two return a synchronization message
after modifying the set.

class manager type: [birth: par_type — ¢, death: ¢ —[enb], exists: ¢ —[dis,enb]]

The first method creates an instance of the class, the second deletes it and send
a synchronization message, and the third one looks for an instance and send an
enabling message.

class instance type: ¢

A record whose fields are labeled with the services names, and whose arguments are
the type of the parameter it accepts and the type of the message where the result is
sent.

The information given by these types is richer than the one in the specification inter-
face: the semantics of a dynamic object is clarified by its type.

The encoding of the basic types (corresponding to the simple GNOME types) treats
operations as total functions, as usual, and as such, a class of runtime errors is not caught
by the type system. For example, the predecessor of zero is zero. Because of this, the
system can’t be used to prove invariance properties about the specification, even if it seems
that all it is needed is there, as shown in [Rav96]. We want to see what changes should
be made to the typing assignment system so this would be possible.

4 CONCLUSIONS AND RELATED WORK 10

4 Conclusions and related work

We developed a general method to define operational semantics based on concurrent
object-oriented calculus to high level object-oriented programming and specification lan-
guages. This has been done before (for example, in [KY94, Vas94a]) and it is know
accepted as an approach to study foundations of concurrent object-oriented languages
[PT95]. But we do it for a much more complex language, as it is GNOME, demanding a
structured development of the semantics, that can constitute a general method. The typ-
ing assignment systems is given for free guaranteeing the safety of the programs, and the
types give a communicating protocol with some semantic information. The development
of more flexible type systems that take some account of the structure and the behavior

of the programs is an interesting problem, addressed now by different perspectives, as for
example in [AGN95, Nie95, LW95, Pie95].

References

[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.
M.I.T. Press, 1986.

[AGN95] S. Abramsky, S. Gay, and R. Nagarajan. Specification structures and
propositions-as-types for concurrency. In F. Moller and G. Birtwistle, editors,

Logics for Concurrency: Structure vs. Automata - Proceedings of the VIIIth
Banff Higher Order Workshop. Springer-Verlag LNCS, 1995.

[Bar92] H. Barendregt. Lambda-calculi with types. In S. Abramsky, D. Gabbay, and
T. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages
118-309. Oxford University Press, 1992.

[Bru95] K. Bruce. Typing in object-oriented languages: Achieving expressibility and
safety. Research report, Williams College, U.S.A., 1995.

[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal, modular actor formalism
for artificial intelligence. In $th International Joint Conference on Artificial
Intelligence, pages 235-245, 1973.

[HS86] J. Hindley and J. Seldin. Introduction to Combinators and A-Calculus. Cam-
bridge University Press, 1986.

[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communication.
In 5th Furopean Conference on QObject-Oriented Programming, volume LNCS
512, pages 141-162. Springer-Verlag, 1991.

[KY94] N. Kobayashi and A. Yonezawa. Typed-theorectical foundations for concurrent
object-oriented programming. Technical report, Department of Information
Science, University of Tokyo, Japan, 1994.

[LW95] X. Liu and D. Walker. A polymorphic type system for the polyadic 7-calculus.
Research report, Department of Computer Science, University of Warwick,

Coventry CV4 7AL, U.K., 1995.

REFERENCES 11

[Mil91]

[MPW92]

[Nie95]

[Pie93]

[Pie95]

[PT95]

[Rav96]

[RS95]

[SCS92]

[SR94]

[Tel94]

[Vas94a]

[Vas94b]

R. Milner. The polyadic w-calculus: a tutorial. Technical report ECS-LFCS
91-180, University of Edinburgh, U. K., 1991.

R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i e ii.
Information and Computation, 100:1-77, 1992. Also available as Technical
Report ECS-LFCS 89-85/86, University of Edinburgh.

O. Nierstrasz. Regular types for active objects. In O. Nierstrasz and
D. Tsichritzis, editors, Object-Oriented Software Composition, pages 99-121.
Prentice Hall, 1995.

B. Pierce. Simple type-theorectic foundations for object-oriented programming.
Journal of Functional Programming, 1993.

B. Pierce. Programming in the w-calculus: an experiment in concurrent lan-
guage design. Tutorial notes for PicT version 3.6k, Computer Laboratory,
University of Cambridge, U. K., 1995.

B. Pierce and D. Turner. Concurrent objects in a process calculus. In T. Ito and
A. Yonezawa, editors, Theory and Practice in Parallel Programming, volume
LNCS 907, pages 187-215. Springer-Verlag, 1995.

A. Ravara. An operational semantics for the language GNOME based on typed
concurrent objects. Master’s thesis, IST, Universidade Técnica de Lisboa, 1996.
Supervised by A. Sernadas and V. Vasconcelos. In Portuguese.

J. Ramos and A. Sernadas. A brief introduction to GNOME. Research report,

Section of Computer Science, Department of Mathematics, Instituto Superior
Técnico, 1096 Lisboa, Portugal, 1995.

A. Sernadas, J. F. Costa, and C. Sernadas. Object specification with diagrams:
the OBLOG approach. Research report, Section of Computer Science, Departa-
ment of Mathematics, Instituto Superior Técnico, 1096 Lisboa, Portugal, 1992.
Awared the Descartes Prize by the Data Processing Institute of the Ministry
of Finances of Portugal.

A. Sernadas and J. Ramos. The GNOME language: Syntax, semantics and
calculus. Research report, Section of Computer Science, Department of Mathe-
matics, Instituto Superior Técnico, 1096 Lisboa, Portugal, 1994. In Portuguese.

G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,
1994.

V. Vasconcelos. An operacional semantics and a typing system for ABCL/1
based on a calculus of objects. Technical report CS 94-001, Keio University,
Japan, 1994.

V. Vasconcelos. Predicative polymorphism in w-calculus. In 6th Parallel Ar-
chitectures and Languages Furope, volume LNCS 817, pages 425-437. Springer-
Verlag, 1994.

REFERENCES 12

[Vas94c] V. Vasconcelos. A Process-Calculus Approach to Typed Concurrent Objects.
PhD thesis, Department of Computer Science, Keio University, Japan, 1994.

[Vas94d] V. Vasconcelos. Typed concurrent objects. In 8th Furopean Conference on
Object-Oriented Programming, volume LNCS 821, pages 100-117. Springer-
Verlag, 1994.

[Weg90] P. Wegner. Concepts and paradigms of object-oriented programming. OOPS
MESSENGER, 1(1):7-87, 1990.

