
Operational Semantics and Type System for Gnome onTyped Calculus of Objects �Ant�onio RavaraDepartamento de Matem�atica, Instituto Superior T�ecnico.Universidade T�ecnica de Lisboa, PortugalVasco VasconcelosDepartamento de Inform�atica,Faculdade de Ciências da Universidade de Lisboa, Portugale-mail: amar@math.ist.utl.pt, vv@di.fc.ul.ptJune 96AbstractWe present an operational semantics and a typing assignment system for the con-current object-oriented speci�cation languageGnome, based on a name-passing asyn-chronous calculus of concurrent objects, TyCO. The operational semantics is given by amap encoding Gnome classes in TyCO agents, and thus, objects (instances of classes)in processes (instances of agents). We propose a general approach to implement syn-chronous communication in an asynchronous process calculus, using a commit-abortprotocol, achieving by this means the synchronization of all objects involved on atransaction. We treat objects with internal animation, their dynamic creation anddeletion. Furthermore, the method generates a (decidable) typing assignment sys-tem that ensures lack of runtime errors for typable programs. The type of an agentcerti�cates the communicating protocol of the corresponding class.1 IntroductionWe aim at an operational semantics and a safe type system for a very high level concurrentobject-oriented speci�cation language, called Gnome [SR94, RS95], and use a calculus ofobjects called TyCO (Typed Concurrent Objects) [Vas94d, Vas94c] to achieve the objec-tive.Process calculi has been accepted as a natural vehicle for research on the foundationsof concurrent object-oriented languages [PT95]. Following [KY94], the approach is \con-current object-oriented programming = concurrent calculus + records", a view analogousto that of research on the foundations of type systems for sequential object-oriented pro-gramming (�-calculus + records). To give a solid operational semantics for Gnome, wechoose TyCO because it is a versatile and expressive object-oriented concurrent calculus.�Presented at the ECOOP'96 workshop on Proof-Theory of Concurrent Object-Oriented Programming1

2 THE TRANSLATION 2The languageGnome is an object-oriented formal speci�cation language of concurrent,interactive, and reactive systems. It is a class-based and object-based language [Weg90],strongly typed, and with a �xed set of basic data types.The language supports concurrency intra and inter-objects, with synchronous or asyn-chronous communication, dynamic creation (and deletion) of objects, inheritance withoverriding, and state-dependent method invocation.TyCO is a name-passing calculus of objects, with asynchronous communication be-tween concurrent objects via messages carrying names. The calculus is developed alongthe trends of well-known models of concurrency, as the �-calculus [Mil91, MPW92], the�-calculus [HT91], and the actor model of computation [Agh86, HBS73].Processes are implicitly typed: no type information is present, but it can be inferredby a type system, similar to those of the �-calculus [Bar92, HS86], those of sequentialobject-oriented programming (as, for example, in [Pie93, Bru95]), or of the �-calculus[Mil91]. The system assigns types to names and sets of name-type pairs (called typings)to processes, ensuring a type discipline on the use of channels, unlike the type systemsthat assign types to terms. Programs (processes) are statically typed.This type system [Vas94b, Vas94d] is inductively de�ned by a few typing rules, one foreach constructor of the calculus, with a weak rule and a subtyping rule. It is a formal one(in the sense of [HS86]) verifying properties such as subject-reduction (having as corollarythat well-typed processes do not run into errors at runtime), the decidability of the typingassignment, and the computability of the typing inference. The typing of a process consti-tutes a communicating protocol for that process. In conclusion, it is a typing assignmentsystem, that gives partial correctness and partial speci�cation.A speci�cation in Gnome declares a set of classes, de�ning an object community. Theagents resulting from the encoding of the classes, besides giving the operational semanticsof the speci�cation, also allow its automatic type-checking. A speci�cation is type errorfree if and only if the translated agents are type error free. But for type-checking thespeci�cation directly it seems interesting to built a typing assignment system for Gnomespeci�cations, similarly to [Vas94a].The paper has two main parts: the presentation of the translation of Gnome in TyCOin section 2, starting with a brief description of theGnome syntax and informal semantics,de�ning afterwards the syntax and the operational semantics of TyCO, and �nally doingthe encoding; and the construction of type system for Gnome, based on the TyCO typesystem in section 3. The conclusions and comparisons to related work are in section 4.2 The translationThe operational semantics is obtained de�ning the semantic map of the language Gnomein TyCO (as developed in [Rav96]). We encode Gnome classes in TyCO agents, and thus,objects (instances of classes) in processes (instances of agents). The resulting agents forgiven Gnome classes are very elaborated and complex, but nevertheless they con�rm theadequacy of the calculus of objects for expressing the operational semantics of (very highlevel) concurrent object-oriented languages.

2 THE TRANSLATION 32.1 The GNOME speci�cation languageThe object-oriented Gnome language is adequate for the speci�cation of concurrent, reac-tive, and interactive systems. Using the terminology of Wegner [Weg90], it is a class-basedand object-based language, where classes are modules for the creation of similar objects,and objects are encapsulation units. Objects have internal animation, and provide ser-vices to other objects, with synchronous or asynchronous communication. Each object ischaracterized by an internal state (a set of attributes) that can change during its life-cycle,either by self initiative, or by interaction with other objects. The behavior of an objectis determined by its internal state (state-dependent method invocation) [SCS92]. Thereis concurrency intra and inter-objects, and dynamic creation (and deletion) of objects. Afragment of the language is presented by its grammar in Figure 1.A speci�cation is a collection of classes, each one with a public interface and a cap-sulated body. The interface declares the external actions (called services), with theirparameters and results. In the body there are the attributes (called slots) declarations,and the methods of the internal and external actions. The methods can have four typesof clauses, in the following order: its enabling condition (it can be the conjunction ofseveral), the calling of services of other objects, the valuation of slots, and the response tothe invoker of the service (only available for external actions). The semantics of a methodexecution will be explained later.2.2 The Typed Calculus of ObjectsThe operational semantics is based on a name-passing calculus of objects, with asyn-chronous communication between concurrent objects via messages carrying names.The terms of the calculus are called processes. The basic ones are objects (or servers)composed of labeled methods, and asynchronous labeled messages, targeting some objectand selecting one of its labeled methods. The other constructors of the calculus are theconcurrent composition of processes, and the restriction of the scope of a name to a process(dynamic creation of names). There is also a (quite convenient, but not indispensable)second syntactic category, called agents , denoting families of processes parameterized bysequences of names, allowing to declare an agent once and to use it several times in a givenprocess, through a let constructor. The syntax of the calculus is presented in Figure 2.The computational mechanism of the calculus is the interaction between an objectand a message, called message application, that constitutes a reduction relation. Theoperational semantics is based on this reduction relation and on a congruence relationover processes. Both relations are de�ned in Figure 3.2.3 EncodingAs the encoding is a complex task, we do it by stages: we �rst encode classes of passiveand persistent objects, then we allow the dynamic creation and deletion of objects, and�nally we add internal animation to the objects. By this methodology, one can observethe increasing complexity of the agent, expressing the semantic richness of a Gnome spec-i�cation of an object community.

2 THE TRANSLATION 4unit ::= spec spec idtype dec�class�end spectype dec ::= type type dec id = prim type j type dec id j class idprim type ::= bool j natclass ::= class class idinterface service�body bodyend class idservice ::= [birth j death] serv serv id(par par id: type)�(res res id: type)�body ::= (slot slot id: type)�(serv serv id method)�([death] act action id method)�method ::= enabling�calling�valuation�responce�enabling ::= enb conditioncalling ::= call serv id [as serv id] of expression:class id(arg serv id.par id = expression)�valuation ::= val slot id � expressionresponce ::= ret serv id.res id = expressionFigure 1: The Gnome grammarOne should be aware that it is not possible to de�ne the encoding by translating theGnome language clause by clause. This is so because the communication between objectsin Gnome is synchronous and TyCO only has asynchronous communication. Thus, weneed a way to implement the atomic execution of a service, emulating synchronous com-munication from asynchronous. Let us �rst describe the semantics of a service execution: aservice can only be executed if its enabling condition is true, and all the services requestedby this service are enabled. As the execution of a service is atomic, all clauses shouldbe executed \simultaneously" (only one state transition occurs). So, for the encoding weneed an operator to synchronize two processes, so that the second only starts when the�rst gives it an explicit order (sequential composition, denoted by ;). We have:P ;Q def= �c P; c B [enb : (~v) Q] (c fresh)The TyCO code that implements the method of a particular service should �rst eval-uate its enabling condition. If it is false the service is disabled, and a message is sentto communicate this to the service invoker. Otherwise, the calls to other services aretried sequentially. If any of the called services is disabled the service in question is alsodisabled, and again a message is sent to communicate this to the service invoker. But ifall are enabled, the service is then enabled and the message returned informs the invokerof this fact. Furthermore, all objects involved on the transaction corresponding to the

2 THE TRANSLATION 5Consider a contable set of names, denoted by a,b,..., and also u,v,x,y,..., a contable set of variables overagents, called agent-names, X,Y,..., and a set of labels, l,l1 ,l2, etc. Let P,Q,..., denote processes, and ~xstand for a sequence of pairwise distinct names. The set of processes is given by the following grammar:P : := a B [l1 : A1 & � � � & ln : An] j a C l : ~v j P;Q j �xP jX(~v) j A(~v) j letX = A inPwhere A,A1,..., denote agents, whose set is de�ned by the grammar:A : := (~x)P j recX = AFigure 2: Syntax of processesStructural congruence is the smallest congruence relation over processes generated by the following rules:1. P � Q, if P �� Q;2. P;Q � Q;P and (P;Q);R � P; (Q;R);3. M � N if the method's record M is a permutation of N ;4. �xP;Q � �x(P;Q) if x =2 fn(Q);5. ((~x)P)(~v) � Pf~v=~xg if the lengths of ~x and ~v match;6. recX = A � A[X := recX = A];7. letX = A in P � P [X := A];Message application represents the reception of a message by an object, with a method being selected. LetC be the communication li : ~v of some message, and let M be the method's record [l1 : A1& � � � & ln : An]of some object; if the target of the message and the location of the object coincide then the result of theinteraction between them (denoted by M �C) is the process Pif~v=~xig, where Ai = (~xi)Pi.Reduction is the smallest relation over processes, generated by the following rules:P 0 ! Q0 since P 0 � P;P ! Q;Q � Q0�~x(a BM;a C C; ~P) ! �~x(M � C; ~P)relying that every process is structural congruent to a process of the form �~x ~P , where ~P is the concurrentcomposition of messages, objects and applied agent-names.Figure 3: One-step Reductionservice execution (because they have services called) should be synchronized and locked.The object whose service was initially invoked is now waiting for the commitment of theexecution (or the abortion).Therefore, an object has two alternating states: free, when it is available to receivea request of one of its services, and locked , when it has received a service request (andanswered that it was enabled, after having locked all other objects it calls), and is waitingfor the commitment of the execution or for an order to abort it. This behavior correspondsto the implementation of a commit-abort protocol (see [Tel94]).In conclusion, the agent representing a typical class of persistent and passive objectshas two parameters: one for naming its instances, and other to store the value of its at-tribute (we consider only one attribute per class). Instances of the class represent Gnomeobjects in the free state: TyCO objects whose methods correspond to the services of theclass, each method having two arguments: the parameter and the result of the corre-

2 THE TRANSLATION 6sponding service. When an enabled service is requested, the instance in the free stateis consumed and another object representing a locked state is created, having now twomethods: commit and abort. After the execution of one of them the object representingthe class instance in the free state is re-created.We present now the typical structure of this kind of classes, and the correspondingencoding we have just described:[[class Classinterfaceserv vpar p: typeres r: typebodyslot s: typeserv venb conditioncall v1 of targ1 : C1arg v1.p = arg1call v2 of targ2 : C2arg v2.p = arg2val s � val expret r = ret expend Class]] =
rec Class = (self s)self B [v : (p r)if [[condition]] then�x1 [[targ1]] C v1 : [[arg1]] x1;x1 B [enb : (v1) �x2 [[targ2]] C v2 : [[arg2]] x2;x2 B [enb : (v2) �t r C enb : t;CommitAbort(t self v1 v2 s p)& dis : v1 C abort ;(r C dis;Class(self s))]& dis : r C dis;Class(self s)]else r C dis;Class(self s) fi]where CommitAbort is:CommitAbort = (self c v1 v2 s p)self B [commit : (r) v1 C commit : [[arg1]] ; v2 C commit : [[arg2]] ;(r C enb : [[ret exp]];Class(c [[val exp]]))& abort : (r) v1 C abort ; v2 C abort ; (r C enb;Class(c s))]Moving forward, we treat the dynamic creation and deletion of objects; it is necessaryto know the identities of the existing instances of each class. Thus, with a class we associatea manager of its instances, with a list of the identi�ers of those instances (a data structureother than a list could be used). So, it is possible to create and delete objects of a givenclass, and to ask about the existence of a particular object, by putting (new) names in thelist, removing names from the list, and looking for names in the list. Each class has anassociated manager (a particular object) with three methods: birth, to create instances,death, to delete them, and exists, to check whether a given instance is alive.The instances of a class have the structure and behavior described in the previousparagraphs.In order to have classes of active objects, we �nally encode internal animation (privateactions, executed nondeterministically). The process representing a Gnome object is theparallel composition of two \engines" (objects): one receiving and queuing demands forservices (one method for each service), and another choosing randomly (with a uniformdistribution) the next activated internal actions or invoked services should be executed(only one service, called internally). The �rst engine is accessible from the \environment",constituting the interface of the object, whereas the second is the manager of the objectanimation, responsible for changing its internal state, and it is obviously capsulated.To illustrate this architecture, we encode now an iterative version of the factorial:

2 THE TRANSLATION 7[[class Factinterfacebirth serv reqpar n: natdeath serv ansres n!: natbodyslot n: natslot n!: Factserv reqval n � req.nval n! � 1serv ansenb n = 1ret ans.n! = n!act stepenb n > 1val n! � n*n!val n � n-1end Fact]] =(g c) �l Fact(g c l);NewSet(l)This is the agent representing theclass: NewSet is an agent represent-ing an empty set, with services to put,take and verify the existence of an el-ement in the set, and the class man-ager is an instance of the agent Fact;an instance of the class is created asan instance of the agent NewF.

The TyCO code of the agents is as follows:Fact = (self c l) rec Factself B [birth : (n r) �i r C enb : i;NewF(i self g n l);Fact& death : (i r) l C pop : i ; (r C enb;Fact)& exists : (i r)if l C exists : i then r C enb;Factelse r C dis;Fact fi];c B [req : (n r)self C birth : n r;Fact]NewF =(self c g p l)self B [commit : (r) �i l C push : i ; (r C enb; InstF(i g p [[1]]))& abort : (r) r C enb]An instance of InstF is an object of the class Fact, where:InstF =(self g n n!) � ans a ae ai f o Interface(self ae ans f);Anim(a ae ai f o);Ae(ae a ai g self);Ai(ai a);a C go : n n!;Random(o);List(f)Interface= (self ae v f) rec Intself B [ans : (r) f C enqueue : v r ; Int& kill : (o) if o = ae then f C clean else Int fi]Anim =(self ae ai f o) rec Animself B [go : (s1 s2)case o C val : [[2]] of1 : case f C dequeue ofdequeued : (l r) ae C l : s1 s2 rempty : self C go : s1 s2esac2 : ai C step : s1 s2esac;Anim& kill : 0]Ai = (self a) rec Aiself B [step : (n n!)if [[n > 1]] then a C go : [[n � n!]] [[n� 1]]else a C go : n n! fi;Ai& kill : 0] Ae = (self a ai g i) rec Aeself B [ans : (n n! r)if [[n = 1]] then �o r C enb : o;Anselse r C dis;Ae fi]Ans = self B [commit : (r) g C death; (r C enb : n!; a C kill; ai C kill; i C kill)& abort : (r) r C enb; a C go : n n!;Ae]The veri�cation of the correctness of the encoding is very simple: one can prove byinduction that both programs calculate the same values, with the same transitions on nand n!.This encoding can be a general approach to de�ne operational semantics based onconcurrent calculus of objects for concurrent object-oriented languages. The commit-abort protocol implements synchronous communication from asynchronous messages andan operator of sequential composition. The class manager is adequate for class-based andobject-based object-oriented languages with dynamic creation (and deletion) of objects,and the architecture of an active object can basically be the parallel composition of thetwo \engines" (internal and external animation). Locally to each object we have treatedfairness: no asked service will be postponed forever and every internal action will eventu-ally be executed, as one can easely con�rm observing the behavior of the agent Anim: it is

3 THE TYPING ASSIGNMENT SYSTEM FOR GNOME 8The typing assignment system (TS�8) is inductively de�ned by the following typing rules:Var B�X : ~� ` X I ~�; ; 2 TS�8� B ` P I � � x :� 2 TS�8 provided that B ` P I � � x :� 2 TS�8 and � � �Msg�8 B ` a C l1 : ~v I fa :�g [~v : ~�1 2 TS�8 provided that � � [l1 : ~�1; : : : ; ln : ~�n]Obj B ` aB [l1 : A1 & � � � & ln : An] I fa : [l1 : ~�1; : : : ; ln : ~�n]g[�1[� � �[�n 2 TS�8 provided that B `A1 I ~�1;�1; : : : ; B ` An I ~�n;�n 2 TS�8 and a : [l1 : ~�1; : : : ; ln : ~�n] � �1 � � � � � �n; n � 0Scop B ` �x P I � 2 TS�8 provided that B ` P I �� x :� 2 TS�8Comp B ` P;Q I � [� 2 TS�8 provided that B ` P I �;B ` Q I � 2 TS�8 and � � �Abs B ` (~x)P I ~�;� 2 TS�8 provided that B ` P I �� ~x : ~� 2 TS�8Weak B ` P I �� x :� 2 TS�8 provided that B ` P I � 2 TS�8 and x =2 �App B ` U(~v) I � [f~v : ~�g 2 TS�8 provided that B ` U I ~�;� 2 TS�8, where U is an agent or anagent-name, and � � f~v : ~�gLet B ` let X = A in P I � [� 2 TS�8 provided that B ` A I ~�;�;B�X : ~� ` P I � 2TS�8 and � � �Rec B ` rec X = A I ~�;� 2 TS�8 provided that B�X : ~� ` A I ~�;� 2 TS�88-Intro B ` A I 8t: �;� 2 ST�8 provided that B ` A I �;� 2 TS�8 and t is bound in � and/or in B8-Elim B ` A I �[�=t];� 2 ST�8 provided that B ` X I 8t: �;� 2 TS�8In the last two rules � stands for a polymorphic type. It can replace the monomorphic type ~� in the otherrules, and in bases (but not in typings).Figure 4: TyCO typing assignment systemrandomly decided (with uniform distribution) if it should be executed an internal actionor an asked service.3 The typing assignment system for GNOMEAs we said before the Gnome language is strongly typed, but we aim a type system withthe set of properties of the TyCO typing assignment system. The objective is to guaranteethe absence of \message not understood" errors: no object will ever receive a message notsuitable for it, either because the invoked service doesn't exist or because the argumentsdon't match.There are two approaches for type-checking a Gnome speci�cation: type-checkingthe corresponding TyCO code, or directly type-checking the speci�cation by buildingto Gnome a typing assignment system from the encoding and the TyCO type system(Figure 4). We present this second alternative.The procedure is as follows: starting from the type information present in the speci�-cation, we set as axioms the assignments of types to the attributes, and to the parametersand results of the services. These axioms are added to the TyCO typing assignment sys-tem: we use them to try to infer a type for all the expressions present in the speci�cationassuming there is an encoding in TyCO of the Gnome types. These expressions can belogical, arithmetic, or attribute names. If all the expressions are typable (accordingly tothe axioms and the TyCO encoding of the Gnome types), and if it is also typable theassignments of values, then the classes are well-typed. In this case it is possible to directly

3 THE TYPING ASSIGNMENT SYSTEM FOR GNOME 9infer their types: they will be records whose �elds have the service names, and for each�eld there is a type expressing the functional behavior of that service (arguments typeand result type).To present the typings of the three encodings developed in the previous section let usconsider that the result of a service, once it is carried in a message, has a type:� = [dis, enb : [abort : [enb]; commit : [enb : res type]]]This type clari�es that the caller of the service must wait for information about its en-abledness (a disabled or enabled message). In this last case, the instance to which theservice was called is locked, and must wait for an order to abort or to commit the exe-cution. In both cases it will send a message enb to release the caller. If the service wasexecuted, this message carries the result of the execution.We can now present the �nal types: For the �rst encoding, the type of the instancesof a class with only one service v is:� = [v : par type! �]The class has two parameters, the �rst for naming its instances, and the second represent-ing the attribute, and so has type: � slot type.For the second and the third encondings, the types are the same because active andpassive objects have the same interface. The types of the main entities are:set of instances type: [exists: �![false,true], add: �![enb], rem: �![enb]]The �rst method returns a boolean; the other two return a synchronization messageafter modifying the set.class manager type: [birth: par type ! �, death: �![enb], exists: �![dis,enb]]The �rst method creates an instance of the class, the second deletes it and senda synchronization message, and the third one looks for an instance and send anenabling message.class instance type: �A record whose �elds are labeled with the services names, and whose arguments arethe type of the parameter it accepts and the type of the message where the result issent.The information given by these types is richer than the one in the speci�cation inter-face: the semantics of a dynamic object is clari�ed by its type.The encoding of the basic types (corresponding to the simple Gnome types) treatsoperations as total functions, as usual, and as such, a class of runtime errors is not caughtby the type system. For example, the predecessor of zero is zero. Because of this, thesystem can't be used to prove invariance properties about the speci�cation, even if it seemsthat all it is needed is there, as shown in [Rav96]. We want to see what changes shouldbe made to the typing assignment system so this would be possible.

4 CONCLUSIONS AND RELATED WORK 104 Conclusions and related workWe developed a general method to de�ne operational semantics based on concurrentobject-oriented calculus to high level object-oriented programming and speci�cation lan-guages. This has been done before (for example, in [KY94, Vas94a]) and it is knowaccepted as an approach to study foundations of concurrent object-oriented languages[PT95]. But we do it for a much more complex language, as it is Gnome, demanding astructured development of the semantics, that can constitute a general method. The typ-ing assignment systems is given for free guaranteeing the safety of the programs, and thetypes give a communicating protocol with some semantic information. The developmentof more exible type systems that take some account of the structure and the behaviorof the programs is an interesting problem, addressed now by di�erent perspectives, as forexample in [AGN95, Nie95, LW95, Pie95].References[Agh86] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems.M.I.T. Press, 1986.[AGN95] S. Abramsky, S. Gay, and R. Nagarajan. Speci�cation structures andpropositions-as-types for concurrency. In F. Moller and G. Birtwistle, editors,Logics for Concurrency: Structure vs. Automata - Proceedings of the VIIIthBan� Higher Order Workshop. Springer-Verlag LNCS, 1995.[Bar92] H. Barendregt. Lambda-calculi with types. In S. Abramsky, D. Gabbay, andT. Maibaum, editors, Handbook of Logic in Computer Science, volume 2, pages118{309. Oxford University Press, 1992.[Bru95] K. Bruce. Typing in object-oriented languages: Achieving expressibility andsafety. Research report, Williams College, U.S.A., 1995.[HBS73] C. Hewitt, P. Bishop, and R. Steiger. A universal, modular actor formalismfor arti�cial intelligence. In 3th International Joint Conference on Arti�cialIntelligence, pages 235{245, 1973.[HS86] J. Hindley and J. Seldin. Introduction to Combinators and �-Calculus. Cam-bridge University Press, 1986.[HT91] K. Honda and M. Tokoro. An object calculus for asynchronous communication.In 5th European Conference on Object-Oriented Programming, volume LNCS512, pages 141{162. Springer-Verlag, 1991.[KY94] N. Kobayashi and A. Yonezawa. Typed-theorectical foundations for concurrentobject-oriented programming. Technical report, Department of InformationScience, University of Tokyo, Japan, 1994.[LW95] X. Liu and D. Walker. A polymorphic type system for the polyadic �-calculus.Research report, Department of Computer Science, University of Warwick,Coventry CV4 7AL, U.K., 1995.

REFERENCES 11[Mil91] R. Milner. The polyadic �-calculus: a tutorial. Technical report ECS-LFCS91-180, University of Edinburgh, U. K., 1991.[MPW92] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes, i e ii.Information and Computation, 100:1{77, 1992. Also available as TechnicalReport ECS-LFCS 89-85/86, University of Edinburgh.[Nie95] O. Nierstrasz. Regular types for active objects. In O. Nierstrasz andD. Tsichritzis, editors, Object-Oriented Software Composition, pages 99{121.Prentice Hall, 1995.[Pie93] B. Pierce. Simple type-theorectic foundations for object-oriented programming.Journal of Functional Programming, 1993.[Pie95] B. Pierce. Programming in the �-calculus: an experiment in concurrent lan-guage design. Tutorial notes for Pict version 3.6k, Computer Laboratory,University of Cambridge, U. K., 1995.[PT95] B. Pierce and D. Turner. Concurrent objects in a process calculus. In T. Ito andA. Yonezawa, editors, Theory and Practice in Parallel Programming, volumeLNCS 907, pages 187{215. Springer-Verlag, 1995.[Rav96] A. Ravara. An operational semantics for the language Gnome based on typedconcurrent objects. Master's thesis, IST, Universidade T�ecnica de Lisboa, 1996.Supervised by A. Sernadas and V. Vasconcelos. In Portuguese.[RS95] J. Ramos and A. Sernadas. A brief introduction to Gnome. Research report,Section of Computer Science, Department of Mathematics, Instituto SuperiorT�ecnico, 1096 Lisboa, Portugal, 1995.[SCS92] A. Sernadas, J. F. Costa, and C. Sernadas. Object speci�cation with diagrams:the OBLOG approach. Research report, Section of Computer Science, Departa-ment of Mathematics, Instituto Superior T�ecnico, 1096 Lisboa, Portugal, 1992.Awared the Descartes Prize by the Data Processing Institute of the Ministryof Finances of Portugal.[SR94] A. Sernadas and J. Ramos. The Gnome language: Syntax, semantics andcalculus. Research report, Section of Computer Science, Department of Mathe-matics, Instituto Superior T�ecnico, 1096 Lisboa, Portugal, 1994. In Portuguese.[Tel94] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,1994.[Vas94a] V. Vasconcelos. An operacional semantics and a typing system for ABCL/1based on a calculus of objects. Technical report CS 94-001, Keio University,Japan, 1994.[Vas94b] V. Vasconcelos. Predicative polymorphism in �-calculus. In 6th Parallel Ar-chitectures and Languages Europe, volume LNCS 817, pages 425{437. Springer-Verlag, 1994.

REFERENCES 12[Vas94c] V. Vasconcelos. A Process-Calculus Approach to Typed Concurrent Objects.PhD thesis, Department of Computer Science, Keio University, Japan, 1994.[Vas94d] V. Vasconcelos. Typed concurrent objects. In 8th European Conference onObject-Oriented Programming, volume LNCS 821, pages 100{117. Springer-Verlag, 1994.[Weg90] P. Wegner. Concepts and paradigms of object-oriented programming. OOPSMESSENGER, 1(1):7{87, 1990.

