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Abstract

We present an abstract machine specification for non-uniform TyCO. TyCO is a name-
passing calculus of concurrent objects. Since concurrent objects do not always offer the same
methods due to synchronization constraints, we advocate non-uniform interfaces, i.e., inter-
faces with only enabled methods. From the programming point of view the use of non-uniform
interfaces for representing objects, as opposed to the uniform record interfaces, allows a more
intuitive and expressive definition of objects and in general object-based data structures. This
is a result of the far richer behaviors allowed by the non-uniformity. From an implementation
point of view, frequently the code is much shorter, both in the source programs as well as in
the final byte code or other executable format; even in cases where the difference in code size is
not significant, the use of a single name for all of the object’s dynamic instances substantially
reduces heap space, and allows optimizations in heap usage.

The abstract machine for non-uniform TyCO is based on a similar specification for the
uniform case. The changes are very localized and regard essentially the structure of individual
communication channels. Based on experience gathered with an implementation of uniform
TyCO, we discuss the advantages (and disadvantages) of non-uniformity from the point of
view of performance.

1 Introduction

TyCO—Typed Concurrent Objects—is a form of the asynchronous n-calculus [4, 9] featuring
first class objects as input-guarded labelled sums, asynchronous labelled messages as output se-
lectors, and template processes [18]. The calculus formally describes the concurrent interaction of
ephemeral objects through asynchronous communication. Synchronous communication is imple-
mented with continuations. Templates are parameterized processes polymorphic on the parameter
variables allowing, for example, to model classes. Explicit instantiation of recursive templates
models unbounded behavior.

As a calculus, TyCO is the base of the programming language Core-TYCO [19], for which
there is an implementation [10]. A type system [18] assigns monomorphic types to variables and
polymorphic types to template variables, that is, template processes are polymorphic on their
parameters.

TyCO is reminiscent of the Abadi and Cardelli’s ¢-calculus [1] in the sense that objects are
sums of labeled methods (the name self being interpreted as the channel where the object is
located) and messages can be seen as asynchronous method invocations. The ¢-calculus however
presents a method update operation which is not present in TyCO.

2 Non-Uniform TyCO

Concurrent objects can offer services non-uniformly, according to synchronization constraints, i.e.,
the availability of a service depends on the internal state of the object (which reflects the state
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of the system) [14]. Objects with methods enabled or disabled according to its internal state are
very common in object-oriented programming (e.g. a stack, a finite buffer, an ftp server, a bank
account, a cash machine). Whence, we aim at a more flexible style of programming and at a
type discipline that copes with non-uniform concurrent objects: the interfaces of the objects only
have enabled methods, and when a client asks for a disabled method the message is not rejected
if the internal state of the object may change such that the method becomes available. A pair
object-message—a redex—is not an error if the message may be accepted at some time in the
future. Usually a redex that does not reduce is considered an error. To achieve the objectives
previously referred, we provide a looser definition of communication error. We call bad redexes
those that do not reduce, and we do not consider them as errors if the object may evolve to a
state where it can accept the message. A communication error is a process with a persistent bad
redex, either because the object is deadlocked, or because it will never have the right method for
the message.

Traditional type systems assign rigid interface-like types to the names of the objects [6, 13, 18].
Type-systems that support objects with non-uniform interfaces, based on the distinct definition
of a run-time protocol error discussed above, have been proposed for TYCO [15, 16]. The systems
ensure safety properties resulting from the absence of persistent bad redexes, namely the absence
of some deadlocks (that we call local), and the guarantee that typable processes will not run into
communication errors.

Take the typical example of a one-place buffer that only allows read/consume operations when
it is full, and write/produce operations when it is empty. We like to specify it as follows, since it
shows clearly the behavior of the buffer, alternating between write and read operations.

def Empty(b) = b7{ write(u) = Fulll[b,u] }
and Full(b,u) = b?{ read(r) = r!vall[u] | Empty[b] }
in inaction

This style of programming is state-dependent, that is, for each object we specify its different
interfaces according to the availability of services. The example presented can easily be scaled up
to an n-place finite buffer by introducing a third state, where the buffer is neither empty nor full.
Objects usually have a finite (and small) number of such states, thus it is not difficult to program
in this style. The referred type systems reject the example above, since name b do not have a
single interface containing both labels write and read. An alternative typable implementation,
uses the busy-waiting technique to handle non-available operations.

def Buf (b,v,empty)
b?{ read(r)

if empty then b!read[r] | Buf[b,v,truel
else r![v] | Buf[b,v,truel,

if empty then Buf [b,u,false]

else b'write[u] | Buf[b,v,false] }

write(u)
in inaction

In the second implementation, a process containing the redex Buf[b, v, true] | blread[r] is not an
error, and the presence of a message of the form blwrite[u] makes possible the acceptance of the read
message. Similarly, in the first implementation a process containing the redex Empty[b] | blread|r]
should not be considered an error, as again, the presence of a message like blwrite[u] also makes
the reception of the read message possible. Nonetheless, notice that a process locally deadlocked
in name b, like new b Empty[b] | blread[r] is an error. In conclusion, the objects behave similarly,
but the first implementation is more informative and more natural regarding the buffer’s behavior.

Other interesting examples are an Automatic Teller Machine and a Pop3 Server. They show
how to scale-up the previous example. The first is a typical non-uniform object, as the services
provided depend on various synchronization constraints: the status of the machine (online or off-
line), the type of user’s card, the kind of service the user requests, etc. We present them below in
some detail, both with uniform and non-uniform code.



ExampLE 2.1 (ATM)

Consider an implementation of an ATM with two parameters, its address and the bank’s address. A
request for a session with the ATM creates a new thread which establishes a private communication
in b, offering recurrently a collection of methods: deposit, withdraw, and balance. Several users
can concurrently use the ATM.

1. Uniform implementation. After each request of a method the user has a new private address
to communicate with, since the same name cannot have several interfaces. An alternative is
to have a single interface with all methods, whether they are enabled or not. Moreover, reply
messages to the user have always the same aspect, to ensure well-typedness.

def Atm(a,b) = aPreq(x) = new s x!rep[s] | Atm[a,b] | Action[s,b]

and Action(s,b) =

s7{ deposit(x) = new z x!rep[z] | Depl[z,s,b] ,
withdraw(x) = new z x!rep[z] | Get[z,s,b] ,
balance(x) = new z x!rep[z] | Statelz,s,b] ,
quit(x) = x!bye }

and Dep(z,s,b) =
z7{ amount(u,x) = new v bl!dep[u,v] |
v?{ done = x'ok[0] | Action[s,b]
prob = x!sorry | Action[s,b] } ,
reset (x) = x!ok[0] | Action[s,b] }

-

and Get(z,s,b) =
z?7{ five(x)

new v bl!get[5,v] |

v?{ done = x'ok[5] | Action[s,b] ,
prob = x!sorry | Action[s,b] } ,

ten(x) = new v blget[10,v] |

v?{ done = x'!'0ok[10] | Action[s,b] ,
prob = x!sorry | Action[s,b] } ,

new v blget[20,v] |

v?{ done = x'0k[20] | Action[s,b] ,
prob = x!sorry | Action[s,b] } ,

new v b'!dep[u,v] |

v?{ done = x'ok[u] | Action[s,b] ,
prob = x!sorry | Action[s,b] } ,

reset (x) = x'ok[0] | Action[s,b] }

twenty (x)

amount (u,x)

and State(z,s,b) =
z?val(x) = new v bl!vall[v] |
v?{ done(u) = x'ok[u]l | Action[s,b] ,
prob = x!sorry | Action[s,b] }

in ...

2. Non-uniform implementation. One private address for communication with the user suffices.
It is the address of the object that offer the ATM’s services, and the interfaces are state
dependent. Note that the reply messages do not always have the same aspect, and the code
of some of the private object’s states is simpler.

def Atm(a,b) = a%req(x) = new s x!'rep[s] | Atm[a,b] | Action[s,b,x]



and Action(s,b,x) =
s?7{ deposit = Depl[s,b,x] ,
withdraw = Get[s,b,x] ,
balance = Statels,b,x] ,
quit x!bye }

and Dep(s,b,x) =
s?{ amount (u)

new v b!dep[u,v] |
v?{ done = x'ok | Action[s,b,x] ,

prob = x!sorry | Action[s,b,x] } ,
reset (x) = x'ok | Action[s,b] }

and Get(s,b,x) =
s?7{ five = new v blget[5,v] |
v?{ done = x'ok[5] | Action[s,b,x] ,
prob = x!sorry | Action[s,b,x] } ,
ten = new v b!get[10,v] |
v?{ done = x'ok[10] | Action[s,b,x] ,
prob = x!sorry | Action[s,b,x] } ,
twenty = new v bl!get[20,v] |
v7?{ done = x'0k[20] | Action[s,b,x] ,
prob = x!sorry | Action[s,b,x] } ,

amount (u) = new v b!dep[u,v] |
v?{ done = x'ok[u] | Action[s,b,x] ,
prob = x!sorry | Action[s,b,x] } ,
reset(x) = x'ok | Action[s,b,x] }

and State(s,b,x) = new v b!vall[v] |
v?{ done(u) = x'ok[u] | Action[s,b,x] ,
prob = x!sorry | Action[s,b,x] }

in ...

EXAMPLE 2.2 (POP3 SERVER)
A rendez-vous with a Pop3 server triggers a new thread b for private communication with the
client. The session starts after the client have passed the authorization protocol: first sends its
username, then a valid password.

1. Uniform implementation. Fach step of the protocol creates a new private name to commu-
nicate with the client, as the interfaces are always different.

def Init(pid) = new nis Pop3d[pid]
and Pop3d(pid) = pid?rv(r) = new b r!ok[b] | Auth[b,r] | Pop3d[pid]
and Auth(b,r) =

b?{ user(uid) = new s r'ok[s] | Authl[s,r,uid] ,
quit(r) Updatel[b,r] }

and Authi(b,r,uid) =
b?{ user(newuid) new s r'ok[s] | Authl[s,r,newuid] ,
pass (pas) = new w nis![w] |
w?70k(t) = new s t!chkusr[uid,pas,s] |
s?7{ invalid = r!sorry,



valid = Trans[b,r] } ,
quit(r) = Update[b,r] }

and Trans(b,r) =
b? { stat = r'!'done | Trans[b,r] ,
list(k) = r'done | Trans[b,r] ,
retr(k) = r'done | Trans[b,r] ,
|
|

rset = r'!'done | Trans[b,r] ,
del(k) = r!done | Trams[b,r] ,
noop = r'done | Trans[b,r] ,
quit = Update[b,r] }
and Update(b,r) = -- update state after transactions
r'bye

in ...

2. Non-uniform implementation. There is a single thread for private communication with the
client, although the interfaces of each state are different.

def Init(pid) = new nis Pop3d[pid]

and Pop3d(pid) = pid?rv(r) = new b r'!ok[b] | Auth[b,r] | Pop3d[pid]

and Auth(b,r) b?{ user(uid)

quit(r)

Authi[b,r,uid] ,
Updatel[b,r] }

and Authil(b,r,uid) =
b?{ user(newuid)

Authi[b,r,newuid] ,

pass (pas) = new w nis![w] |
w?0k(t) = new s t!chkusr[uid,pas,s] |
s?{ invalid = r!sorry,
valid = Trans[b,r] } ,
quit(r) = Update[b,r] }

and Trans(b,r) =
b? { stat = r'!'done | Trans[b,r] ,
list(k) = r'done | Trans[b,r] ,
retr(k) = r'done | Trans[b,r] ,
|
|

rset = r'!'done | Trans[b,r] ,
del(k) = r!done | Trams[b,r] ,
noop = r'!'done | Trans[b,r] ,
quit = Update[b,r] }

and Update(b,r) = r!bye

in ...



3 Typed Concurrent Objects

Syntax. In the sequel we describe the syntactic categories required in the definition of the TyCO
calculus. Names are locations where communication occurs and are the only basic type of the
calculus. Variables stand for names in a given context. They are introduced syntactically in
template definitions, method parameters and creation of new names. They are bound to names
when a reduction occurs or when a new name is created. Labels identify methods in objects and are
not first class. Template Variables identify process templates and are also not first class entities.

NOTATION 3.1 Let us fix some terminology.

1. Syntactic categories.

a € Name Names
x,y € Var Variables
u,v € VarU Name Values

[ € Label Labels

X € TVar Template variables

2. A method collection is a map that associates a label and a set of variables with a process—the
body of the method. Similarly, template definition is a map associating a template variable
and a set of variables with a process—the body of the definition.

M € Meth = Label x Var* — Proc Methods
D € DBind = TVar x Var* — Proc Template Bindings

Let v stand for a sequence of names, and Z stand for a sequence of pairwise distinct names. Let
{0} stand for the set of names in the sequence .

DEFINITION 3.2 (PROCESSES) The following grammar defines the set of TyCO processes Proc,
ranged over by P.

P ::= inaction terminated process
| all[?] asynchronous message
| a?{l;(&1)= P1,...,1n(En)= Py} object
| newz P variable declaration
| P|P parallel composition
| X[7] instance
| def Din P Tecursion
| (P) grouping

M == {l,(Z)=P,..., L(E,)= Pn} method collection

D == Xy(#) =P and...and X,(Z,) = P, template declaration

NOTATION 3.3 We assume some syntactic conventions for processes in TyCO, namely:

e The labels I; are pairwise distinct in a method collection {l; (%)

e The template variables X; in a template definition X1(Z;) = P, and...and X,,(Z,) = P,

are pairwise distinct.

=P,...



Binding Operators. Parenthesis and new constitute the binding operators for variables. Vari-
ables Z are bound in the part P of a method [(Z) = P, a definition X (Z) = P or a scope restriction
new Z P. We define accordingly the set of free variables of a process P, denoted fv(P), the set of
bound variables and the substitution of variables by constants, denoted {#/Z}P. A process P is
closed for variables if fv(P) = (.

Also, def is the binding operator for template variables, the template variable X being bound
to @ in def X (&) = P in Q. Accordingly, we define the set of free template variables of a process P,
denoted ft(P), and the set of bound template-variables. A process P is closed for template-variables
if ft(P) = 0.

Dynamic Semantics. TyCO’s semantics specifies a set of rules that formally describe how
processes reduce. Following Milner [12] we divide the semantics of the calculus in two parts: the
structural congruence rules and the reduction rules.

Structural congruence rules allow the re-writing of processes into semantically equivalent ex-
pressions until they may be reduced using reduction rules.

DEFINITION 3.4 (STRUCTURAL CONGRUENCE) We define = to be the smallest congruence rela-
tion over processes generaled by the following rules.

1. P =qQ if P =4 @
2. P |inaction = P, P|Q = Q|P P|(Q|R=P|Q) IR
3. new z inaction inaction,

new z new y P new y new z P,

newz P|Q=newz (P|Q) ifx & fv(Q)

4. def D in inaction inaction,
def Dinnew z P = new z def D in P if © & fv(def D in inaction)
(def DinP)|Q = def Din (P | Q) if ft(def D in inaction) N ft(Q) =0

5 M = M’ if M is a permutation of M',
D =D if D is a permutation of D'

Reduction rules drive the computation consuming redezes (object/message pairs or instances),
replacing them for their contractions. Reduction does not necessarily contract a term. For ex-
ample, a process of the form X[0] expands into the body P of X (&) = P with the parameters &
substituted for the values .

A message all;[0] selects the method [; in an object a?{l; (%)= Pi,..., L, (&,)= P,}; the result
is the process P; where the values of the expressions in o are bound to the variables in Z;. This
form of reduction is called communication.

[COMM] a'll[ﬁ] | a?{h (571) =P,..., ln(in) = Pn} - {ﬁ/i't}Pl

Another form of reduction results when we instantiate, X[0], a template definition X (&) = P.
This results in the process {#/Z}P. This form of reduction is called instantiation.

[INST] def X(Z) =Pand D in X[0] | Q — def X(Z) = Pand D in {0/Z}P | Q

The following rules allow reduction over concurrent composition, introduction of new names and
template definitions:

[ConC] If P—- P then P|Q— P'|Q
[NEW] If P— P’ then newz P — new z P’
[Der]  If P — P' then def D in P — def D in P’
Finally, the usual closure rule allows the rewriting of terms to produce redexes:
[STR] If P =P and P—Q and Q@ = Q' then P' = Q'

Multi-step reduction, or simply reduction, notation P — @, is the relation = U —1, where —71
is the transitive closure of —.



Error processes. A communication error in TYCO is an object/message pair, such that mes-
sage application is not defined. Two different reasons may cause the error: the message requests a
method of the object but with a wrong number of parameters, or the message requests a method
that does not exist in the target object. To deal with non-uniform service availability in concur-
rent objects, a static notion of error is not suitable. We propose a looser notion of process with
a communication error, which is dynamic, such that the situations referred above are no longer
considered as errors if the request may be accepted by the object at some time in the future (after
changing its state). The notion of communication error needs two auxiliary notions:

Context C is the concurrent composition of messages and a constant ‘[]’ (called the hole).

Filling the hole of a context C with a process P results in the process C[P].

Redex a pair object/message sharing the same subject.

If message application is defined then the redex may reduce.

Since an object’s location is not unique—what allows the implementation of distributed objects
by parallel composition—there may be several redexes with the same message. We call bad redex
a pair of a distributed object and a message where none of possible redexes may reduce.

DEFINITION 3.5 (REDEXES)

1. A process of the form a?M |all[0] is an alt-redex (shortly, redex). The object a?M and
the message all[0] participate in the redex. The redex is good if the contractum M e l[D] is
defined; it is bad otherwise.

2. A process of the form W;cr a?M; | all[0] | Q, where I is a finite indexing set and Q # a?M | Q’,
is a distributed alv-redex.

3. A process P has a (bad) (distributed) redex R if P has a subterm R not under a prefix.

Errors are processes able to generate bad redexes that persist throughout a computation. An
occasional bad redex is not enough to make the process an error if further computation can
consume (at least) one of the parties of the bad redex. Thus, messages that may be accepted at
some time in the future do not cause errors: an error is a persistent bad redez.

We motivate the rigorous definition with some examples.

EXAMPLE 3.6 Consider the one-place buffer defined in the introduction.

1. Process Empty[b] | blthink is an error, since the object b does not have the method requested
in any of its states.

2. Processes B %Y Empty[b] | blread[r] and S o Empty[b] | blwrite[u] | blwrite[v] are not errors,
since the bad redexes can disappear (if the environment provides the right messages).

3. Processes new b R and new b S are erroneous, since both processes are locally deadlocked
(the scope of the object’s name is restricted); hence the bad redexes become persistent (cf. [5]).
However, new b R|all[b] is not an error, since the name b can be extruded.

4. Process new a (a?{l= blm})|b?{n} is a deadlock, but not an error, since the bad bm-redex
never appears.

5. Process def X (z,y) = z?{l; = yli| 2?{ls = yll2| X[z,y]} in X]a,a] | ally | ally is not an er-
ror, although there is always a bad redex, but with different messages (alternates between
labels 11 and l3). The bad redex is recurring, but not persistent.

DEFINITION 3.7 A process P is an error, if

dc C[P] — @, and @ has a bad ald-redex, for some a occurring in C only has target of a
message, and in a message that does not participate in nor generate the bad alv-redex, then

Vo C[Q] — R, and R has a bad alt-redex, for some a occurring in C only has target of a
message, and in a message that does not participate in nor generate the bad alv-redex.

Errors are processes with bad ald-redexes that persist throughout reduction. An occasional bad
alv-redex is not enough to make the process an error. So, we give messages a chance to find their
target, and therefore, we say that this calculus have weak fairness in the treatment of messages.



4

The Abstract Machine

In the sequel we present a formal abstract machine specification for TYCO [10]. We start by
introducing some preliminary definitions and the syntactic categories used and then proceed with
the machine definition proper.

4.1

Preliminary Definitions

We first introduce some preliminary definitions.

The sequence 5 denotes the sequence s; ... s, (k > 0) of elements of some syntactic category,
and {5} denotes the set {si,...,s,}. The empty sequence is denoted by e.

Let A, B range over sets, and let A — B denote the set of finite maps (partial functions with
finite domain) from A to B, ranged over by f,g. Finite maps are often written explicitly
in the form {ay : by,...,ar : by} for k > 0. In particular, the empty map is {}. When
G=ay...ar and b=by ... br, we abbreviate the finite map to a : b.

The finite map f modified by g has domain dom(f) U dom(g) and values

(f +9)(a) = if a € dom(g) then g(a) else f(a).

Queues are defined recursively by: Queue(a) := e | «::Queue(a), for elements of
the syntactic category a. The polymorphic function @ : Queue(a) x Queue(a) — Queue(w)
is used to merge queues.

Now we define the syntactic categories required by the abstract machine:

Threads are elements of the set Thread = Queue(Proc), ranged over by T'. In particular the
processes new x P and def D in P are written as, respectively, new z :: P and def D : P.
The scope of the new variables and definitions is assumed to extend as far to the right as
possible.

the Environment of a thread is represented as a map from variables to values, i.e., VBind =
Var — Val and is ranged over by B.

Templates are maps from variables to threads, Templ = Var* — Thread, and are represented
by A or (2)T.

Methods are maps from labels to templates, Meth = Label — Templ.

Template Definitions are represented as a map from template variables to pairs composed
of a set of variable bindings and a template, i.e., TBind = TVar — VBind x Templ, and are
ranged over by K.

Messages carry a label and values and are kept in queues of QMsg = Queue(Label x Name*),
ranged over by ms.

Objects carry a method table reference and free variable bindings, and are kept in queues
QMeth = Queue(VBind x Meth), ranged over by Ms.

Channels are the elements of the set QBind = Name — QMsg x QMeth, ranged over by Q.

the Run-Queue is an element of the set RunQueue = Queue(VBind x Thread) ranged over
by R. This is where threads and their environments are kept, waiting for execution.

finally, a machine State, designated S, is a tuple in the set State = TBind x VBind x QBind x
Thread x RunQueue.



4.2 Reduction

The TyCO program, which is the initial thread fed to the abstract machine, must obey to the
following restrictions: 1) the initial thread is closed for template and value variables; 2) all bound
variables in the initial thread are distinct, and; 3) the initial thread is well typed. These conditions
can all be verified statically.

The abstract machine starts computing with an empty run-queue, empty environments in K
and B and no queues in ). Thus the initial state is:

Q)awa@:Ta b

where T is the initial thread. The machine halts when no rule can be applied, that is when a state
of the form below is reached.

_7_7_7.7.

Rules transform states into states. In the sequel, comments accompanying rules indicate conditions
that must be met for the reductions to be successful. These are mostly ensured by the assumptions
we make about the initial thread.

The SCHED rule detects the end of the current thread and starts executing the next one in the
run-queue.

K, ,Q,e, (B, T):R— K,B,Q,T,R (SCHED)
The INACT rule just skips any inaction process in the current thread.
K,B,Q,inaction:: TR — K,B,Q,T,R (INACT)

The Scop rule introduces a new local variable within a thread. For a thread new z :: T, the
rule adds a binding from variable z to a fresh name a, and creates a new empty queue for a in Q.
Execution continues with thread 7T'.

a ¢ dom(Q)
K,B,Q,newz::T,R— K,B+{z:a},Q+{a:e},T\R

(Scop)

Comment. By the variable renaming assumption z ¢ dom(B).

The DEF rule introduces new template threads bound to template variables. Given a thread
def D :: T, for each definition X (%) = 7" in D, the rule adds a bind X : (B, ()T"). Execution
continues with thread 7.

K,B,Q,def D::T.R— K+ {X : (B,(®)T") | X(z)=T"€ D},B,Q,T,R (DEF)

Comment. By the variable renaming assumption dom(K) N dom(D) = {).

The INST rule instantiates a new thread from a template definition. Given a process X|[7]
where the template X is defined as X (%) = T', this rule creates a new entry in the run-queue
with the thread 7" and the variable bindings B’ + {Z: B(#)}. Notice that B’ are the free variable
bindings saved at the time the definition of X was found.

K(X)= (B @®T")

K,B,Q,X[0]:T,R — K,B,Q,T,R=(B + {#: B@)},T") (INsT)

Comment. Since programs are closed for template-variables, X € dom(K). Similarly, for value
variables, {0} C dom(B).

Object selection We define a function ¢, : Labelx QMethx QMeth — (VBind xMeth) x QMeth,
such that ¢,(l, Ms, ) finds the first object closure (B, M) such that [ € dom(M).
bo (la o, —) = 1
B, M), Ms' & M. if I € dom(M
00 (L, (B, M) s Ms, M) (B, M), M5 & Ms) i€ dom(}M)
¢o(l, Ms, Ms':: (B, M)) otherwise
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Message selection We define a function ¢, : Meth x QMsgx QMsg — (Label x Name*) x QMsg,
such that ¢y, (M, ms, ) finds the first communication /[#] such that I € dom(M).

Om(M,e,) = L

(I[7], ms" & ms) if I € dom(M)
Gm (M, ms, ms ::1[0]) otherwise

Gm (M, 1[0]::ms, ms') = {

The RED rules are responsible for contraction of redexes. The REDMsG (REDOBJ) rule takes
a message (an object) from the current thread, a matching object (message) from the appropriate
object (message) queue, and place the body of the invoked method plus the variable bindings in
the run-queue for later execution. In both cases execution continues with the current thread.

B(z) =a Q(a) = (ms, Ms) oo(l, Ms,e) = ((B', M), Ms') M(l) = @&T'
K,B,Q,z!l[0):T,R — K,B,Q + {a: (ms, Ms")},T,R::(B'+ {z : B(0)},T")
(REDMSsG)
B(z)=a Q(a) = (ms, Ms) Om (M, ms,e) = (1[0], ms') M(l) = @&T'
K,B,Q,z?M:T,R — K,B,Q+ {a: (ms,Ms)},T,R::(B+ {z:0},T")
(REDOBJ)

Comment. Since threads are closed, z € dom(B); Since programs are well typed, [ € dom(M), and
length(z) =length(9); Since threads are closed and well-typed, a € dom(@Q), so that the binding
must have been placed by the Scop-rule.

The QUEUE rules are responsible for the queuing of messages and objects. They are used when-
ever immediate reduction of messages, objects or class instances is not possible. The QUEUEMSG
(QUEUEOBJ) rule takes a message (an object) and place it in the appropriate message (object)
queue. Reduction will occur when a matching object (message) is later scheduled for execution.
Execution of the current thread continues.

Ba)=a Q@) =(ms,Ms)  gull,Ms,e) =L
K,B,Q,zl[0]:T,R — K,B,Q + {a: (ms:1[B(0)],Ms)},T,R

(QUEUEMSG)
Bo)=a Q)= (ms,Ms)  du(ms M,e) =L
K,B,Q,z?M::T,R— K,B,Q + {a: (ms,Ms::(B,M))},T,R

(QUEUEOBJ)

Comment. Since threads are closed, z € dom(B); Also a € dom(Q)) since threads are closed and
well-typed and so the binding must have been placed by the Scop-rule.

The abstract machine just presented grows from Turner’s abstract machine for Pict [17], but
modifies it in the following major ways:

1. objects are first class entities and substitute input processes. They are more efficient than
Pict’s [20] both in reduction and heap usage;

2. we use recursion instead of replication for persistence. This allows a cleaner design of the
abstract machine—no need for distinct ? and 7* rules—and allows a more rational heap
usage;

3. we introduce a new syntactic category — the Thread — that represents the basic schedulable
and runnable block in the abstract machine. Threads are identified as bodies of template
definitions or method implementations;

4. threads cannot be suspended. With this property, our objects are very akin to actors and
provide a good model for object oriented concurrent languages [2, 3]. This choice, along
with the previous item, also simplifies the treatment of local bindings, introduced with new
statements, and the management of environments.
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5 Comparison with Uniform TyCO

We have seen that from the programming point of view the use of non-uniform types, as opposed to
the uniform record types, for representing objects allows a more intuitive and expressive definition
of objects and in general object-based data structures. This is a result of the far richer behaviors
allowed by the non-uniform type system.

From an implementation point of view also, there are several advantages in using non-uniform
types. The discussion that follows steams from our experience in the implementation of TYCO
with uniform record types [11].

Comparison with Uniform TyCO. We observe that the abstract machine presented in the
previous section is exactly that of uniform TyYCO but with distinct definitions for the functions
¢, and ¢,,. In uniform TyYCO both functions would be defined simply as:

1 Pm(M,e, )

(

¢o(l:°a—) =1
¢o(l,(B,M)::Ms,_) = ((B, M), Ms) Om (M, 1[0] ::ms, ) = (I[0], ms)

In fact, in the uniform case the abstract machine preserves the invariant that at any moment in
a computation the queue associated to a name is either empty or has only messages or has only
objects. So, in this case, to try to reduce say a message, we just need to find out if the queue
holds objects. Moreover, since record types are uniform we know that any object in the queue will
service the message.

In the non-uniform case the invariant no longer holds. We can guarantee however that there
are no redexes in the queues. In terms of the implementation we need to keep track of the messages
in the queue, or more specifically, their labels. When an object arrives for the queue one must
check whether there is a message in the queue that can be serviced by the object.

A similar situation occurs with objects in a queue. Here we must keep track of the label maps
for the method collections of the objects in the queue. When a message arrives we must match
its label with the maps for the objects to find one that may service the request.

The fact that adapting the abstract machine for uniform TyCO to the non-uniform scheme
takes such a small and localized effort gives us some hope that we may profit from the current
implementation of TYCO, while keeping it efficient and compact.

Nevertheless, an efficient implementation of channels is crucial and this is a matter of com-
promise between a faster implementation that uses more heap space per channel but implements
queue access in a more efficient way and a slower, space conservative implementation that uses
basic sequential search on the queues to find adequate redexes.

Code Size. Programming using non-uniform types can frequently result in much shorter code
both in the source programs as well as in the final byte code or other executable format. This
is due to the fact that with non-uniform types an object’s implementation is typically divided
into several instances each representing distinct aspects of the same object, reflecting the dynamic
changes in the object’s internal state. The objects typically go through a morphing experience
changing their interfaces dynamically. With uniform TYCO programming such objects requires
some extra work and usually involves:

1. using distinct channels for each of the object’s interfaces since the type system does not
allow objects with distinct interfaces at the same channel, and;

2. alternatively, the object may present at all times the same interface, independent of its
internal state. It is up to the programmer then to decide what to do when a method is
invoked and the object is not in a suitable state (e.g., the Buffer example in section 2).
This typically makes the programs cumbersome to read and substantially longer than a
corresponding non-uniform implementation.

Table 1 presents the code size for the examples of Section 2.
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Table 1: Assembler code size of the examples

| Example | Uniform | Non-uniform |

Buffer 51 30
ATM 273 270
POP3 164 156

Heap Usage. Even in cases where the difference in code size is not significant (e.g., the ATM
and POP3 examples in section 2) there are two important advantages in non-uniform types:

1. we use a single channel for all of the object’s dynamic instances. In the uniform case, a
channel must be used for each distinct dynamic instance of an object, despite they are really
different aspects of the same object. Thus we can use substantially less channel space in the
heap in the non-uniform case;

2. since each dynamic aspect of an object typically features a small subset of the object’s total
interface and also of the object’s free variables, the heap frames that we allocate for each of
these objects are smaller than those in the uniform case. Again we can optimize heap usage.

An Example Optimization linear channels [7], namely those of multiplicity 1 can be high-
ly optimized if using non-uniform types. For example, assume you have the following chain of
synchronizations:

new a z![va] | a?l = new b y![ub] | b7k = new c z!l[wc] | c?j = ...

Each successive synchronization is guarded by the previous one. This means that once a, a linear
channel, is used for synchronization it can be discarded and theoretically we could use it again in
the next synchronization instead of allocating a new channel b (and ¢ for that matter):

new a z![va] | a?l = ylua] | a?k = 2l wa] | a?j = ...

However, the uniform type system would prevent such usage since the types for the objects do
not match (labels I, k& and j prevent it). With non-uniform types this optimization poses no
problems whatsoever. We can perform all nested synchronizations with a single channel (here a)
that behaves in a quasi-linear fashion [8]. This optimization should greatly improve performance
mostly by reducing the amount of heap required for an application. Synchronization on a linear
channel is a pervasive operation in most concurrent programs.
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