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Abstract. The study of expressiveness of concurrent processes via session types
opens a connection between linear logic and mobile processes, grounded in the
rigorous logical background of propositions-as-types. One such study includes a
notion of parametric session polymorphism, which connects session typed pro-
cesses with rich higher-order functional computations. This work proposes a
novel and non-trivial application of session parametricity – an encoding of in-
ductive and coinductive session types, justified via the theory of initial algebras
and final co-algebras using a processes-as-morphisms viewpoint. The correctness
of the encoding (i.e. universality) relies crucially on parametricity and the asso-
ciated relational lifting of sessions.
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1 Introduction

The study of expressiveness of the π-calculus by Palamidessi [20,19] opened a new field
of process calculi, linking the areas of distributed computation and distributed algo-
rithms with the π-calculus. Around the same period, session types [13] were introduced
as a typing discipline that is able to ensure communication safety and deadlock-freedom
of communication protocols among two or more parties [14]. In particular, a tight con-
nection between session types and linear logic (a propositons-as-session types corre-
spondence) [6,7] has produced several new developments and logically-motivated tech-
niques [27,32,15] to augment both the theory and practice of session-based message-
passing concurrency. Notably, parametric session polymorphism [5] (in the sense of
Reynolds [24]) has been proposed and a corresponding Abstraction theorem has been
established. Despite its practical significance [22], the expressiveness of parametric ses-
sion polymorphism has been relatively unexplored.

In this paper, we study the expressiveness of parametric session polymorphism in
a logical setting and the induced parametric equivalence on session-typed processes.
More precisely, we study a notion of processes-as-morphisms and session type operators-
as-functors (in the categorical sense) to develop an encoding of inductive and coin-
ductive session types in the style of initial algebras and final coalgebras in System F
[11,1,31,23] but in a process setting, introducing new interesting reasoning techniques
such as a relational lifting of sessions, crucial for the correctness of the encoding of
coinductive session types.

To develop the encoding of inductive and coinductive types (§ 3.3 and § 3.4) we in-
troduce the notion of a functorial action on typed processes (§ 3.2), showing it satisfies
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functoriality up-to parametric equivalence (Theorem 3.3), and enabling us to represent
the necessary morphisms as session-typed processes (Theorems 3.7 and 3.9). Crucially,
to show the universality of our encoding, i.e. the uniqueness clauses of initiality (Theo-
rem 3.8) and finality (Theorem 3.12), we rely on fundamental properties of parametric-
ity applied to a process setting, such as relational liftings of sessions.

Our results are yet another testament to the strength of propositions-as-sessions:
by relying on a rigorous logical background we are able to produce rigorous results
such as universality in a session-typed process setting using elegant logical techniques,
which give rise to novel reasoning techniques in a process setting such as relational
liftings (used in the arguably non-trivial proof of Lemma 3.10). Just as the categorical
view point reveals new approaches to functional programming, this work aims to be a
stepping stone towards a general notion of algebraic programming [2,3] in a concur-
rent setting, exploiting the algebraic structures that naturally arise via propositions-as-
sessions in order to provide new abstraction mechanisms for concurrent programming.
By barely scratching the surface, we can already study a concurrent notion of functor,
initial algebra and final co-algebra. The study of further abstraction techniques such as
natural transformations is the obvious continuation of this work.

Contributions We summarise the key contributions of this work:

– We develop a notion of functorial action of a type operator on session-typed pro-
cesses, satisfying the necessary functor laws;

– We study encodings of inductive session types as initial algebras (§ 3.3) of a given
type operator and, dually, coinductive session types as final coalgebras (§ 3.4).

– Using parametricity, we show our encodings satisfy the necessary initiality (The-
orems 3.7 and 3.8) and finality (Theorems 3.9 and 3.12) properties, and are thus
correct wrt the semantics of inductive and coinductive types.

We conclude with discussion of related work (§ 4). The technical report [30] includes
the omitted definitions and detailed proofs.

2 Polymorphic Session π-Calculus

This section summarises the polymorphic session π-calculus dubbed Polyπ [5], aris-
ing as a process assignment to second-order linear logic [9], its typing system and be-
havioural equivalences.

The calculus is a synchronous π-calculus with binary guarded choice, input-guarded
replication, channel links and prefixes for type input and output.

2.1 Processes and Typing

Definition 2.1 (Process and Type Syntax). Syntax. Given an infinite set Λ of names
x, y, z, u, v, the grammar of processes P,Q,R and session types A,B,C is defined by:

P,Q,R ::= x〈y〉.P | x(y).P | P | Q | (νy)P | [x↔ y] | 0
| x〈A〉.P | x(Y ).P | x.inl;P | x.inr;P | x.case(P,Q) | !x(y).P

A,B ::= 1 | A( B | A⊗B | A&B | A⊕B | !A | ∀X.A | ∃X.A | X
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x〈y〉.P denotes the output of channel y on x with continuation process P ; x(y).P
denotes an input along x, bound to y in P ; P | Q denotes parallel composition; (νy)P
denotes the restriction of name y to the scope of P ; 0 denotes the inactive process;
[x ↔ y] denotes the linking of the two channels x and y (implemented as renaming);
x〈A〉.P and x(Y ).P denote the sending and receiving of a type A along x bound to
Y in P of the receiver process; x.inl;P and x.inr;P denote the emission of a selection
between the left or right branch of a receiver x.case(P,Q) process; !x(y).P denotes
an input-guarded replication, that spawns replicas upon receiving an input along x. We
often abbreviate (νy)x〈y〉.P to x〈y〉.P and omit trailing 0 processes. By convention,
we range over linear channels with x, y, z and shared channels with u, v, w. We write
Px,y to single out that x and y are free in P .

Session types denote the communication behaviour that takes place along a given
channel between communicating processes. Our syntax of session types is that of (in-
tuitionistic) linear logic propositions which are assigned to channels according to their
usages in processes: 1 denotes the type of a channel along which no further behaviour
occurs;A( B denotes a session that waits to receive a channel of typeA and will then
proceed as a session of type B; dually, A ⊗ B denotes a session that sends a channel
of type A and continues as B; A & B denotes a session that offers a choice between
proceeding as behaviours A or B; A ⊕ B denotes a session that internally chooses to
continue as either A or B, signaling appropriately to the communicating partner; !A
denotes a session offering an unbounded (but finite) number of behaviours of type A;
∀X.A denotes a polymorphic session that receives a type B and behaves uniformly as
A{B/X}; dually, ∃X.A denotes an existentially typed session, which emits a type B
and behaves as A{B/X}.

Operational Semantics The operational semantics of our calculus are presented as
a standard labelled transition system (Fig. 1) modulo ≡α congruence, in the style of
the early system for the π-calculus [26]. In the remainder of this work we write ≡ for
the standard π-calculus structural congruence, extended with the clause [x ↔ y] ≡
[y ↔ x]. We write ≡! for structural congruence extended with the so-called sharpened
replication axioms [26].

A transition P α−−→ Q denotes that P may evolve to Q by performing the action
represented by label α. An action α (α) requires a matching α (α) in the environment
to enable progress. Labels of our transition semantics include: the silent internal action
τ , output and bound output actions (x〈y〉 and (νz)x〈z〉); input action x(y); labels for
pertaining to the binary choice actions (x.inl, x.inl, x.inr, and x.inr); and output and
input actions of types (x〈A〉 and x(A)).

Definition 2.2 (Labeled Transition System). The relation labeled transition (P α−→
Q) is defined by the rules in Fig. 1, subject to the side conditions: in rule (res), we
require y 6∈ fn(α); in rule (par), we require bn(α) ∩ fn(R) = ∅; in rule (close), we
require y 6∈ fn(Q). We omit the symmetric versions of rules (par), (com), (lout), (lin),
(close) and closure under α-conversion.

We write ρ1ρ2 for the composition of relations ρ1, ρ2. We write−→ to stand for τ−→≡.
Weak transitions are defined as usual: we write =⇒ for the reflexive, transitive closure
of τ−→. Given α 6= τ , notation α

=⇒ stands for =⇒ α−→=⇒ and τ
=⇒ stands for =⇒.
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(out)

x〈y〉.P x〈y〉−−−→ P

(in)

x(y).P
x(z)−−−→ P{z/y}

(outT)

x〈A〉.P x〈A〉−−−→ P

(inT)

x(Y ).P
x(B)−−−→ P{B/Y }

(lout)

x.inl;P
x.inl−−→ P

(id)

(νx)([x↔ y] | P )
τ−→ P{y/x}

(lin)

x.case(P,Q)
x.inl−−→ P

(rep)

!x(y).P
x(z)−−−→ P{z/y} |!x(y).P

(open)

P
x〈y〉−−−→ Q

(νy)P
(νy)x〈y〉−−−−−→ Q

(close)

P
(νy)x〈y〉−−−−−→ P ′ Q

x(y)−−−→ Q′

P | Q τ−→ (νy)(P ′ | Q′)

(par)

P
α−→ Q

P | R α−→ Q | R

(com)

P
α−→ P ′ Q

α−→ Q′

P | Q τ−→ P ′ | Q′

(res)

P
α−→ Q

(νy)P
α−→ (νy)Q

Fig. 1: π-calculus Labeled Transition System.

Typing System The typing system Ω;Γ ;∆ ` P :: z:A is given in Fig. 2. The
judgement means that process P offers a session of type A along channel z, using
the linear sessions in ∆, (potentially) using the unrestricted or shared sessions in Γ ,
with polymorphic type variables maintained in Ω. We use a well-formedness judgment
Ω ` A type which states that A is well-formed wrt the type variable environment Ω
(i.e. fv(A) ⊆ Ω). The rules are defined up-to structural congruence ≡. We often write
T for the right-hand side typing z:A, · for the empty context and ∆,∆′ for the union of
contexts ∆ and ∆′, only defined when ∆ and ∆′ are disjoint. We write · ` P :: T to
denote that P is closed.

As in [6,7,21,32], the typing discipline enforces that outputs always have as object
a fresh name, in the style of the internal mobility π-calculus [25]. The typing rules of
Fig. 2 can be divided into three classes: right rules (marked with R), which explicate
how a process can offer a session of a given type; left rules (marked with L), which
define how a process can use or interact with a session of a given type; and judgmental
rules which define basic logical principles such as composition of proofs (rule cut) and
identity (rule id). Rule ∀R defines the meaning of (impredicative) universal quantifi-
cation over session types, stating that a session of type ∀X.A inputs a type and then
behaves uniformly as A; dually, to use such a session (rule ∀L), a process must output
a type B which then warrants the use of the session as type A{B/X}. Rule (R types
session input, where a session of type A( B inputs a session of type A which is used
to produce a session of type B; dually, one uses such a session (rule (L) by producing
a fresh session of typeA (that uses a disjoint set of sessions to those of the continuation)
and outputting the fresh session along x, which is then used as a type B.

The typing system ensures strong correctness properties on typed processes. As
shown in [5], typing entails Subject Reduction, Global Progress, and Termination.
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(id)

Ω;Γ ;x:A ` [x↔ z] :: z:A

(cut)

Ω;Γ ;∆1 ` P :: x:A Ω;Γ ;∆2, x:A ` Q :: z:C

Ω;Γ ;∆1,∆2 ` (νx)(P | Q) :: z:C

((L)

Ω;Γ ;∆1 ` P :: y:A Ω;Γ ;∆2, x:B ` Q :: z:C

Ω;Γ ;∆1,∆2, x:A( B ` (νy)x〈y〉.(P | Q) :: z:C

(∀R)
Ω,X;Γ ;∆ ` P :: z:A

Ω;Γ ;∆ ` z(X).P :: z:∀X.A

(∀L)
Ω ` B Ω;Γ ;∆,x:A{B/X} ` P :: z:C

Ω;Γ ;∆,x:∀X.A ` x〈B〉.P :: z:C

(∃R)
Ω ` B Ω;Γ ;∆ ` P :: z:A{B/X}

Ω;Γ ;∆ ` z〈B〉.P :: z:∃X.A

(∃L)
Ω,X;Γ ;∆,x:A ` P :: z:C

Ω;Γ ;∆,x:∃X.A ` x(X).P :: z:C

((R)

Ω;Γ ;∆,x:A ` P :: z:B

Ω;Γ ;∆ ` z(x).P :: z:A( B

Fig. 2: Type System (Selected Rules)

2.2 Observational Equivalences

We briefly summarise the typed congruence and logical equivalence with polymor-
phism, giving rise to a suitable notion of relational parametricity in the sense of Reynolds
[24], defined as a contextual logical relation on typed processes [5]. The logical rela-
tion is reminiscent of a typed bisimulation. However, extra care is needed to ensure
well-foundedness due to impredicative type instantiation. As a consequence, the logical
relation allows us to reason about process equivalences where type variables are not
necessarily instantiated with the same, but rather related types.

Typed Barbed Congruence (∼=) We use the typed contextual congruence from [5],
which preserves observable actions, called barbs. Formally, barbed congruence, noted
∼=, is the largest equivalence on well-typed processes that is τ -closed, barb preserving,
and contextually closed under typed contexts; see [5] for the full definition.

Logical Equivalence The definition of logical equivalence is no more than a typed
contextual bisimulation with the following reading: given two open processes P and
Q (i.e. processes with non-empty left-hand side typings), we define their equivalence
by inductively closing out the context, composing with equivalent processes offering
appropriately typed sessions; when processes are closed, we have a single distinguished
session channel along which we can perform observations, and proceed inductively on
the structure of the specified session type. We can then show that such an equivalence
satisfies the necessary fundamental properties (Theorem 2.4).

Formally, the logical relation is defined using the candidates technique of Girard
[8,10]. In this setting, an equivalence candidate is an equivalence relation on well-
typed processes satisfying basic closure conditions: an equivalence candidate must be
compatible with barbed congruence and closed under forward and backward reduction.
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We write R :: z:A⇔B for such a candidate relation, such that (P,Q) ∈ R :: z:A⇔B
further requires that · ` P :: z:A and · ` Q :: z:B.

To define the logical relation we rely on some auxiliary notation. We write ω : Ω to
denote that a type substitution ω assigns a closed type to the type variables in Ω. Given
two substitutions ω : Ω and ω′ : Ω, we define a candidate assignment η between ω
and ω′ as a mapping of candidate η(X) :: −:ω(X)⇔ω′(X) to the type variables in Ω,
where the particular choice of a distinguished right-hand side channel is delayed (i.e.
instantiated later on). We write η(X)(z) for the instantiation of the (delayed) candidate
with the name z. We write η : ω⇔ω′ to denote that η is a candidate assignment between
ω and ω′; and ω̂(P ) to denote the application of substitution ω to P .

We define a sequent-indexed family of process relations, that is, a set of pairs of
processes (P,Q), written Γ ;∆ ` P ≈L Q :: T [η : ω⇔ω′], satisfying some conditions,
is assigned to sequents of the form Ω;Γ ;∆ ` T , with ω : Ω, ω′ : Ω and η : ω⇔ω′.
Logical equivalence is defined inductively on the size of the typing contexts and then
on the structure of the right-hand side type.

Definition 2.3 (Logical Equivalence). (Base Case) Given a type A and mappings
ω, ω′, η, we define logical equivalence, noted P ≈L Q :: z:A[η : ω⇔ω′], as the small-
est binary relation containing all pairs of processes (P,Q) such that (i) · ` ω̂(P ) ::
z:ω̂(A); (ii) · ` ω̂′(Q) :: z:ω̂′(A); and (iii) satisfies the conditions given below:

P ≈L Q :: z:X[η : ω⇔ω′] iff (P,Q) ∈ η(X)(z)

P ≈L Q :: z:∀X.A[η : ω⇔ω′] iff ∀B1, B2, P
′,R :: −:B1⇔B2. (P

z(B1)−−−−→ P ′) implies

∃Q′.Q
z(B2)
=⇒ Q′, P ′ ≈L Q

′ :: z:A[η[X 7→ R] : ω[X 7→ B1]⇔ω′[X 7→ B2]]

P ≈L Q :: z:∃X.A[η : ω⇔ω′] iff ∃B1, B2,R :: −:B1⇔B2. (P
z〈B1〉−−−−→ P ′) implies

∃Q′.Q
z〈B2〉
=⇒ Q′, P ′ ≈L Q

′ :: z:A[η[X 7→ R] : ω[X 7→ B1]⇔ω′[X 7→ B2]]

(Inductive Case) Let Γ,∆ be non empty. Given Ω;Γ ;∆ ` P :: T and Ω;Γ ;∆ `
Q :: T , the binary relation on processes Γ ;∆ ` P ≈L Q :: T [η : ω⇔ω′] (with
ω, ω′ : Ω and η : ω⇔ω′) is inductively defined as:

Γ ;∆, y : A ` P ≈L Q :: T [η : ω⇔ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω′],
Γ ;∆ ` (νy)(ω̂(P ) | ω̂(R1)) ≈L (νy)(ω̂

′(Q) | ω̂′(R2)) :: T [η : ω⇔ω′]
Γ, u : A;∆ ` P ≈L Q :: T [η : ω⇔ω′] iff ∀R1, R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω′],

Γ ;∆ ` (νu)(ω̂(P ) |!u(y).ω̂(R1)) ≈L (νu)(ω̂
′(Q) |!u(y).ω̂′(R2)) :: T [η : ω⇔ω′]

For the sake of readability we often omit the η : ω⇔ω′ portion of ≈L, which is
henceforth implicitly universally quantified. Thus, we write Ω;Γ ;∆ ` P ≈L Q :: z:A
(or P ≈L Q) iff the two given processes are logically equivalent for all consistent
instantiations of its type variables.

It is instructive to inspect the clauses for type input and output (∀X.A and ∃X.A,
respectively): in the former, the two processes must be able to match inputs of any
pair of related types (i.e. types related by a candidate), such that the continuations are
related at the open type A with the appropriate type variable instantiations, following
Girard [10]. Dually, for type output we require the existence of a pair of output types
and candidate relation such that the continuation processes are related. The power of
this style of logical relation comes from the fact that polymorphic equivalences do not
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require the same type to be instantiated in both processes, but rather that the types are
related (via a suitable equivalence candidate relation).

Theorem 2.4 (Properties of Logical Equivalence [5]).
Parametricity: If Ω;Γ ;∆ ` P :: z:A then, for all ω, ω′ : Ω and η : ω⇔ω′, we

have Γ ;∆ ` ω̂(P ) ≈L ω̂′(P ) :: z:A[η : ω⇔ω′]; Soundness: If Ω;Γ ;∆ ` P ≈L Q ::
z:A then C[P ] ∼= C[Q] :: z:A, for any closing C[−]; Completeness: If Ω;Γ ;∆ ` P ∼=
Q :: z:A then Γ ;∆ ` P ≈L Q :: z:A.

3 F-Algebras in Polymorphic Sessions

This section shows how to interpret diagrams and type operators in Polyπ (§ 3.2), which
are then used to represent inductive (§ 3.3) and coinductive (§ 3.4) session types.

In order to present our encoding of inductive and coinductive sessions through ses-
sion polymorphism (§ 3.3 and § 3.4), we first summarise the standard interpretation of
inductive and coinductive types as algebras of a type operator (§ 3.1). We then show how
to interpret diagrams, type operators (and their associated functorial action) at the level
of the session calculus (§ 3.2), which enables us to carry out our main development.

3.1 Inductive and Coinductive Session Types

The study of polymorphism in the λ-calculus [1,11,23,4] has shown that parametric
polymorphism is expressive enough to encode both inductive and coinductive types in
a very precise sense, via a faithful representation of initial and final (co)algebras [16]
which does not require extending the syntax nor the semantics of the calculus.

The polymorphic session calculus can express fairly intricate communication be-
haviours, including generic protocols through both existential and universal polymor-
phism (i.e. protocols that are parametric in their sub-protocols). The introduction of
recursive behaviours in the logical-based session typing framework has been addressed
through the introduction of explicit inductive and coinductive session types [28,15] and
the corresponding process constructs, preserving the good properties of the framework
such as strong normalisation and absence of deadlocks.

Given the logical foundation of the polymorphic session calculus it is natural to
wonder if polymorphic sessions are powerful enough to represent inductive and coin-
ductive behaviours in a systematic way.

Inductive and Coinductive Types in System F. Exploring an algebraic interpretation
of polymorphism where types are interpreted as functors, it can be shown that given
a type F with a free variable X that occurs only positively (i.e. occurrences of X are
on the left-hand side of an even number of function arrows), the polymorphic type
∀X.((F (X) → X) → X) forms an initial F -algebra [1] (we write F (X) to denote
that X occurs in F ).

An algebra of a type operator F is a pairing of a typeX and a function f : F (X)→
X . For an algebra (X, f) to be initial, it must be the case that for any other algebra
(X ′, f ′) there must exist a unique function h : X → X ′ such that h ◦ f = f ′ ◦
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F (Ti)
F (fold[A](f))- F (A)

Ti

in

?
fold[A](f) - A

f

?

(a)

A
unfold[A](f) - Tf

F (A)

f

?
F (unfold[A](f))- F (Tf )

out

?

(b)

Fig. 3: Diagrams for initial F -algebras and final F -coalgebras

F (h), where F (h) stands for the functorial action of F applied to h. This enables
the representation of inductively defined structures using an algebraic or categorical
justification. For instance, the natural numbers can be seen as the initial F -algebra of
F (X) = 1 + X (where 1 is the unit type and + is the coproduct type), and are thus
already present in System F, in a precise sense, as the type ∀X.((1+X)→ X)→ X
(noting that both 1 and + can also be faithfully encoded in System F). A similar story
can be told for coinductively defined structures, which correspond to final F -coalgebras
and are representable with the polymorphic type ∃X.(X → F (X)) × X , where ×
is the product type. Final coalgebras consist of a pair (X, f) where X is a type and
f : X → F (X) such that for any other coalgebra (X ′, f ′) there exists a unique h :
X ′ → X satisfying f ◦ h = F (h) ◦ f ′. In the remainder of this section we assume the
positivity requirement on F mentioned above. While the complete formal development
of the representation of inductive and coinductive types in System F would lead us to
far astray, we summarise here the key concepts as they apply to the λ-calculus (the
interested reader can refer to [11] for the full categorical details).

To show that the polymorphic type Ti , ∀X.((F (X)→ X)→ X) is an initial F -
algebra, one exhibits a pair of λ-terms, often dubbed fold and in, such that the diagram in
Fig. 3(a) commutes (for anyA, where F (f), where f is a λ-term, denotes the functorial
action of F applied to f ), and, crucially, that fold is unique. When these conditions
hold, we are justified in saying that Ti is a least fixed point of F . Through a fairly
simple calculation, it is easy to see that:

fold , ΛX.λx:F (X)→ X.λt:Ti.t[X](x)

in , λx:F (Ti).ΛX.λy:F (X)→ X.y (F (fold[X](x))(x))

satisfy the necessary equalities. To show uniqueness one appeals to parametricity, which
allows us to prove that any function of the appropriate type is equivalent to fold. This
uniqueness property is often dubbed initiality or universality.

The construction of final F -coalgebras and their justification as greatest fixed points
is dual. Assuming the existence of products in the calculus and taking Tf , ∃X.(X →
F (X))×X , we produce the λ-terms

unfold , ΛX.λf :X → F (X).λx:Tf .packX with (f, x)

out , λt : Tf .let (X, (f, x)) = t inF (unfold[X](f)) (f(x))

such that the diagram in Fig. 3(b) commutes and unfold is unique up to parametricity.
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3.2 Diagrams, Functors and Functorial Action

In order to represent diagrams in our session framework, we have that the nodes are
session types and the arrows are session-typed processes that are able to map a session
of a given type to one of another. However, given that typing assigns session types to
channels and not processes, a session transformer from A to B is parameterised by the
channel that offers the A behaviour and the channel along which B is to be offered.

Thus, with a pair of types x:A and z:B and a process P of type x:A ` P :: z:B, we
can schematically represent the arrow from x:A to z:B as x:A P−→ z:B. Given another
processQ such that z:B ` Q :: y:A, we can represent arrow composition as the diagram
of Fig. 4, denoting that we can transform a session x:A into y:A by either “following
the diagram” along the P and Q arrows or we may compose (i.e. cut) the two arrows
outright to form (νz)(P | Q).

x:A

(νx)(P |Q) ""

P // z:B

Q

��

y:A

Fig. 4

We note that the diagram in Fig. 4 commutes up-to struc-
tural congruence, since composition of P and Q is structurally
equivalent to (νx)(P | Q). This is in contrast with the diagram
in Fig. 5, where we must show that (νz)(P | Q) = [x ↔ y],
for which ≡ is insufficient, but we can use ≈L of § 2.2 as
(νz)(P | Q) ≈L [x ↔ y]. Hence, unless otherwise stated,
we assume that equality in diagrams is ≈L.

Type Operators. Type operators, or functors, can be seen as
transformations on (session) types, in the sense that given some type A and a type oper-
ator X.B you can apply the operator to A to produce the type B{A/X}. For instance,
the type operator X.1 ( (X ⊗ 1) can be applied to some well-formed type A to
produce the session type 1 ( (A⊗ 1).

As is the case in functional generic programming, a key feature of type operators as
functors is that they act as type-directed transformations in a very precise sense: given a
type that has the same “shape” of the type operator, with some instantiation of the type
variable (e.g. for the operatorX.1 ( (X⊗1), the type 1 ( (A⊗1), for someA), the
functorial action of the type operator allows us to automatically transform a program
(in our case, a session) of type 1 ( (A ⊗ 1) into one of, say, type 1 ( (B ⊗ 1) by
simply providing a process that coerces a session of type A into one of type B – the
functorial action takes care of all the additional boilerplate.

x:A

[x↔y] ""

P // z:B

Q

��

y:A

Fig. 5

In a functional setting, the functorial action of a type op-
erator is formalised as a structure preserving map, defined
inductively on the structure of the type operator, such that
mapX.F (X)(λx.M)(N) takes a function λx.M of typeA→ B
and a (to be transformed) term N of type F (A), producing a
term of type F (B). In our session-typed setting, the natural
representation mapX.F (X) must consist of a type directed pro-
cess transformation that given a session F (A) and a way to transform sessions of type
A into sessions of type B produces a session F (B). That is, the map construction acts
as a modular adapter that given a process that transforms protocols of type A to proto-
cols of typeB, can perform the adaptation fromA toB compositionally in any protocol
where A occurs as a sub-protocol.
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Given that our typing judgment is of the form Ω;Γ ;∆ ` P :: z:A, where {z} ∩
dom(∆) ∩ dom(Γ ) = ∅, denoting that P offers a session of type A along channel z
when composed with processes that offer the (linear) session channels specified in ∆
and the (shared) session channels specified in Γ , our session transformers must be pa-
rameterized with the appropriate channel names. To account for the full generality of
positive type operators and their associated covariant and contravariant functorial ac-
tions we define the two map processes, map+z:X.A(Qx,y)(z

′) and map−z:X.A(Qx,y)(z
′).

The former applies to covariant functors, taking a session z′ of type A{B′/X} into
A{B/X} (offered along z) via the transformation process Qx,y (typed as x:B′ ` Q ::
y:B). The latter applies to contravariant functors, taking a session z′ of type A{B/X}
into A{B′/X}.

Definition 3.1 (Functorial Action of a Type Operator). Given a type operator X.A
and process x:B′ ` Qx,y :: y:B, we define its covariant and contravariant functorial
action map+z:X.A(Qx,y)(z

′) and map−z:X.A(Qx,y)(z
′) inductively on the structure of

X.A, where map+ applies to positive operators and map− to negative ones, as follows
(we write map† for either map+ or map− and † to stand for the reverse of †):

map+z:X.Y (Qx,y)(z
′) , [z′ ↔ z] (Y 6= X)

map†z:X.1(Qx,y)(z
′) , [z′ ↔ z]

map+z:X.X(Qx,y)(z
′) , (νy)(Q{z′/x} | [y ↔ z])

map†z:X.A⊗B(Qx,y)(z
′) , z′(a′).z〈a〉.(map†a:X.A(Qx,y)(a

′) | map†z:X.B(Qx,y)(z
′))

map†z:X.A(B(Qx,y)(z
′) , z(a).z′〈a′〉.(map†a:X.A(Qx,y)(a

′) | map†z:X.B(Qx,y)(z
′))

map†z:X.∀Y.A(Qx,y)(z
′) , z(Y ).z′〈Y 〉.map†z:X.A(Qx,y)(z

′)

map†z:X.∃Y.A(Qx,y)(z
′) , z′(Y ).z′〈Y 〉.map†z:X.A(Qx,y)(z

′)

Lemma 3.2. For all type operatorsX.F (X), well-formed typesB,B′ and x:B′ ` Q ::
y:B:

– If X.F (X) is positive and Ω;Γ ;∆ ` P :: w:F (B′) then Ω;Γ ;∆ ` (νw)(P |
map+z:X.F (X)(Qx,y)(w)) :: z:F (B).

– If X.F (X) is negative and Ω;Γ ;∆ ` P :: w:F (B), then Ω;Γ ;∆ ` (νw)(P |
map−z:X.F (X)(Qx,y)(w)) :: z:F (B

′).

Functor Laws. We prove that our development of functors is canonical by showing
that the functor laws are preserved by map. Specifically, map preserves identity and
composition up to ≈L.

Theorem 3.3 (Functor Laws). For any type operator X.A:
Identity: If Ω;Γ ;∆ ` P :: z′ : A{B/X} then

Ω;Γ ;∆ ` (νz′)(P | map†z:X.A([x↔ y])(z′)) ≈L (νz
′)(P | [z′ ↔ z]) :: z:A{B/X}

Associativity: Let Ω;Γ ;x:B1 ` P :: a:B2, Ω;Γ ; a:B2 ` Q :: y:B3 and Ω;Γ ;∆ `
R :: z′:A0. If X.A is positive then:

Ω;Γ ; z′:A{B1/X} ` map+z:X.A((νa)(P | Q)x,y)(z
′) ≈

(νz′′)(map+z′′:X.A(Px,a)(z
′) | map+z:X.A(Qa,y)(z

′′)) :: z:A{B3/X}
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If X.A is negative then

Ω;Γ ; z′:A{B3/X} ` map−z:X.A((νa)(P | Q)x,y)(z
′) ≈

(νz′′)(map−z′′:X.A(Qa,y)(z
′) | map−z:X.A(Px,y)(z

′′)) :: z:A{B1/X}

Henceforth we write map to stand for map+.

3.3 Encoding Inductive Types

x1:F (Ti)
mapx2:X.F ((νu)(fold|!β)))(x1)- x2:F (X)

y1:Ti

α

?
(νu)(fold|!β) - y2:X

β

?

Fig. 6

An inductive type µiX.F (X), where
X.F (X) is a positive type opera-
tor is encoded as JµiX.F (X)K ,
∀X.!(F (X) ( X) ( X . As dis-
cussed in § 3.1, inductive types can
be understood as initial F -algebras.
Let Ti = JµiX.F (X)K. We must
show that the F -algebra (Ti, αx,y),
with x:F (Ti) ` αx,y :: y:Ti, is initial.
Thus, we must show that the diagram of Fig. 6 commutes and that fold is unique (we
write βx2,y2 for a process x2:F (X) ` βx2,y2 :: y2:X and !β for !u(y2).y2(x2).βx2,y2 ).
We define foldy1,y2 and αx,y as follows:

foldy1,y2 , y1〈X〉.y1〈b〉.(!b(w).u〈c〉.[c↔ w] | [y1 ↔ y2])

αx1,y1 , y1(X).y1(u).u〈f〉.f〈b〉(mapb:X.F (foldy1,y2)(x1) | [f ↔ y1])

where X;u:F (X) ( X; y1:Ti ` foldy1,y2 :: y2:X and ·; ·;x1:F (Ti) ` αx1,y1 ::
y1:∀X.!(F (X) ( X) ( X .

To show that Fig. 6 commutes, we prove the observational equivalence stated in
Theorem 3.7, using the three lemmas below.

Lemma 3.4. Let X.A be a positive type operator. If Ω;Γ, u:B;x:B1 ` P :: y:B2 and
Ω;Γ ; · ` Q :: w:B then:

Ω;Γ ; z′:A{B1/X} ` mapz:X.A((νu)(!u(w).Q | P ))(z′) ≈L

(νu)(!u(w).Q | mapz:X.A(P )(z
′)) :: z:A{B2/X}

Lemma 3.5. For any Ω;Γ ; · ` P :: x:A we have that:

Ω;Γ ; · ` (νu)(!b(w).u〈c〉.[c↔ w] | !u(y2).P ) ≈L !b(y2).P :: b:!A

Lemma 3.6. Let Ω;Γ ; · ` U1 ≈L U2 :: x:A and Ω;Γ ; · ` R1 ≈L R2 :: u:!A then: (1)
Ω;Γ ; · `!u(x).U1 ≈L R1 :: u:!A; (2) Ω;Γ ; · `!u(x).U2 ≈L R2 :: u:!A

Theorem 3.7 (Weak Initiality). Let X.F (X) be a positive type operator, then for any
type X and morphism β such that x2:F (X) ` βx2,y2 :: y2:X we have that:

X; ·;x1:F (Ti) ` (νy1)(αx1,y1 | (νu)(foldy1,y2 | !β)) ≈L

(νx2)(mapx2:X.F ((νu)(foldy1,y2 | !β))(x1) | βx2,y2) :: y2:X



12

Initiality. Having shown that the diagram of Fig. 6 commutes, we have that the F -
algebra (Ti, α) is weakly initial in the sense that there exists a morphism (constructable
with fold) from it to any other such F -algebra. We now show that the algebra is indeed
initial. In other words, we show that fold is the only morphism (up-to ≈L) that makes
the diagram of Fig. 6 commute.

Theorem 3.8 (Initiality of Ti). Let X.F be a positive type operator. For any F -
algebra (X,β), we have that for all H such that X;u:F (X) ( X; y1:Ti ` H :: y2:X
the following holds: X;u:F (X) ( X; y1:Ti ` H ≈L foldy1,y2 :: y2:X .

Proof. We only sketch the key elements of the proof. The proof of initiality requires
showing an equivalence at the (open) type variable X . In particular, we must show that
for all pairs of closed types (and respective admissible relations) that may instantiate
X , fold and H are equivalent. By making crucial use of parametricity (i.e. that fold and
H are equivalent to themselves for any such admissible relations) we can construct an
admissible relation that allows us to discharge the main proof obligation.

3.4 Encoding Coinductive Types

We perform a similar development to that of § 3.3 but for coinductive types.

x1:X
(νu)(!β| unfold) - x2:Tf

y1:F (X)

β

?
mapy2:X.F ((νu)(!β| unfold))(y1)- y2:F (Tf )

α

?

Fig. 7

A coinductive type µfX.F (X), where
X.F (X) is a positive type opera-
tor is encoded as: JµfX.F (X)K ,
∃X.!(X ( F (X)) ⊗ X . Coinduc-
tive types are interpreted as final F -
coalgebras. Let Tf = JµfX.F (X)K,
we must show that the F -coalgebra
(Tf , αx,y), with x:Ti ` αx,y ::
y:F (Ti) is final. As before, we show that the diagram of Fig. 7 commutes and that
unfold is unique (we write β for a process x1:X ` βx1,y1 :: y1:F (X) and !β as before).
We define unfoldx1,x2 and αx,y as:

unfoldx1,x2 , x2〈X〉.x2〈c〉.(!c(v).u〈c′〉.[c′ ↔ v] | [x1 ↔ x2])

αx2,y2 , x2(X).x2(u).u〈c〉.c〈c′〉.([x2 ↔ c′] | mapy2:X.F (unfoldx1,x2)(c))

where X;u:X ( F (X);x1:X ` unfoldx1,x2
:: x2:Tf and ·; ·;x2:Tf ` αx2,y2 ::

y2:F (Tf ). We show that diagram above commutes by proving Lemma 3.9.

Theorem 3.9 (Weak Finality). Let X.F (X) be a positive type operator. For any type
X and morphism β such that x1:X ` βx1,y1 :: y1:F (X) we have that: X; ·;x1:X `

(νx2)((νu)(!β | unfoldx1,x2
) | αx2,y2)

≈L (νy1)(βx1,y1 | mapy2:X.F ((νu)(!β | unfold))(y1)) :: y2:F (Tf )

Finality To show the universality of (Tf , αx,y) we establish a dual property to Theo-
rem 3.8, proving that unfold is the unique morphism for which the diagram of Fig. 7
commutes. However, unlike in the development of Theorem 3.8, the existential flavour
of the encoding requires a slightly more intricate formal argument.
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x:A
(νu)(!u(x).P | unfold)- x2:Tf

y:A′

H

?
(ν
u)
(!u

(x
).Q
| un

fol
d)-

Fig. 8

We first establish the following two equiva-
lences: Lemma 3.10 states that using unfold to pro-
duce a session morphism fromA to Tf is equivalent
to first using a coalgebra morphismH fromA toA′

and then using unfold at type A′ to ultimately pro-
duce a session of type Tf . The proof of this lemma
is more challenging than the development of § 3.3
due to the encoding using an existentially quanti-
fied type (i.e., parametricity provides a less general
property). The proof showcases an instance of a particularly powerful style of reasoning
that is not usually available in a process setting. We establish the result by performing
the relational lifting of process H , viewed as a relation between A and A′, which is
the graph relation of H (i.e. (d, d′) ∈ R iff dy ∼= (νx)(d′x | Hx,y)); Lemma 3.11
shows that unfolding the coalgebra morphism α is an identity at type Tf . The proof of
Lemma 3.10 is the most intricate constracting a graph relation between A and A′ with
process H . The corresponding diagram is given in Fig. 8. These two lemmas conclude
the finality result (Theorem 3.12).

Lemma 3.10. LetX.F be a positive type operator. Let x:A ` H :: y:A′ be a morphism
of coalgebras from P :: x:A( F (A) to Q :: x:A′ ( F (A′). The equivalence holds:

x:A ` (νy)(H | (νu)(!u(x).Q | unfoldy,x2{A′/X}))
≈L (νu)(!u(x).P | unfoldx,x2

{A/X}) :: x2:Tf

Proof. Since we must establish an equivalence at an existential type, we need to exhibit
one particular type instantiation of the existential variable (and respective admissible
relation). Noting that reasoning directly from the parametricity of H and unfold does
not enable us to fulfill this proof obligation, we proceed by lifting the morphism H to
the relational level, showing that the two processes are equivalent when we consider
the graph relation of the coalgebra morphism explained above (relating processes that
are observationally equivalent when one of them is composed with H). By appealing to
this lifting via parametricity we conclude using the coalgebraic properties of H .

Lemma 3.11. x:Tf ` (νu)(!u(x).x(y).αy,x | unfoldx,z{Tf/X}) ≈L [x↔ z] :: z:Tf

Theorem 3.12 (Finality of Tf ). Let X.F be a positive type operator, x:A ` Px,y ::
y:F (A) an F -coalgebra and x:A ` Hx,y :: y:Tf be a coalgebra map from P to α:

·; ·;x:A ` Hx,x2 ≈L (νu)(!u(y).y(x).Px,y | unfold{A/X}) :: x2:Tf

Proof. The proof combines the relational lifting of the coalgebra morphismH (Lemma 3.10)
and Lemma 3.11 to discharge the main proof obligation.

Remark 3.13 (Relational Lifting). The development of the encoding of coinductive
types enables us to exhibit the full expressive power of parametric equivalence for typed
processes, allowing us to reason about process equivalences at different types. This is
made explicit in the proof of Lemma 3.10, where we use parametric equivalence to per-
form a relational lifting of a process (i.e. a coalgebra process morphism between A and
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A′): the two given processes are equivalent when the one on the left-hand side instanti-
ates the existential type with A and the one on the right with A′, given that the relation
between the types is precisely the composition with the coalgebra process morphism on
the right-hand side of the equivalence (i.e. the relational lifting of the morphism).

4 Conclusion

This work has explored a processes-as-morphisms approach to demonstrate the expres-
siveness of polymorphic mobile processes, showing an encoding of inductive and coin-
ductive session types, justified via the theory of initial algebras and final co-algebras.
Our work gives a direct account of encodability comparing to the method in [29] which
indirectly proves an identical result using fully abstract encodings from/to linear Sys-
tem F [33]. Our work crucially uses a rigorous proof-theoretic correspondence between
(intuitionistic) linear-logic and session types. The notion of “expressiveness” in our pa-
per differs from the standard (positive and negative) encodability criteria defined by
e.g. Palamidessi [19,20] for the π-calculus. Our hope is that this new algebraic encod-
ability will potentially enable an exploration of algebraic constructs beyond initial and
final co-algebras in a session programming setting. We wish to further study the mean-
ing of functors and natural transformations in a logic-based session-typed setting, both
from a more fundamental viewpoint but also in terms of practical programming pat-
terns. This also relates to Miller’s work on logic programming languages [17,12,18]
where a proof-theoretic foundation based on (intuitionistic) logic gives a uniform, clear
basis for (logic) programming languages.
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