
Ferrite: A Judgmental Embedding of Session
Types in Rust
Ruo Fei Chen !�

Independent Researcher

Stephanie Balzer !

Carnegie Mellon University

Bernardo Toninho ! �

Universidade Nova de Lisboa and NOVA LINCS

Abstract
Session types have proved viable in expressing and verifying the protocols of message-passing systems.
While message passing is a dominant concurrency paradigm in practice, real world software is written
without session types. A limitation of existing session type libraries in mainstream languages is their
restriction to linear session types, precluding application scenarios that demand sharing and thus
aliasing of channel references.

This paper introduces Ferrite, a shallow embedding of session types in Rust that supports both
linear and shared sessions. The formal foundation of Ferrite constitutes the shared session type
calculus SILLS, which Ferrite encodes via a novel judgmental embedding technique. The fulcrum of
the embedding is the notion of a typing judgment that allows reasoning about shared and linear
resources to type a session. Typing rules are then encoded as functions over judgments, with a valid
typing derivation manifesting as a well-typed Rust program. This Rust program generated by Ferrite
serves as a certificate, ensuring that the application will proceed according to the protocol defined
by the session type. The paper details the features and implementation of Ferrite and includes a
case study on implementing Servo’s canvas component in Ferrite.

2012 ACM Subject Classification Theory of computation→ Linear logic; Theory of computation→
Type theory; Software and its engineering→ Domain specific languages; Software and its engineering
→ Concurrent programming languages

Keywords and phrases Session Types, Rust, DSL

Digital Object Identifier 10.4230/LIPIcs.ECOOP.2022.22

Funding Stephanie Balzer : National Science Foundation Award No. CCF-1718267
Bernardo Toninho: FCT/MCTES grant NOVALINCS/BASE UIDB/04516/2020

1 Introduction

Message-passing is a dominant concurrency paradigm, adopted by mainstream languages such
as Erlang, Scala, Go, and Rust, putting the slogan “Do not communicate by sharing memory;
instead, share memory by communicating” [11] into practice. In this setting, messages are
exchanged along channels, which can be shared by several senders and receivers. Type
systems in such languages typically allow channels to be typed, specifying and constraining
the types of messages they may carry (e.g. integers, strings, sums, references, etc.).

An aspect inherent to message-passing concurrency that is not captured in mainstream
type systems, however, is the idea of a protocol. Protocols dictate the sequencing and types
of messages to be exchanged. To express and enforce such protocols, session types [13, 14, 15]
were introduced. Session typing disciplines assign types to channel endpoints according to
their intended usage protocols in terms of sequencing of input/output actions (e.g. “send
an integer and, afterwards, receive a string”) and branching/selection actions (e.g. “receive
either a buy message and process the payment; or a cancellation message and abort the

© R. F. Chen, S. Balzer, and B. Toninho;
licensed under Creative Commons License CC-BY 4.0

36th European Conference on Object-Oriented Programming (ECOOP 2022).
Editors: Karim Ali and Jan Vitek; Article No. 22; pp. 22:1–22:47

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

ar
X

iv
:2

00
9.

13
61

9v
6

 [
cs

.P
L

]
 3

1
M

ay
 2

02
2

mailto:soares.chen@maybevoid.com
https://orcid.org/0000-0001-5796-4386
mailto:balzers@cs.cmu.edu
mailto:btoninho@fct.unl.pt
 https://orcid.org/0000-0002-0746-7514
https://doi.org/10.4230/LIPIcs.ECOOP.2022.22
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Ferrite: A Judgmental Embedding of Session Types in Rust

transaction”), ensuring the action sequence is followed correctly and thus, adherence to the
protocol. Thanks to their correspondence to linear logic [4, 49, 48, 47, 28, 5] session types
enjoy a strong logical foundation and ensure, in addition to protocol adherence (session
fidelity), the existence of a communication partner (progress). Session types have also been
extended with safe sharing [1, 2, 3] to accommodate multi-client scenarios that are rejected
by exclusively linear session types.

Despite these theoretical advances, session types have not (yet) been adopted at scale.
While various session type embeddings exist in mainstream languages such as Java [17, 16],
Scala [43], Haskell [42, 38, 22, 29], OCaml [36, 21], and Rust [23, 27, 6, 7], all of these
embeddings lack support for multi-client scenarios that mandate controlled aliasing in
addition to linearity. This paper introduces Ferrite, a shallow embedding of session types in
Rust. In contrast to prior work, Ferrite supports both linear and shared session types, with
protocol adherence guaranteed statically by the Rust compiler.

Ferrite’s underlying theory is based on the calculus SILLS introduced in [1], which develops
the logical foundation of shared session types. As a matter of fact, Ferrite encodes SILLS
typing derivations as Rust functions, through a technique we dub judgmental embedding.
Through our judgmental embedding, a type-checked Ferrite program yields a Rust program
that corresponds to a SILLS typing derivation and thus the proof of protocol adherence.

In order to faithfully encode SILLS typing in Rust, this paper further makes several
technical contributions to emulate advanced typing features, such as higher-kinded types,
by a skillful combination of traits (type classes) and associated types (type families). For
example, Ferrite supports recursive (session) types in this way, which are limited to recursive
structs of a fixed size in plain Rust. A combination of type-level natural numbers with
ideas from profunctor optics [37] are also used to support named channels and labeled
choices. We adopt the idea of lenses [9] for selecting and updating individual channels
in an arbitrary-length linear context. Similarly, we use prisms for selecting a branch out
of arbitrary-length choices. Whereas session-ocaml [36] has previously explored the use of
n-ary choice through extensible variants in OCaml, we are the first to connect n-ary choice
to prisms and non-native implementation of extensible variants. Remarkably, the Ferrite
codebase remains entirely in the safe fragment of Rust, with no direct use of unsafe features.

Given its support of both linear and shared session types, Ferrite is capable of expressing
any session typed program in Rust. We substantiate this claim by providing an implementation
of Servo’s production canvas component with the communication layer entirely within Ferrite.
We report on our findings, including benchmarks in Section 7.

In summary, this paper makes the following contributions:

design and implementation of Ferrite, an embedded domain-specific language (EDSL) for
writing session-typed programs in Rust;
support of both linear and shared sessions, guaranteed to be observed by type checking;
a novel judgmental embedding of custom typing rules in a host language with the resulting
program carrying the proof of successful type checking;
an encoding of arbitrary-length choice in terms of prisms and extensible variants in Rust;
an empirical evaluation based on a full implementation of Servo’s canvas component in
Ferrite.

Outline. Section 2 gives a brief account of session types and sharing, as found in the
SILLS calculus [1]. Section 3 tours through the key ideas underlying Ferrite, which are refined
in subsequent sections. Section 4 introduces the technical aspects of Ferrite’s type system,
focusing on the judgmental embedding and enforcement of linearity. Section 5 explains how

R. F. Chen, S. Balzer, and B. Toninho 22:3

Table 1 Overview of session types and terms in SILLS together with their operational meaning.
Subscripts L and S denote linear and shared sessions, resp., where m,n ∈ {L,S}.

Session type Process term
current cont current cont Description

cL:⊕ {l:AL} cL:ALh cL.lh ;P P provider sends label lh along cL

case cL of l⇒ Q Qh client receives label lh along cL

cL:N{l:AL} cL:ALh case cL of l⇒ P Ph provider receives label lh along c
cL.lh ;Q Q client sends label lh along cL

cL:Am ⊗BL cL:BL send cL dm;P P provider sends channel dm:Am along cL

ym ← recv cL;Qym Qdm client receives channel dm:Am along cL

cL:Am (BL cL:BL ym ← recv cL;Pym Pdm provider receives channel dm:Am along cL

send cL dm;Q Q client sends channel dm:Am along cL

cL:1 - close cL - provider sends “end” along cL

wait cL;Q Q provider receives “end” along cL

cL:↓S
LAS cS:AS cS ← detach cL;PxS PcS provider sends “detach cS” along cL

xS ← release cL;QxS QcS client receives “detach cS” along cL

cS:↑S
LAL cL:AL cL ← acquire cS;QxL QcL client sends “acquire cL” along cS

xL ← accept cS;PxL PcL provider receives “acquire cL” along cS

cm : Am cm : Am zn ← X ← dm ;Pzn Pzn spawn ("cut") X along zn:Bn with dm:Dm

cm : Am - fwd cm dm - forward to channel dm:Am and terminate

Ferrite addresses Rust’s limited support of recursive data types to allow for arbitrary recursive
and shared session types. Section 6 describes the implementation of n-ary choice using prisms
and extensible variants. Section 7 provides an evaluation of Ferrite via a re-implementation
of the Servo canvas component. Section 8 reports on related and future work.

An anonymized version of Ferrite’s source code with examples is provided as an artifact.
All typing rules and their encoding as well as further materials of interest to an inquisitive
reader are provided in the appendix.

2 Background

This section gives a brief tour of linear and shared session types. The presentation is based
on the intuitionistic session-typed process calculus SILLS [1], which Ferrite builds upon. We
consider the protocol governing the interaction between a queue and its client:

queue A = N{enq : A(queue A, deq : ⊕{none : 1, some : A⊗ queue A}}

Table 1 provides an overview of the types used in the example. Since SILLS is based on a
Curry-Howard correspondence between intuitionistic linear logic and the session-typed π-
calculus [4, 5] it uses linear logic connectives (⊕, N, ⊗, (, 1) as session types. The remaining
connectives concern shared sessions, a feature we remark on shortly. A crucial—and probably
unusual—characteristic of session-typed processes is that a process changes its typing along
with the messages it exchanges. As a result, a process’ typing always reflects the current
protocol state. Table 1 lists state transitions inflicted by a message exchange in the first and
second column and corresponding process terms in the third and fourth column. The fifth
column provides the operational meaning of a type.

Consulting Table 1, we gather that the above polymorphic session type queue A imposes
the following recursive protocol: A client may either send the label enq or deq to the queue,

ECOOP 2022

22:4 Ferrite: A Judgmental Embedding of Session Types in Rust

depending on whether the client wishes to enqueue or dequeue an element of type A, resp.
In the former case, the client sends the element to be enqueued, after which the queue recurs.
In the latter case, the queue indicates to the client whether it is empty (none) or not (some),
and proceeds by either terminating or sending the dequeued element and recurring, resp.

A linear typing discipline is beneficial because it immediately guarantees session fidelity—
even in the presence of perpetual protocol change—by ensuring that a channel connects
exactly two processes. Unfortunately, linearity also rules out various practical programming
scenarios that demand sharing and thus aliasing of channel references. For example, the
above linear session type queue A is limited to a single client. To support safe sharing of
stateful channel references while upholding session fidelity, SILLS extends linear session types
with shared session types (↓S

LAS, ↑S
LAL). These two connectives mediate between shared and

linear sessions by requiring that clients of shared sessions interact in mutual exclusion from
each other. Concretely, a type ↑S

LAL mandates a client to acquire the process offering the
shared session. If the request is successful, the client receives a linear channel to the acquired
process along which it must proceed as detailed by the session type AL. A type ↓S

LAS, on the
other hand, mandates a client to release the linear process, relinquishing ownership of the
linear channel and only being left with a shared channel alias to the now shared process at
type AS.

Using these connectives, we can turn the above linear queue into a shared one, bracketing
enqueue and dequeue operations within acquire-release:

squeue AS = ↑S
LN{enq : AS (↓S

Lsqueue AS, deq : ⊕{none : ↓S
Lsqueue AS, some : AS ⊗ ↓S

Lsqueue AS}}

In contrast to the linear queue, the above version recurs in the none branch and thus keeps
the queue alive to serve the next client. For convenience, SILLS allows the connectives ⊗ and
(to be used to transport both linear and shared channels along a linear carrier channel.

To provide a flavor of session-typed programming in SILLS, we briefly comment on the
below processes empty and elem, which implement the shared queue session type as a
sequence of elem processes, ended by an empty process. A process implementation consists of
its signature (first two lines) and body (after =). The first line indicates the typing of channel
variables used by the process (left of `) and the type of the providing channel variable (right
of `). The second line binds the channel variables. In SILLS, ← generally denotes variable
bindings. We leave it to the reader to convince themselves, consulting Table 1, that the code
in the body of the two processes executes the protocol defined by session type squeue AS.

· ` empty :: q : squeue AS

q ← empty ← · =
q′ ← accept q ;
case q′ of
| enq→ x← recv q′ ;

q ← detach q′ ;
e← empty ; q ← elem ← x, e

| deq→ q′.none ;
q ← detach q′ ;
q ← empty

x : AS, t : squeue AS ` elem :: q : squeue AS

q ← elem ← x, t =
q′ ← accept q ;
case q′ of
| enq→ y ← recv q′ ;

t′ ← acquire t ;
t′.enq ; send t′ y ;
t← release t′ ; q ← detach q′ ;
q ← elem ← x, t

| deq→ q′.some ; send q′ x ;
q ← detach q′ ; fwd q t

Imposing acquire-release not only as a programming methodology but also as a typing
discipline has the advantage of recovering session fidelity for shared sessions. To this
end, shared session types in SILLS must be strictly equi-synchronizing [1, 3], imposing the

R. F. Chen, S. Balzer, and B. Toninho 22:5

invariant that an acquired session is released to the type at which previously acquired. For
example, the shared session type squeue AS is strictly equi-synchronizing whereas the type
invalid = ↑S

LN{left : ↓S
L↑

S
L ⊕ {yes : ↓S

Linvalid, no : 1}, right : ↓S
Linvalid} is not.

It is instructive to review the typing rules for acquire-release:

(T-↑S
LL)
Ψ, xS : ↑S

LAL; ∆, yL : AL ` QyL :: (zL : CL)
Ψ, xS : ↑S

LAL; ∆ ` yL ← acquirexS ;QyL :: (zL : CL)

(T-↑S
LR)

Ψ; · ` PyL :: (yL : AL)
Ψ ` yL ← acceptxS ;PyL :: (xS : ↑S

LAL)

(T-↓S
LL)

Ψ, xS : AS; ∆ ` QxS :: (zL : CL)
Ψ; ∆, yL : ↓S

LAS ` xS ← release yL ;QxS :: (zL : CL)

(T-↓S
LR)

Ψ ` PxS :: (xS : AS)
Ψ; · ` xS ← detach yL ;PxS :: (yL : ↓S

LAS)

Due to its foundation in intuitionistic linear logic, SILLS’ typing rules are phrased using a
sequent calculus, leading to left and right rules for each connective. Left rules describe the
interaction from the point of view of the client, right rules from the point of view of the
provider. The typing judgments Ψ; ∆ ` P :: (xL : AL) and Ψ ` P :: (xS : AS) read as "process
P offers a session of type A along channel x using sessions offered along channels in Ψ (and
∆)." The typing contexts Ψ and ∆ provide the typing of shared and linear channels, resp.
Whereas Ψ is a structural context, ∆ is a linear context, forbidding channels to be dropped
(weakened) or duplicated (contracted). In contrast to linear processes, shared processes must
not use any linear channels, a requirement crucial for type safety. The notions of acquire
and release are naturally formulated from the point of view of a client, so these terms appear
in the left rules. The right rules use the terms accept and detach with the meaning that an
accept accepts an acquire and a detach initiates a release. The rules are read bottom-up,
where the premise denotes the next action to be taken after the message exchange.

3 Key Ideas

This section introduces the key ideas underlying Ferrite. Subsequent sections provide further
details.

3.1 SILLR – A stepping stone from SILLS to Ferrite
In Section 2, we reviewed SILLS and its typing judgment. Our goal with Ferrite is to
faithfully and compositionally encode SILLS typing derivations in Rust. However, when
viewed under the lens of a general purpose programming language, most readers will find
SILLS a prohibitively austere formalism, lacking most facilities needed to write realistic
programs (e.g. basic data types, pattern matching, etc.) and provided by a convenient and
usable programming language like Rust. From an ergonomics standpoint alone it would
be unreasonably prohibitive for our embedding to forbid the use of Rust features such as
functions, traits and enumerations, only for the sake of precisely mirroring SILLS. Moreover,
to realize such an embedding we must be able to account for both SILLS’ linear session
discipline (i.e. the linear context ∆) and shared session discipline (i.e. the structural context
Ψ) within Rust’s usage discipline. Since Rust’s typing discipline is essentially affine, its
treatment of variable usage is neither linear nor purely structural, and so both shared and
linear channels must be treated explicitly in the encoding.

ECOOP 2022

22:6 Ferrite: A Judgmental Embedding of Session Types in Rust

Table 2 Overview of SILLR types and terms and their encoding in Ferrite. Note that SILLR uses
τ / AL and τ . AL for shared channel output and input, resp., and ε for termination.

Type Terms (SILLR)
Ferrite SILLR provider client

InternalChoice<Row> ⊕{li : ALi} offer li;K case a {li : Ki}
ExternalChoice<Row> N{li : ALi} offer_choice{li : Ki} choose a li;K
SendChannel<A,B> AL ⊗BL send_channel_from a;K a← receive_channel_from f a;K
ReceiveChannel<A,B> AL (BL a← receive_channel;K send_channel_to f a;K
SendValue<T,A> τ / AL send_value x;K x← receive_value_from a x;K
ReceiveValue<T,A> τ . AL x← receive_value;K send_value_to a x;K
End ε terminate wait a;K
SharedToLinear<A> ↓S

LAS detach_shared_session;Ks release_shared_session a;Kl

LinearToShared<A> ↑S
LAL accept_shared_session;Kl a← acquire_shared_session s;Kl

The two points above naturally lead us to the language SILLR as a formal stepping stone
between SILLS and our embedding, Ferrite. SILLR is, in its essence, a pragmatic extension of
SILLS with Rust (type and term) constructs, allowing us to intersperse Rust code with the
communication primitives of SILLS. In SILLR we use the judgment

Γ; ∆ ` expr :: A,

denoting that expression expr has session type A, using the sessions tracked by Γ and ∆.
This judgment differs from that of SILLS in its context region Γ and term expr , with the
latter permitting arbitrary Rust expressions in addition to SILLS communication primitives.
Whereas SILLS’s structural context Ψ exclusively tracks shared channels, SILLR’s Γ tracks
both shared sessions (subject to weakening and contraction) and plain Rust (affine) variables.
A shared channel type in both SILLR and SILLS is always of the form ↑S

LA, so there is no
confusion among the affine and shared contents of Γ. As we discuss in Section 5.2, the
distinction between a plain Rust variable, which is treated as affine, and a shared channel,
which is treated structurally, is modelled in Ferrite by making shared channels implement
Rust’s Clone trait.

Table 2 provides an overview of SILLR types and terms and their Ferrite encoding. SILLR
types stand in direct correspondence with SILLS types (see Table 1), apart from shared
channel output and input. The SILLS types for sending and receiving shared channels (AS⊗AL

and AS (AL) correspond to SILLR types for sending and receiving values (T / A and T . A,
resp.), which support both Rust values and shared channels. Their typing rules are:
(T/R)

Γ ; ∆ ` K :: A
Γ, x : τ ; ∆ ` send_value x; K :: τ / A

(T/L)
Γ, x : τ ; ∆, a : A ` K :: B

Γ ; ∆, a : τ . A ` x ← receive_value_from a; K :: B

Rule T/R indicates that the value bound to variable x of type τ will be sent, after which
the continuation K will execute, offering type A. Dually, rule T/L states that using such a
provider bound to a will bind x of type τ in continuation K, which must now use the channel
bound to a according to A.

3.2 Judgmental Embedding
Having introduced the SILLR typing judgment and illustrated some of its typing rules, we
can now clarify the idea behind our notion of judgmental embedding, which enables the Rust

R. F. Chen, S. Balzer, and B. Toninho 22:7

Table 3 Judgmental embedding of SILLR in Ferrite.

SILLR Ferrite Description
Γ ; · ` A Session<A> Typing judgment for top-level session (i.e. closed program).
Γ ; ∆ ` A PartialSession<C, A> Typing judgment for partial session.
∆ C: Context Linear context; explicitly encoded.
Γ - Shared / Affine context; delegated to Rust.
A A: Protocol Session type.

compiler to typecheck SILLR programs by encoding typing derivations as Rust programs.
The basic idea underlying this encoding can be schematically described as follows:

Γ ; ∆2 ` cont :: A2

Γ ; ∆1 ` expr ; cont :: A1

fn expr<...>
(cont: PartialSession<C2, A2>)
-> PartialSession<C1, A1>

On the left we show a SILLR typing rule and on the right its encoding in Ferrite. Ferrite
encodes a SILLR typing judgment Γ; ∆ ` expr :: A as a value of Rust type PartialSession<
C, A>, where C encodes the linear context ∆ and A the session type A, standing for any of
the Ferrite types of Table 2. Ferrite then encodes a SILLR typing rule for an expression expr
as a Rust function expr that accepts a PartialSession<C2, A2> and returns a PartialSession
<C1, A1>, where expr stands for any of the SILLR terms of Table 2. The encoding makes
use of continuation passing style (arising from the sequent calculus-based formulation of
SILLR), with the return type being the conclusion of the rule and the argument type being
its premise. Table 3 summarizes the judgmental embedding; Section 4.1 provides further
details. Whereas Ferrite explicitly performs a type-level encoding of the linear context ∆, the
representation of the shared and affine context region Γ is achieved through Rust’s normal
binding structure, with the obligation that shared channels implement Rust’s Clone trait to
permit contraction. To type a closed program, Ferrite defines the type Session<A>, which
stands for a SILLR judgment with an empty linear context.

Adopting a judgmental embedding technique for implementing a DSL delivers the benefits
of proof-carrying code: the PartialSession<C1, A1> returned from a well-typed Ferrite expr is
the typing derivation of the corresponding SILLR term. In case the SILLR term is a SILLS
term, its typing derivation certifies protocol adherence by virtue of the type safety proof of
SILLS [1]. In case the SILLR term includes Rust code, its typing derivation certifies protocol
adherence modulo the possibility of a panic raised by the Rust code.

3.3 Recursive and Shared Session Types in Ferrite

Rust’s support for recursive types is limited to recursive struct definitions of a known size. To
circumvent this restriction and support arbitrary recursive session types, Ferrite introduces
a type-level fixed-point combinator Rec<F> to obtain the fixed point of a type function F.
Since Rust lacks higher-kinded types such as Type → Type, we use defunctionalization [40, 51]
by accepting any Rust type F implementing the trait RecApp with a given associated type
F::Applied, as shown below. Section 5.1 provides further details.

trait RecApp<X> { type Applied; }
struct Rec<F: RecApp<Rec<F>>> { unfold: Box<F::Applied> }

Recursive types are also vital for encoding shared session types. In line with [3], we restrict
shared session types to be recursive, making sure that a shared component is continuously
available. To guarantee type preservation, recursive session types must be strictly equi-
synchronizing [1, 3], requiring an acquired session to be released to the same type at which

ECOOP 2022

22:8 Ferrite: A Judgmental Embedding of Session Types in Rust

it was previously acquired. Ferrite enforces this invariant by defining a specialized trait
SharedRecApp which omits an implementation for End:
trait SharedRecApp<X> { type Applied; } trait SharedProtocol { ... }
struct SharedToLinear<F> { ... } struct SharedChannel<S: SharedProtocol> { ... }
struct LinearToShared<F: SharedRecApp<SharedToLinear<LinearToShared<F>>>> { ... }

Ferrite achieves safe communication for shared sessions by imposing an acquire-release
discipline [1] on shared sessions, establishing a critical section for the linear portion of the
process enclosed within the acquire and release. SharedChannel denotes the shared process
running in the background, and clients with a reference to it can acquire an exclusive linear
channel to communicate with it. As long as the linear channel exists, the shared process
is locked and cannot be acquired by any other client. With the strictly equi-synchronizing
constraint in place, the now linear process must eventually be released (SharedToLinear) back
to the same shared session type at which it was previously acquired, giving turn to another
client waiting to acquire. Section 5.2 provides further details on the encoding.

3.4 N-ary Choice and Linear Context
Ferrite implements n-ary choices and linear typing contexts as extensible sums and products
of session types, resp. Ferrite uses heterogeneous lists [24] to annotate a list of session types
of arbitrary length. The notation HList![A0, A1, ..., AN−1] denotes a heterogeneous list of
N session types, with Ai being the session type at the i-th position of the list. The HList!
macro acts as syntactic sugar for the heterogeneous list, which in its raw form is encoded as
(A0, (A1, (..., (AN−1, ())))). Ferrite uses the Rust tuple constructor (,) for HCons, and unit
() for HNil. The heterogeneous list itself can be directly used to represent an n-ary product.
Using an associated type, the list can moreover be transformed into an n-ary sum.

One disadvantage of using heterogeneous lists is that its elements have to be addressed by
position rather than a programmer-chosen label. To recover labels for accessing list elements,
we use optics [37]. More precisely, Ferrite uses lenses [9] to access a channel in a linear
context and prisms to select a branch of a choice. We further combine the optics abstraction
with de Bruijn levels and implement lenses and prisms using type level natural numbers.
Given an inductive trait definition of natural numbers as zero (Z) and successor (S<N>), a
natural number N implements the lens to access the N-th element in the linear context, and
the prism to access the N-th branch in a choice. Schematically, the lens encoding can be
captured as follows:

Γ ; ∆, ln : B2 ` K :: A2

Γ ; ∆, ln : B1 ` expr ln; K :: A1

fn expr<...>
(l: N, cont: PartialSession<C1, A2>)
-> PartialSession<C2, A1>

where N: ContextLens<C1, B1, B2, Target=C2>

The index N amounts to the type of the variable l that the programmer chooses as a name for
a channel in the linear context. Ferrite handles the mapping, supporting random access to
programmer-named channels. Section 4.2 provides further details, including the support of
higher-order channels. Similarly, prisms allow choice selection in constructs such as offer_case
to be encoded as follows:

Γ; ∆ ` K :: An

Γ; ∆ ` offer_case ln; K :: ⊕{..., ln : An, ...}

fn offer_case<N, Row, C, A>
(l: N, cont: PartialSession<C, A>)
-> PartialSession<C, InternalChoice<Row>>

where N: Prism<Row, Elem=A>, ...

Ferrite maps a choice label to a constant having the singleton value of a natural number
N, which implements the prism to access the N-th branch of a choice. In addition to prisms,
Ferrite implements a version of extensible variants [30] to support polymorphic operations

R. F. Chen, S. Balzer, and B. Toninho 22:9

on arbitrary sums of session types representing choices. Finally, the define_choice! macro
is used as a helper to export type aliases as programmer-friendly identifiers. Details are
reported in Section 6.

4 Ferrite – A Judgmental Embedding of SILLR

Having introduced some of the key concepts to the implementation of Ferrite, we now cover
in detail the implementation of Ferrite’s core constructs, building up the knowledge required
for Section 5 and Section 6. Ferrite, like any other DSL, has to tackle the various technical
challenges encountered when embedding a DSL in a host language. In doing so, we take
inspiration from the range of embedding techniques developed for Haskell and adjust them
to the Rust setting. The lack of higher-kinded types, limited support of recursive types,
and presence of weakening, in particular, make the development far from trivial. A more
conceptual contribution of this work is thus to demonstrate how existing Rust features can
be combined to emulate many of the missing features that are beneficial to DSL embeddings
and how to encode custom typing rules in Rust or any similarly expressive language. The
techniques described in this and subsequent sections also serve as a reference for embedding
other DSLs in a host language like Rust.

4.1 Encoding Typing Rules via Judgmental Embedding
A distinguishing characteristic of Ferrite is its propositions as types approach, yielding a
direct correspondence between SILLR notions and their Ferrite encoding. This correspondence
was introduced in Section 3.2 (see Table 3) and we now discuss it in more detail. To this
end, let’s consider the typing of value input. We remind the reader of Table 2 in Section 3,
which provides a mapping between SILLR and Ferrite session types. Interested readers can
find a corresponding mapping on the term level in Table 5 in the supplement.

Γ, a : τ ; ∆ ` K :: A

Γ ; ∆ ` a ← receive_value; K :: τ . A
(T . R)

The SILLR right rule T . R types the expression a ← receive_value; K as the session type
τ . A and the continuation K as the session type A, where a is now in scope with type
τ . Following the schema hinted in Section 3.2, Ferrite encodes this rule as the function
receive_value, parameterized by a value type T (τ), a linear context C (∆), and an offered
session type A.
fn receive_value<T, C:Context, A:Protocol>(cont:impl FnOnce(T) -> PartialSession<C, A>)

-> PartialSession<C, ReceiveValue<T, A>>

The function yields a value of type PartialSession<C, ReceiveValue<T, A>>, i.e. the con-
clusion of the rule, given an (affine) closure of type T → PartialSession<C, A>, encoding the
premise of the rule. Notably, Ferrite uses plain Rust binding (through function types) to
encode the contents of Γ, as illustrated for the received value above. The use of a closure
reveals the continuation-passing-style of the encoding, where the received value of type T is
passed to the continuation closure. The affine closure implements the FnOnce trait, ensuring
that it can only be called once.

The type PartialSession is a core construct of Ferrite that enables the judgmental
embedding of SILLR. A Rust value of type PartialSession<C, A> represents a Ferrite program
that guarantees linear usage of session type channels in the linear context C and offers the
linear session type A, corresponding to the SILLR typing judgment Γ; ∆ ` expr :: A. The type

ECOOP 2022

22:10 Ferrite: A Judgmental Embedding of Session Types in Rust

parameters C and A are constrained to implement the traits Context and Protocol – two other
Ferrite constructs representing a linear context and linear session type, resp.:
trait Context { ... } trait Protocol { ... }
struct PartialSession<C: Context, A: Protocol> { ... }

For each SILLR session type, Ferrite defines a corresponding Rust struct that implements
the trait Protocol, yielding the listing shown in Table 2. Implementations for ε (End) and
τ . A (ReceiveValue<T, A>) are shown below. When a session type is nested within another
session type, such as in the case of ReceiveValue<T, A>, the constraint to implement Protocol
is propagated to the inner session type, requiring A to also implement Protocol:
struct End { ... } struct ReceiveValue<T, A> { ... }
impl Protocol for End { ... }
impl<A: Protocol> Protocol for ReceiveValue<T, A> { ... }

Thus, while Ferrite delegates the handling of the shared/structural context Γ to Rust,
the encoding of the linear context ∆ is explicit. Being affine, the Rust type system permits
weakening, a structural property rejected by linear logic. Ferrite encodes a linear context as a
heterogeneous (type-level) list [24] of the form HList![A0, A1, ..., AN−1], with all its type
elements Ai implementing Protocol. Internally, the HList macro desugars the type-level list
into a nested tuple (A0, (A1, (..., (AN−1, ())))). The unit type () is used as the empty
list (HNil) and the tuple constructor (,) is used as the HCons constructor. The implementation
for Context is defined inductively as follows:
impl Context for () { ... } impl<A: Protocol, C: Context> Context for (A, C) { ... }

To represent a closed program, i.e. a program without free channel variables, we define a
type alias Session<A> for PartialSession<C, A>, with C restricted to the empty context:
type Session<A> = PartialSession<(), A>;

A complete session type program in Ferrite is thus of type Session<A> and amounts to
the SILLR typing derivation proving that the program adheres to the defined protocol. Below
we show a “hello world”-style program in Ferrite:
let hello_provider = receive_value(|name| {

println!("Hello, {}", name); terminate() });

The Ferrite program hello_provider has an inferred Rust type Session<ReceiveValue<String
, End>>. It offers the type ReceiveValue<String, End> by first receiving a string value using
receive_value, binding it to name in the continuation closure. Upon receiving the name string,
It prints out the name with a "Hello" greeting, and terminates using terminate().

4.2 Manipulating the Linear Context
Context Lenses

The use of a type-level list to encode the linear context has the advantage of allowing contexts
of arbitrary length. However, the list imposes an order on the context’s elements, disallowing
exchange. To allow exchange, we make use of the concept of lenses [9] to define a ContextLens
trait, which is implemented using type-level natural numbers.
#[derive(Copy)] struct Z; #[derive(Copy)] struct S<N>(PhantomData<N>);
trait ContextLens<C: Context, A1: Protocol, A2: Protocol> { type Target: Context; ... }

The ContextLens trait defines the read and update operations on a linear context, such
that given a source context C = HList![..., AN , ...], the source element of interest, AN

R. F. Chen, S. Balzer, and B. Toninho 22:11

at position N , can be updated to the target element B to form the target context Target =
HList![..., B, ...], with the remaining elements unchanged. We use natural numbers to
inductively implement ContextLens at each position in the linear context, such that it satisfies
all constraints of the form:

N: ContextLens<HList![..., AN , ...], AN , B, Target=HList![..., B, ...]>

The implementation of natural numbers as context lenses is done by first considering the
base case, with Z used to access the first element of any non-empty linear context:
impl<A1: Protocol, A2: Protocol, C: Context> ContextLens<(A1, C), A1, A2>

for Z { type Target = (A2, C); ... }
impl<A1: Protocol, A2: Protocol, B: Protocol, C: Context, N: ContextLens<C, A1, A2>>
ContextLens <(B, C), A1, A2> for S<N> { type Target = (B, N::Target); ... }

In the inductive case, for any natural number N implementing the context lens for a context
HList![A0, ..., AN , ...], it’s successor S<Z> implements the context lens for HList![A−1,
A0, ..., AN , ...], with a new element A−1 appended to the head of the linear context.
Using context lenses, we can encode the SILLR left rule T.L shown below, which types sending
an ambient value x to a channel a in the linear context that expects to receive a value.

Γ ; ∆, a : A ` K :: B
Γ, x : τ ; ∆, a : τ . A ` send_value_to a x; K :: B

(T.L)

In Ferrite, T.L is implemented as the function send_value_to, which uses a context lens N to
send a value of type T to the N-th channel in the linear context C1. This requires the N-th
channel to have type ReceiveValue<T,A>. A continuation cont is then given with the linear
context C2, which has the N-th channel updated to type A.
fn send_value_to<N, T, C1: Context, C2: Context, A: Protocol, B: Protocol>

(n: N, x: T, cont: PartialSession<C2, B>) -> PartialSession <C1, B>
where N: ContextLens<C1, ReceiveValue<T, A>, A, Target=C2>

Channel Removal

The above definition of a context lens is suited for updating channel types in a context.
However, we have not addressed how channels can be removed or added to the linear context.
These operations are required to implement session termination and higher-order channel
constructs such as ⊗ and (. To support channel removal, we introduce a special Empty
element to denote the absence of a channel at a given position in the linear context:
struct Empty; trait Slot { ... }
impl Slot for Empty { ... } impl<A: Protocol> Slot for A { ... }

To allow Empty to be present in a linear context, we introduce a new Slot trait and make
both Empty and Protocol implement Slot. The original definition of Context is then updated
to allow types that implement Slot instead of Protocol.

Γ ; ∆ ` K :: A
Γ ; ∆, a : ε ` wait a; K :: A

(T1L)
Γ ; · ` terminate; :: ε

(T1R)

Using Empty, it is straightforward to implement SILLR’s session termination. Rule T1L is
encoded via a context lens that replaces a channel of session type End with the Empty slot. The
function wait shown below does not really remove a slot from a linear context, but merely
replaces the slot with Empty. The use of Empty is necessary, because we want to preserve the
position of channels in a linear context in order for the context lens for a channel to work
across continuations.

ECOOP 2022

22:12 Ferrite: A Judgmental Embedding of Session Types in Rust

fn wait<C1: Context, C2: Context, A: Protocol, N>
(n: N, cont: PartialSession<C2, A>) -> PartialSession<C1, A>

where N: ContextLens<C1, End, Empty, Target=C2>

With Empty introduced, an empty linear context may now contain any number of Empty
slots, such as HList![Empty, Empty]. We introduce a new EmptyContext trait to abstract
over the different forms of empty linear contexts and provide an inductive definition as its
implementation:
trait EmptyContext: Context { ... } impl EmptyContext for () { ... }
impl<C: EmptyContext> EmptyContext for (Empty, C) { ... }

Given the empty list () as the base case, the inductive case (Empty, C) is an empty linear
context, if C is also an empty linear context. Using the definition of an empty context, the
SILLR right rule T1R can then be easily encoded as the function terminate, which works
generically for all contexts that implement EmptyContext as shown below:
fn terminate<C: EmptyContext>() -> PartialSession<C, End>

Channel Addition

The Ferrite function wait removes a channel from the linear context by replacing it with
Empty. Dually, the function receive_channel, adds a new channel to the linear context. The
SILLR rule T(R for channel input is shown below. It binds the received channel of session
type A to the channel variable a and adds it to the linear context ∆ of the continuation.

Γ ; ∆, a : A ` K :: B
Γ ; ∆ ` a ← receive_channel; K :: A(B

(T(R)

To encode T(R, an append operation on contexts is defined via the AppendContext trait:
trait AppendContext<C: Context>: Context { type Appended: Context; ... }
impl<C: Context> AppendContext<C> for () { type Appended = C; ... }
impl<A: Slot, C1: Context, C2: Context, C3: Context> AppendContext<C2>

for (A, C1) where C1: AppendContext<C2, Appended=C3> { type Appended = (A, C3); ... }

The AppendContext trait is parameterized by a linear context C and an associated type
Appended. If a linear context C1 implements the trait AppendContext<C2>, it means that context
C2 can be appended to C1, with C3 = C1::Appended being the result of the append operation. The
implementation of AppendContext is defined inductively, with the empty list () implementing
the base case and the cons cell (A, C) implementing the inductive case.

Using AppendContext, a channel B can be appended to the end of a linear context C, if C
implements AppendContext<HList![B]>. The new linear context after the append operation
is given in the associated type C::Appended. We then observe that the position of channel
B in C::Appended is the same as the length of the original linear context C. In other words,
the context lens for channel B in C::Appended can be generated by obtaining the length of C.
In Ferrite, the length operation is implemented by adding an associated type Length to the
Context trait. The implementation of Context for () and (A, C) is updated correspondingly.
trait Context { type Length; ... } impl Context for () { type Length = Z; ... }
impl<A: Slot, C: Context> Context for (A, C) { type Length = S<C::Length>; ... }

The SILLR right rule T(R is then encoded as follows:
fn receive_channel<A: Protocol, B: Protocol, C1: Context, C2: Context>(

cont: impl FnOnce(C1::Length) -> PartialSession<C2, B>) ->
PartialSession<C1, ReceiveChannel<A, B>> where C1: AppendContext<(A, ()), Appended=C2>

R. F. Chen, S. Balzer, and B. Toninho 22:13

The function receive_channel is parameterized by a linear context C1 implementing
AppendContext to append the session type A to C1. The continuation argument cont is a closure
that is given a context lens C::Length, and returns a PartialSession with C2=C1::Appended as
its linear context. The function returns a PartialSession with linear context C1, offering
session type ReceiveChannel<A, B>.

It is worth noting that in the type signature of receive_channel, the type C1::Length is
not shown to have any ContextLens implementation. However when C1::Length is instantiated
into the concrete types Z, S<Z>, etc in the continuation body, Rust will use the appropriate
implementations of ContextLens so that they can be used to access the appended channel in
the linear context.

The use of receive_channel is illustrated with the hello_client example below:
let hello_client = receive_channel(|a| {

send_value_to(a, "Alice".to_string(), wait(a, terminate())) });

The hello_client program is inferred to have the Rust type Session<ReceiveChannel<
ReceiveValue<String, End>, End>>. It is written to communicate with the hello_provider pro-
gram defined earlier in Section 4.1. The interaction is achieved by having hello_client offering
the session type ReceiveChannel<ReceiveValue<String, End>, End>. In its body, hello_client
uses receive_channel to receive channel a of type ReceiveValue<String, End> from hello_provider
. The continuation closure is given an argument a:Z, denoting the context lens generated by
receive_channel for accessing the received channel in the linear context. The context lens a:Z
is then used for sending a string value, after which we wait for hello_provider to terminate.
We note that the type Z of channel a (i.e. the channel position in the context) is automatically
inferred by Rust and not exposed to the user.

4.3 Communication
At this point we have defined the necessary constructs to build and typecheck both
hello_provider and hello_client, but the two are separate Ferrite programs that are yet
to be linked with each other and executed.

Γ ; ∆1 ` K1 :: A Γ ; ∆2, a : A ` K2 :: B
Γ ; ∆1,∆2 ` a ← cut K1 ; K2 :: B

(T-cut)
Γ ; a : A ` forward a :: A

(T-fwd)

In SILLR , rule T-cut allows two session-typed programs to run in parallel, with the
channel offered by K1 added to the linear context of program K2. Together with the forward
rule T-fwd, we can use cut twice to run both hello_provider and hello_client in parallel,
and have a third program that sends the channel offered by hello_provider to hello_client.
The program hello_main would have the following pseudo code in SILLR :

hello_main : ε = f ← cut hello_client;
a ← cut hello_provider ;
send_channel_to f a;
forward f

To implement cut in Ferrite, we need a way to split a linear context C = ∆1,∆2 into two
sub-contexts C1 = ∆1 and C2 = ∆2 so that they can be passed to the respective continuations.
Moreover, since Ferrite programs use context lenses to access channels, the ordering of
channels inside C1 and C2 must be preserved. We can preserve the ordering by replacing the
corresponding slots with Empty during the splitting. Ferrite defines the SplitContext trait to
implement the splitting as follows:
enum L {} enum R {}
trait SplitContext<C: Context> { type Left: Context; type Right: Context; ... }

ECOOP 2022

22:14 Ferrite: A Judgmental Embedding of Session Types in Rust

We first define two (uninhabited) marker types L and R. We then use type-level lists
consisting of elements L and R to implement the SplitContext trait for a given linear context C.
The SplitContext implementation contains the associated types Left and Right, representing
the contexts C1 and C2 after splitting. As an example, the type HList![L, R, L] would
implement SplitContext<HList![A1, A2, A3]> for any slot A1, A2 and A3, with the associated
type Left being HList![A1, Empty, A3] and Right being HList![Empty, A2, Empty]. We omit
the implementation details of SplitContext for brevity. Using SplitContext, the function cut
can be implemented as follows:
fn cut<XS, C: Context, C1: Context, C2: Context, C3: Context, A: Protocol, B: Protocol>

(cont1: PartialSession<C1, A>,
cont2: impl FnOnce(C2::Length) -> PartialSession<C3, B>) -> PartialSession<C, B>

where XS: SplitContext<C, Left=C1, Right=C2>, C2: AppendContext<HList![A], Appended=C3>

The function cut works by using the heterogeneous list XS that implements SplitContext
to split a linear context C into C1 and C2. To pass on the channel A that is offered by cont1 to
cont2, cut uses a similar technique to receive_channel to append the channel A to the end of
C2, resulting in C3. Using cut, we can write hello_main in Ferrite as follows:
let hello_main: Session<End> =

cut::<HList![]>(hello_client, |f| { cut::<HList![R]>(hello_provider, |a| {
send_channel_to(f, a, forward(f)) }) });

Due to ambiguous instances for SplitContext, the type parameter XS has to be annotated
explicitly for Rust to know in which context a channel should be placed. In the first use of
cut, the context is empty, so we call cut with the empty list HList![]. We pass hello_client
as the first continuation to run in parallel, and name the channel offered by hello_client as
f. In the second use of cut, the linear context would be HList![ReceiveValue<String, End>],
with one channel f. We then have cut move f to the right side using HList![R]. On the left
continuation, we have hello_provider run in parallel, and name the offered channel as a. In
the right continuation, we use send_channel_to to send channel a to f. Finally, we forward
the continuation of f, which now has type End.

Although cut provides the primitive way for Ferrite programs to communicate, its use
can be cumbersome and requires a lot of boilerplate. For simplicity, Ferrite provides a
specialized construct apply_channel that abstracts over the common pattern usage of cut
described earlier. apply_channel takes a client program f offering session type ReceiveChannel
<A, B> and a provider program a offering session type A, and sends a to f using cut. The
use of apply_channel is akin to regular function application, making it more intuitive for
programmers to use:
fn apply_channel<A: Protocol, B: Protocol>(

f: Session<ReceiveChannel<A, B>>, a: Session<A>) -> Session

4.4 Executing Ferrite Programs
To actually execute a Ferrite program, the program must offer some specific session types. In
the simplest case, Ferrite provides the function run_session for running a top-level Ferrite
program offering End, with an empty linear context:
async fn run_session(session: Session<End>) { ... }

Function run_session executes the session asynchronously using Rust’s async/await infra-
structure. Internally, the struct PartialSession<C, A> implements the dynamic semantics of
the Ferrite program, which is only accessible by public functions such as run_session. Ferrite
currently uses the tokio [46] runtime for asynchronous execution, as well as the one shot

R. F. Chen, S. Balzer, and B. Toninho 22:15

channels from tokio::sync::oneshot to implement the low-level communication of Ferrite
channels.

Since run_session accepts an argument of type Session<End>, this means that programmers
must first use cut or apply_channel to fully link partial Ferrite programs with free channel
variables, or Ferrite programs that offer session types other than End before they can be
executed. This restriction ensures that all linear channels created by a Ferrite program
are consumed. For example, the programs hello_provider and hello_client cannot be ex-
ecuted individually, but the linked program resulting from composing hello_provider with
hello_client can be executed:
async fn main() { run_session(apply_channel(hello_client, hello_provider)).await; }

We omit the implementation details of the dynamics of Ferrite, which use low-level
primitives such as Rust channels while carefully ensuring that the requirements and invariants
of session types are satisfied. Interested readers can find more details in Appendix B.

5 Recursive and Shared Session Types

Many real world applications, such as web services and instant messaging, implement protocols
that are recursive in nature. As a result, it is essential for Ferrite to support recursive session
types. In this section, we first report on Rust’s limited support for recursive types and how
Ferrite addresses this limitation. We then discuss how Ferrite encodes shared session types,
which are recursive.

5.1 Recursive Session Types
Consider a simple example of a counter session type, which sends an infinite stream of integer
values, incrementing each by one. To write a Ferrite program that offers such a session type,
we may attempt to define the counter session type as follows:
type Counter = SendValue<u64, Counter>;

If we try to use the type definition above, the compiler will emit the error "cycle detected
when processing Counter". The problem with the above definition is that it is a directly
self-referential type alias, which is not supported in Rust. Rust imposes various restrictions
on the legal forms of recursive types to ensure that the memory layout of data is known at
compile-time.

Type-Level Fixed Points

To address this limitation, we implement type-level fixed points using defunctionalization [40,
51]. This is done by introducing a RecApp trait that is implemented by defunctionalized types
that can be “applied” with a type parameter:
trait RecApp<X> { type Applied; } type AppRec<F, X> = <F as RecApp<X>>::Applied;
struct Rec<F: RecApp<Rec<F>>> { unfold: Box<AppRec<F, Rec<F>>> }

The RecApp trait is parameterized by a type X, which serves as the type argument to
be applied to. This makes it possible for a Rust type F that implements RecApp to act
as if it has the higher-kinded type Type → Type, and be “applied” to type X. We define
a type alias AppRec<F, X> to refer to the associated type Applied resulting from “applying”
F to X via RecApp. Using RecApp, we can now define a type-level recursor Rec as a struct
parameterized by a type F that implements RecApp<Rec<F>>. The body of Rec contains a boxed
value Box<AppRec<F, RecApp<Rec<F>>>> to make it have a fixed size in Rust.

ECOOP 2022

22:16 Ferrite: A Judgmental Embedding of Session Types in Rust

Ferrite implements RecApp for all Protocol types, with the type Z used to denote the
recursion point. With that, the example Counter type would be defined as follows:
type Counter = Rec<SendValue<u64, Z>>;

The type Rec<SendValue<T, Z>> is unfolded into SendValue<T, Rec<SendValue<T, Z>>>. This
is achieved by having the following generic implementations of RecApp for SendValue and Z:
impl<X> RecApp<X> for Z { type Applied = X; }
impl<X, T, A: RecApp<X>> RecApp <X> for SendValue <T, A> {

type Applied = SendValue<T, AppRec<A, X>; }

Inside RecApp, Z simply replaces itself with the type argument X. SendValue<T, A> delegates
the type application of X to A, provided that the session type A also implements RecApp for X.

The session type Counter is iso-recursive, as the rolled type Rec<SendValue<u64, Z>> and
the folded type SendValue<u64, Rec<SendValue<u64, Z>> are considered distinct types in Rust.
As a result, Ferrite provides the constructs fix_session and unfix_session for converting
between the rolled and unfolded versions of a recursive session type.

Nested Recursive Session Types

The use of RecApp is akin to emulating the higher-kinded type (HKT) Type→ Type in Rust.
As of this writing, HKTs are only available in the nightly (unstable) version of Rust through
generic associated types. However even with support for HKTs, our defunctionalization-based
approach via RecApp allows us to generalize to nested recursive types.

To account for a recursive type with multiple recursion points, we introduce a recursion
context R as a type-level list of elements (c.f. the linear context of Section 4.2). The type-level
natural numbers Z, S<Z>, etc. are now used as de Bruijn indices to unfold to the elements
in the recursion context. The type-level fixed point combinator Rec is redefined as RecX,
containing the recursion context:
struct RecX<R, F: RecApp<(RecX<R, F>, R)>> { unfix: Box<AppRec<F, (RecX<R, F>, R)>> }
type Rec<F> = RecX<(), F>;
impl<R, F: RecApp<(RecX<R, F>, R)>> RecApp<R> for RecX<(), F> {

type Applied = RecX<R, F>; }

A recursive session type is defined starting with an empty recursion context. Since nested
recursive session types allow a RecX to be embedded inside another RecX, we have RecX also
implement RecApp, provided it has an empty recursion context. When unfolded from another
recursion context R, RecX simply saves R as its own recursion context and does not unfold
further in F. The inner type F is only unfolded once with the full recursion context after all
surrounding RecX types are unfolded.

The recursive marker Z is modified to unfold to the first element of the recursion context.
We then implement S<N> to unfold to the (N+1)-th position in the recursion context:
impl<A, R> RecApp<(A, R)> for Z { type Applied = A; }
impl<A, R, N: RecApp<R>> RecApp<(A, R)> for S<N> { type Applied = N::Applied; }

5.2 Shared Session Types
In the previous section we explored a recursive session type Counter, which is defined using
Rec and Z. Since Counter is defined as a linear session type, it cannot be shared among
multiple clients. Shared communication, however, is essential to implement many practical
applications. For instance, we may want to implement a simple counter web-service, to send
a unique count for each request. To support such shared communication, we introduce shared
session types in Ferrite, enabling safe shared communication in the presence multiple clients.

R. F. Chen, S. Balzer, and B. Toninho 22:17

Shared Session Types in Ferrite

As introduced in Section 2, the SILLS (and SILLR) notion of shared session types is recursive
in nature, as a shared session type must offer the same linear critical section to all clients
that acquire a shared resource. For instance, a shared version of the Counter type in SILLR is:

SharedCounter = ↑S
LInt / ↓S

LSharedCounter

The linear portion of SharedCounter in between ↑S
L (acquire) and ↓S

L (release) amounts to
a critical section. When a SharedCounter is acquired, it offers a linear session type Int /
↓S

LSharedCounter, willing to send an integer value, after which it must be released to become
available again as a SharedCounter to the next client.

The recursive aspect of shared session types in SILLR means that we can reuse the
implementation technique that we use for recursive session types. The type SharedCounter
can be defined in Ferrite as follows:
type SharedCounter = LinearToShared<SendValue<u64, Release>>;

Compared to linear recursive session types, the main difference is that instead of using
Rec, a shared session type is defined using the LinearToShared construct. This corresponds
to ↑S

L in SILLR , with the inner type SendValue<u64, Release> corresponding to the linear
portion of the shared session type. At the point of recursion, the type Release is used in
place of ↓S

LSharedCounter. As a result, the type LinearToShared<SendValue<u64, Release>> is
unfolded into SendValue<u64, SharedToLinear<LinearToShared<SendValue<u64, Release>>>> after
being acquired. Type unfolding is implemented as follows:
trait SharedRecApp<X> { type Applied; } trait SharedProtocol { ... }
struct SharedToLinear<F> { ... } struct LinearToShared<F> { ... }
impl<F> Protocol for SharedToLinear<LinearToShared<F>>

where F: SharedRecApp<SharedToLinear<LinearToShared<F>>> { ... }
impl<F> SharedProtocol for LinearToShared<F>

where F: SharedRecApp<SharedToLinear<LinearToShared<F>>> { ... }

The struct LinearToShared is parameterized by a linear session type F that implements the
trait SharedRecApp<SharedToLinear<LinearToShared<F>>>. It uses the SharedRecApp trait instead
of the RecApp trait to ensure that the session type is strictly equi-synchronizing [3], requiring
an acquired session to be released to the same type at which it was previously acquired.
Ferrite enforces this requirement by omitting an implementation of SharedRecApp for End,
ruling out invalid shared session types such as LinearToShared<SendValue<u64, End>>. We
note that the type argument to F’s SharedRecApp is another struct SharedToLinear, which
corresponds to ↓S

L in SILLR . A SharedProtocol trait is also defined to identify shared session
types, i.e. LinearToShared.

Once a shared process is started, a shared channel is created to allow multiple clients to
access the shared process through the use of shared channel:
struct SharedChannel<S: SharedProtocol> { ... }
impl<S> Clone for SharedChannel<S> { ... };

The code above shows the definition of the SharedChannel struct. Unlike linear channels,
shared channels follow structural typing, i.e. they can be weakened or contracted. This
means that we can delegate the handling of shared channels to Rust, given that SharedChannel
implements Rust’s Clone trait to allow contraction. Whereas SILLS provides explicit constructs
for sending and receiving shared channels, Ferrite’s shared channels can be sent as regular
Rust values using Send/ReceiveValue.

On the client side, a SharedChannel serves as an endpoint for interacting with a shared
process running in parallel. To start the execution of such a shared process, a corresponding

ECOOP 2022

22:18 Ferrite: A Judgmental Embedding of Session Types in Rust

Ferrite program has to be defined and executed. Similar to PartialSession, we define
SharedSession as shown below to represent such a shared Ferrite program.
struct SharedSession<S: SharedProtocol> { ... }
fn run_shared_session<S: SharedProtocol>(session: SharedSession<S>) -> SharedChannel<S>

Just as PartialSession encodes linear Ferrite programs without executing them, SharedSession
encodes shared Ferrite programs without executing them. Since SharedSession does not
implement the Clone trait, the shared Ferrite program is itself affine and cannot be shared.
To enable sharing, the shared Ferrite program must first be executed with run_shared_session.
The function run_shared_session takes a shared Ferrite program of type SharedSession<S> and
starts it in the background as a shared process. Then, in parallel, the shared channel of
type SharedChannel<S> is returned to the caller, which can then be sent to multiple clients for
access to the shared process.

The details of each shared Ferrite construct are described in Appendix A.2.11. Below
we demonstrate how a program with a shared session can be defined and used by multiple
clients:
type SharedCounter = LinearToShared<SendValue<u64, Release>>;
fn counter_producer(current_count: u64) -> SharedSession<SharedCounter> {

accept_shared_session(async move {
send_value(current_count, detach_shared_session(

counter_producer(current_count + 1))) }) }

fn counter_client(counter: SharedChannel<SharedCounter>) -> Session<End> {
acquire_shared_session(counter, move | chan | {

receive_value_from(chan, move | count | {
println!("received count: {}", count);
release_shared_session(chan, terminate()) }) }) }

The recursive function counter_producer creates a SharedSession program that, when
executed, offers a shared channel of session type SharedCounter. On the provider side, a
shared session is defined using the accept_shared_session construct, with a continuation given
as an async thunk that is executed when a client acquires the shared session and enters
the linear critical section (of type SendValue<u64, SharedToLinear<SharedCounter>>). Inside the
closure, the producer uses send_value to send the current count to the client and then uses
detach_shared_session to exit the linear critical section. The construct detach_shared_session
offers the linear session type SharedToLinear<SharedCounter> and expects a continuation that
offers the shared session type SharedCounter to serve the next client. We generate the
continuation by recursively calling the counter_producer function.

The counter_client function takes a shared channel of session type SharedCounter and
returns a session type program that acquires the shared channel and prints the received
count value to the terminal. A linear Ferrite program can acquire a shared session using
the acquire_shared_session construct, which accepts a SharedChannel object and adds the
acquired linear channel to the linear context. In this case, the continuation closure is given
the context lens Z, which provides access to the linear channel of session type SendValue
<u64, SharedToLinear<SharedCounter>> in the first slot of the linear context. It then uses
receive_value_from to receive the value sent by the shared provider and then prints the value.
On the client side, the linear session of type SharedToLinear<SharedCounter> must be released
using the release_shared_session construct. After releasing the shared session, other clients
will then be able to acquire the shared session.
async fn main () {

let counter1: SharedChannel<SharedCounter> = run_shared_session(counter_producer(0));
let counter2 = counter1.clone();
let child1 = task::spawn(async move { run_session(counter_client(counter1)).await; });

R. F. Chen, S. Balzer, and B. Toninho 22:19

let child2 = task::spawn(async move { run_session(counter_client(counter2)).await; });
join!(child1, child2).await; }

To illustrate a use of SharedCounter, we have a main function that initializes a shared produ-
cer with an initial value of 0 and then runs the shared provider using the run_shared_session
construct. The returned SharedChannel is then cloned, making the shared counter accessible
via aliases counter1 and counter2. It then uses task::spawn to spawn two async tasks that run
counter_client twice. A key observation is that multiple Ferrite programs that are executed
independently can access the same shared producer through a reference to the shared channel.

6 N-ary Choice

Session types support internal and external choice, leaving the choice among several options
to the provider or the client, resp. (see Table 2). When restricted to binary choice, the
implementation is relatively straightforward, as shown below by the two right rules for
internal choice in SILLR . The offer_left and offer_right constructs allow a provider to offer
an internal choice A⊕B by offering either A or B, resp.

Γ ; ∆ ` K :: A
Γ ; ∆ ` offer_left; K :: A⊕B

(T⊕2LR)
Γ ; ∆ ` K :: B

Γ ; ∆ ` offer_right; K :: A⊕B
(T⊕2RR)

It is straightforward to implement the two versions of the right rules by writing the two
respective functions offer_left and offer_right:
fn offer_left<C: Context, A: Protocol, B: Protocol>

(cont: PartialSession<C, A>) -> PartialSession<C, InternalChoice2<A, B>>
fn offer_right < C: Context, A: Protocol, B: Protocol >

(cont: PartialSession<C, B>) -> PartialSession<C, InternalChoice2<A, B>>

However, this approach does not scale if we want to generalize choice beyond two options.
To support N-ary choice, the functions would have to be explicitly reimplemented N times.
Instead, we implement a single offer_case function which allows selection from n-ary branches.

6.1 Prisms
In Section 4.2, we explored heterogeneous list to encode the linear context, i.e. products of
session types of arbitrary lengths. We then implemented context lenses to access and update
individual channels in the linear context. Observing that n-ary choices can be encoded as
sums of session types, we now use prisms to implement the selection of an arbitrary-length
branch. Instead of having a binary choice type InternalChoice2<A, B>, we can define an n-ary
choice type InternalChoice<HList![...]>, with InternalChoice<HList![A, B]> being the special
case of a binary choice. To select a branch out of the heterogeneous list, we define the Prism
trait as follows:
trait Prism<Row> { type Elem; ... }
impl<A, R> Prism<(A, R)> for Z { type Elem = A; ... };
impl<N, A, R> Prism<(A, R)> for S<N> where N: Prism<R> { type Elem = N::Elem; ... }

The Prism trait is parameterized over a row type Row=HList![...], with the associated
type Elem being the element type that has been selected from the list by the prism. We then
inductively implement Prism using type-level natural numbers, with the number N used for
selecting the N-th element of the heterogeneous list. The definition of Prism is similar to
ContextLens, with the main difference being that we only need Prism to support extraction
and injections operations on the sum types that are derived from the heterogeneous list.
Using Prism, a generalized offer_case function is implemented as follows:

ECOOP 2022

22:20 Ferrite: A Judgmental Embedding of Session Types in Rust

fn offer_case<C: Context, A: Protocol, Row, N: Prism<Row, Elem=A>>
(n: N, cont: PartialSession<C, A>) -> PartialSession<C, InternalChoice<Row>>

The function accepts a natural number N as the first parameter, which acts as the prism
for selecting a session type AN out of the row type Row=HList![..., AN, ...]. Through the
associated type A=N::Elem, offer_case forces the programmer to provide a continuation that
offers the chosen session type A.

6.2 Binary Branching
While offer_case is a step in the right direction, it only allows the selection of a specific
choice, but not the provision of all possible choices. The latter, however, is necessary to
encode the SILLR left rule of internal choice and right rule of external choice. To illustrate
the problem, let’s consider the right rule of a binary external choice, TN2R:

Γ ; ∆ ` Kl :: A Γ ; ∆ ` Kr :: B
Γ ; ∆ ` offer_choice_2 Kl Kr :: ANB

(TN2R)

The offer_choice_2 construct has two possible continuations Kl and Kr, with only one of
them being executed, depending on the selection by the client. In a naive implementation,
we can define the construct to accept two continuations as follows:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont_left: PartialSession<C, A>, cont_right: PartialSession<C, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

While the above implementation works in most languages, it is not adequate in Rust.
Since Rust’s type system is affine, variables can only be captured by one of the continuation
closures, but not both. As far as the compiler is aware, both closures can potentially be
called, and we cannot state that one of the branches is guaranteed to never run.

In order for offer_choice_2 to work in Rust’s affine typing, it has to accept only one
continuation closure and have it return either PartialSession<C, A> or PartialSession<C, B>,
depending on the client’s selection. It is not as straightforward to express such behavior as a
valid type in a language like Rust. If Rust supported dependent types, offer_choice_2 could
be implemented along the following lines:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: impl FnOnce(first: bool) ->
if first { PartialSession<C, A> } else { PartialSession<C, B> })

-> PartialSession<C, ExternalChoice2<A, B>>

That is, the return type of the cont closure depends on the whether the value of the first
argument is true or false. However, since Rust does not support dependent types, we emulate
a dependent sum in a non-dependent language, using a CPS transformation:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: impl FnOnce(InjectSum2<C, A, B>) -> ContSum2<C, A, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

The function offer_choice_2 accepts a continuation function cont that is given a value of
type InjectSum2<C, A, B> and returns a value of type ContSum2<C, A, B>. We will now look at
the definitions of ContSum2 and InjectSum2. First, we observe that the different return types
for the two branches can be unified with a type ContSum2:
struct ContSum2<C: Context, A: Protocol, B: Protocol> { ... }
async fn run_cont_sum<C: Context, A: Protocol, B: Protocol>(cont: ContSum2<C, A, B>)

R. F. Chen, S. Balzer, and B. Toninho 22:21

The type ContSum2 contains the necessary data for executing either a PartialSession<C, A>
or a PartialSession<C, B>, together with the runtime data for the linear context C. For brevity,
the implementation details of ContSum2 are omitted, with the private function run_cont_sum
provided as an abstraction for Ferrite to execute the continuation.

We then define InjectSum2 as a sum of boxed closures that would construct a ContSum2
from either a PartialSession<C, A> or a PartialSession<C, B>:
enum InjectSum2<C, A, B> {

InjectLeft(Box<dyn FnOnce(PartialSession<C, A>) -> ContSum2<C, A, B>>),
InjectRight(Box<dyn FnOnce(PartialSession<C, B>) -> ContSum2<C, A, B>>) }

When the cont passed to offer_choice_2 is given a value of type InjectSum2<C, A, B>, it
has to branch on it and match on whether the InjectLeft or InjectRight constructors are
used. Since the return type of cont is ContSum2<C, A, B> and the constructor for ContSum2 is
private, there is no other way for cont to construct the return value other than to call either
InjectLeft or InjectRight with the appropriate continuation.

The use of InjectSum2 prevents the programmer from providing the wrong branch in the
continuation by keeping the constructor private. However a private constructor alone cannot
prevent two uses of InjectSum2 to be deliberately interchanged, causing a protocol violation.
To fully ensure that there is no way for the user to provide a ContSum2 from elsewhere, we
instead use a technique from GhostCell [52] that uses higher-ranked trait bounds (HTRB) to
mark a phantom invariant lifetime on both InjectSum2 and ContSum2:
fn offer_choice_2<C: Context, A: Protocol, B: Protocol>

(cont: for <'r> impl FnOnce(InjectSum2<'r, C, A, B>) -> ContSum2<'r, C, A, B>)
-> PartialSession<C, ExternalChoice2<A, B>>

The use of HRTB ensures that each call of offer_choice_2 would generate a unique lifetime
'r for the continuation. Using that, Ferrite can ensure that a value of type InjectSum2<'r1,
C, A, B> cannot be used to construct the return value of type ContSum2<'r2, C, A, B>, if the
lifetimes <'r1> and <'r2> are different. An example use of offer_choice_2 is as follows:
let choice_provider: Session<ExternalChoice2<SendValue<u64, End>, End>>

= offer_choice_2(| b | { match b {
InjectLeft(ret) => ret(send_value(42, terminate())),
InjectRight(ret) => ret(terminate()) } });

The example code above requires some boilerplate code to call the session injector ret
to wrap around the continuation expression. To free the programmer from writing such
boilerplate, Ferrite also provides a macro offer_choice that translates into the underlying
pattern matching syntax, which is explained in the next section.

6.3 N-ary Branching
To generalize offer_choice_2 to n-ary choices, Ferrite has its own version of polymorphic
variants implemented in Rust. Our implementation specifically targets Rust, and is based on
similar work by [30] and [31]. The base variant types are as follows:
enum Bottom {} enum Sum<A, B> { Inl(A), Inr(B) }
trait TypeApp<A> { type Applied; } trait SumApp<F> { type Applied; }
type App<F, A> = <F as TypeApp<A>>::Applied;
type AppSum<Row, F> = <Row as SumApp<F>>::Applied;
impl<F> SumApp<F> for () { type Applied = Bottom; }
impl<A, F: TypeApp<A>, R: SumApp<F>> SumApp<F> for (A, R) {

type Applied = Sum<F::Applied, R::Applied>; }

Similar to RecApp described in Section 5.1, TypeApp is used to represent a Rust type
emulating the kind Type→ Type for non-recursive usage. Furthermore, the SumApp trait is

ECOOP 2022

22:22 Ferrite: A Judgmental Embedding of Session Types in Rust

used to represent a Rust type emulating the kind (Type → Type) → Type. The type alias
App<F, A> is used to extract the associated type Applied when F is applied to A via TypeApp.
The type alias AppSum<Row, F> is used to extract the associated type Applied when a row type
Row is applied to a type constructor F, which implements TypeApp<A> for all A. 1

Using SumApp, we map an heterogeneous list to nested sums such that AppSum<HList![A0,
A1, ...], F> = Sum![App<F, A0>, App<F, A1>, ...], with the macro Sum! used to expand the
macro arguments into nested sums, i.e. Sum![A0, A1, ...] = Sum<A0, Sum<A1, ..., Bottom>>.
We then define the n-ary versions of InjectSum2 and ContSum2 as follows:
struct InjectSessionF<'r, Row, C> {} struct InjectSession<'r, Row, C, A> { ... }
struct ContSum<'r, Row, C: Context> { ... }
impl<'r, Row, C: Context> TypeApp<A> for InjectSessionF<C> {

type Applied = InjectSession<C, A>; }
impl<'r, Row, C: Context, A: Protocol> FnOnce(PartialSession<C, A>)

-> ContSum<'r, Row, C> for InjectSession<'r, Row, C, A> { ... }

The type InjectSessionF<'r, Row, C> serves as a marker type for TypeApp, such that when
applied to a type A, we get the struct InjectSession<'r, Row, C, A>. Conceptually, the struct
implements the trait FnOnce(PartialSession<C, A>) -> ContSum<'r, Row, C>, so that we can
apply a PartialSession<C, A> to it and get back a ContSum<'r, Row, C>.2 The composed type
AppSum<Row, InjectSessionF<'r, Row, C> represents a row of InjectSession, with Row being a
heterogeneous list in the form HList![A0, A1, ..., AN−1]. For example, the type AppSum<
HList![A, B], InjectSessionF<'r, Row, C>> evaluates to Sum![InjectSession<'r, Row, C, A>,
InjectSession<'r, Row, C, B>], which is isomorphic to the type InjectSum2<C, A, B> that we
defined for the binary case. Using the row constructs, we can define n-ary version offer_choice
as follows:
fn offer_choice<C: Context, Row>(cont1 : impl for <'r>

FnOnce(AppSum<Row, InjectSessionF<'r, Row, C>>) -> ContSum<'r, Row, C>
) -> PartialSession<C, ExternalChoice<Row>>
where Row: SumApp<InjectSessionF<'r, Row, C>>>, ...

With the n-ary version of offer_choice available, we can re-implement binary choice as
a specialized version. To do that, we only need a few type aliases and struct definitions to
make the syntax more pleasing:
enum EitherSum<A, B> { Left(A), Right(B) }; type Either<A, B> = HList![A, B];
const LeftLabel: Z = Z::new(); const RightLabel: S<Z> = <S<Z>>::new();
impl<A, B> std::convert::From<Sum![A, B]> for EitherSum<A, B> { ... }

We first define an EitherSum enum, and a std::convert::From instance that converts an
unlabeled nested sum Sum![A, B] into the labeled sum EitherSum<A, B>. The conversion
allows users to use a flat list of labeled match arms during branching, and give meaningful
labels Left and Right to each branch. We also define Either<A, B> as a type alias to the
row type HList![A, B], to give a meaningful name to the choice protocol. Finally we define
the constants LeftLabel and RightLabel to refer to the prisms Z and S<Z>, resp. Ferrite also
provides a helper macro define_choice! to help users define custom choice protocols that look
similar to the above. This is used in conjunction with macros such as offer_choice!, which

1 For brievity, we omit some details that the types App and AppSum are actually implemented as structs that
are isomorphic to <F as TypeApp<A>>::Applied and <Row as SumApp<F>>::Applied, resp. The main
difference is that the actual structs hide the propagation of the trait bound requirements of TypeApp
and SumApp from their callers, resulting in much cleaner code. This does not affect the understanding of
the core concepts introduced in this section.

2 Technically, Rust does not allow custom implementation of FnOnce, so Ferrite defines a custom trait
with the same behavior.

R. F. Chen, S. Balzer, and B. Toninho 22:23

1 enum CanvasMsg { Canvas2d(Canvas2dMsg, CanvasId), Close(CanvasId), ... }
2 enum Canvas2dMsg { LineTo(Point2D), GetTransform(Sender<Transform2D>),
3 IsPointInPath(f64, f64, FillRule, IpcSender<bool>), ... }
4 enum ConstellationCanvasMsg { Create { id_sender: Sender<CanvasId>, size: Size2D } }
5 struct CanvasPaintThread { canvases: HashMap<CanvasId, CanvasData>, ... }
6 impl CanvasPaintThread { ...
7 fn start() -> (Sender<ConstellationCanvasMsg>, Sender<CanvasMsg>) {
8 let (msg_sender, msg_receiver) = channel();
9 let (create_sender, create_receiver) = channel();

10 thread::spawn(move || { loop { select! {
11 recv(canvas_msg_receiver) -> { ...
12 CanvasMsg::Canvas2d(message, canvas_id) => { ...
13 Canvas2dMsg::LineTo(point) => self.canvas(canvas_id).move_to(point),
14 Canvas2dMsg::GetTransform(sender) =>
15 sender.send(self.canvas(canvas_id).get_transform()).unwrap(), ... }
16 CanvasMsg::Close(canvas_id) => canvas_paint_thread.canvases.remove(&canvas_id) }
17 recv(create_receiver) -> { ...
18 ConstellationCanvasMsg::Create { id_sender, size } => {
19 let canvas_id = ...; self.canvases.insert(canvas_id, CanvasData::new(size, ...));
20 id_sender.send(canvas_id); } } } } });
21 (create_sender, msg_sender) }
22 fn canvas(&mut self, canvas_id: CanvasId) -> &mut CanvasData {
23 self.canvases.get_mut(&canvas_id).expect("Bogus canvas id") } }

Figure 1 Message-passing concurrency in Servo’s canvas component (simplified for illustration
purposes).

cleans up the boilerplate required to enable different match branches to return different types.
Using the macros, users can define the same Either protocol and write an external choice
provider as follows:
define_choice!{ Either<A, B>; Left: A, Right: B }
// Inferred type: Session<ExternalChoice<Either<SendValue<u64, End>, End>>>
let provider = offer_choice!{

Left => send_value(42, terminate()), Right => terminate() };

For convenience, Ferrite exports the choice definition for Either for the anonymous
declaration of binary choice in session types.

7 Evaluation

The Ferrite library is more than just a research prototype. It is designed for practical
use in real world applications. To evaluate the design and implementation of Ferrite, we
re-implemented the communication layer of the canvas component of Servo [32] entirely in
Ferrite. Servo is an under development browser engine that uses message-passing for heavy
task parallelization. Canvas provides 2D graphic rendering, allowing clients to create new
canvases and perform operations on a canvas such as moving the cursor and drawing shapes.

The canvas component is a good target for evaluation as it is sufficiently complex and
also very demanding in terms of performance. Canvas is commonly used for animations in
web applications. For an animation to look smooth, a canvas must render at least 24 frames
per second, with potentially thousands of operations to be executed per frame.

The changes we made are fairly minimal, consisting of roughly 750 lines of additions and
620 lines of deletions, out of roughly 300,000 lines of Rust code in Servo. The sources of
our implementation are provided as an artifact. To differentiate the two versions of code
snippets, we use blue for the original code, and green for the code using Ferrite.

7.1 Servo Canvas Component
Figure 1 provides a sketch of the main communication paths in Servo’s canvas compon-

ent [33]. The canvas component is implemented by the CanvasPaintThread, whose function
start contains the main communication loop running in a separate thread (lines 10–20). This

ECOOP 2022

22:24 Ferrite: A Judgmental Embedding of Session Types in Rust

loop processes client requests received along canvas_msg_receiver and create_receiver, which
are the receiving endpoints of the channels created prior to spawning the loop (lines 8–9).
The channels are typed with the enumerations ConstellationCanvasMsg and CanvasMsg, defining
messages for creating and terminating the canvas component and for executing operations on
an individual canvas, resp. When a client sends a message that expects a response from the
recipient, such as GetTransform and IsPointInPath (lines 2–3), it sends a channel along with
the message to be used by the recipient to send back the result. Canvases are identified by
an id, which is generated upon canvas creation (line 19) and stored in the thread’s canvases
hash map (line 5). If a client requests an invalid id, for example after prior termination and
removal of the canvas (line 16), the failed assertion expect("Bogus canvas id") (line 23) will
result in a panic!, causing the canvas component to crash and subsequent calls to fail.

The code in Figure 1 uses a clever combination of enumerations to type channels and
ownership to rule out races on the data sent along channels. Nonetheless, Rust’s type system
is not expressive enough to enforce the intended protocol of message exchange and existence
of a communication partner. The latter is a consequence of Rust’s type system being affine,
which permits “dropping of a resource”. The dropping or premature closure of a channel,
however, can result in a proliferation of panic! and thus cause an entire application to crash.
In fact, while refactoring Servo to use Ferrite, we were able to uncover a protocol violation in
Servo, caused by one of the nested match arms of the provider doing an early return before
sending back any result to the client.

7.2 Canvas Protocol in Ferrite
In the original canvas component, the provider CanvasPaintThread accepts messages of type
CanvasMsg, made up of a combination of smaller sub-message types such as Canvas2dMsg. We
note that the majority of the sub-message types have the following trivial form:
enum CanvasMsg { Canvas2d(Canvas2dMsg, CanvasId), Close(CanvasId), ... }
enum Canvas2dMsg { BeginPath, ClosePath, Fill(FillOrStrokeStyle), ... }

The trivial sub-message types such as BeginPath, Fill, and LineTo do not require a response
from the provider, so the client can simply fire them and proceed. Although we can offer
all sub-message types as separate branches in an external choice, it is more efficient to keep
trivial sub-messages in a single enum. In our implementation, we define CanvasMessage to
have similar sub-messages as Canvas2dMsg, with non-trivial messages such as IsPointInPath
moved to separate branches.
enum CanvasMessage { BeginPath, ClosePath, Fill(FillOrStrokeStyle), ... }
define_choice! { CanvasOps; Message: ReceiveValue<CanvasMessage, Release>, ... }
type Canvas = LinearToShared<ExternalChoice<CanvasOps>>;

We use the define_choice! macro described in Section 6 to define an n-ary choice CanvasOps.
The first branch of CanvasOps is labelled Message, and the only action is for the provider to
receive a CanvasMessage. The choices are offered as an external choice, and the session type
CanvasProtocol is defined as a shared protocol that offers the choices in the critical section.

The original design of the CanvasPaintThread would be sufficient if the only messages being
sent were trivial messages. However, Canvas2dMsg also contains non-trivial sub-messages, such
as GetImageData and IsPointInPath, demanding a response from the provider:
enum Canvas2dMsg { ..., GetImageData(Rect<u64>, Size2D<u64>, IpcBytesSender),

IsPointInPath(f64, f64, FillRule, IpcSender<bool>), ... }

To obtain the result from the original canvas, clients must create a new inter-process
communication (IPC) channel and bundle the channel’s sender endpoint with the message.
In our implementation, we define separate branches in CanvasOps to handle non-trivial cases:

R. F. Chen, S. Balzer, and B. Toninho 22:25

Table 4 MotionMark Benchmark scores in fps (higher is better)

Benchmark Name Servo Servo/Ferrite Firefox Chrome
Arcs 12.21 ± 6.75% 11.83 ± 11.49% 52.61 ± 32.88% 46.00 ± 9.00%
Paths 43.76 ± 10.66% 40.98 ± 18.94% 55.59 ± 28.80% 59.50 ± 14.90%
Lines 7.48 ± 7.06% 11.47 ± 12.74% 14.35 ± 6.65% 32.43 ± 6.48%
Bouncing clipped rects 18.43 ± 7.06% 18.23 ± 11.00% 34.82 ± 7.76% 58.07 ± 19.85%
Bouncing gradient circles 8.02 ± 7.74% 7.72 ± 12.63% 58.79 ± 21.03% 59.77 ± 10.07%
Bouncing PNG images 7.97 ± 5.91% 6.31 ± 10.26% 24.61 ± 6.35% 59.94 ± 13.04%
Stroke shapes 10.60 ± 3.95% 10.35 ± 10.96% 51.21 ± 11.25% 59.38 ± 16.87%
Put/get image data 60.01 ± 3.81% 32.08 ± 10.83% 59.66 ± 20.16% 60.00 ± 5.00%

define_choice! { CanvasOps; Message: ReceiveValue<CanvasMessage, Release>,
GetImageData: ReceiveValue<(Rect<u64>, Size2D<u64>), SendValue<ByteBuf, Release>>,
IsPointInPath: ReceiveValue<(f64, f64, FillRule), SendValue<bool, Release>>, ... }

The original GetImageData accepts an IpcBytesSender, which sends raw bytes back to the
client. In Ferrite, we translate the use of IpcBytesSender to the type SendValue<ByteBuf, Z>,
which sends the raw bytes wrapped in a ByteBuf type. We discuss possible performance
penalties of this approach in Section 7.3.

Aside from the Canvas protocol, we also redesign the use of ConstellationCanvasMsg into
its own shared protocol, ConstellationCanvas:
type ConstellationCanvas = LinearToShared<ReceiveValue<Size2D,

SendValue<SharedChannel<Canvas>, Release>>>;

To create a new canvas, a client first acquires the shared channel of type SharedChannel<
ConstellationCanvas>. Afterwards, the client sends the Size2D parameter to specify the canvas
size. The constellation canvas provider then spawns a new canvas shared process through
run_shared_session and sends back the shared channel of type SharedChannel<Canvas> as a
value. Finally, the session is released, allowing other clients to acquire the shared provider.

7.3 Performance Evaluation
To evaluate the performance of the canvas component, we use the MotionMark benchmark
suite [50]. MotionMark is a web benchmark that focuses on graphics performance of web
browsers. It contains benchmarks for various web components, including canvas, CSS, and
SVG. As MotionMark does not yet support Servo, we modified the benchmark code to make
it work in the absence of features that are not implemented in Servo.

We provide the modified benchmark source code along with instructions for running
it as an artifact. Appendix D is also provided to highlight some of the implementation
challenges in porting Servo to use Ferrite, in particular on the latency incurred by inter-process
communication, and our workaround to compensate the complication.

For the purpose of this evaluation, we focused on benchmarks that target the canvas
component and skipped benchmarks that fail in Servo due to missing features. We ran
each benchmark in a fixed 1600x800 resolution for 30 seconds, on a Core i7 Linux desktop
machine. We ran the benchmarks against the original Servo, modified Servo with Ferrite
canvas (Servo/Ferrite), Firefox, and Chrome. Our performance scores are measured in the
fixed mode version of MotionMark, which measures frames per second (fps) performance of
executing the same set of canvas operations per frame.

The benchmark results are shown in Table 4, with the performance scores in fps (higher
fps is better). It is worth noting that a benchmark can achieve at most 60 fps. Our goal in
this benchmark is to keep the scores of Servo/Ferrite close to those of Servo, not to achieve
better performance than the original. This is shown to be the case in most of the benchmarks.

ECOOP 2022

22:26 Ferrite: A Judgmental Embedding of Session Types in Rust

The only benchmark with a large difference between Servo and Servo/Ferrite is Put/get
image data, with Ferrite performing 2x worse. This is because in Servo/Ferrite, we use
ByteBuf to transfer the images as raw bytes within the same shared channel. In contrast,
Servo uses a specialized structure IpcBytesSender for transferring of raw bytes in parallel to
other messages. As a result, the communication in Servo/Ferrite is congested during the
transfer of the image data, while the original Servo can process new messages in parallel to
the image data being transmitted.

We also observe that there are significant performance differences in the scores between
Servo and those in Firefox and Chrome, indicating that there exist performance bottlenecks
in Servo unrelated to communication protocols.

8 Related and Future Work

Session type embeddings exist for various languages, including Haskell [38, 22, 29, 34],
OCaml [36, 21], Java [17, 16], and Scala [43]. Functional languages like ML, OCaml, and
Haskell, in particular, are ideal host languages for creating EDSLs thanks to their advanced
features (e.g. type classes, type families, higher-rank and higher-kinded types and GADTs).
[38] first demonstrated the feasibility of embedding session types in Haskell, with refinements
done in later works [22, 29, 34]. Similar embeddings have also been contributed in the context
of OCaml by FuSe [36] and session-ocaml [21].

Aside from Ferrite, there are other implementations of session types in Rust, including
session_types [23], sesh [27], and rumpsteak [6, 7]. session_types were the first implementation
to make use of affinity to provide a session type library in Rust. sesh emphasizes this aspect
by embedding the affine session type system Exceptional GV [10] in Rust. Both session_types
and sesh adopt a classical perspective, requiring the endpoints of a channel to be typed with
dual types. rumpsteak develops an embedding of multiparty session types by generating Rust
types derived from multiparty session types defined in Scribble [53].

Due to their reliance on Rust’s affine type system, neither session_types nor sesh prevents
a channel endpoint from being dropped prematurely, relegating the handling of such errors
to the runtime. rumpsteak uses some type-level techniques similar to Ferrite to enforce a
channel’s linear usage in the continuation passed to the try_session function. This ensures
that a linear channel in rumpsteak is always fully consumed, if it is ever consumed. However,
prior to the call to try_session, the linear channel exist as an affine value, which may be
dropped by the Rust program without being consumed at all, thereby causing deadlock. In
comparison, Ferrite enforces linearity at all level, including safe linking of multiple linear
processes using cut.

In terms of concurrency, session_types, sesh, and rumpsteak all require the programmer to
manually manage concurrency, either by spawning threads or async tasks. This introduces
potential failure when the code fails follow the requirement to spawn all processes. On the
other hand, the simplicity of such a model allows relatively few threads or async tasks to be
spawned, thereby allowing the underlying runtime to execute the processes more efficiently.
In comparison, Ferrite offers fully managed concurrency, without the programmer having to
worry about how to spawn the processes and execute them in parallel.

In terms of performance, the downside of Ferrite’s concurrency approach is that it
aggresively spawns new async tasks in each use of cut. Although async tasks in Rust are
much more lightweight than OS threads, there is still a significant overhead in spawning and
managing many async tasks, especially in micro-benchmarks. As a result, Ferrite tends to
perform slower than alternative Rust implementations in settings where only a fixed small

R. F. Chen, S. Balzer, and B. Toninho 22:27

number of processes need to be spawned. Nevertheless, it is worth noting that the async
ecosystem in Rust is still relatively immature, with many potential improvements to be made.
In practice, the overhead of the async runtime may also be negligible when compared to
the core application logic. In such cases, Ferrite would also allow applications to scale more
easily by allowing many more processes to be spawned and managed concurrently without
requiring additional effort from the programmer.

In terms of DSL design, Ferrite is more closely related to the embeddings in OCaml and
Haskell, as it fully enforces a linear treatment of session type channels and thus statically rules
out any panics arising from dropping a channel prematurely. Ferrite also differs from other
libraries in that it adopts intuitionistic typing [4], allowing the typing of a channel rather
than its two endpoints. On the use of profunctor optics, our work is the first to connect n-ary
choice to prisms, while prior work by session-ocaml [22] has only established the connection
between lenses, the dual of prisms, and linear contexts. FuSe [36] and session-ocaml [21] have
previously explored the use of n-ary (generalized) choice through extensible variants available
only in OCaml. Our work demonstrates that it is possible to encode extensible variants, and
thus n-ary choice, as type-level constructs using features available in Rust.

A major difference in terms of implementation is that Ferrite uses a continuation-passing
style, whereas Haskell and OCaml embeddings commonly use (indexed) monads and do-
notation style. This technical difference amounts to a key conceptual one: a direct corres-
pondence between the Rust programs generated from Ferrite constructs and the SILLR typing
derivation. As a result, the generated Rust code can be viewed as carrying the proof of
protocol adherence.

The embeddings of ESJ [16] and lchannels [43] also adopt a continuation-passing style,
but do not faithfully embed typing derivations (i.e. they do not statically enforce linearity).
These approaches follow an encoding of session types using linear types [8] first proposed by
Kobayashi [25] in the setting of π-calculus. Type systems for message-passing in π-calculus
have a long history, dating back to the work of Kobayashi and Igarashi [18, 19, 20]. These
systems often focus on (but are not limited to) deadlock-freedom and lock-freedom [26] by
enforcing a partial order on matching communication. This approach has been studied for the
linear π-calculus [35] and in the presence of interrupts [44] or unbounded process networks [12].
While session types are generally less powerful than the approaches of Kobayashi et al., they
provide a useful compromise between expressiveness and simplicity, being more amenable to
embeddings in general-purpose language constructs and type systems.

In terms of expressiveness, Ferrite contributes over all prior session-based works in its
support for shared session types [1], allowing it to express real-world protocols, as demon-
strated by our implementation of Servo’s canvas component. Shared session types reclaim the
expressiveness of the untyped asynchronous π-calculus in session-typed languages [2], at the
cost of deadlock-freedom. Recent extensions of classical linear logic session types contribute
another approach to softening the rigidity of linear session types to support multiple client
sessions and nondeterminism [39] and memory cells and nondeterministic updates [41], resp.

Our technique of a judgmental embedding opens up new possibilities for embedding
type systems other than session types in Rust. Although we have demonstrated that the
judgmental embedding is sufficiently powerful to encode a type system like session types, the
embedding is currently shallow, with the implementation hardcoded to use the channels and
async run-time from tokio. Rust comes with unique features such as affine types and lifetimes
that makes it especially suited for implementing concurrency primitives, as evidenced by the
wealth of channel and async run-time implementations available. As discussed in Section 7,
one of our future goals is to explore the possibility of making Ferrite a deep embedding of

ECOOP 2022

22:28 Ferrite: A Judgmental Embedding of Session Types in Rust

session types in Rust, so that users can choose from multiple low-level implementations.
Although deep embeddings have extensively been explored for languages like Haskell [45, 29],
it remains a open question to find suitable approaches that work well in Rust.

References
1 Stephanie Balzer and Frank Pfenning. Manifest sharing with session types. Proceedings of the

ACM on Programming Languages (PACMPL), 1(ICFP):37:1–37:29, 2017.
2 Stephanie Balzer, Frank Pfenning, and Bernardo Toninho. A universal session type for untyped

asynchronous communication. In 29th International Conference on Concurrency Theory
(CONCUR), LIPIcs, pages 30:1–30:18. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
2018.

3 Stephanie Balzer, Bernardo Toninho, and Frank Pfenning. Manifest deadlock-freedom for
shared session types. In 28th European Symposium on Programming (ESOP), volume 11423 of
Lecture Notes in Computer Science, pages 611–639. Springer, 2019.

4 Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In 21st
International Conference on Concurrency Theory (CONCUR), pages 222–236. Springer, 2010.

5 Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logic propositions as session types.
Mathematical Structures in Computer Science, 26(3):367–423, 2016.

6 Zak Cutner and Nobuko Yoshida. Safe session-based asynchronous coordination in rust. In
Ferruccio Damiani and Ornela Dardha, editors, Coordination Models and Languages - 23rd
IFIP WG 6.1 International Conference, COORDINATION 2021, Held as Part of the 16th
International Federated Conference on Distributed Computing Techniques, DisCoTec 2021,
Valletta, Malta, June 14-18, 2021, Proceedings, volume 12717 of Lecture Notes in Computer
Science, pages 80–89. Springer, 2021. doi:10.1007/978-3-030-78142-2_5.

7 Zak Cutner, Nobuko Yoshida, and Martin Vassor. Deadlock-free asynchronous message
reordering in rust with multiparty session types. CoRR, abs/2112.12693, 2021. URL: https:
//arxiv.org/abs/2112.12693, arXiv:2112.12693.

8 Ornela Dardha, Elena Giachino, and Davide Sangiorgi. Session types revisited. In Principles
and Practice of Declarative Programming (PPDP), pages 139–150, 2012.

9 J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C. Pierce, and Alan
Schmitt. Combinators for bidirectional tree transformations: A linguistic approach to the
view-update problem. ACM Trans. Program. Lang. Syst., 29(3):17, 2007. doi:10.1145/
1232420.1232424.

10 Simon Fowler, Sam Lindley, J. Garrett Morris, and Sára Decova. Exceptional asynchronous
session types: Session types without tiers. Proceedings of the ACM on Programming Languages,
3(POPL):28:1–28:29, 2019. doi:10.1145/3290341.

11 Andrew Gerrand. The go blog: Share memory by communicating, 2010. URL: https:
//blog.golang.org/share-memory-by-communicating.

12 Elena Giachino, Naoki Kobayashi, and Cosimo Laneve. Deadlock analysis of unbounded
process networks. In CONCUR 2014 - Concurrency Theory - 25th International Conference,
CONCUR 2014, Rome, Italy, September 2-5, 2014. Proceedings, pages 63–77, 2014.

13 Kohei Honda. Types for dyadic interaction. In 4th International Conference on Concurrency
Theory (CONCUR), pages 509–523. Springer, 1993.

14 Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type
discipline for structured communication-based programming. In 7th European Symposium on
Programming (ESOP), pages 122–138. Springer, 1998.

15 Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 273–284. ACM, 2008.

16 Raymond Hu, Dimitrios Kouzapas, Olivier Pernet, Nobuko Yoshida, and Kohei Honda. Type-
safe eventful sessions in Java. In 24th European Conference on Object-Oriented Programming

https://doi.org/10.1007/978-3-030-78142-2_5
https://arxiv.org/abs/2112.12693
https://arxiv.org/abs/2112.12693
http://arxiv.org/abs/2112.12693
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/1232420.1232424
https://doi.org/10.1145/3290341
https://blog.golang.org/share-memory-by-communicating
https://blog.golang.org/share-memory-by-communicating

R. F. Chen, S. Balzer, and B. Toninho 22:29

(ECOOP), volume 6183 of Lecture Notes in Computer Science, pages 329–353. Springer, 2010.
doi:10.1007/978-3-642-14107-2_16.

17 Raymond Hu, Nobuko Yoshida, and Kohei Honda. Session-based distributed programming
in Java. In 22nd European Conference on Object-Oriented Programming (ECOOP), volume
5142 of Lecture Notes in Computer Science, pages 516–541. Springer, 2008. doi:10.1007/
978-3-540-70592-5_22.

18 Atsushi Igarashi and Naoki Kobayashi. Type-based analysis of communication for concurrent
programming languages. In Static Analysis, 4th International Symposium, SAS ’97, pages
187–201, 1997.

19 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. In Conference
Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 128–141, 2001.

20 Atsushi Igarashi and Naoki Kobayashi. A generic type system for the pi-calculus. Theor.
Comput. Sci., 311(1-3):121–163, 2004.

21 Keigo Imai, Nobuko Yoshida, and Shoji Yuen. Session-ocaml: a session-based library with
polarities and lenses. Science of Computer Programming, 172:135–159, 2019. doi:10.1016/j.
scico.2018.08.005.

22 Keigo Imai, Shoji Yuen, and Kiyoshi Agusa. Session type inference in haskell. In 3rd Workshop
on Programming Language Approaches to Concurrency and Communication-cEntric Software
(PLACES) 2010, Paphos, Cyprus, 21st March 201, volume 69 of EPTCS, pages 74–91, 2010.
doi:10.4204/EPTCS.69.6.

23 Thomas Bracht Laumann Jespersen, Philip Munksgaard, and Ken Friis Larsen. Session
types for Rust. In 11th ACM SIGPLAN Workshop on Generic Programming (WGP), 2015.
doi:10.1145/2808098.2808100.

24 Oleg Kiselyov, Ralf Lämmel, and Keean Schupke. Strongly typed heterogeneous collections.
In Henrik Nilsson, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell, Haskell
2004, Snowbird, UT, USA, September 22-22, 2004, pages 96–107. ACM, 2004. doi:10.1145/
1017472.1017488.

25 Naoki Kobayashi. Type systems for concurrent programs. In Bernhard K. Aichernig and
T. S. E. Maibaum, editors, Formal Methods at the Crossroads. From Panacea to Foundational
Support, 10th Anniversary Colloquium of UNU/IIST, the International Institute for Software
Technology of The United Nations University, Lisbon, Portugal, March 18-20, 2002, Revised
Papers, volume 2757 of Lecture Notes in Computer Science, pages 439–453. Springer, 2002.
doi:10.1007/978-3-540-40007-3_26.

26 Naoki Kobayashi and Davide Sangiorgi. A hybrid type system for lock-freedom of mobile
processes. ACM Trans. Program. Lang. Syst., 32(5):16:1–16:49, 2010. doi:10.1145/1745312.
1745313.

27 Wen Kokke. Rusty variation: Deadlock-free sessions with failure in rust. In 12th Interaction
and Concurrency Experience, ICE 2019, pages 48–60, 2019.

28 Sam Lindley and J. Garrett Morris. A semantics for propositions as sessions. In 24th European
Symposium on Programming (ESOP), volume 9032 of Lecture Notes in Computer Science,
pages 560–584, 2015. doi:10.1007/978-3-662-46669-8_23.

29 Sam Lindley and J. Garrett Morris. Embedding session types in Haskell. In 9th International
Symposium on Haskell, pages 133–145. ACM, 2016. doi:10.1145/2976002.2976018.

30 J. Garrett Morris. Variations on variants. In Ben Lippmeier, editor, Proceedings of the 8th
ACM SIGPLAN Symposium on Haskell, Haskell 2015, Vancouver, BC, Canada, September
3-4, 2015, pages 71–81. ACM, 2015. doi:10.1145/2804302.2804320.

31 J. Garrett Morris and James McKinna. Abstracting extensible data types: or, rows by any
other name. PACMPL, 3(POPL):12:1–12:28, 2019. doi:10.1145/3290325.

32 Mozilla. Servo, the Parallel Browser Engine Project. https://servo.org/, 2012.

ECOOP 2022

https://doi.org/10.1007/978-3-642-14107-2_16
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1007/978-3-540-70592-5_22
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.1016/j.scico.2018.08.005
https://doi.org/10.4204/EPTCS.69.6
https://doi.org/10.1145/2808098.2808100
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1145/1017472.1017488
https://doi.org/10.1007/978-3-540-40007-3_26
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1145/1745312.1745313
https://doi.org/10.1007/978-3-662-46669-8_23
https://doi.org/10.1145/2976002.2976018
https://doi.org/10.1145/2804302.2804320
https://doi.org/10.1145/3290325
https://servo.org/

22:30 Ferrite: A Judgmental Embedding of Session Types in Rust

33 Mozilla. Servo source code – canvas paint thread, 2021. URL: https://github.com/servo/
servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_
paint_thread.rs.

34 Dominic A. Orchard and Nobuko Yoshida. Effects as sessions, sessions as effects. In 43rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages
568–581. ACM, 2016. doi:10.1145/2837614.2837634.

35 Luca Padovani. Deadlock and lock freedom in the linear π-calculus. In Computer Science
Logic – Logic in Computer Science (CSL-LICS), pages 72:1–72:10, 2014.

36 Luca Padovani. A simple library implementation of binary sessions. J. Funct. Program., 27:e4,
2017. doi:10.1017/S0956796816000289.

37 Matthew Pickering, Jeremy Gibbons, and Nicolas Wu. Profunctor optics: Modular data
accessors. Programming Journal, 1(2):7, 2017. doi:10.22152/programming-journal.org/
2017/1/7.

38 Riccardo Pucella and Jesse A. Tov. Haskell session types with (almost) no class. In 1st ACM
SIGPLAN Symposium on Haskell, pages 25–36. ACM, 2008. doi:10.1145/1411286.1411290.

39 Zesen Qian, G. A. Kavvos, and Lars Birkedal. Client-server sessions in linear logic. CoRR,
abs/2010.13926, 2020. URL: https://arxiv.org/abs/2010.13926, arXiv:2010.13926.

40 John C. Reynolds. Definitional interpreters for higher-order programming languages. In ACM
Annual Conference, volume 2, pages 717–740. ACM, 1972. doi:10.1145/800194.805852.

41 Pedro Rocha and Luís Caires. Propositions-as-types and shared state. Proc. ACM Program.
Lang., 5(ICFP):1–30, 2021.

42 Matthew Sackman and Susan Eisenbach. Session types in haskell: Updating message passing
for the 21st century. Technical report, Imperial College, 2008. URL: http://hdl.handle.net/
10044/1/5918.

43 Alceste Scalas and Nobuko Yoshida. Lightweight session programming in Scala. In 30th
European Conference on Object-Oriented Programming (ECOOP), volume 56 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 21:1–21:28. Schloss Dagstuhl – Leibniz-
Zentrum fuer Informatik, 2016.

44 Kohei Suenaga and Naoki Kobayashi. Type-based analysis of deadlock for a concurrent
calculus with interrupts. In Rocco De Nicola, editor, Programming Languages and Systems,
16th European Symposium on Programming, ESOP 2007, Held as Part of the Joint European
Conferences on Theory and Practics of Software, ETAPS 2007, Braga, Portugal, March 24 -
April 1, 2007, Proceedings, volume 4421 of Lecture Notes in Computer Science, pages 490–504.
Springer, 2007. doi:10.1007/978-3-540-71316-6_33.

45 Josef Svenningsson and Emil Axelsson. Combining deep and shallow embedding for EDSL. In
Hans-Wolfgang Loidl and Ricardo Peña, editors, Trends in Functional Programming - 13th
International Symposium, TFP 2012, St. Andrews, UK, June 12-14, 2012, Revised Selected
Papers, volume 7829 of Lecture Notes in Computer Science, pages 21–36. Springer, 2012.
doi:10.1007/978-3-642-40447-4_2.

46 Tokio. Tokio Homepage. https://tokio.rs/, 2021.
47 Bernardo Toninho. A Logical Foundation for Session-based Concurrent Computation. PhD

thesis, Carnegie Mellon University and New University of Lisbon, 2015.
48 Bernardo Toninho, Luís Caires, and Frank Pfenning. Higher-order processes, functions, and

sessions: a monadic integration. In 22nd European Symposium on Programming (ESOP),
pages 350–369. Springer, 2013. doi:https://doi.org/10.1007/978-3-642-37036-6_20.

49 Philip Wadler. Propositions as sessions. In 17th ACM SIGPLAN International Conference on
Functional Programming (ICFP), pages 273–286. ACM, 2012.

50 WebKit. MotionMark Homepage. https://browserbench.org/MotionMark/, 2021.
51 Jeremy Yallop and Leo White. Lightweight higher-kinded polymorphism. In Functional and

Logic Programming - 12th International Symposium, FLOPS 2014, Kanazawa, Japan, June
4-6, 2014. Proceedings, pages 119–135, 2014. doi:10.1007/978-3-319-07151-0_8.

https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://github.com/servo/servo/blob/d13a9355b8e66323e666dde7e82ced7762827d93/components/canvas/canvas_paint_thread.rs
https://doi.org/10.1145/2837614.2837634
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.22152/programming-journal.org/2017/1/7
https://doi.org/10.1145/1411286.1411290
https://arxiv.org/abs/2010.13926
http://arxiv.org/abs/2010.13926
https://doi.org/10.1145/800194.805852
http://hdl.handle.net/10044/1/5918
http://hdl.handle.net/10044/1/5918
https://doi.org/10.1007/978-3-540-71316-6_33
https://doi.org/10.1007/978-3-642-40447-4_2
https://tokio.rs/
https://doi.org/https://doi.org/10.1007/978-3-642-37036-6_20
https://browserbench.org/MotionMark/
https://doi.org/10.1007/978-3-319-07151-0_8

R. F. Chen, S. Balzer, and B. Toninho 22:31

52 Joshua Yanovski, Hoang-Hai Dang, Ralf Jung, and Derek Dreyer. Ghostcell: separating
permissions from data in rust. Proc. ACM Program. Lang., 5(ICFP):1–30, 2021. doi:
10.1145/3473597.

53 Nobuko Yoshida, Raymond Hu, Rumyana Neykova, and Nicholas Ng. The scribble protocol
language. In Martín Abadi and Alberto Lluch-Lafuente, editors, Trustworthy Global Computing
- 8th International Symposium, TGC 2013, Buenos Aires, Argentina, August 30-31, 2013,
Revised Selected Papers, volume 8358 of Lecture Notes in Computer Science, pages 22–41.
Springer, 2013. doi:10.1007/978-3-319-05119-2_3.

ECOOP 2022

https://doi.org/10.1145/3473597
https://doi.org/10.1145/3473597
https://doi.org/10.1007/978-3-319-05119-2_3

22:32 Ferrite: A Judgmental Embedding of Session Types in Rust

Table 5 Overview of session terms in SILLR and Ferrite.

SILLR Ferrite Term Description
ε End terminate; Terminate session.

wait a; K Wait for channel a to close.

τ . A ReceiveValue<T, A> x← receive_value; K Receive value x of type τ .
send_value_to a x; K Send value x of type τ to a.

τ / A SendValue<T, A> send_value x; K Send value of type τ .
x← receive_value_from a x; K Receive value of type τ from

channel a.
A(B ReceiveChannel<A,

B>
a← receive_channel; K Receive channel a of session type

A.
send_channel_to f a; K Send channel a to channel f of

session type A(B.
A⊗B SendChannel<A, B> send_channel_from a; K Send channel a of session type

A.
a← receive_channel_from f a; K Receive channel a from channel

f of session type A⊗B.
↑S

LA LinearToShared<A> accept_shared_session; Kl Accept an acquire, then continue
as linear session Kl.

a← acquire_shared_session s; Kl Acquire shared channel s as lin-
ear channel a.

↓S
LS SharedToLinear<S> detach_shared_session; Ks Detach linear session and con-

tinue as shared session Ks.
release_shared_session a; Kl Release acquired linear session.

ANB ExternalChoice<
Either<A, B>>

offer_choice_2 Kl Kr Offer either continuation Kl or
Kr based on client’s choice.

choose_left a; K Choose the left branch offered
by channel a

choose_right a; K Choose the right branch offered
by channel a

A⊕B InternalChoice<
Either<A, B>>

offer_left; K Offer the left branch

offer_right; K Offer the right branch
case_2 a Kl Kr Branch to either Kl or Kr based

on choice offered by channel a.
N{li : Ai} ExternalChoice<Row> offer_choice{li : Ki} Offer continuation Ki when the

client selects li.
choose a li; K Choose the li branch offered by

channel a
⊕{li : Ai} InternalChoice<Row> offer li; K Offer the li branch

case a {li : Ki} Branch to continuation Ki when
channel a offers li.

- Rec<F> fix_session(cont) Fold session type F::Applied
offered by cont.

unfix_session(a, cont) Unfold channel a to session type
F::Applied in cont.

A Typing Rules

A.1 Typing Rules for SILLR

Following is a list of inference rules in SILLR .
Communication

Γ ; ∆1 ` a :: A Γ ; ∆2, a
′ : A ` b :: B

Γ ; ∆1,∆2 ` a′ ← cut a ; b :: B
(T-cut)

Γ ; · ` a :: A Γ ; ∆, a′ : A ` b :: B
Γ ; ∆ ` a′ ← include a ; b :: B

(T-incl)

R. F. Chen, S. Balzer, and B. Toninho 22:33

Γ ; · ` f :: A(B Γ ; · ` a :: A
Γ ; · ` apply_channel f a :: B

(T-app) Γ ; a : A ` forward a :: A
(T-fwd)

Termination

Γ ; · ` terminate; :: ε
(T1R) Γ ; ∆ ` K :: A

Γ ; ∆, a : ε ` wait a; K :: A
(T1L)

Receive Value
Γ, x : τ ; ∆ ` K :: A

Γ ; ∆ ` x ← receive_value; K :: τ . A
(T.R)

Γ ; ∆, a : A ` K :: B
Γ, x : τ ; ∆, a : τ . A ` send_value_to a x; K :: B

(T.L)

Send Value
Γ ; ∆ ` K :: A

Γ, x : τ ; ∆ ` send_value x; K :: τ / A
(T/R)

Γ, a : τ ; ∆, a : A ` K :: B
Γ ; ∆, a : τ . A ` x ← receive_value_from a; K :: B

(T/L)

Receive Channel
Γ ; ∆, a : A ` K :: B

Γ ; ∆ ` a ← receive_channel; K :: A(B
(T(R)

Γ ; ∆, f : A2 ` K :: B
Γ ; ∆, f : A1 (A2, a : A1 ` send_channel_to f a; K :: B

(T(L)

Send Channel
Γ ; ∆ ` K :: B

Γ ; ∆, a : A ` send_channel_from a; K :: A⊗B
(T⊗R)

Γ ; ∆, f : A2, a : A1 ` K :: B
Γ ; ∆, f : A1 ⊗A2 ` a← receive_channel_from f ; K :: B

(T⊗L)

Shared Session Types

Γ ; · ` K :: A
Γ ; · ` accept_shared_session; K :: ↑S

LA
(T↑S

LR)

Γ ; · ` K :: S
Γ ; · ` detach_shared_session; K :: ↓S

LS
(T↓S

LR)

Γ ; ∆, a : A ` K :: B
Γ, s : ↑S

LA ; ∆ ` a← acquire_shared_session s; K :: B
(T↑S

LL)

Γ, s : S ; ∆ ` K :: B
Γ ; ∆, a : ↓S

LS ` s← release_shared_session a; K :: B
(T↓S

LL)

External Choice (Binary)

Γ ; ∆ ` Kl :: A Γ ; ∆ ` Kr :: B
Γ ; ∆ ` offer_choice Kl Kr :: ANB

(TN2R)

Γ ; ∆, a : A1 ` K :: B
Γ ; ∆, a : A1NA2 ` choose_left a; K :: B

(TN2L)

Γ ; ∆, a : A2 ` K :: B
Γ ; ∆, a : A2NA2 ` choose_right a; K :: B

(TN2L)

Internal Choice (Binary)

Γ ; ∆ ` K :: A
Γ ; ∆ ` offer_left; K :: A⊕ 2B

(T⊕2R)

Γ ; ∆ ` K :: B
Γ ; ∆ ` offer_right; K :: A⊕B

(T⊕2R)

Γ ; ∆, a : A1 ` Kl :: B
Γ ; ∆, a : A2 ` Kr :: B

Γ ; ∆, a : A1 ⊕A2 ` case a Kl Kr :: B
(T⊕2L)

External Choice
Γ ; ∆ ` Ki :: Ai

Γ ; ∆ ` offer_choice {li : Ki} :: N{li : Ai}
(TNR)

Γ ; ∆, a : Ai ` K :: B
Γ ; ∆, a : N{li : Ai} ` choose a li; K :: B

(TNL)

Internal Choice
Γ ; ∆ ` K :: A

Γ ; ∆ ` offer li ; K :: ⊕{li : Ai}
(T⊕R) Γ ; ∆, a : Ai ` Ki :: B

Γ ; ∆, a : ⊕{li : Ai} ` case a {li : Ki} :: B
(T⊕2L)

ECOOP 2022

22:34 Ferrite: A Judgmental Embedding of Session Types in Rust

A.2 Typing Constructs in Ferrite
Following is a list of function signatures of the term constructors provided in Ferrite.

A.2.1 Forward

fn forward<N, C, A>(_: N) -> PartialSession<C, A>
where

A: Protocol,
C: Context,
N::Target: EmptyContext,
N: ContextLens<C, A, Empty>

A.2.2 Termination

pub struct End;
impl Protocol for End { ... }

fn terminate<C>() -> PartialSession<C, End>
where

C : EmptyContext

fn wait<N, C, A>(
_ : N,
cont : PartialSession<N::Target, A>

) -> PartialSession<C, A>
where

C : Context,
A : Protocol,
N : ContextLens<C, End, Empty>

A.2.3 Communication

fn cut<X, C, C1, C2, A, B>(
cont1 : PartialSession<C1, A>,
cont2 : impl FnOnce(C2::Length) -> PartialSession<C2::Appended, B>

) -> PartialSession<C, B>
where

A : Protocol,
B : Protocol,
C : Context,
C1 : Context,
C2 : Context,
X : SplitContext<C, Left = C1, Right = C2>,
C2 : AppendContext<(A, ())>

fn include_session<C, A, B>(
session : Session<A>,
cont : impl FnOnce(C::Length) -> PartialSession<C::Appended, B>

) -> PartialSession<C, B>
where

A : Protocol,
B : Protocol,
C : Context,
C : AppendContext<(A, ())>

fn apply_channel<A, B>(
f : Session<ReceiveChannel<A, B>>,
a : Session<A>,

R. F. Chen, S. Balzer, and B. Toninho 22:35

) -> Session
where

A : Protocol,
B : Protocol

A.2.4 Receive Value

struct ReceiveValue<T, A> { ... }
impl<T, A> Protocol for ReceiveValue<T, A>
where

T: Send + 'static,
A: Protocol

{ ... }

fn receive_value<T, C, A>(
cont : impl FnOnce(T) -> PartialSession<C, A> + Send + 'static

) -> PartialSession<C, ReceiveValue<T, A>>
where

T : Send + 'static,
A : Protocol,
C : Context

fn send_value_to<N, C, A, B, T>(
_ : N,
val : T,
cont : PartialSession<N::Target, A>

) -> PartialSession<C, A>
where

A : Protocol,
B : Protocol,
C : Context,
T : Send + 'static,
N : ContextLens<C, ReceiveValue<T, B>, B>

A.2.5 Send Value

struct SendValue<T, A> { ... }
impl<T, A> Protocol for SendValue<T, A>
where

T: Send + 'static,
A: Protocol

{ ... }

fn send_value<T, C, A>(
val : T,
cont : PartialSession<C, A>

) -> PartialSession<C, SendValue<T, A>>
where

T : Send + 'static,
A : Protocol,
C : Context

fn receive_value_from<N, C, T, A, B>(
_ : N,
cont : impl FnOnce(T) -> PartialSession<N::Target, B> + Send + 'static

) -> PartialSession<C, B>
where

A : Protocol,
B : Protocol,
C : Context,
T : Send + 'static,
N : ContextLens<C, SendValue<T, A>, A>

ECOOP 2022

22:36 Ferrite: A Judgmental Embedding of Session Types in Rust

A.2.6 Receive Channel

pub struct ReceiveChannel<A, B> { ... }
impl<A: Protocol, B: Protocol> Protocol for ReceiveChannel<A, B> { ... }

fn receive_channel<C, A, B>(
cont : impl FnOnce(C::Length) -> PartialSession<C::Appended, B>

) -> PartialSession<C, ReceiveChannel<A, B>>
where

A : Protocol,
B : Protocol,
C : Context,
C : AppendContext<(A, ())>

fn send_channel_to<N1, N2, C, A1, A2, B>(
_ : N1,
_ : N2,
cont : PartialSession<N1::Target, B>

) -> PartialSession<C, B>
where

C : Context,
A1 : Protocol,
A2 : Protocol,
B : Protocol,
N2 : ContextLens<C, A1, Empty>,
N1 : ContextLens<N2::Target, ReceiveChannel<A1, A2>, A2>

A.2.7 Send Channel

struct SendChannel<A, B> { ... }
impl<A: Protocol, B: Protocol> Protocol for SendChannel<A, B>

fn send_channel_from<C, A, B, N>(
_ : N,
cont : PartialSession<N::Target, B>

) -> PartialSession<C, SendChannel<A, B>>
where

A : Protocol,
B : Protocol,
C : Context,
N : ContextLens<C, A, Empty>

fn receive_channel_from<C1, C2, A1, A2, B, N>(
_ : N,
cont_builder : impl FnOnce(C2::Length) -> PartialSession<C2::Appended, B>

) -> PartialSession<C1, B>
where

A1 : Protocol,
A2 : Protocol,
B : Protocol,
C1 : Context,
C2 : AppendContext<(A1, ())>,
N : ContextLens<C1, SendChannel<A1, A2>, A2, Target = C2>

A.2.8 External Choice

struct ExternalChoice<Row> { ... }
impl<Row> Protocol for ExternalChoice<Row>
where

Row: ToRow + Send + 'static
{ ... }

R. F. Chen, S. Balzer, and B. Toninho 22:37

fn offer_choice<C, Row1, Row2>(
cont1: impl for<'r> FnOnce(

AppSum<'r, Row2, InjectSessionF<'r, Row1, C>>,
) -> ContSum<'r, Row1, C>
+ Send
+ 'static

) -> PartialSession<C, ExternalChoice<Row1>>
where

C: Context,
Row1: Send + 'static,
Row2: Send + 'static,
Row1: ToRow<Row = Row2>,
Row2: RowCon,
Row2: SumFunctor

fn choose<N, M, C1, C2, A, B, Row1, Row2>(
_: N,
_: M,
cont: PartialSession<C2, A>

) -> PartialSession<C1, A>
where

C1: Context,
C2: Context,
A: Protocol,
B: Protocol,
Row2: RowCon,
Row1: Send + 'static,
Row2: Send + 'static,
Row1: ToRow<Row = Row2>,
N: ContextLens<C1, ExternalChoice<Row1>, B, Target = C2>,
M: Prism<Row2, Elem = B>

A.2.9 Internal Choice

struct InternalChoice<Row> { ... }
impl<Row> Protocol for InternalChoice<Row>
where

Row: ToRow + Send + 'static
{ ... }

fn offer_case<N, C, A, Row1, Row2>(
_: N,
cont: PartialSession<C, A>

) -> PartialSession<C, InternalChoice<Row1>>
where

C: Context,
A: Protocol,
Row1: Send + 'static,
Row2: Send + 'static,
Row2: RowCon,
Row1: ToRow<Row = Row2>,
N: Prism<Row2, Elem = A>

fn case<N, C1, C2, B, Row1, Row2>(
_: N,
cont1: impl for<'r> FnOnce(

AppSum<'r, Row2, ContF<'r, N, C2, B>>,
) -> ChoiceRet<'r, N, C2, B>
+ Send
+ 'static

) -> PartialSession<C1, B>
where

B: Protocol,
C1: Context,

ECOOP 2022

22:38 Ferrite: A Judgmental Embedding of Session Types in Rust

C2: Context,
Row1: Send + 'static,
Row2: Send + 'static,
Row1: ToRow<Row = Row2>,
N: ContextLens<C1, InternalChoice<Row1>, Empty, Target = C2>

A.2.10 Recursive Session Types

fn fix_session<R, F, A, C>(
cont: PartialSession<C, A>

) -> PartialSession<C, RecX<R, F>>
where

C: Context,
R: Context,
F: Protocol,
A: Protocol,
F: RecApp<(RecX<R, F>, R), Applied = A>

fn unfix_session<N, C1, C2, A, B, R, F>(
_n: N,
cont: PartialSession<C2, B>

) -> PartialSession<C1, B>
where

B: Protocol,
C1: Context,
C2: Context,
F: Protocol,
R: Context,
F: RecApp<(RecX<R, F>, R), Applied = A>,
A: Protocol,
N: ContextLens<C1, RecX<R, F>, A, Target = C2>

A.2.11 Shared Session Types

struct LinearToShared<F> { ... }
struct SharedToLinear<F> { ... }
struct Lock<F> { ... }

impl<F> SharedProtocol for LinearToShared<F>
where

F: Protocol,
F: SharedRecApp<SharedToLinear<LinearToShared<F>>>,
F::Applied: Protocol

{ ... }

impl<F> Protocol for SharedToLinear<LinearToShared<F>>
where

F: SharedRecApp<SharedToLinear<LinearToShared<F>>> + Send + 'static
{ ... }

impl<F> Protocol for Lock<F>
where

F: Protocol,
F: SharedRecApp<SharedToLinear<LinearToShared<F>>>,
F::Applied: Protocol

{ ... }

A detail we omitted in the main text is that we introduced a special linear session type
called Lock, internal to the library. The Lock type holds the underlying shared Rust channel
that connects to the corresponding endpoint held by SharedChannel. This allows multiple uses

R. F. Chen, S. Balzer, and B. Toninho 22:39

of accept_shared_session and detach_shared_session to all access the same underlying Rust
channel without having to rely on global state.

An additional role of the linear session type Lock is that it also enforces the equi-
synchronizing constraint of shared session type, by requiring all use of accept_shared_session
to always be accompanied by detach_shared_session with the same shared session type. This
provides the same functionality of enforcing the equi-synchronizing constraint as specified in
Section 3.3 in [1].
fn accept_shared_session<F>(

cont: impl Future<Output = PartialSession<(Lock<F>, ()), F::Applied>>
+ Send
+ 'static

) -> SharedSession<LinearToShared<F>>
where

F: Protocol,
F: SharedRecApp<SharedToLinear<LinearToShared<F>>>,
F::Applied: Protocol

The accept_shared_session construct is parameterized over a shared session type LinearToShared
<F>. The type F is required to implement SharedRecApp<SharedToLinear<LinearToShared<F>>>,
which unfolds the shared session type by applyig the type SharedToLinear<LinearToShared<F>>
to F. The continuation is an async block with PartialSession result that offers the linear
session type F::Applied. It also has an internal session type Lock<F>, which is described next.
The construct returns a shared session type program of type SharedSession<LinearToShared<F
>>. This needs to be passed to run_shared_session to execute the program and get back a
shared channel of type SharedChannel<LinearToShared<F>>.
fn detach_shared_session<F, C>(

cont: SharedSession<LinearToShared<F>>
) -> PartialSession<(Lock<F>, C), SharedToLinear<LinearToShared<F>>>
where

F: Protocol,
F: SharedRecApp<SharedToLinear<LinearToShared<F>>>,
F::Applied: Protocol,
C: EmptyContext

The detach_shared_session construct is parameterized by a linear session type LinearToShared
<F> and an empty linear context C. The type F is required to implement SharedRecApp<
SharedToLinear<LinearToShared<F>>> to unfold F recursively. This is required for LinearToShared
<F> to satisfy the SharedProtocol constraint. The construct accepts a SharedSession continu-
ation with the offered shared session type LinearToShared<F>. Note that this is the only
continuation that is not a PartialSession. It is also not a SharedChannel, as this is a shared
Ferrite program that is yet to be executed. The construct returns a PartialSession that offers
the linear session type SharedToLinear<F>. It also has a linear context with Lock<F> being the
first linear channel, and the tail C being an empty linear context of arbitrary length.
fn acquire_shared_session<C, F, A>(

shared: SharedChannel<LinearToShared<F>>,
cont1: impl FnOnce(C::Length) -> PartialSession<C::Appended, A> + Send + 'static

) -> PartialSession<C, A>
where

C: Context,
F: Protocol,
A: Protocol,
F::Applied: Protocol,
F: SharedRecApp<SharedToLinear<LinearToShared<F>>>,
C: AppendContext<(F::Applied, ())>

The acquire_shared_session construct is parameterized over a shared session type
LinearToShared<F>, a linear context C, and an offered session type A. The type F is required

ECOOP 2022

22:40 Ferrite: A Judgmental Embedding of Session Types in Rust

to implement SharedRecApp<SharedToLinear<LinearToShared<F>>>, which unfolds the shared ses-
sion type by applying the type SharedToLinear<LinearToShared<F>> to F. The unfolded session
type F::Applied is a linear session type implementing Protocol, and it is appended to the end
of C using AppendContext, with C::Appended being the result.

The first argument to acquire_shared_session is a cloneable SharedChannel of (shared)
session type LinearToShared<F>. The second argument is the continuation closure. It is
given the context lens C::Length, which implements the context lens to access the linear
channel F::Applied in C::Appended. The continuation closure returns a PartialSession with
C::Appended being the linear context, and A being the offered session type. The construct
returns a PartialSession that works with the original linear context C, and offers the session
type A.
fn release_shared_session<N, C1, C2, A, B>(

_n: N,
cont: PartialSession<C2, B>,

) -> PartialSession<C1, B>
where

A: Protocol,
B: Protocol,
C1: Context,
C2: Context,
A: SharedRecApp<SharedToLinear<LinearToShared<A>>>,
N: ContextLens<C1, SharedToLinear<LinearToShared<A>>, Empty, Target = C2>

The release_shared_session construct is parameterized over a linear session type SharedToLinear
<A>, a linear context C, a context lens N for accessing SharedToLinear<LinearToShared<A>> from
C, and an offered session type B. The continuation is a PartialSession with N::Target being
the linear context C with SharedToLinear<LinearToShared<A>> removed, and offers the session
type B. The construct returns a PartialSession with the original linear context C, and offers
the session type B.

B Dynamics

Section 4 introduced the type system of Ferrite, based on the constructs End, ReceiveValue, and
ReceiveChannel. This section revisits those constructs and fills in the missing implementations
to make the constructs executable, amounting to the dynamic semantics of Ferrite.

B.1 One-shot Channels
Internally, Ferrite uses tokio’s oneshot [46] channels as the primitive building block for session-
typed channels. A one-shot channel with a payload type P is consist of a pair of sender and
receiver, of type Sender<P> and Receiver<P>, resp., denoting the two endpoints of the channel.
The channel is one-shot in the sense that at most one value of type P can be sent across the
channel. However since the one-shot channel is affine, it is also possible to have no value
being sent over the channel.

The one-shot channel can be used directly by Rust programmers to emulate simple session
types. As an example, the session type ReceiveValue<i32, End> can be implemented using
one-shot channels as follows:
use tokio::{task, try_join};
use tokio::sync::oneshot::{channel, Sender, Receiver};

async fn receive_int_provider(value_receiver: Receiver<(i32, Sender<()>)>) {
let (value, end_sender) = value_receiver.await.unwrap()
println!("provider received value: {}", value);

R. F. Chen, S. Balzer, and B. Toninho 22:41

end_sender.send(()).unwrap();
}
async fn receive_int_client(value_sender: Sender<(i32, Receiver<()>)>) {

let (end_sender, end_receiver) = channel();
value_sender.send((42, end_sender));
end_receiver.await.unwrap();

}
async fn main() {

let (value_sender, value_receiver) = channel();
let child1 = spawn(async move {

receive_int_provider(value_receiver).await;
});
let child2 = spawn(async move {

receive_int_client(value_sender).await;
});

}

The code above defines the receive_int_provider and receive_int_client functions to
execute the provider and client processes corresponding to the session type ReceiveValue<i32,
End>, resp. On the provider side, it needs to first receive an i32 value and then send back
an end signal to the client when it is terminating. This corresponds to the one-shot channel
type Receiver<(i32, Sender<()>)>, with the Sender<()> used to send a unit () as termination
signal. On the receiver side, the polarity of the one-shot channel is switched and become
Sender<(i32, Receiver<()>)>. This indicates that the client first sends an i32 value, together
with a Receiver<()> for the provider to send back the termination signal.

B.2 Protocol Definitions
The above example demonstrates that even a simple session type like ReceiveValue<i32, End>
requires non-trivial effort to be implemented manually using one-shot channels. To automate
this in Ferrite, we need to derive the one-shot channel types Receiver<(i32, Sender<()>)> and
Sender<(i32, Receiver<()>)> from the session type ReceiveValue<i32, End>. This is achieved
by defining some associated types and methods in the Protocol trait:
trait Protocol {

type ProviderEndpoint;
type ClientEndpoint;

fn create_endpoints() -> (Self::ProviderEndpoint, Self::ClientEndpoint);
}

The associated types ProviderEndpoint and ClientEndpoint are used to define the one-shot
channel types for the provider end and consumer end, resp. The trait method create_endpoints
is used to create a channel pair which connects both the provider and client endpoints.
Following the previous example, the implementation should derive the type <ReceiveValue<i32
, End>>::ProviderEndpoint to be Receiver<(i32, Sender<()>)>, and <ReceiveValue<i32, End>>::
ClientEndpoint to be Sender<(i32, Receiver<()>)>. This is implemented by first implementing
Protocol for End:
impl Protocol for End
{

type ProviderEndpoint = Sender<()>;
type ClientEndpoint = Receiver<()>;

fn create_endpoints() -> (Self::ProviderEndpoint, Self::ClientEndpoint)
{

channel()
}

}

ECOOP 2022

22:42 Ferrite: A Judgmental Embedding of Session Types in Rust

In the implementation of the End protocol, the provider end is the party that needs to send
the termination signal () to the client end. Hence its ProviderEndpoint type is Sender<()>,
and vice versa for the client end. The implementation of the create_endpoints method is to
simply call channel() to create the one-shot channel pair.

To implement Protocol for a session type ReceiveValue<T, A>, we would need to make use
of the Protocol implementation for the continuation session type A:
impl<T, A> Protocol for ReceiveValue<T, A>
{

type ProviderEndpoint = Receiver<(T, A::ProviderEndpoint)>;
type ClientEndpoint = Sender<(T, A::ProviderEndpoint)>;

fn create_endpoints() -> (Self::ProviderEndpoint, Self::ClientEndpoint)
{

let (sender, receiver) = channel();
(receiver, sender)

}
}

The provider end is given a receiver for the value T, together with its continuation endpoint
for A. Given that the continuation for the provider also needs the provider endpoint, and it
has to be extracted from the receiver, the provider would need to receive A::ProviderEndpoint
alongside with the value T. Hence the associated type <ReceiveValue<T, A>>::ProviderEndpoint
becomes Receiver<(T, A::ProviderEndpoint)>. On the client side, the value T needs to be
sent alongside with A::ProviderEndpoint, hence the associated type <ReceiveValue<T, A>>::
ClientEndpoint is Sender<(T, A::ProviderEndpoint)>. Notice that both the ProviderEndpoint
and ClientEndpoint associated types for ReceiveValue<T, A> contains A::ProviderEndpoint, but
not A::ClientEndpoint.

In the implementation of create_endpoints for ReceiveValue, the ordering of the sender
and receiver pair returned from calling channel() is flipped. This is because create_endpoints
always return the provider endpoint first followed by the client endpoint. And since the
provider endpoint is a receiver in this case, it needs to be returned in the first position.

With the Protocol definitions of both End and ReceiveValue, we can follow that the
associated types and channel creation for ReceiveValue<i32, End> matches the channel types
and behavior of the example at the beginning of this section.

B.3 Linear Context
The linear context of a Ferrite program comprises the client endpoints for the session types.
Conceptually, Ferrite needs to derive from a session type list HList![A0, A1, ...] into a list of
client endpoint list HList![A0::ClientEndpoint, A1::ClientEndpoint, ...]. However a linear
context may also contain the special Empty element, which do not implement Protocol. To
allow the transformation of the linear context, we need to first add an associated type to the
Slot trait as follows:
trait Slot {

type Endpoint: Send;
}
impl<A: Protocol> Slot for A {

type Endpoint = A::ClientEndpoint;
}
impl Slot for Empty {

type Endpoint = ();
}

We define the associated type Endpoint in Slot such that if a type A implements Protocol,
then A::Endpoint is simply A::ClientEndpoint. We also define the special case for Empty, which

R. F. Chen, S. Balzer, and B. Toninho 22:43

the Endpoint associated type is () to represent the absence of a client endpoint. With that,
we can extend the Context trait to include the Endpoints associated type:
trait Context {

type Endpoints;
}
impl Context for () {

type Endpoints = ();
}
impl<A: Slot, C: Context> Context for (A, C) {

type Endpoints = (A::Endpoint, C::Endpoints);
}

For the base case of an empty list () (HList![]), the result Endpoints is also an empty list.
For the inductive case, if the tail C of a linear context (A, C) implements Context, and the head
A implements Slot, then the associated type (A, C)::Endpoints is (A::Endpoint, C::Endpoints).

B.4 Session Dynamics
Ferrite generates session type programs by composing PartialSession objects generated
by constructs such as receive_value. To enable execution of the Ferrite program, the
PartialSession struct contains an internal executor field that is defined as follows:
struct PartialSession<C: Context, A: Protocol> {

executor: Box<
dyn FnOnce(

C::Endpoints,
A::ProviderEndpoint,

) -> Pin<Box<dyn Future<Output = ()> + Send>>
+ Send,

>
}

The executor field contains an FnOnce closure that accepts two arguments – the endpoints
for the linear context C::Endpoints, and the provider endpoint for the offered session type
A::ProviderEndpoint. When called, the closure executes asynchronously by returning a
future with the type Pin<Box<dyn Future<Output = ()> + Send>>. The boilerplate signature is
required, as Rust has not stabilized the syntactic sugar for async closures. Conceptually,
the closure signature is equivalent to the async function signature async fn(C::Endpoints, A::
ProviderEndpoint).

Ferrite keeps the executor field private within the library to prevent end users from
constructing new PartialSession values or running the executor closure. This is because
the creation and execution of PartialSession may be unsafe. We demonstrate two simple
examples of unsafe (i.e. non-linear) usage of PartialSession.

Below shows an example Ferrite program p1 of type Session<SendValue<String, End>> is
constructed, but in the executor closure both the client endpoints and the provider endpoint
are ignored. As a result, p1 violates the linearity constraint of session types and never sends
any string value or signal for termination.
let p1: Session<SendValue<String, End>>

= PartialSession { executor: Box::pin(async |_ctx, _provider_end| { }) };

Below shows an example client, which calls a Ferrite program p2 of type ReceiveValue<
String, End> by directly running its executor. The client creates an endpoint pair but drops
the client endpoint. It then executes p2 with the provider endpoint. However because the
client endpoint is dropped, p2 fails to receive any value, and the program results in a deadlock.
let p2: Session<ReceiveValue<String, End>> = ...;
let (provider_end, _client_end) = <ReceiveValue<String, End>>::create_endpoints();
(p2.executor)((), provider_end).await;

ECOOP 2022

22:44 Ferrite: A Judgmental Embedding of Session Types in Rust

From the examples above we can see that direct access to the executor field is unsafe.
The PartialSession is used with care within Ferrite to ensure that linearity is enforced in
the implementation. Externally, the run_session function is provided for executing Ferrite
programs of type Session<End>, as only such programs can be executed safely without
additional safe guard.

C Rust as a Host Language

In this section, we address some common questions arise from the choice of using Rust as a
host language for Ferrite.

C.1 Benefits of Affine Type System
The affine type system in Rust helps Ferrite to better verify the correctness of its underlying
implementation. Internally, Ferrite uses one-shot Rust channels to implement the communic-
ation. The affine property in Rust helps us guarantee that our underlying implementation
cannot accidentally send two payloads through the one-shot channels.

Ferrite user programs also benefit from the affine type system in Rust. Ferrite constructs
accept continuation closures with the FnOnce trait bound, to guarantee that the continuation
cannot be called more than once. As a result, Rust values can be moved inside the continuation
closures and work more efficiently without requiring copies to be made. Similarly, the
send/receive value constructs works with the affine type system in Rust, so values such as
byte arrays can be sent efficiently in Ferrite without requiring copying.

In comparison, while previous works in Haskell and OCaml are able to enforce the linear
usage in session type programs, the structural semantics of these languages may impose
challenge on the compiler from being able to optimize the use of linear resources inside the
program. In particular, the indexed monad that encapsulates the session type program is
itself copyable. As a result, continuations cannot guarantee that the variables they capture
cannot be used more than once.

C.2 Support for Lifetime
At the moment, Ferrite requires the continuations to have 'static lifetime. This is due to the
underlying async implementations requiring spawned async tasks to have 'static lifetime.
We plan to overcome this limitation in the future by finding ways to spawn async tasks with
a scoped lifetime. Once that limitation is overcome, it will also be possible to access mutable
references inside scoped Ferrite programs.

C.3 Type Errors
Type error messages in Ferrite are expressed in terms of the structs and traits of Ferrite. As
a result it is not difficult for users to read and understand the error messages, provided they
are familiar with the basic terminology used by Ferrite.

Consider the example hello_client from section 4
let hello_client: Session<

ReceiveChannel<ReceiveValue<String, End>, End>>
= receive_channel(| a | {

send_value_to(a, "Alice".to_string(),
wait(a, terminate())

) });

R. F. Chen, S. Balzer, and B. Toninho 22:45

If we were to forget to wait for channel a and terminate immediately, the following error
is generated:
let hello_client: Session<

ReceiveChannel<ReceiveValue<String, End>, End>>
= receive_channel(| a | {

send_value_to(a, "Alice".to_string(),
// the trait `EmptyContext` is not implemented for `(End, ())`
terminate()

) });

This indicates that the linear context (End, ()) is not empty, and as a result the terminate
construct cannot be used.

If we try to wait for a to terminate before sending a value to a, we get a different error:
let hello_client: Session<

ReceiveChannel<ReceiveValue<String, End>, End>>
= receive_channel(| a | {

// the trait `ContextLens<(ReceiveValue<String, End>, ()), End, Empty>`
// is not implemented for `Z`
wait(a, terminate())

});

The error message indicates an invalid use of a context lens to update a channel of
the wrong session type in the linear context. Recall from section 3.2 that the constraint
Z: ContextLens<(ReceiveValue<String, End>, ()), End, Empty> would require the first channel
(Z) in the linear context ((ReceiveValue<String, End>, ())) to be of session type End, but here
the session type of the first channel in the linear context is ReceiveValue<String, End>.

Error messages such as the above are commonly generated by non-linear use of channels
or a mismatch in session types. While they require some understanding of the concepts such
as linear context and context lenses, the error messages are not too difficult to decipher.

C.4 Hole Driven Development
Aside from designing readable error messages, we recommend a hole-driven approach of
writing Ferrite programs to minimize the chance of users encountering complex type errors.
In this approach, the user would implement a Ferrite program in small steps, with the
continuation filled with todo!() as a placeholder. We demonstrate this by showing how a
new user would implement the hello_provider program in section 4:
let hello_provider: Session<SendValue<String, End>> = todo!();

The todo!() macro allows us to put a placeholder in unfinished Rust code so that we can
try and compile the code and see if there is any type error. By writing our code step by step
and filling the blank with todo!(), we can narrow down the potential places where our code
is incorrect. At this stage, we should be able to compile our program with no error. This
shows that the protocol that we have defined, SendValue<String, End>, is a valid session type.
If we have gotten a compile error otherwise, it could have been caused by us trying to write
an invalid protocol like SendValue<String, String>.

We can try to compile our code again, and Rust will accept the code we have written.
However the use of todo!() does not tell us how we should continue our program. In Rust,
we could use the unit type () to deliberately cause a compile error:
let hello_provider: Session<SendValue<String, End>> =

send_value("Hello World!".to_string(), ());

Now if we compile our code, we would get a compile error from Rust:

ECOOP 2022

22:46 Ferrite: A Judgmental Embedding of Session Types in Rust

error[E0308]: mismatched types
|
| send_value("Hello World!".to_string(), ());
| ^^ expected struct PartialSession, found ()
|
= note: expected struct PartialSession<(), End>

found unit type ()

With this compile error, we can know that we are supposed to fill in the hole with Rust
expression that has the type PartialSession<(), End>. Sometimes we may also intuitively
think of a type that should be in a hole. In such case, we can also use the todo!() as T
pattern to verify if our intuition is correct. So we can for example write:

let hello_provider: Session<SendValue<String, End>> =
send_value("Hello World!".to_string(), todo!() as Session<End>);

And our code will compile successfully. If we were to annotate it with an invalid type,
such as todo()! as Session<ReceiveValue<String, End>> again, Rust will also return a compile
error. Now that we know the continuation needs to have the type Session<End>, we can then
fill in the blank with terminate() and complete our program.

D Challenges in Using Ferrite on Servo

We report on some of the challenges that we faced when implementing the Servo canvas
component in Ferrite in Section 7, and how the challenges are addressed.

D.1 Interprocess Communication

As a browser rendering engine, Servo puts much emphasis on security, using sandboxing to
ensure that malicious web applications cannot easily compromise a user’s computer. A main
design outcome of this emphasis is that the provider and client are executed in separate
OS processes. Regular Rust channels cannot be used for communication between different
processes, because the underlying implementation requires a common address space. As a
result, Servo uses the ipc_channel crate to create inter-process communication (IPC) channels
for communication between the provider and client of its components. The IPC channels
in Servo create a local file socket and serialize the Rust messages to send them over the
socket as raw bytes. This requires the channel payload types to implement the Serialize and
Deserialize traits for them to be usable in the IPC channels. IPC channels are themselves
serializable, so it is possible to send an IPC channel over another IPC channel.

Since Ferrite internally makes use of tokio channels for communication, this presents
challenges since they cannot be serialized and sent through Servo’s IPC channels. For the
purpose of the evaluation, we implemented our own serialization of SharedChannel. Our
serialization involves creating a bidirectional pair of opaque (untyped) IPC channels, and
forwards all communication from the regular Rust channels to the IPC channels. This
approach works, albeit inefficiently, as there needs to be two background tasks in the provider
and client processes to perform the actual serialization and forwarding. We benchmarked
the performance of our implementation, revealing a decrease of about a factor of ten. We
have not spent much effort on fine-tuning our serialization implementation because the
primary purpose of this study is to show that the message protocols underlying Servo’s
canvas component can be made explicit and verified in Ferrite.

R. F. Chen, S. Balzer, and B. Toninho 22:47

D.2 Latency in Acquire-Release
Servo’s canvas component has very high performance demands, requiring the sending of
thousands of messages in a few milliseconds. In our initial implementation, we found the
Ferrite implementation to be lacking in performance, despite not saturating the CPU usage. A
closer inspection revealed that the bottleneck was in the latency caused by the acquire-release
cycle introduced in the implementation of shared session types. In Ferrite, the client of a
shared channel needs to first send an acquire to the shared provider and then wait for the
acknowledgment before it can start communicating through the acquired linear channel. This
round trip latency becomes significant if the communication frequency is high. Consider
two canvas messages being sent right after each other. In the original design, the second
message can be sent immediately after the first message has been sent. In the Ferrite
implementation, on the other hand, the two messages are sent in two separate acquire-release
cycles, interspersing additional acquire and release messages and possibly delays because of
blocking acquires.

The latency is aggravated by the use of IPC channels. Since IPC channels are mapped to
file sockets, efficient parallel communications must be multiplexed among a small number
of channels. For the case of Ferrite shared channels, the multiplexing currently is done by
queuing and forwarding the requests in serial, which can be inefficient. As a workaround,
we batch messages on the client side, such that trivial messages like LineTo are stored in a
local Vec<CanvasMessage> buffer before being sent to the provider in a new Messages branch
in CanvasOps. The buffered messages are sent in batch every ten milliseconds, or when a
non-trivial protocol such as GetImageData is called. With batching, we have gained enough
performance to render complex canvases smoothly.

ECOOP 2022

	1 Introduction
	2 Background
	3 Key Ideas
	3.1 SILLR – A stepping stone from SILLS to Ferrite
	3.2 Judgmental Embedding
	3.3 Recursive and Shared Session Types in Ferrite
	3.4 N-ary Choice and Linear Context

	4 Ferrite – A Judgmental Embedding of SILLR
	4.1 Encoding Typing Rules via Judgmental Embedding
	4.2 Manipulating the Linear Context
	4.3 Communication
	4.4 Executing Ferrite Programs

	5 Recursive and Shared Session Types
	5.1 Recursive Session Types
	5.2 Shared Session Types

	6 N-ary Choice
	6.1 Prisms
	6.2 Binary Branching
	6.3 N-ary Branching

	7 Evaluation
	7.1 Servo Canvas Component
	7.2 Canvas Protocol in Ferrite
	7.3 Performance Evaluation

	8 Related and Future Work
	A Typing Rules
	A.1 Typing Rules for SILLR
	A.2 Typing Constructs in Ferrite
	A.2.1 Forward
	A.2.2 Termination
	A.2.3 Communication
	A.2.4 Receive Value
	A.2.5 Send Value
	A.2.6 Receive Channel
	A.2.7 Send Channel
	A.2.8 External Choice
	A.2.9 Internal Choice
	A.2.10 Recursive Session Types
	A.2.11 Shared Session Types

	B Dynamics
	B.1 One-shot Channels
	B.2 Protocol Definitions
	B.3 Linear Context
	B.4 Session Dynamics

	C Rust as a Host Language
	C.1 Benefits of Affine Type System
	C.2 Support for Lifetime
	C.3 Type Errors
	C.4 Hole Driven Development

	D Challenges in Using Ferrite on Servo
	D.1 Interprocess Communication
	D.2 Latency in Acquire-Release

