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We investigate strong normalization, confluence, and behavioral equality in the realm 
of session-based concurrency. These interrelated issues underpin advanced correctness 
analysis in models of structured communications. The starting point for our study is an 
interpretation of linear logic propositions as session types for communicating processes, 
proposed in prior work. Strong normalization and confluence are established by developing 
a theory of logical relations. Defined upon a linear type structure, our logical relations 
remain remarkably similar to those for functional languages. We also introduce a natural 
notion of observational equivalence for session-typed processes. Strong normalization and 
confluence come in handy in the associated coinductive reasoning: as applications, we 
prove that all proof conversions induced by the logic interpretation actually express 
observational equivalences, and explain how type isomorphisms resulting from linear logic 
equivalences are realized by coercions between interface types of session-based concurrent 
systems.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Modern computing systems rely heavily on the communication between distributed software artifacts. Hence, to a large 
extent, guaranteeing system correctness amounts to ensuring consistent dialogues between such artifacts. This is a chal-
lenging task, given the complex interaction patterns that communicating systems usually feature. Session-based concurrency
provides a foundational approach to communication correctness: concurrent dialogues are structured into basic units called 
sessions; descriptions of the interaction patterns are then abstracted as session types [22,23,17], which are statically checked 
against specifications. These specifications are usually given in the π -calculus [31,42], and so we obtain processes interacting 
on so-called session channels which connect exactly two subsystems. The discipline of session types ensures protocols in 
which actions always occur in dual pairs: when one partner sends, the other receives; when one partner offers a selection, 
the other chooses; when a session terminates, no further interaction may occur. New sessions may be dynamically created 
by invoking shared servers. While concurrency arises in the simultaneous execution of sessions, mobility results from the 
exchange of session and server names.

The goal of this paper is to investigate strong normalization, confluence, and typed behavioral equivalences for session-
typed, communicating processes. These interrelated issues underpin advanced correctness analysis in models of structured 
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communications. Our study builds upon the interpretation of linear logic propositions as session types put forward by Caires 
and Pfenning in [11]. In a concurrent setting, such an interpretation defines a tight propositions-as-types/proofs-as-programs 
correspondence, in the style of the Curry–Howard isomorphism for the simply-typed λ-calculus [24]. In the interpretation, 
types (linear logic propositions) are assigned to names (communication channels) and describe their session protocol; typ-
ing rules correspond to linear sequent calculus proof rules and processes correspond to proof objects in logic derivations. 
Moreover, process reduction may be simulated by proof conversions and reductions, and vice versa. As a result, typed pro-
cesses enjoy strong forms of subject reduction (type preservation) and global progress (deadlock-freedom). While the former 
states that well-typed processes always evolve to well-typed processes (a safety property), the latter says that well-typed 
processes will never get into a stuck state (a liveness property). These strong correctness properties make the framework 
in [11] a convenient basis for our study of strong normalization, confluence, and behavioral equivalences. Well-studied in 
sequential settings, these three interrelated issues constitute substantial challenges for theories of communicating processes, 
as we motivate next.

In typed functional calculi, strong normalization ensures that well-typed terms do not have infinite reduction sequences. 
Types rule out divergent computations; termination of reduction entails consistency of the corresponding logical systems. 
In the realm of communicating processes, reduction captures atomic synchronization; associated behavioral types exclude 
unintended structured interactions. As a result, strong normalization acquires an enhanced significance in a concurrent 
setting. In fact, even if subject reduction and progress are typically regarded as the key correctness guarantees for processes, 
requiring strongly normalizing behaviors is also most sensible: while from a global perspective systems are meant to run 
forever, at a local level we wish responsive participants which always react within a finite amount of time, and never engage 
into infinite internal behavior. For instance, in server-client applications it is critical for clients to be sure that running code 
provided by the server will not cause them to get stuck indefinitely (as in a denial-of-service attack, or just due to some 
bug).

Closely related to strong normalization, confluence is another appealing property. In a communication-based setting, 
confluence would strengthen correctness guarantees by ensuring predictability of structured interactions. This benefit may 
be more concretely seen by considering the principle of typed process composition derived from the logic interpretation. 
In [11], typing judgments specify both the session behavior that a process offers (or implements) and the set of (unrestricted 
and linear) behaviors that it requires to do so. For instance, the judgment

u:B ; x1:A1, . . . , xn:An � P :: z:C (1)

specifies a process P which offers behavior C along name z by making use of an unrestricted behavior B (a replicated server, 
available on name u) and of linear behaviors A1, . . . , An (offered on names x1, . . . , xn). A process implementing one of these 
linear dependencies could be specified by the judgment

· ; · � S1 :: x1:A1 (2)

which says that process S1 does not depend on any linear or unrestricted session behaviors to offer behavior A1 along 
name x1. We write ‘·’ to denote the empty set of dependencies. Given a typed interface such as (1), to satisfy each of 
the declared behavioral dependencies we need to first (i) compose the given process with another one which realizes the 
required behavior, and then (ii) restrict the name in which the behavior is required/offered, to avoid interferences. As a 
result, the interactions between the given process and the processes implementing its dependencies are unobservable. In 
the case of (1) and (2) above we would obtain the following typed composition:

u:B ; x2:A2, . . . , xn:An � (νx1)(S1 | P ) :: z:C (3)

Hence, interactions on name x1 become unobservable in the resulting composed process; its set of dependencies combines 
those of P (excepting x1:A1) and those of S1 (in this case, the empty set). From (3) we could proceed similarly for all the 
behaviors declared in the left-hand side, thus obtaining a typed process without dependencies:

· ; · � (νm̃)
(!u(y).R

∣∣ S1
∣∣ · · · ∣∣ Sn

∣∣ P
) :: z:C (4)

with m̃ = u, x1, . . . , xn and · ; · � R :: y:B . In the above process, all behavioral dependencies arise as internal reductions; the 
only visible behavior takes place on name z. Notice that processes R, S1, . . . , Sn may well have internal behavior on their 
own. For processes such as the one in (4), the interplay of confluence with strong normalization would be significant, as 
it could crucially ensure that session behavior as declared by judgments in the right-hand side (z:C in this case) will be 
always offered, independently from any arbitrary interleaving of internal reductions from different sources.

Now, in sharp contrast to the normalizing, confluent nature of computation in many typed functional calculi, process 
calculi are inherently non-terminating, non-confluent models of concurrent computation. Hence, unsurprisingly, ensuring 
strong normalization and confluence in calculi for concurrency is a hard problem: in (variants of) the π -calculus, proofs 
require heavy constraints on the language and/or its types, often relying on ad-hoc machineries (see [15] for a survey on 
termination in process calculi). As a first challenge, we wonder: building upon our linear type structure, directly obtained 
from the Curry–Howard correspondence in [11], can we establish useful forms of strong normalization and confluence for 
session-typed, communicating processes?



256 J.A. Pérez et al. / Information and Computation 239 (2014) 254–302
While from an operational standpoint strong normalization and confluence are relevant, at a more foundational level 
they are also related to notions of typed equality. For instance, in the simply-typed λ-calculus, strong normalization and 
confluence ensure that normal forms exist and are unique, and entail decidability of denotational equality. In our concur-
rent setting, strong normalization is also related to behavioral equivalence—arguably the most basic notion in a theory of 
processes. Behavioral equivalences enable us to formally assert when two process terms denote the “same behavior”. A 
first, basic connection between strong normalization, confluence, and behavioral equivalence is obtained by means of sub-
ject reduction/type preservation: process behavior (as declared by typing judgments) is preserved along arbitrary reduction 
steps. Building upon this connection, any notion of behavioral equality over session-typed processes should be necessarily 
informed by the correspondence between session types and linear logic propositions. As detailed in [11], such a correspon-
dence is realized by relating proof conversions in linear logic with appropriate notions in the process setting. Interestingly, 
by virtue of such proof conversions the correspondence already induces a notion of typed process equality. As illustration, 
consider the following process equalities, two instances of proof conversions:

(νx)
(

P
∣∣ z(y).(Q | R)

) �c z(y).
(
(νx)(P | Q )

∣∣ R
)

(5)

x(y).z(w).P �c z(w).x(y).P (with x �= z) (6)

In our framework, equality (5) results from the interplay of typed constructs for (bound) output (on name z) and process 
composition, whereas (6) arises from the typing of two independent sessions (on names x and z). Crucially, in both cases, 
the equated processes are syntactically very different and yet they are associated to the same typing judgment—that is, their 
typed session interface decrees the same behavior. As a second challenge, we ask: can we define a notion of typed process 
equality that is both natural and intuitive, that enjoys good properties (e.g., congruence), and that captures the notion of 
equality that is already induced by the logic interpretation via proof conversions?

A clear understanding of the status of strong normalization, confluence, and process equalities would provide a fun-
damental stepping stone towards a deeper understanding on how session types delineate communications. That is, basic 
behavioral equivalences over equally typed processes (in which strong normalization and confluence are expected to play 
substantial roles) may also provide a basis for reasoning about the behavior of processes with different types. In fact, given 
that session types represent service interfaces of distributed software artifacts, it is legitimate to ask whether the logic in-
terpretation enables reasoning techniques at the level of session types. Such techniques appear very useful from a pragmatic 
perspective—for instance, they could enable natural notions of interface compatibility. Reasoning techniques at the level of 
types would also be useful from the more foundational standpoint of typed equality. To illustrate this, let us consider the 
session-typed interpretation of ⊗ given in [11], whereby an object of type A ⊗ B denotes a session that first outputs a 
channel of type A and then behaves as B . This intuitive description may suggest an asymmetric interpretation, as opposed 
to the well-known symmetric nature of ⊗. This apparent asymmetry is already clarified in [11]: using a suitable typed 
process, it is shown how a session of type A ⊗ B may be coerced into one of type B ⊗ A (and viceversa). This justification, 
however, leaves open the general issue of equality over session types. In fact, we wish to understand the formal meaning in 
our setting of a notion of typed equality, in such a way that expected logic principles such as

A ⊗ B � B ⊗ A (7)

are properly justified. A final challenge would be then: building upon typed process equivalences, can we derive a sim-
ple notion of equality over session types that justifies/validates principles such as (7) above but also arbitrary interface 
transformations?

With the aim of addressing the challenges described above, the present paper offers the following technical contribu-
tions:

(1) We present a simple theory of logical relations for session-typed processes, and use it to show that well-typed processes 
are both strongly normalizing and confluent.
The method of logical relations [43,44] has proved to be extremely productive in the functional setting; properties such 
as strong normalization and parametricity can be established via logical relations. Although the logic interpretation 
in [11] assigns types to names (and not to terms, as in the typed λ-calculus), quite remarkably, our linear logical 
relations are truly defined on the structure of types—as in logical relations for the typed λ-calculus [43,44]. This allows 
for simple proofs of strong normalization and confluence, which follow closely the principles of the (linear) type system. 
To our knowledge, ours are the first proofs of their kind in the context of session-based concurrency.

(2) We investigate a behavioral theory for session-typed processes, defined as a typed contextual equivalence which follows 
the principles of the logical interpretation.
Well-studied in the untyped case, behavioral equivalences have been only little studied for session-typed processes 
(in fact, the only previous work we are aware of in the binary setting is [27]). We introduce typed context bisimilarity, 
a natural notion of observational equivalence for typed processes. We show how, thanks to the combination of type 
preservation, progress, strong normalization, and confluence, typed context bisimilarity satisfies τ -inertness, as studied 
by Groote and Sellink [20]. Intuitively, τ -inertness says that reduction (internal behavior) does not change process 
behavior. This is most relevant for verification, as it means that our well-typed processes can perform arbitrarily many 



J.A. Pérez et al. / Information and Computation 239 (2014) 254–302 257
reductions while remaining in the same equivalence class. In our setting, this guarantee is neatly complemented by 
strong normalization, which ensures finitely many reductions.

(3) By relying on the above results, we then develop two applications, which clarify further the nature of the logical inter-
pretation of session types put forward in [11]:
– We prove that proof conversions are sound with respect to observational equivalence. This way, processes equalities 

induced by proof conversions (such as (5) and (6) above) correspond to typed context bisimilarities. This soundness 
result elegantly explains subtle forms of causality that arise in the execution of concurrent sessions.

– Building upon typed bisimilarity, we offer a characterization of type isomorphisms (see, e.g., [18]). Intuitively, such 
isomorphisms result from linear logic equivalences which are realized by process coercions. Our characterization 
allows us to show that principles such as (7) above are indeed isomorphisms.

Our applications thus shed further light on the relationship between linear logic and structured communications. Strong 
normalization and confluence properties are central in the associated coinductive reasoning, intuitively because in the 
bisimulation game strong transitions are always matched by weak transitions with finite and confluent internal behavior.

Organization Next, in Section 2, we present our process model, a synchronous π -calculus with guarded choice. Section 3
recalls the type system derived from the logical interpretation and main results from [11]. Section 4 presents proof con-
versions, describing inference permutability issues derived from the logical interpretation. Section 5 presents linear logical 
relations for typed processes, as well as the proof of strong normalization and confluence. Section 6 introduces typed con-
text bisimilarity and studies its main properties. Section 7 presents our two applications. Finally, Section 8 discusses related 
work, and Section 9 collects some final remarks. A number of proofs and technical details have been moved to the Appendix.

This paper is an extended version of the conference paper [34]. In this presentation, we provide full technical details 
and include some new material: Section 4, on proof conversions; Section 5.3, on a proof of confluence via linear logical 
relations; and the proof of τ -inertness given in Section 6.

2. Process model: syntax and semantics

We introduce the syntax and operational semantics of the synchronous π -calculus [42] extended with (binary) guarded 
choice.

Definition 2.1 (Processes). Given an infinite set Λ of names (ranged over x, y, z, u, v), the set of processes (ranged over 
P , Q , R) is defined by

P :: = 0 | P | Q | (ν y)P | xy.P | x(y).P | !x(y).P
| [x ↔ y] | x.inl; P | x.inr; P | x.case(P , Q ).

The operators 0, P | Q , and (ν y)P comprise the static fragment of any π -calculus: they represent inaction, parallel 
composition, and name restriction, respectively. We then have prefixed processes xy.P and x(y).P : while the former denotes 
a process which sends name y on x and then proceeds as P , the latter denotes a process which receives a name z on x, and 
then proceeds as P with parameter y replaced by z. Process !x(y).P denotes replicated (persistent) input. Following [40], 
we write x(y) as an abbreviation for (ν y)xy. The forwarding construct [x ↔ y] equates names x and y; it is a primitive 
representation of a copycat process, akin to the link processes used in internal mobility encodings of name-passing [5]. 
As described in Section 3, this construct allows for a simple identity axiom in the type system [45]. The remaining three 
operators define a minimal labeled choice mechanism, comparable to the n-ary branching constructs found in standard 
session π -calculi (see, e.g., [23]). Without loss of generality we restrict our model to binary choice. In restriction (ν y)P and 
input x(y).P the distinguished occurrence of name y is binding, with scope P .

The set of free names of a process P is denoted by fn(P ). A process is closed if it does not contain free occurrences of 
names. We identify process up to consistent renaming of bound names, writing ≡α for this congruence. We write P {x/y}
for the capture-avoiding substitution of x for y in P . While structural congruence expresses basic identities on the structure 
of processes, reduction expresses the behavior of processes.

Definition 2.2. Structural congruence (P ≡ Q ) is the least congruence relation on processes such that

P | 0 ≡ P P ≡α Q ⇒ P ≡ Q
P | Q ≡ Q | P P | (Q | R) ≡ (P | Q ) | R
(νx)0 ≡ 0 x /∈ fn(P ) ⇒ P | (νx)Q ≡ (νx)(P | Q )

(νx)(ν y)P ≡ (ν y)(νx)P [x ↔ y] ≡ [y ↔ x].

Definition 2.3. Reduction (P → Q ) is the binary relation on processes defined by the rules in Fig. 1.

By definition, reduction is closed under ≡. It specifies the computations a process performs on its own. To define the 
interactions of a process with its environment, we extend the early transition system for the π -calculus [42] with labels 
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x〈y〉.Q | x(z).P → Q | P {y/z} x.inr; P | x.case(Q , R) → P | R
x〈y〉.Q | !x(z).P → Q | P {y/z} | !x(z).P x.inl; P | x.case(Q , R) → P | Q
(νx)([x ↔ y] | P ) → P {y/x} (y /∈ fn(P )) P → Q ⇒ (ν y)P → (ν y)Q
P ≡ P ′, P ′ → Q ′, Q ′ ≡ Q ⇒ P → Q Q → Q ′ ⇒ P | Q → P | Q ′

Fig. 1. Process reduction.

(out)

xy.P
xy−−→ P

(in)

x(y).P
x(z)−−−→ P {z/y}

(id)

(νx)([x ↔ y] | P )
τ−→ P {y/x}

(par)
P α−→ Q bn(α) ∩ fn(R) = ∅

P | R α−→ Q | R

(com)

P α−→ P ′ Q α−→ Q ′

P | Q τ−→ P ′ | Q ′

(res)

P α−→ Q y /∈ fn(α)

(ν y)P α−→ (ν y)Q

(open)

P
xy−−→ Q

(ν y)P
x(y)−−−→ Q

(close)

P
x(y)−−−→ P ′ Q

x(y)−−−→ Q ′ y /∈ fn(Q )

P | Q τ−→ (ν y)(P ′ | Q ′)

(rep)

!x(y).P
x(z)−−−→ P {z/y} | !x(y).P

(lout)

x.inl; P x.inl−−−→ P

(rout)

x.inr; P x.inr−−−→ P

(lin)

x.case(P , Q )
x.inl−−−→ P

(rin)

x.case(P , Q )
x.inr−−−→ Q

Fig. 2. π -Calculus labeled transition system.

and transition rules for the choice and forwarding constructs. A transition P α−→ Q denotes that P may evolve to Q by 
performing the action represented by label α. Labels are given by:

α:: = x(y) | xy | x(y) | x.inl | x.inl | x.inr | x.inr | τ
Actions are input x(y), the left/right offers x.inl and x.inr, and their matching co-actions, respectively, the free output xy and 
bound output x(y) actions, and the left/ right selections x.inl and x.inr. The bound output x(y) denotes extrusion of a fresh 
name y along x. Internal action is denoted by τ . In general, an action α (resp. α) requires a matching α (resp. α) in the 
environment to enable progress, as specified by the transition rules. For a label α, we define the sets fn(α) and bn(α) of 
free and bound names, respectively, as usual. We denote by s(α) the subject of α (e.g., x in x(y)).

Definition 2.4 (Labeled transition system). The relation labeled transition (P
α→ Q ) is defined by the rules in Fig. 2, together 

with the symmetric versions of rules (par), (com), and (close).

Hence, rules in Fig. 2 extend standard rules for the π -calculus with rules for the forwarding construct (cf. rule (id)) and 
the labeled choice operator (cf. rules (lout), (rout), (lin), and (rin)). Weak transitions are also defined as usual. Let us write 
�⇒ for the reflexive, transitive closure of τ−→ and ρ1ρ2 for the composition of relations ρ1, ρ2. Given α �= τ , notation α�⇒
stands for �⇒ α−→�⇒ and τ�⇒ stands for �⇒.

We close this section by recalling some basic facts about reduction, structural congruence, and labeled transition, namely 
closure of labeled transitions under structural congruence, and coincidence of τ -labeled transition and reduction:

Proposition 2.1. (See [42].) Let P be a π -calculus process.

(1) If P ≡ α−→ Q then P α−→≡ Q .
(2) P → Q if and only if P τ−→≡ Q .

3. Session types as intuitionistic linear logic propositions

As anticipated in the introduction, the type structure coincides with intuitionistic linear logic [19,2], omitting atomic 
formulas and the additive constants � and 0.

Definition 3.1 (Types). Types (A, B, C) are given by

A, B :: = 1 | !A | A ⊗ B | A�B | A & B | A ⊕ B.

Types are assigned to (session) channels/names, and are interpreted as a form of session types; an assignment x:A
enforces the use of name x according to discipline A. We use A ⊗ B to type a channel that first performs an output to its 
partner (sending a session channel of type A) before proceeding as specified by B . Similarly, A�B types a channel that 
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first performs an input from its partner (receiving a session channel of type A) before proceeding as specified by B . Type 1
represents a terminated session, no further interaction will take place on it; names of type 1 may still be passed around in 
sessions, as opaque values. A&B types a channel that offers its partner a choice between an A behavior (“left” choice) and 
a B behavior (“right” choice). Dually, A ⊕ B types a session that either selects “left” and then proceeds as specified by A, 
or else selects “right”, and then proceeds as specified by B . Type !A types a shared (non-linear) channel, to be used by a 
server for spawning an arbitrary number of new sessions (possibly none), each one conforming to type A.

A type environment is a set of type assignments of the form x:A, where A is a type and x is a name, the names being 
pairwise disjoint. Type environments may be subject to different structural principles. There are at least three sensible 
principles. The first one, exchange, indicates that the ordering of type assignments does not matter. The second principle, 
weakening, says that type assignments need not be used. Finally, the contraction principle says that type assignments may 
be duplicated. We write Δ for the linear type environment, subject only to exchange; we write Γ for the unrestricted type 
environment, subject to exchange, weakening, and contraction principles.

A type judgment is of the form

Γ ;Δ � P :: z:C (8)

where name declarations in Γ are always propagated unchanged to all premises in the typing rules, while name declarations 
in Δ are handled multiplicatively or additively, depending on the nature of the connective being defined. The domains of 
Γ, Δ and z:C are required to be pairwise disjoint. The judgment in (8) asserts: P is ensured to safely provide a usage of 
name z according to the behavior specified by type C , whenever composed with any process environment providing usages 
of names according to the behaviors specified by assignments in Γ and Δ.

Our typing judgment defines an intuitive reading of processes. Given (8), process P represents a system providing be-
havior C at channel z, building on “services” declared in Γ and Δ. This way, for instance, a client Q that relies on external 
services and does not provide any would be typed as Γ ; Δ � Q :: −:1, where we write − to denote a “dummy name” that 
does not occur in Q . A system typed as Γ ; Δ � R :: z:!A represents a shared server. Interestingly, the asymmetry induced 
by the intuitionistic interpretation of !A enforces locality of shared names but not of linear (session names), which exactly 
corresponds to the intended model of sessions.

Notation 3.1. When empty, environments Γ and Δ are denoted by ‘·’. Also, we often use T for right-hand side singleton environments 
(e.g., z:C). Furthermore, we sometimes write � P :: T to stand for · ; · � P :: T .

We briefly comment on the rules that define the typing judgment, given in Fig. 3. Rule (Tid) defines identity in terms of 
the forwarding construct. The so-called left rules (marked with L) define how to use a session of a given type, whereas the 
right rules (marked with R) define how to offer a session of a given type. The type 1 which is associated with the lack of 
observable behavior is offered by the inactive process 0, as specified in rule (T1R). Using such a session thus requires no 
behavior (rule T1L).

Offering a session of type x:A ⊗ B , as specified in rule (T⊗R), is achieved by performing the output of a fresh name y
along x, which will offer the session behavior A specified by P , after which Q will then offer the session behavior x:B . 
Since in rule (T⊗R) the sent name is always fresh, our typed calculus conforms to an internal mobility discipline [5,40], 
without loss of expressiveness. Note how P and Q must use disjoint sets of ambient sessions. Using a session of such a 
type is achieved by the corresponding input behavior. The rules for � are dual to those of ⊗: offering x:A�B is achieved 
by performing an input of y along x, after which y is used according to the session behavior A and x offers the session 
behavior B . Using such a session is achieved by providing the appropriate output actions.

The cut rules (Tcut) and (Tcut!) define typed linear and unrestricted session composition, respectively. They follow the 
“composition plus hiding” principle [1], extended to a name-passing setting. Other linear typing rules for parallel com-
position are derivable—see [11]. Relevant to our current development is the following derivable rule, defining independent 
parallel composition:

(indComp)

Γ ;Δ1 � P :: − : 1 Γ ;Δ2 � Q :: T

Γ ;Δ1,Δ2 � P | Q :: T

Rule (T!R) specifies that offering a session of type !A requires a replicated input along x, where each replica will offer 
the behavior A along the received name (without using any linear sessions). Offering an external choice, as specified by rule 
(T & R), is achieved by a case prefix, which waits for the choice, proceeding accordingly. Using such a session is achieved 
by performing the appropriate selections (rules (T & L1) and (T & L2)). The rules for internal choice ⊕ are dual.

We always consider processes modulo structural congruence; hence, typability is closed under ≡ by definition. πDILL
enjoys the usual properties of equivariance, weakening, and contraction in Γ . The coverage property also holds: if Γ ; Δ �
P :: z:A then fn(P ) ⊆ Γ ∪ Δ ∪ {z}. In the presence of type-annotated restrictions (νx:A)P , as usual in typed π -calculi [42], 
type-checking is decidable.

Session type constructors thus correspond directly to intuitionistic linear logic connectives. By erasing processes, typing 
judgments in πDILL correspond to DILL, a sequent formulation of Barber’s dual intuitionistic linear logic [2,13]. Below 
we informally recall this correspondence; see [11,12] for details.
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(Tid)

Γ ; x:A � [x ↔ z] :: z:A

(T1L)

Γ ;Δ � P :: T

Γ ;Δ, x:1 � P :: T

(T1R)

Γ ; · � 0 :: x:1

(T⊗L)

Γ ;Δ, y:A, x:B � P :: T

Γ ;Δ, x:A ⊗ B � x(y).P :: T

(T⊗R)

Γ ;Δ � P :: y:A Γ ;Δ′ � Q :: x:B
Γ ;Δ,Δ′ � x(y).(P | Q ) :: x:A ⊗ B

(T�L)

Γ ;Δ � P :: y:A Γ ;Δ′, x:B � Q :: T

Γ ;Δ,Δ′, x:A�B � x(y).(P | Q ) :: T

(T�R)

Γ ;Δ, y:A � P :: x:B
Γ ;Δ � x(y).P :: x:A�B

(Tcut)
Γ ;Δ � P :: x:A Γ ;Δ′, x:A � Q :: T

Γ ;Δ,Δ′ � (νx)(P | Q ) :: T

(Tcut!)
Γ ; · � P :: y:A Γ, u:A;Δ � Q :: T

Γ ;Δ � (νu)(!u(y).P | Q ) :: T

(T!L)

Γ, u:A;Δ � P {u/x} :: T

Γ ;Δ, x:!A � P :: T

(Tcopy)

Γ, u:A;Δ, y:A � P :: T

Γ, u:A;Δ � u(y).P :: T

(T!R)

Γ ; · � Q :: y:A

Γ ; · � !x(y).Q :: x:!A

(T⊕L)

Γ ;Δ, x:A � P :: T Γ ;Δ, x:B � Q :: T

Γ ;Δ, x:A ⊕ B � x.case(P , Q ) :: T

(T&R)

Γ ;Δ � P :: x:A Γ ;Δ � Q :: x:B
Γ ;Δ � x.case(P , Q ) :: x:A & B

(T&L1)

Γ ;Δ, x:A � P :: T

Γ ;Δ, x:A & B � x.inl; P :: T

(T⊕R1)

Γ ;Δ � P :: x:A

Γ ;Δ � x.inl; P :: x:A ⊕ B

(T&L2)

Γ ;Δ, x:B � P :: T

Γ ;Δ, x:A & B � x.inr; P :: T

(T⊕R2)

Γ ;Δ � P :: x:B
Γ ;Δ � x.inr; P :: x:A ⊕ B

Fig. 3. The type system πDILL.

DILL is equipped with a faithful proof term assignment: sequents have the form

Γ ;Δ � D : C (9)

where Γ is the unrestricted context, Δ the linear context, C a formula (i.e., a type), and D the proof term that faithfully 
represents the derivation of Γ ; Δ � C . Given the parallel structure of the two systems, if Γ ; Δ � D : A is derivable in DILL
then there is a process P and a name z such that Γ ; Δ � P :: z:A is derivable in πDILL. The converse also holds: if 
Γ ; Δ � P :: z:A is derivable in πDILL there is a derivation D that proves Γ ; Δ � D : A. This correspondence is made explicit 
by a translation from faithful proof terms to processes: given Γ ; Δ � D : C , we write D̂z for the translation of D such that 
Γ ; Δ � D̂z :: z:C .

More precisely, we have typed extraction: we write

Γ ;Δ � D � P :: z:A (10)

meaning “proof D extracts to P ”, whenever Γ ; Δ � D : A and Γ ; Δ � P :: z:A and P ≡ D̂z . Typed extraction is unique 
up to structural congruence. As processes are related by structural and computational rules, namely those involved in the 
definition of ≡ and →, derivations in DILL are related by structural and computational rules, that express certain sound 
proof transformations that arise in cut elimination. Reductions generally take place when a right rule meets a left rule for 
the same connective, and correspond to reduction steps in the process term assignment. Similarly, structural conversions in 
DILL correspond to structural equivalences in the π -calculus, since they just change the order of cuts.

We now recall some results from [11,12], on subject reduction (type preservation) and progress (deadlock-freedom) for 
well-typed processes. For any P , define live(P ) iff P ≡ (νñ)(π.Q | R), for some sequence of names ñ, a process R , and 
a non-replicated guarded process π.Q .

Theorem 3.1 (Subject reduction). If Γ ; Δ � P :: z:A and P → Q then Γ ; Δ � Q :: z:A.

Lemma 3.1. Let Γ ; Δ � D � P :: z:C. If live(P ) then there is a Q such that either (1) P → Q , or (2) P
α→ Q for α where s(α) ∈

(z, Γ, Δ). Moreover, if C = !A for some A, then s(α) �= z.

Theorem 3.2 (Progress). If · ; · � P ::z:1 and live(P ) then exists a Q such that P → Q .

We close this section recalling some other auxiliar results from [11,12].
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(νx)
(

D̂
∣∣ z(y).(Ê | F̂ )

) �c z(y).
(
(νx)(D̂ | Ê)

∣∣ F̂
)

(11)

(νx)
(

D̂
∣∣ y(z).Ê

) �c y(z).(νx)(D̂ | Ê) (12)

(νx)(D̂ | y.inl; Ê) �c y.inl; (νx)(D̂ | Ê) (13)

(νx)(D̂ | u(y).Ê) �c u(y).(νx)(D̂ | Ê) (14)

(νx)
(

D̂
∣∣ y.case(Ê, F̂ )

) �c y.case
(
(νx)(D̂ | Ê), (νx)(D̂ | F̂ )

)
(15)

(νu)
(!u(y).D̂

∣∣ 0
) �c 0 (16)

(νu)
(!u(y).D̂

∣∣ x(z).(Ê | F̂ )
) �c x(z).

(
(νu)

(!u(y).D̂
∣∣ Ê

) ∣∣ (νu)
(!u(y).D̂

∣∣ F̂
))

(17)

(νu)
((!u(y).D̂

) ∣∣ y(z).Ê
) �c y(z).(νu)

((!u(y).D̂
) ∣∣ Ê

)
(18)

(νu)
((!u(z).D̂

) ∣∣ y.inl; Ê
) �c y.inl; (νu)

((!u(z).D̂
) ∣∣ Ê

)
(19)

(νu)
(!u(z).D̂

∣∣ y.case(Ê, F̂ )
) �c y.case

(
(νu)

(!u(z).D̂
∣∣ Ê

)
, (νu)

(!u(z).D̂
∣∣ F̂

))
(20)

(νu)
(!u(y).D̂

∣∣!x(z).Ê
) �c !x(z).(νu)

(!u(y).D̂
∣∣ Ê

)
(21)

(νu)
(!u(y).D̂

∣∣ v(y).Ê
) �c v(y).(νu)

(!u(y).D̂
∣∣ Ê

)
(22)

z(w).
(

F̂
∣∣ x(y).(D̂

∣∣ Ê)
) �c x(y).

(
D̂

∣∣ z(w).( F̂
∣∣ Ê)

)
(23)

x(y).z(w).D̂ �c z(w).x(y).D̂ (24)

Fig. 4. A sample of process equalities induced by proof conversions (cf. Definition 4.1).

Lemma 3.2 (Action characterization lemmas, excerpt). Let Γ ; Δ � D�P :: x:C. Then we have:

1. If P α→ Q and C = 1 then s(α) �= x.

2. If P α→ Q and s(α) = x and C = A ⊗ B then α = x(y).

3. If P α→ Q and s(α) = x and C = A�B then α = x(y).

4. If P α→ Q and s(α) = x and C = A & B then α = x.inl or α = x.inr.

5. If P α→ Q and s(α) = x and C = A ⊕ B then α = x.inl or α = x.inr.

6. If P α→ Q and s(α) = x and C = !A then α = x(y).

Lemma 3.3 (Preservation lemma, output case). Assume

• Γ ; Δ1 � D � P :: x:A1 ⊗ A2 with P x(y)−−→ P ′; and

• Γ ; Δ2, x:A1 ⊗ A2 � E � Q :: z:C with Q x(y)−−→ Q ′ .

Then: Γ ; Δ1, Δ2 � F � R :: z : C for R ≡ (ν y)(νx)(P ′ | Q ′).

Lemma 3.4. Assume Γ ; Δ � D � P :: z:C and not live(P ). Then

1. C = 1 or C =!C ′ , for some C ′;
2. (xi : Ai) ∈ Δ implies Ai = 1 or there is B j with Ai =!B j ;
3. C =!C ′ implies P ≡ (ν x̃)(!z(y).R | R ′)

4. Inference permutability and proof conversions

Derivations in DILL are related by structural and computational rules that express sound proof transformations that 
arise in cut elimination. As mentioned in Section 3 (and detailed in [11]), in our interpretation reductions and structural 
conversions in DILL correspond to reductions and structural congruence in the π -calculus. There is, however, a group of 
conversions in DILL not considered in [11] and which do not correspond to neither reduction or structural congruence in 
the process side. We call them proof conversions: they induce a congruence on typed processes, denoted by �c .

This section illustrates proof conversions and their associated π -calculus processes. Fig. 4 presents a sample of process 
equalities extracted from them; the full list is reported in Appendix D. Each equality P �c Q in the figure is associated 
to appropriate right- and left-hand side typings; this way, e.g., equality (24) in Fig. 4—related to two applications of rule 
(T⊗L)—could be stated as

Γ ;Δ, x:A ⊗ B, z:C ⊗ D � x(y).z(w).P �c z(w).x(y).P :: T
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where Γ and Δ are environments, A, B , C , D are types, and T is a right-hand side typing. For the sake of illustration, 
however, in Fig. 4 these typings are elided, as we would like to stress on the consequences of conversions on the process 
side. Proof conversions describe the interplay of two rules in a type-preserving way: regardless of the order in which the 
two rules are applied, they lead to typing derivations with the same right- and left-hand side typings, but with syntactically 
different processes.

We first formally introduce the set of process equalities induced by proof conversions. Then, we provide intuitions about 
how such conversions arise in our setting.

Definition 4.1 (Proof conversions). We define �c as the least congruence on processes induced by the process equalities in 
Figs. D.6, D.7, D.8, and D.9 (Pages 300–301).

We classify proof conversions into five classes, denoted by (A)–(E):

(A) Permutations between rule (Tcut) and a right or left rule. This class of conversions represents the interaction of a process 
offering a service C on x, with some process requiring such service; this process varies according to the particular rule 
considered. As an example, the following inference represents the interplay of rules (T�L) and (Tcut):

Γ ;Δ1 � P :: x:C
Γ ;Δ2, x:C � Q :: z:A Γ ;Δ3, y:B � R :: T

Γ ;Δ2,Δ3, x:C, y:A�B � y(z).(Q | R) :: T
(T�L)

Γ ;Δ, y:A�B � (νx)
(

P
∣∣ y(z).(Q | R)

) :: T
(Tcut)

where Δ = Δ1, Δ2, Δ3. Permutability is justified by the following inference:

Γ ;Δ1 � P :: x:C Γ ;Δ2, x:C � Q :: z:A
Γ ;Δ1,Δ2 � (νx)(P | Q ) :: z:A

(Tcut)
Γ ;Δ3, y:B � R :: T

Γ ;Δ, y:A�B � y(z).
(
(νx)(P | Q )

∣∣ R
) :: T

(T�L)

This class of permutations is given by process equalities in Fig. D.6.
(B) Permutations between rule (Tcut) and a left rule. In contrast to permutations in class (A), this class of conversions represents 

the interaction of a process requiring a service C on x, with some process offering such a service. This distinction is due 
to the shape of rule (Tcut). To see the difference with the permutations in class (A), consider the inferences given above 
with those for the permutation below, which also concerns rules (T�L) and (Tcut). Letting Δ = Δ1, Δ2, Δ3, we have:

Γ ;Δ1 � P :: z:A Γ ;Δ2, y:B � Q :: x:C
Γ ;Δ1,Δ2, y:A�B � y(z).(P | Q ) :: x:C (T�L)

Γ ;Δ3, x:C � R :: T

Γ ;Δ, y:A�B � (νx)
(

y(z).(P | Q )
∣∣ R

) :: T
(Tcut)

Permutability is then justified by the following inference:

Γ ;Δ1 � P :: z:A
Γ ;Δ2, y:B � Q :: x:C Γ ;Δ3, x:C � R :: T

Γ ;Δ2,Δ3, y:B � (νx)(Q | R) :: T
(Tcut)

Γ ;Δ, y:A�B � y(z).
(

P
∣∣ (νx)(Q | R)

) :: T
(T�L)

This class of permutations is given by process equalities in Fig. D.6.
(C) Permutations between rule (Tcut!) and a right or left rule. This class of permutations is analogous to the two classes (A) and 

(B), but considering rule (Tcut!) instead of (Tcut). As an example, the following permutation concerns the interplay of 
rule (Tcut!) with rule (T⊕R1):

Γ ; · � P :: y:C Γ, u:C;Δ � Q :: z:A

Γ ;Δ � (νu)
(!u(y).P

∣∣ Q
) :: z:A

(Tcut!)

Γ ;Δ � z.inl; (νu)
(!u(y).P

∣∣ Q
) :: z:A ⊕ B

(T⊕R1)

Then, permutability is justified by the following inference:

Γ ; · � P :: y:C
Γ, u:C;Δ � Q :: z:A

Γ, u:C;Δ � z.inl; Q :: z:A ⊕ B
(T⊕R1)

Γ ;Δ � (νu)
(!u(y).P

∣∣ z.inl; Q
) :: z:A ⊕ B

(Tcut!)

This class of permutations is given by process equalities in Fig. D.7.
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(D) Permutations between two left rules. Classes (A)–(C) consider permutations in which one of the involved rules is some 
form of cut. Permutations which do not involve cuts are also possible; they represent type-preserving transformations 
for prefixes corresponding to independent (non-interfering) sessions. Here we consider permutations involving two left 
rules; that is, permutations in this class involve two different behavioral dependencies. As an example, the permutation 
below concerns the interplay of rule (T⊕L) with rule (T⊗L):

Γ ;Δ, z:C, x:B, y:A � P :: T
Γ ;Δ, z:C, x:A ⊗ B � x(y).P :: T

(T⊗L)
Γ ;Δ, z:D, x:B, y:A � Q :: T

Γ ;Δ, z:D, x:A ⊗ B � x(y).Q :: T
(T⊗L)

Γ ;Δ, z:C ⊕ D, x:A ⊗ B � z.case
(
x(y).P , x(y).Q

) :: T
(T⊕L)

Then, permutability is justified by the following inference:

Γ ;Δ, z:C, x:B, y:A � P :: T Γ ;Δ, z:D, x:B, y:A � Q :: T
Γ ;Δ, z:C ⊕ D, x:B, y:A � z.case(P , Q ) :: T

(T⊕L)

Γ ;Δ, z:C ⊕ D, x:A ⊗ B � x(y).z.case(P , Q ) :: T
(T⊕L)

This class is given by process equalities in Fig. D.8.
(E) Permutations between a left and a right rule. This class of permutations also involves rules acting on two independent 

sessions: one rule acts on the left-hand side of the derivation (a behavioral dependence) while the other acts on the 
right-hand side (a behavioral offer). As an example, the permutation below concerns the interplay of rules (T & L1) and 
(T⊗R):

Γ ;Δ1, z:C � P :: y:A Γ ;Δ2 � Q :: x:B
Γ ;Δ, z:C � x(y).(P | Q ) :: x:A ⊗ B

(T⊗R)

Γ ;Δ, z:C & D � z.inl; x(y).(P | Q ) :: x:A ⊗ B
(T & L1)

where Δ = Δ1, Δ2. Permutability is justified by the following inference:

Γ ;Δ1, z:C � P :: z:A
Γ ;Δ, z:C & D � z.inl; P :: y:A

(T & L1)
Γ ;Δ2 � Q :: x:B

Γ ;Δ, z:C & D � x(y).(z.inl; P | Q ) :: x:A ⊗ B
(T⊗R)

This class is given by process equalities in Fig. D.9.

Having recalled the type system and the permutability issues derived from the logical interpretation, the following sec-
tions investigate linear logical relations and observational equivalences for well-typed π -calculus processes.

5. Linear logical relations for session-typed processes

Here we introduce a theory of linear logical relations for session types, and use it to prove that well-typed processes are 
strongly normalizing (Definition 5.1) and confluent (Definition 5.2). The proof can be divided into major two steps:

(1) Definition of a logical predicate on processes, by induction on the structure of (session) types. By definition, processes 
in the predicate are strongly normalizing (resp. confluent).

(2) Prove that every well-typed process is in the logical predicate.

Concerning (1), we define the logical predicates by characterizing the general behavior of processes, as specified by their 
typing. To this end, both predicates (Definitions 5.4 and 5.7) are almost identical, with the only fundamental difference 
being the property of interest that we wish to capture. This highlights the generality of our proof technique.

In order to achieve (2) we must first show that the logical predicates satisfy certain fundamental closure conditions. 
Specifically, we must show that the predicates are closed under reduction (Propositions 5.10 and 5.19) and that a form of 
backward reduction closure (Propositions 5.11 and 5.20) also holds. The need for these intermediate results is common in 
logical relations developments, due to the fact that the logical predicates capture the extensional behavior of processes, as 
specified by their typings, satisfying the property of interest (i.e., strong normalization and confluence, respectively) and 
must therefore be invariant under unobservable actions. Given these basic soundness properties of the logical predicate it 
is then possible to show the main result that all well-typed processes satisfy the predicate.

5.1. Preliminaries

We begin by defining strong normalization. In some previous works in process calculi [41,15], strong normalization is 
simply referred to as termination. In what follows, we often use the two terms interchangeably. Below, we write P �−→ to 
mean that P cannot reduce; it may perform visible actions, though.
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Definition 5.1 (Termination). A process P terminates, noted P⇓, if either P �−→ or for any P ′ such that P −→ P ′ we have 
that P ′ �⇒ P ′′ �−→.

We now define confluence. Our notion considers only weak transitions based on internal behavior; as such, it is closer 
to definitions of confluence used for functional languages than to the definitions used in process calculi, which consider 
labeled transitions. (We refer to Section 8 for additional comparisons.)

Definition 5.2 (Confluence). A process P is confluent, noted P�, if for any P1, P2 such that P �⇒ P1 and P �⇒ P2, there 
exists a P ′ such that P1 �⇒ P ′ and P2 �⇒ P ′ .

We now state an extension to ≡, which will be useful in our developments.

Definition 5.3. We write ≡! for the least congruence relation on processes which results from extending structural congru-
ence ≡ (Definition 2.2) with axioms (1)–(3) below:

1. (νu)(!u(z).P | (ν y)(Q | R)) ≡! (ν y)((νu)(!u(z).P | Q ) | (νu)(!u(z).P | R))

2. (νu)(!u(y).P | (νv)(!v(z).Q | R)) ≡! (νv)((!v(z).(νu)(!u(y).P | Q )) | (νu)(!u(y).P | R))

3. (νu)(!u(y).Q | P ) ≡! P if u /∈ fn(P ).

Notice that ≡! was defined in [11, Definition 4.3], and noted �s . These axioms are called the sharpened replication 
axioms [42] and are known to express sound behavioral equivalences up to strong bisimilarity in our typed setting.

Some intuitions on Definition 5.3 follow. Axioms (1) and (2) represent principles for the distribution of shared servers 
among processes, while (3) formalizes the garbage collection of shared servers which cannot be invoked by any process.

Proposition 5.1. Let P and Q be well-typed processes.

1. If P −→ P ′ and P ≡! Q then there is Q ′ such that Q −→ Q ′ and P ′ ≡! Q ′ .
2. If P α−→ P ′ and P ≡! Q then there is Q ′ such that Q α−→ Q ′ and P ′ ≡! Q ′ .

Proof. By induction on the derivation of P ≡! Q , then by case analysis on −→ and α−→, respectively. �
Proposition 5.2. If P⇓ and P ≡! Q then Q ⇓.

Proof. Follows by Proposition 5.1, by noticing that: (i) axioms (1) and (2) of ≡! do not add new input-guarded replicated 
processes and (ii) axiom (3) may add a new input-guarded replicated process (if read from right to left) which cannot be 
invoked. �
5.2. Logical relations for strong normalization of well-typed processes

We now introduce a theory of linear logical relations for session-typed processes, and use it to prove strong normaliza-
tion (Definition 5.1).

First step: the logical predicate and its closure properties We define a logical predicate on well-typed processes and establish 
a few associated closure properties. More precisely, we define a sequent-indexed family of sets of processes (process pred-
icates) so that a set of processes L[Γ ; Δ � T ] enjoying certain closure properties is assigned to any sequent Γ ; Δ � T . The 
logical predicate is defined by induction on the structure of sequents. The base case, given below, considers sequents with 
empty left-hand side typing, where we abbreviate L[Γ ; Δ � T ] by L[T ].

Definition 5.4 (Logical predicate for termination, base case). For any T = z:A we inductively define L[T ] as the set of all P
such that P⇓ and ·; · � P :: T and

P ∈ L[z:1] iff ∀P ′.
(

P �⇒ P ′ ∧ P ′ �−→)
implies P ′ ≡! 0

P ∈ L[z:A�B] iff ∀P ′, y.
(

P
z(y)�⇒ P ′) implies ∀Q ∈ L[y:A].(ν y)

(
P ′ ∣∣ Q

) ∈ L[z:B]
P ∈ L[z:A ⊗ B] iff ∀P ′, y.

(
P

z(y)�⇒ P ′) implies ∃P1, P2.
(

P ′ ≡! P1
∣∣ P2 ∧ P1 ∈ L[y:A] ∧ P2 ∈ L[z:B])

P ∈ L[z:!A] iff ∀P ′.
(

P �⇒ P ′) implies ∃P1.
(

P ′ ≡!!z(y).P1 ∧ P1 ∈ L[y:A])
P ∈ L[z:A & B] iff

(∀P ′.
(

P
z.inl�⇒ P ′) implies P ′ ∈ L[z:A]) ∧ (∀P ′.

(
P

z.inr�⇒ P ′) implies P ′ ∈ L[z:B])
P ∈ L[z:A ⊕ B] iff

(∀P ′.
(

P
z.inl�⇒ P ′) implies P ′ ∈ L[z:A]) ∧ (∀P ′.

(
P

z.inr�⇒ P ′) implies P ′ ∈ L[z:B]).
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Some comments are in order. First, observe how the definition of L[T ] relies on both reductions and weak transitions, 
and the fact that processes in the logical predicate are terminating by definition. Also, notice that the use of ≡! in L[z:1] is 
justified by the fact that a terminated process may be well the composition of a number of shared servers with no potential 
clients. Using suitable processes that “close” the derivative of the transition, in L[z:A�B] and L[z:A ⊗ B] we adhere to the 
linear logic interpretations for input and output types, respectively. In particular, in L[z:A ⊗ B] it is worth observing how 
≡! is used to “split” the derivative of the transition, thus preserving consistency with the separate, non-interfering nature of 
the multiplicative conjunction. The definition of L[z:!A] is also rather structural, relying again on the distribution principles 
embodied in ≡! . The definitions of L[z:A & B] and L[z:A ⊕ B] are self-explanatory.

Below, we extend the logical predicate to arbitrary typing environments. Observe how we adhere to the principles of 
rules (Tcut) and (Tcut!) for this purpose.

Definition 5.5 (Logical predicate for termination, inductive case). For any sequent Γ ; Δ � T with a non-empty left-hand side 
environment, we define L[Γ ; Δ � T ] as the set of processes inductively defined as follows:

P ∈ L[Γ ; y:A,Δ � T ] iff ∀R ∈ L[y:A].(ν y)(R | P ) ∈ L[Γ ;Δ � T ]
P ∈ L[u:A,Γ ;Δ � T ] iff ∀R ∈ L[y:A].(νu)

(!u(y).R
∣∣ P

) ∈ L[Γ ;Δ � T ].

We often rely on the following alternative characterization of the sets L[Γ ; Δ � T ].

Definition 5.6. Let Γ = {ui :Bi}i∈I and Δ = {x j :A j} j∈ J be a non-linear and a linear typing environment, respectively. We 
define the sets of processes CΓ and CΔ as:

CΓ
def=

{∏
i∈I

!ui(yi).Ri

∣∣∣ Ri ∈ L[yi :Bi]
}

CΔ
def=

{∏
j∈ J

Q j

∣∣∣ Q j ∈ L[x j :A j]
}
.

Because of the role of left-hand side typing environments, processes in CΓ and CΔ are then logical representatives of the 
behavior specified by Γ and Δ, respectively.

Proposition 5.3. Let Γ and Δ be a non-linear and a linear typing environment, resp. Then, for all Q ∈ CΓ and for all R ∈ CΔ , we have 
Q ⇓ and R⇓. Moreover, Q �−→.

Proof. By Definition 5.6, every process in CΔ corresponds to the composition of non-interfering, terminating processes. 
Hence, R⇓. The same applies for processes in CΓ , which, by construction, correspond to the composition of input-guarded 
replicated processes. Hence, Q ⇓, Q �−→. �
Lemma 5.1. Let P be a process such that Γ ; Δ � P :: T , with Γ = {ui :Bi}i∈I and Δ = {x j :A j} j∈ J . We then have:

P ∈ L[Γ ;Δ � T ] iff ∀Q ∈ CΓ ,∀R ∈ CΔ, (νũ, x̃ )(P | Q | R) ∈ L[T ].

Proof. Immediate from Definitions 5.5 and 5.6. �
The following closure properties will be fundamental in the second step of the proof, when we will show that well-typed 

processes are in the logical predicate. We first state closure of L[T ] with respect to substitution and structural congruence:

Proposition 5.4. Let A be a type. If P ∈L[z:A] then P {x/z} ∈L[x:A].

Proof. Immediate from Definition 5.4. �
Proposition 5.5. Let P , Q be well-typed. If P ∈L[T ] and P ≡ Q then Q ∈L[T ].

Proof. By induction on the definition of P ≡ Q , using Propositions 5.1 and 5.2, and the fact that well-typed processes are 
closed under ≡ by definition. �

The next proposition provides a basic liveness guarantee for typed processes.

Proposition 5.6. Let ·; · � P :: z:T and P⇓, with T ∈ {A ⊗ B, A�B, A ⊕ B, A & B}. Then, there exist α, P ′ such that P α�⇒ P ′ , and 
one of the following holds:
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– if T = A ⊗ B then α = z(y);
– if T = A�B then α = z(y);
– if T = A ⊕ B then α = z.inr or α = z.inl;
– if T = A & B then α = z.inr or α = z.inl.

Proof. Since T /∈ {1, !T ′} then, using Lemma 3.4, we know that live(P ) holds. Hence, Lemma 3.1 can be used to infer that 
either P −→ P ′ or P α−→ P ′ , with s(α) = z. Termination ensures that such reductions, before or after α, are finite. This gives 
us Part (i). Part (ii) on the actual shape of α can be inferred using Lemma 3.2. �

We now extend Proposition 5.5 so as to state closure of L[T ] under ≡! .

Proposition 5.7. Let P , Q be well-typed. If P ∈L[T ] and P ≡! Q then Q ∈L[T ].

Proof. By induction on the definition of P ≡! Q . See Appendix A.1, Page 279. �
The following property gives us a basic determinacy property for well-typed processes. Below, we write P −→x P ′ for 

the reduction step P −→ P ′ which results from a synchronization on name x, private to P .

Proposition 5.8. Let · ; · � P :: z:A be a well-typed process. If P −→x P1 and P −→y P2 and P1 �= P2 then there exist P ′
1, P ′

2 such 
that P1 −→y P ′

1 and P2 −→x P ′
2 .

Proof. By a case analysis on the different ways in which two different reductions on private names can arise from pro-
cess P . The last applied rule in both reductions is the contextual rule for name restriction; we then analyze all possible 
combinations for premises of that rule (input/output, branching/selection, shared server invocation, forwarding), using sub-
ject reduction (Theorem 3.1) and progress (Theorem 3.2). See Appendix A.2 (Page 280) for details. �
Proposition 5.9. Let · ; · � P :: T be a well-typed process. If P α�⇒ P∗ and P −→ P ′ then P ′ α�⇒ P2 , for some P2 .

Proof. By definition of weak transition, the assumption P
α�⇒ P1 can be alternatively expressed as P �⇒ P0

α−→ P1 �⇒ P∗ , 
for some P0, P1. There are two main cases, depending on whether P −→ P ′ �⇒ P0 holds, that is, on whether the sequence 
of reductions from P to P0 includes P ′ . If P ′ is included then the thesis follows trivially. If P ′ is not included then we have 
that both P −→ P ′ and P �⇒ P0 are enabled. The thesis then follows by Proposition 5.8, which ensures that two enabled 
reductions from the same process do not preclude each other. �

We now state forward and backward closure of the logical predicate with respect to reduction; these are typical ingredi-
ents in the method of logical relations.

Proposition 5.10 (Forward closure). If P ∈L[T ] and P −→ P ′ then P ′ ∈L[T ].

Proof. By induction on the structure of T . In all cases, first we must show two conditions: (i) P ′⇓ and (ii) P ′ is well-typed. 
First, by assumption and Definition 5.4, we have that P⇓; then, since P −→ P ′ , we have P ′⇓ as well. Second, by assumption 
and Definition 5.4, we have that · ; · � P :: T , then, by Theorem 3.1, we infer · ; · � P ′ :: T . Then, with these two conditions 
and the assumption P −→ P ′ , membership of P ′ in L[T ] is established depending on the structure of T . If T = z:1 or 
T = z:!A then one uses Proposition 5.8 to show that if P �⇒ P1 then also P ′ �⇒ P2, for some P2. In the other cases one 
uses by Proposition 5.9 to show that if P

α�⇒ P1 then also P ′ α�⇒ P2, for some P2. �
Proposition 5.11 (Backward closure). Let · ; · � P :: T be a well-typed process. If for all Pi such that P −→ Pi we have that Pi ∈L[T ]
implies P ∈L[T ].

Proof. By induction on the structure of T . In all cases, we must show: (i) P⇓, (ii) P is well-typed, and (iii) P ∈ L[T ], 
as in Definition 5.4. First, by assumption we have Pi⇓ for every reduction Pi of P ; then, since P −→ Pi , we have P⇓
directly from Definition 5.1. Second, well-typedness of P is given by assumption. For (iii), we proceed depending on the 
structure of T , exploiting the fact that Pi ∈ L[T ]. If T = z:1 then Definition 5.4 ensures that ∀P ′.(Pi �⇒ P ′ ∧ P ′ �−→)

implies P ′ ≡! 0. Now, since by assumption we have P −→ Pi , the definition of weak transition ensures that P −→ Pi and 
Pi �⇒ P ′ imply P �⇒ P ′ , for any P ′ . Therefore, P ∈ L[z:1]. If T = z:!A the reasoning is similar, for membership in L[T ]
also relies on an unlabeled weak transition. In all other cases, membership in L[T ] depends on a labeled weak transition: 
Definition 5.4 ensures that every P ′ such that Pi

α�⇒ P ′ satisfies some condition—the exact shape of α is determined using 
Proposition 5.6. Now, since by assumption we have P −→ Pi , definition of weak transition ensures that P −→ Pi and 
Pi

α�⇒ P ′ imply P
α�⇒ P ′ , for any P ′ . Thus, P ∈L[T ]. �
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The final closure property concerns process composition:

Proposition 5.12. Let P , Q be processes such that P ∈L[T ] and Q ∈L[−:1]. Then, P | Q ∈L[T ].

Proof. By induction on the structure of T . See Appendix A.3, Page 283. �
Second step: well-typed processes are in the logical predicate We now prove that well-typed processes are in the logical predi-
cate. Because of Definition 5.4, termination of well-typed processes will follow as a consequence.

Lemma 5.2. Let P be a process. If Γ ; Δ � P :: T then P ∈L[Γ ; Δ � T ].

Proof. By induction on the derivation of Γ ; Δ � P :: T , with a case analysis on the last typing rule used. We have 18 cases to 
check; in all of them, we use Lemma 5.1 to show that every M = (νũ, ̃x )(P | G | D) with G ∈ CΓ and D ∈ CΔ , is in L[T ]. In 
case (Tid), we use Proposition 5.4 (closure wrt substitution) and Proposition 5.11 (backward closure). In cases (T⊗L), (T�L), 
(Tcopy), (T⊕L), (T & L1), and (T & L2), we proceed in two steps: first, using Proposition 5.10 (forward closure) we show that 
every M ′′ such that M �⇒ M ′′ is in L[T ]; then, we combine this result with Proposition 5.11 (backward closure) to conclude 
that M ∈ L[T ]. In cases (T1R), (T⊗R), (T�R), (T!R), (T⊕R1), and (T⊕R2), we show that M conforms to a specific case of 
Definition 5.4. Case (T1L) uses Proposition 5.12. Cases (T⊗L), (T�L), (T⊕L), and (T & L1) use the liveness guarantee given by 
Proposition 5.6. Cases (Tcopy), (T!L), and (Tcut!) use Proposition 5.5 (closure under ≡). Cases (Tcut), (T�R), and (T!R) use 
Proposition 5.7 (closure under ≡!). See Appendix A.4, Page 279 for details. �

We now state our first main result: well-typed processes terminate.

Theorem 5.1 (Well-typed processes are terminating). If Γ ; Δ � P :: T then P⇓.

Proof. Follows from previously proven facts:

Γ ;Δ � P :: T [Assumption] (a)

P ∈ L[Γ ;Δ � T ] [By Lemma 5.2 and (a)] (b)

Pick any G ∈ CΓ , D ∈ CΔ :
G⇓, D⇓ [By Proposition 5.3] (c)

(νũ, x̃ )(P | G | D) ∈ L[T ] [By Lemma 5.1 on (b)] (d)

(νũ, x̃ )(P | G | D)⇓ [From (d) and Definition 5.4] (e)

P⇓ [Consequence of (c) and (e)]. �
5.3. Logical relations for confluence of well-typed processes

We now adapt the logical relations and the proof technique of Section 5.2 to the case of confluence (Definition 5.2).
The proof that well-typed processes are confluent is very similar to that of termination; required adjustments concern 

mainly closure properties.

Proposition 5.13 (Properties of confluent processes). Assume well-typed processes P , P ′, P1, . . . , Pk, Q .

1. Forward closure: If P� and P −→ P ′ then P ′�.
2. Backward closure: If for all Pi such that P −→ Pi we have that Pi�, then P�.
3. Closure wrt composition: Let P , Q be such that (i) ·; · � P :: x:A, (ii) ·; x:A � Q :: T , (iii) P�, and (iv) Q �. Then (νx)(P | Q )�.

Proof. See Appendix A.5 (Page 291) for details. �
Proposition 5.14. If P� and P ≡! Q then Q �.

Proof. Follows immediately from Proposition 5.1. �
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First step: the logical predicate and its closure properties The logical predicate for confluence, given below, is essentially the 
same as the one in Definition 5.4. Hence, subsequent auxiliary definitions and closure properties mirror those in Section 5.2.

Definition 5.7 (Logical predicate for confluence, base case). For any T = z:A we inductively define L�[T ] as the set of all P
such that P� and ·; · � P :: T and

P ∈ L�[z:1] iff ∀P ′.
(

P �⇒ P ′ ∧ P ′ �−→)
implies P ′ ≡! 0

P ∈ L�[z:A�B] iff ∀P ′ y.
(

P
z(y)�⇒ P ′) implies ∀Q ∈ L�[y:A].(ν y)

(
P ′ ∣∣ Q

) ∈ L�[z:B]
P ∈ L�[z:A ⊗ B] iff ∀P ′ y.

(
P

z(y)�⇒ P ′) implies ∃P1, P2.
(

P ′ ≡! P1
∣∣ P2 ∧ P1 ∈ L�[y:A] ∧ P2 ∈ L�[z:B])

P ∈ L�[z:!A] iff ∀P ′.
(

P �⇒ P ′) implies ∃P1.
(

P ′ ≡!!z(y).P1 ∧ P1 ∈ L�[y:A])
P ∈ L�[z:A & B] iff

(∀P ′.
(

P
z.inl�⇒ P ′) implies P ′ ∈ L�[z:A]) ∧ (∀P ′.

(
P

z.inr�⇒ P ′) implies P ′ ∈ L�[z:B])
P ∈ L�[z:A ⊕ B] iff

(∀P ′.
(

P
z.inl�⇒ P ′) implies P ′ ∈ L�[z:A]) ∧ (∀P ′.

(
P

z.inr�⇒ P ′) implies P ′ ∈ L�[z:B]).
Below, we extend L�[T ] to arbitrary typing environments.

Definition 5.8 (Logical predicate–inductive case). For any sequent Γ ; Δ � T with a non-empty left hand side environment, we 
define L�[Γ ; Δ � T ] to be the set of processes inductively defined as follows:

P ∈ L�[Γ ; y:A,Δ � T ] if ∀R ∈ L�[y:A].(ν y)(R | P ) ∈ L�[Γ ;Δ � T ]
P ∈ L�[u:A,Γ ;Δ � T ] if ∀R ∈ L�[y:A].(νu)

(!u(y).R
∣∣ P

) ∈ L�[Γ ;Δ � T ].

We often rely on the following characterization of the sets L�[Γ ; Δ � T ].

Definition 5.9. Let Γ = {ui :Bi}i∈I and Δ = {x j :A j} j∈ J be a non-linear and a linear typing environment, respectively. We 
define the sets of processes C�

Γ and C�
Δ as:

C�
Γ

def=
{∏

i∈I

!ui(yi).Ri

∣∣∣ Ri ∈ L�[yi :Bi]
}

C�
Δ

def=
{∏

j∈ J

Q j

∣∣∣ Q j ∈ L�[x j :A j]
}
.

We define sets of processes C�
Γ and C�

Δ as logical representatives of the behavior specified by Γ and Δ, respectively.

Proposition 5.15. Let Γ and Δ be a non-linear and a linear typing environment, respectively. Then, for all Q ∈ C�
Γ and for all R ∈ C�

Δ , 
we have Q � and R�. Furthermore, Q �−→ and R⇓.

Proof. By Definition 5.9, every R ∈ C�
Δ corresponds to the composition of independent, confluent processes. Hence, using 

Proposition 5.13 (3), we have R�. Also, R is the composition of well-typed processes, which by Theorem 5.1 are all termi-
nating. Hence, R⇓. As for Q ∈ C�

Γ , by construction it corresponds to the composition of input-guarded replicated processes. 
Hence, Q �−→. �
Lemma 5.3. Let Γ ; Δ � P :: T , with Γ = {ui :Bi}i∈I and Δ = {x j :A j} j∈ J . We have: P ∈ L�[Γ ; Δ � T ] iff ∀Q ∈ C�

Γ , ∀R ∈
C�

Δ, (νũ, ̃x )(P | Q | R) ∈L�[T ].

Proof. The proof follows from Definitions 5.8 and 5.9, Proposition 5.15, and closure of confluent processes under composi-
tion (Proposition 5.13(3)). �

We now state the closure properties required to show that well-typed processes are in the logical predicate for conflu-
ence.

Proposition 5.16. Let A be a type. If P ∈L�[z:A] then P {x/z} ∈L�[x:A].

Proof. Immediate from Definition 5.7. �
Proposition 5.17. Let P , Q be well-typed. If P ∈L�[T ] and P ≡ Q then Q ∈L�[T ].
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Proof. By induction on the definition of P ≡ Q , using Propositions 5.1 and 5.14, and the fact that well-typed processes are 
closed under ≡ by definition. �

We now extend Proposition 5.17 so as to state closure of L�[T ] under ≡! .

Proposition 5.18. Let P , Q be well-typed. If P ∈L�[T ] and P ≡! Q then Q ∈L�[T ].

Proof. By induction on the definition of P ≡! Q , following the lines of the proof of Proposition 5.7. �
We now state forward and backward closure of L�[T ] with respect to reduction.

Proposition 5.19 (Forward closure). If P ∈L�[T ] and P −→ P ′ then P ′ ∈L�[T ].

Proof. By induction on the structure of T . In all cases, we must show two conditions: (i) P ′� and (ii) P ′ is well-typed. 
Observe that by assumption and Definition 5.7 we have both P� and · ; · � P :: T . First, since P� and P −→ P ′ , by Proposi-
tion 5.13 (1) we infer P ′�. Second, since · ; · � P :: T , Theorem 3.1 ensures · ; · � P ′ :: T . Then, with these two conditions and 
the assumption P −→ P ′ , membership of P ′ in L�[T ] is established depending on the structure of T . If T = z:1 or T = z:!A
then one uses Proposition 5.8 to show that if P �⇒ P1 then also P ′ �⇒ P2, for some P2. In the other cases one uses by 
Proposition 5.9 to show that if P

α�⇒ P1 then also P ′ α�⇒ P2, for some P2. �
The proof of the following proposition follows closely that of Proposition 5.11:

Proposition 5.20 (Backward closure). Let · ; · � P ::T be a well-typed process. If for all Pi such that P −→ Pi we have that Pi ∈L�[T ]
implies P ∈L�[T ].

Proof. By induction on the structure of T . In all cases, we must show: (i) P�, (ii) P is well-typed, and (iii) P ∈L�[T ], as in 
Definition 5.7. First, item (i) follows from Proposition 5.13 (2) Second, well-typedness of P is given by assumption. For (iii), 
we proceed depending on the structure of T , exploiting the fact that Pi ∈L�[T ]. If T = z:1 then Definition 5.7 ensures that 
∀P ′.(Pi �⇒ P ′ ∧ P ′ �−→) implies P ′ ≡! 0. Now, since by assumption we have P −→ Pi , the definition of weak transition 
ensures that P −→ Pi and Pi �⇒ P ′ imply P �⇒ P ′ , for any P ′ . Therefore, P ∈L�[z:1]. If T = z:!A the reasoning is similar, 
for membership in L�[T ] also relies on an unlabeled weak transition. In all other cases, membership in L�[T ] depends 
on a labeled weak transition: Definition 5.7 ensures that every P ′ such that Pi

α�⇒ P ′ satisfies some condition—the exact 
shape of α is determined using Proposition 5.6. Now, since by assumption we have P −→ Pi , definition of weak transition 
ensures that P −→ Pi and Pi

α�⇒ P ′ imply P
α�⇒ P ′ , for any P ′ . Thus, P ∈L�[T ]. �

Second step: well-typed processes are in the logical predicate We now prove that well-typed processes are in the logical predi-
cate.

Lemma 5.4. Let P be a process. If Γ ; Δ � P :: T then P ∈L�[Γ ; Δ � T ].

Proof. By induction on the derivation of Γ ; Δ � P :: T , with a case analysis on the last typing rule used. See Appendix A.6
(Page 291) for details. �

We now state the desired result: well-typed processes are confluent.

Theorem 5.2 (Well-typed processes are confluent). If Γ ; Δ � P :: T then P�.

Proof. Follows from previously proven facts. By assumption, we have Γ ; Δ � P :: T . Using this and Lemma 5.4 we get P ∈
L�[Γ ; Δ � T ]. Pick any G ∈ C�

Γ , D ∈ C�
Δ : combining P ∈ L�[Γ ; Δ � T ] and Lemma 5.3 gives us (νũ, ̃x )(P | G | D) ∈ L�[T ]. 

By using this, together with Definition 5.7, we infer (νũ, ̃x )(P | G | D)�. Since Proposition 5.15 ensures G� and D�, this 
last result implies P�. �
6. Observational equivalences for session-typed processes

In this section, we investigate the behavioral theory for session-typed processes. We introduce typed context bisimilarity
(noted ≈), a labelled bisimulation which closely follows the nature of typing judgments.
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6.1. Auxiliary definitions

Recall that � P :: T stands for · ; · � P :: T . We sometimes write Γ ; Δ � P , Q :: T to mean that both Γ ; Δ � P :: T and 
Γ ; Δ � Q :: T hold. Below, we use S to range over sequents of the form Γ ; Δ � T . We will rely on type-respecting relations, 
which are indexed by sequents S. We will use binary relations, so the adjective “binary” will be always omitted.

Definition 6.1 (Type-respecting relations). A type-respecting relation over processes, written {RS}S , is defined as a family of 
relations over processes indexed by S. We often write R to refer to the whole family, and use notation Γ ;Δ � PRQ :: T to 
mean both (i) Γ ; Δ � P , Q :: T and (ii) (P , Q ) ∈RΓ ;Δ�T .

We use R, R′, . . . to range over type-respecting relations. In the following, we will often omit the adjective “type-
respecting”.

Definition 6.2. A relation R is said to be

– Reflexive, if Γ ; Δ � P :: T implies Γ ;Δ � PRP :: T ;
– Symmetric, if Γ ;Δ � PRQ :: T implies Γ ;Δ � Q RP :: T ;
– Transitive, Γ ;Δ � PRP ′ :: T and Γ ;Δ � P ′RQ :: T imply Γ ;Δ � PRQ :: T .

Moreover, R is said to be an equivalence if it is reflexive, symmetric, and transitive.

In order to define contextual relations, we introduce a natural notion of (typed) process contexts. Intuitively, a context is 
a process that contains one hole, noted •. Holes are typed: a hole, denoted by •Γ ;Δ�T , can only be filled in with a process 
matching its type. We shall use K , K ′, . . . for ranging over properly defined contexts, in the sense given next. We rely on 
left- and right-hand side typings for defining contexts and its properties precisely. We consider contexts with exactly one 
hole, but our definitions are easy to generalize.

We rely on a minimal extension of the syntax of processes (Definition 2.1) with •. We then extend sequents, in the 
following way:

H;Γ ;Δ � K :: z:C
H specifies the typing requirements of the unique hole occurring in (context) K , and is thus always of the form •Γ ;Δ�T for 
some Γ , Δ and T : we have that

•Γ ;Δ�T ;Γ ;Δ′ � K :: z:C
is the type of a context K whose hole is to be substituted by some process P such that Γ ; Δ � P :: T . As a result of the 
substitution, we obtain a process Γ ; Δ′ � K [P ] :: z:C . Since we consider at most one hole, H is either empty or has exactly 
one element. If H is empty then K is a process and we obtain the usual typing rules; we write Γ ; Δ � R :: T rather than 
·; Γ ; Δ � R :: T . The definition of typed contexts is completed by extending the type system with the following two rules:

(Thole)

•Γ ;Δ�T ;Γ ;Δ � • :: T

(Tfill)

Γ ;Δ � R :: T •Γ ;Δ�T ;Γ ;Δ′ � K :: z:C
Γ ;Δ′ � K [R] :: z:C

Axiom (Thole) allows to introduce holes into typed contexts. In rule (Tfill), R is a process (it does not have any holes), 
and K is a context with a hole of type Γ ; Δ � T . The substitution of occurrences of • in K with R , noted K [R] is sound as 
long as the typings of R coincide with those declared in H for K .

As an example, consider a simple parallel context, (νx)(• | P ) which is filled in with an appropriately typed process R:

Γ ; x:C,Δ2 � R :: T

...

Γ ;Δ1 � P :: x:C •Γ ;x:C,Δ2�T ;Γ ; x:C,Δ2 � • :: T
(Thole)

•Γ ;x:C,Δ2�T ;Γ ;Δ1,Δ2 � (νx)(P | •) :: T
(Tcut)

Γ ;Δ1,Δ2 � (νx)(P | R) :: T
(Tfill)

As we have seen, contexts in our setting are hardly arbitrary: only type-compatible processes are inserted into holes. 
Based on this observation, and following the typing rules, we define a notion of contextual relation in our typed setting:

Definition 6.3 (Contextual relation). A relation R is contextual if it satisfies the conditions in Fig. 5 (Page 271).
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A type-respecting relation R is contextual if

0. Γ ; Δ � P R Q :: y:A implies Γ ; Δ � (ν y)(P | [y ↔ z]) R (ν y)(Q | [y ↔ z]) :: z:A, for any z such that Γ ; y:A � [y ↔ z] :: z:A
1. Γ ; Δ, y:A � P R Q :: x:B implies Γ ; Δ � x(y).P R x(y).Q :: x:A�B
2. Γ ; Δ � P R Q :: y:A implies Γ ; Δ, Δ′ � x(y).(P | S) R x(y).(Q | S) :: x:A ⊗ B , for any x, S, B, Δ′ such that Γ ; Δ′ � S :: x:B
3. Γ ; Δ′ � P R Q :: x:B implies Γ ; Δ, Δ′ � x(y).(S | P ) R x(y).(S | Q ) :: x:A ⊗ B , for any y, S, A, Δ′ , such that Γ ; Δ � S :: y:A
4. Γ ; Δ � P R Q :: x:A implies Γ ; Δ � x.case(P , S) R x.case(Q , S) :: x:A & B , for any S, B such that Γ ; Δ � S :: x:B
5. Γ ; Δ � P R Q :: x:B implies Γ ; Δ � x.case(S, P ) R x.case(S, Q ) :: x:A & B , for any S, A such that Γ ; Δ � S :: x:A
6. Γ ; Δ � P R Q :: x:A implies Γ ; Δ � x.inx; P R x.inx; Q :: x:A ⊕ B , for any B
7. Γ ; Δ � P R Q :: x:A implies Γ ; Δ, Δ′ � (νx)(P | S) R (νx)(Q | S) :: T , for any S, T , Δ′ such that Γ ; Δ′, x:A � S :: T
8. Γ ; Δ, x:A � P R Q :: T implies Γ ; Δ, Δ′ � (νx)(S | P ) R (νx)(S | Q ) :: T , for any S, Δ′ such that Γ ; Δ′ � S :: x:A
9. Γ ; · � P R Q :: y:A implies Γ ; Δ � (νu)(!u(y).P | S) R (νu)(!u(y).Q | S) :: T , for any u, S, T , Δ such that Γ, u:A; Δ � S :: T

10. Γ, u:A; Δ � P R Q :: T implies Γ ; Δ � (νu)(!u(y).S | P ) R (νu)(!u(y).S | Q ) :: T , for any S, y such that Γ ; · � S :: y:A
11. Γ ; Δ � P R Q :: T implies Γ ; Δ, Δ′ � S | P R S | Q :: T , for any S, Δ′ such that Γ ; Δ′ � S :: −:1
12. Γ ; Δ � P R Q :: −:1 implies Γ ; Δ, Δ′ � P | S R Q | S :: T , for any S, T , Δ′ such that Γ ; Δ′ � S :: T
13. Γ, u:A; Δ � P {u/x} R Q {u/x} :: T implies Γ ; Δ, x:!A � P R Q :: T
14. Γ ; · � P R Q :: y:A implies Γ ; · �!x(y).P R !x(y).Q :: x:!A, for any x
15. Γ ; Δ, y:A, x:B � P R Q :: T implies Γ ; Δ, x:A ⊗ B � x(y).P R x(y).Q :: T
16. Γ ; Δ � P R Q :: y:A implies Γ ; Δ, Δ′, x:A�B � x(y).(P | S) R x(y).(Q | S) :: T , for any x, B, S, T , Δ′ such that Γ ; Δ′, x:B � S :: T
17. Γ ; Δ, x:B � P R Q :: T implies Γ ; Δ, Δ′, x:A�B � x(y).(P | S) R x(y).(Q | S) :: T , for any y, A, S, Δ′ such that Γ ; Δ′ � S :: y:A
18. Γ, u:A; Δ, y:A � P R Q :: T implies Γ, u:A; Δ � u(y).P R u(y).Q :: T
19. Γ ; Δ, x:A � P R Q :: T implies Γ ; Δ, x:A ⊕ B � x.case(P , S) R x.case(Q , S) :: T , for any x, S, B such that Γ ; Δ, x:B � S :: T
20. Γ ; Δ, x:B � P R Q :: T implies Γ ; Δ, x:A ⊕ B � x.case(S, P ) R x.case(S, Q ) :: T , for any A, S, T such that Γ ; Δ, x:A � S :: T
21. Γ ; Δ, x:A � P R Q :: T implies Γ ; Δ, x:A & B � x.inx; P R x.inx; Q :: T

Fig. 5. Conditions for contextual type-respecting relations (cf. Definition 6.3).

In Fig. 5, we write x.inx; P to stand for both x.inr; P and x.inl; P . Some comments to the conditions associated to 
Definition 6.3 are in order. In all cases, observe how the typing rules guide the shape of allowed contexts. For instance, 
item (1) is easily seen to correspond to rule (T�R) and associated to the input context

•Γ ;Δ,y:A�x:B;Γ ;Δ � x(y). • ::x:A�B

to be filled in by any P such that Γ ; Δ, y:A � P :: x:B . In fact, premises of each rule suggest where to place holes; rules with 
two premises lead to two different contexts. Observe how item (0) involves the forwarding construct; this could be seen 
as a form of closure under substitution, which renames the right-hand side typing of a process. Items (8)–(13) correspond 
to closure with respect to parallel contexts, which in our typed setting also involves closure with respect to restriction, 
following rules (Tcut) and (Tcut!). Notice that while closure under arbitrary process composition is not allowed, closure 
under independent parallel composition (cf. rule (indComp) in Section 3) is permitted (cf. Items (12) and (13)).

Remark 6.1. Notice that not all the contextuality conditions in Fig. 5 apply in the case R relates processes related under 
empty left-hand side typing environments. Indeed, only items (0), (2)–(8), (10)–(13), and (15) apply in that case.

6.2. Typed context bisimilarity

We define typed context bisimilarity, a labeled bisimilarity for typed processes. It is defined contextually, as a binary 
relation indexed over sequents. Roughly, typed context bisimilarity equates two processes if, once coupled with all of their 
requirements (as described by the left-hand side typing), they perform the same actions (as described by the right-hand 
side typing). To formalize this intuition, we rely on a combination of inductive and coinductive arguments. The base case of 
the definition covers the cases in which the left-hand side typing environment is empty (i.e., the process requires nothing 
from its context to execute): the bisimulation game is then defined by induction on the structure of the (right-hand side) 
typing, following the expected behavior in each case. The inductive case covers the cases in which the left-hand side typing 
environment is not empty: the tested processes are put in parallel with processes implementing the required behaviors (as 
described in the left-hand side typing).

Definition 6.4 (Typed context bisimilarity). A symmetric type-respecting binary relation over processes R is a typed context 
bisimulation if

Base Cases

Tau � PRQ :: T implies that for all P ′ such that P τ−→ P ′ , there exists a Q ′ such that Q �⇒ Q ′ and � P ′RQ ′ :: T

Input � PRQ :: x:A�B implies that for all P ′ such that P
x(y)−−−→ P ′ , there exists a Q ′ such that Q

x(y)�⇒ Q ′ and for all R
such that � R :: y:A, � (ν y)(R | P ′)R(ν y)(R | Q ′) :: x:B .
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Output � PRQ :: x:A ⊗ B implies that for all P ′ such that P
x(y)−−−→ P ′ , there exists a Q ′ such that Q

x(y)�⇒ Q ′ and for all R
such that ·; y:A � R :: −:1, � (ν y)(P ′ | R)R(ν y)(Q ′ | R) :: x:B .

Replication � PRQ :: x:!A implies that for all P ′ such that P
x(z)−−−→ P ′ , there exists a Q ′ such that Q

x(z)�⇒ Q ′ and, for all R
such that ·; y:A � R :: −:1, � (νz)(P ′ | R)R(νz)(Q ′ | R) :: x:!A.

Choice � PRQ :: x:A & B implies both:

• If P x.inl−−−→ P ′ then � P ′RQ ′ :: x:A, for some Q ′ such that Q
x.inl�⇒ Q ′; and

• If P x.inr−−−→ P ′ then � P ′RQ ′ :: x:B , for some Q ′ such that Q
x.inr�⇒ Q ′ .

Selection � PRQ :: x:A ⊕ B implies both:

• If P x.inl−−−→ P ′ then � P ′RQ ′ :: x:A, for some Q ′ such that Q
x.inl�⇒ Q ′; and

• If P x.inr−−−→ P ′ then � P ′RQ ′ :: x:B , for some Q ′ such that Q
x.inr�⇒ Q ′ .

Inductive Cases

Linear Names Γ ;Δ, y:A � PRQ :: T implies that for all R such that � R :: y:A, then Γ ;Δ � (ν y)(R | P )R(ν y)(R | Q ) :: T .
Shared Names Γ, u:A;Δ � PRQ :: T implies that for all R such that � R :: z:A, then Γ ; Δ � (νu)(!u(z).R | P )R(νu)(!u(z).

R | Q ) :: T .

We write ≈ for the union of all typed context bisimulations, and call it typed context bisimilarity.

In all cases, a strong action is matched with a weak transition. In proofs, we shall exploit the fact that Theorems 5.1
and 5.2 ensure that such weak transitions always have finite and confluent reductions. In the base case, the clauses for input, 
output, and replication decree the closure of the tested processes with a process R that “complements” the continuation 
of the tested behavior; observe the very similar treatment for output and replication (where R depends on some behavior), 
and contrast it with that for input (where R provides the behavior). Also, notice how all clauses but that for replication are 
defined coinductively for the tested processes (in the sense that closed evolutions should be in the relation), but inductively 
on the type indexing the relation—the clause for replication may be thus considered as the only fully coinductive one. Also 
worth noticing is how the closures defined in such clauses (and those defined by the clauses in the inductive case) follow 
closely the spirit of (Tcut/Tcut!) rules in the type system.

6.3. Properties of typed context bisimilarity

We establish some properties of typed context bisimilarity: equivalence (Proposition 6.1); closure under independent 
parallel composition (Proposition 6.2); a simplification for the bisimulation proof technique (Proposition 6.3); contextual-
ity/congruence (Lemma 6.1); and τ -inertness (Lemma 6.2).

Proposition 6.1. ≈ is an equivalence, in the sense of Definition 6.2.

Proof. Reflexivity and symmetry are immediate from the definition of type-respecting relations. For transitivity, one shows 
that for any Γ, Δ, T , relation

R = {
(P , R)

∣∣ there is Q with Γ ;Δ � P ≈ Q :: T ∧ Γ ;Δ � Q ≈ R :: T
}

is a typed context bisimulation. Suppose P α−→ P ′; we must find a matching action from R , i.e., R α�⇒ R ′ . The existence of 
such an action follows directly from the assumptions Γ ; Δ � P ≈ Q ::T and Γ ; Δ � Q ≈ R :: T . The reasoning when R moves 
first is analogous. �
Proposition 6.2 (Closure under independent composition). Let P , Q , S be processes such that Γ ; Δ � P ≈ Q :: T and Γ ; Δ′ � S ::−:1
hold. Then we have: Γ ; Δ, Δ′ � P | S ≈ Q | S :: T.

Proof. Straightforward by showing the appropriate bisimulation, using the fact that composition with arbitrary processes 
offering type 1 is type preserving, and by noticing that S cannot interact with P , Q . �

Definition 6.4 immediately suggests a proof technique for showing that two processes are typed context bisimilar. First, 
close the processes with parallel representatives of their context, applying repeatedly the inductive cases until the left-hand 
side typing is empty. Then, follow the usual co-inductive proof technique, and show a typed-respecting relation containing 
the processes obtained in the first step. More precisely, given a left-hand side typing Γ ; Δ, below we define the set KΓ ;Δ�T
of parallel representatives of Γ, Δ. This is a set of parallel process contexts which represent the closures generated by the 
inductive case of typed context bisimilarity. These parallel representatives will be useful to simplify proofs for ≈.
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Definition 6.5 (Parallel representatives). Let Γ and Δ be typing environments defined as Γ = {ui :Bi}i∈I and Δ = {x j :A j} j∈ J , 
respectively. We say that K is a parallel representative in KΓ ;Δ�T if

K ≡ (νũ, x̃ )

(
•

∣∣∣ ∏
i∈I

!ui(yi).Ri

∣∣∣ ∏
j∈ J

S j

)

with � Ri :: yi :Bi and � S j :: x j :A j , for every i ∈ I and j ∈ J .

Clearly, for every left-hand side typing there may be many parallel representatives, corresponding to different imple-
mentations of the required behaviors. It is easy to see that parallel representatives are well-typed: if K ∈ KΓ ;Δ�T then 
•Γ ;Δ�T ; ·; · � K :: T . In fact, filling in a context K ∈ KΓ ;Δ�T with a process Γ, Δ � P :: T will lead to process � K [P ] :: T , 
which requires nothing from its environment. This is the essence of the desired simplification, formalized by the following 
proposition. It allows us to convert an (inductive) proof under non-empty typing environments Γ, Δ into a (coinductive) 
proof under empty environments, with processes enclosed within parallel contexts.

Proposition 6.3. Γ ;Δ � P ≈ Q :: T implies � K [P ] ≈ K [Q ] :: T , where K is any parallel representative in KΓ ;Δ�T , as in Defini-
tion 6.5.

Proof. See Appendix B.1 (Page 292) for details. �
Based on the logical interpretation, we introduce a notion of “continuation relation” for pairs of typed processes. This 

will be useful to define and reason about type-respecting relations. Below, IΓ ;Δ�T stands for the relation{
(P , Q ) : Γ ;Δ � P , Q :: T

}
which collects pairs of processes with identical left- and right-hand side typings.

Definition 6.6. Using � to range over ⊗, � and � to range over ⊕, & , we define the type-respecting relation W�x:A by 
induction on the right-hand side typing, as follows:

W�x:1 = I�x:1 W�x:A�B = I�x:B ∪W�x:B
W�x:!A = I�x:!A W�x:A�B = I�x:A ∪W�x:A ∪ I�x:B ∪W�x:B .

This way, e.g., the continuation relation for x:A ⊗ B is I�x:B ∪W�x:B : it contains all pairs typed by � x:B (as processes of 
type x:A ⊗ B are to be typed by x:B after the output action) as well as those pairs in the continuation relation for x:B .

We now prove that ≈ is a contextual relation. That is, ≈ is a congruence with respect to the typed contexts associated 
to Definition 6.3.

Lemma 6.1 (Contextuality of ≈). Typed context bisimilarity is a contextual relation, in the sense of Definition 6.3.

Proof. The proof proceeds by coinduction, showing a typed context bisimulation for each of the conditions associated to 
Definition 6.3. We shall exploit the proof technique given by Proposition 6.3, which allows to consider ≈ under empty 
left-hand side contexts, for pairs of processes enclosed within appropriate parallel representatives. As a result, it suffices to 
consider only some of the conditions in Figure 5; see Remark 6.1. Most cases are easy; below we detail one of them: closure 
with respect to output, Item (2). (See Appendix B.2, Page 293 for other cases.)

We have to show that Γ ; Δ � P ≈ Q :: y:A implies

Γ ;Δ,Δ′ � x(y).(P | S) ≈ x(y).(Q | S) :: x:A ⊗ B

for any S, x, B, Δ′ such that Γ ; Δ′ � S :: x:B . Using Proposition 6.3, this can be simplified, and it suffices to show that 
� K1[P ] ≈ K1[Q ] :: y:A implies

� K2
[
x(y).

(
K1[P ] ∣∣ S

)] ≈ K2
[
x(y).

(
K1[Q ] ∣∣ S

)] :: x:A ⊗ B

where K1 ∈KΓ ;Δ�y:A and K2 ∈K·;Δ′�x:A⊗B .
Let M = K2[x(y).(K1[P ] | S)] and N = K2[x(y).(K1[Q ] | S)]. Define

R2 = {
(M, N) :� K1[P ] ≈ K1[Q ] :: y:A, K1 ∈ KΓ ;Δ�y:A, K2 ∈ K·;Δ′�x:A⊗B

} ∪W�x:B
We show that R2 is a typed context bisimulation.

Suppose M moves first: M α−→ M ′ . We must find a matching action from N such that N
α�⇒ N ′ . There are two possibili-

ties for α: either α = τ or α = x(y). In the first case, we have M τ−→ K3[x(y).(K1[P ] | S)] = M ′ , where K2
τ−→ K3. Since K2
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occurs identically in N by construction, this action can be matched and we have N �⇒ K4[x(y).(K1[Q ] | S)] = N ′ , where 
K2 �⇒ K4. Subject reduction (Theorem 3.1) ensures both K3 ∈KΓ ;Δ�y:A and K4 ∈K·;Δ′�x:A⊗B , and so (M ′, N ′) ∈R2.

In the second case we M x(y)−−−→ K2[K1[P ] | S] = M ′ . Process N can match this action, followed by zero or more reductions: 
N

x(y)�⇒ K4[K3[Q ′] | S ′] = N ′ , where K2 �⇒ K4, K1 �⇒ K3, Q �⇒ Q ′ , and S �⇒ S ′ . (Recall that K1 and K2 are parallel 
contexts, and so they are able to interact.) Theorem 5.1 ensures that these reductions are finite. Since � K1[P ] ≈ K1[Q ] ::
y:A, and because of τ -closedness, we have � K1[P ] ≈ K3[Q ′] :: y:A. Subject reduction (Theorem 3.1) ensures � S, S ′ :: x:B . 
Following the output clause of ≈, we consider the closure of M ′ and N ′ with a process L such that y:A � L :: −:1. Such 
closures correspond to K2[(ν y)(K1[P ] | L) | S] and K4[(ν y)(K3[Q ′] | L) | S ′], respectively. We verify that the type of these 
closures is indeed x:B , as required by the output clause. Since � K1[P ], K3[Q ′] :: y:A, these processes can be composed 
with L, and we obtain

� (ν y)
(

K1[P ] ∣∣ L
)
, (ν y)

(
K3

[
Q ′] ∣∣ L

) :: −:1
The desired pair of processes can be obtained via an independent parallel composition with S , K2, S ′ , and K4, respectively:

� K2
[
(ν y)

(
K1[P ] ∣∣ L

) ∣∣ S
]
, K4

[
(ν y)

(
K3

[
Q ′] ∣∣ L

) ∣∣ S ′] :: x:B
Hence, (K2[(ν y)(K1[P ] | L) | S], K4[(ν y)(K3[Q ′] | L) | S ′]) ∈ R2 and we are done. The reasoning when N moves first is 
completely symmetric. �

We now state τ -inertness, a property of transition systems which follows as a direct consequence of the results of our 
framework, in particular, confluence (Theorem 5.2) and the definition of typed context bisimilarity. Following Groote and 
Sellink [20], this property may be stated in a general way:

Definition 6.7 (τ -Inertness). Let (P, −→) be a transition system, where P is a set of states and −→⊆ P × P . Also, let ∼
stand for an equivalence relation on the elements of P . We say that (P, −→) is τ -inert with respect to ∼ if P −→ P ′ implies 
P ∼ P ′ .

τ -Inertness is typically defined for labeled transition systems with a designated internal action τ , hence its name. In 
our case, since the LTS and the reduction relation coincide, we can safely work with reductions, and show that the class of 
well-typed processes is τ -inert with respect to ≈. Intuitively, τ -inertness says that reduction does not change the behavior 
of a process. It is therefore a property relevant for verification, as it ensures that well-typed processes can perform arbitrarily 
many reductions remaining in the same equivalence class; this is strengthened by the fact that termination (Theorem 5.1) 
ensures that these reductions are only finitely many. Adapting Definition 6.7 to our setting, we have:

Lemma 6.2 (τ -Inertness wrt ≈). Let P be a process such that Γ ; Δ � P :: T . Suppose P −→ P ′ . Then Γ ; Δ � P ≈ P ′ :: T .

Proof. By coinduction, exhibiting an appropriate typed context bisimulation. Using Proposition 6.3, we work under an empty 
left-hand side typing. We thus define a type-respecting relation containing (K [P ], K [P ′]), for any K ∈ KΓ ;Δ�T (letting Id to 
stand for the identity relation):

R = {(
K [P ], K

[
P ′]) : P −→ P ′, K ∈ KΓ ;Δ�T

} ∪ Id ∪W�T

Notice that by assumption, � K [P ] :: T ; by subject reduction (Theorem 3.1) � K [P ′] :: T . We show that R is a typed context 
bisimilarity. Suppose K [P ] moves first, i.e., K [P ] α−→ M , for some α, M . We must show a matching action K [P ′] α�⇒ N . We 
distinguish two cases, when α �= τ and when α = τ :

• If α �= τ then, necessarily, the action is related to the type in type assignment T . Appropriate inversion lemmas 
(Lemma 3.2) can be used to determine the actual label of α. Now, we know that � K [P ], K [P ′] :: T and that the 
only difference between K [P ] and K [P ′] is an internal action; since α �= τ , these conditions ensure that K [P ′] can 
match the action α and that there exists an N such that K [P ′] α�⇒ K ′[P ′′], where K �⇒ K ′ . The analysis concludes by 
a case analysis on the shape of T ; depending of T , the definition of ≈ determines the actual shape of the derivatives 
that should be found in R. All cases are easy (output, input, and replicated input require suitable process closures) and 
covered by the definition of W�T , which ensures that (M, N) ∈W�T .

• If α = τ then there are two subcases: M ≡ K [P ′] (i.e., α is the same τ action that leads from K [P ] to K [P ′]) and 
M �≡ K [P ′] (i.e., α corresponds to a different τ action from K [P ]). In the first subcase, K [P ′] can trivially match this 
reduction with zero reductions, i.e., K [P ′] �⇒ K [P ′] = N . Since the pair (K [P ′], K [P ′]) is in R we are done. In the 
second subcase, K [P ′] is able to match this τ action because of confluence (Theorem 5.2). Call τ1 the τ action from 
K [P ] to K [P ′], and let α be τ2. That is, K [P ] can exercise both τ1 and τ2. Confluence ensures that if K [P ] performs τ1
first, then its derivative K [P ′] can still exercise τ2—this internal action is not discarded. Therefore, if K [P ] challenges 
K [P ′] with τ2, confluence ensures that K [P ′] can perform τ2, possibly preceded and followed by other internal actions. 
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A matching action K [P ′] �⇒ N , in which the weak transition contains τ2, thus exists, and it is easy to see that (M, N) ∈
R, and we are done.

Now suppose that K [P ′] moves first, i.e., that K [P ′] α−→ N . We must show a matching action K [P ] α�⇒ M . Since K [P ′] is a 
τ -derivative of K [P ], it is easy to show that K [P ] can always match any action from K [P ′]: K [P ] −→ K [P ′] α−→ N , for any 
α, N . This can be rewritten as K [P ] α�⇒ N and we are done. �
7. Applications

In this section, we first establish the soundness of proof conversions with respect to typed context bisimilarity, and then 
introduce a behavioral characterization of type isomorphisms. Besides clarifying further the intrinsic properties of the logical 
interpretation of session types, these applications illustrate the interplay of typed context bisimilarity and the properties of 
the type system (subject reduction, progress, termination, confluence).

7.1. Soundness of proof conversions

Recall that, by Definition 4.1, �c stands for the congruence on typed processes induced by proof conversions. We now 
show soundness of �c with respect to ≈, that is, we show that processes extracted from proof conversions are typed 
contextually bisimilar.

Before formally stating and proving this claim, we provide some intuitions on it. Consider the process equality (15) in 
Fig. 4 (Page 261). It corresponds to the interplay of rules (Tcut) and (T⊕L), under typing assumptions Γ ; Δ1 � D̂ :: x:C , 
Γ ; Δ2, y:A, x:C � Ê :: T , and Γ ; Δ2, y:A, x:C � F̂ :: T . Letting Δ = Δ1, Δ2, we have:

Γ ;Δ, y:A ⊕ B � (νx)
(

D̂
∣∣ y.case(Ê, F̂ )

)
︸ ︷︷ ︸

(1)

�c y.case
(
(νx)(D̂ | Ê), (νx)(D̂ | F̂ )

)
︸ ︷︷ ︸

(2)

::T

with linear environments Δ1, Δ2, and non-linear environment Γ , and types T , A, B , C .
Read from (1) to (2), this conversion can be interpreted as the “promotion” of the choice at y, which causes D̂ to get 

“delayed” as a result. However, such a delay is seen to be only apparent once we examine the individual typing of D̂ and 
the whole typing derivation. The first typing assumption says that D̂ is able to offer behavior C at x (a free name in D̂), 
as long as it is placed in a context in which the behaviors described by names in Γ , Δ1 are available. The left-hand side 
typing for both (1) and (2) says that they can offer some behavior T , as long as the behaviors declared in Γ, Δ and session 
A ⊕ B at y are provided. Crucially, since x is private to (1), type assignment T cannot correspond to x:C . That is, even if 
D̂ is at the top-level in (1) its behavior on x may not be immediately available. Also because of the left-hand side typing, 
we know that (1) and (2) are only able to interact with some selection at y; only then, D̂ will be able to interact with 
either Ê or F̂ , whose behavior depends on the presence of behavior C at x. A conversion of (1) into (2) could be seen as a 
“behavioral optimization” if one considers that (2) has only one available prefix, while (1) has two parallel components.

For all proof conversions, the apparent phenomenon of “prefix promotion” induced by proof conversions can be explained 
along the above lines. In our soundness result (Theorem 7.1 below), the crucial point is capturing the fact that some top-level 
processes may not be able to immediately exercise their behavior (cf. D̂ in (1) above). Recall that IΓ ;Δ�T stands for the 
relation which collects pairs of processes with identical left- and right-hand side typings. Also, we use the continuation 
relations W�x:A (cf. Definition 6.6).

Theorem 7.1 (Soundness of proof conversions). Let P , Q be processes such that

(i) Γ ; Δ � D � P :: T ;
(ii) Γ ; Δ � E � Q :: T ;

(iii) P �c Q . Then, Γ ;Δ � P ≈ Q :: T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each proof conversion. In the bisimulation 
game, we exploit termination of well-typed processes (Theorem 5.1) to ensure that actions can be matched with finite weak 
transitions, and subject reduction (Theorem 3.1) to ensure type preservation under reductions.

We detail the case for the first proof conversion in Fig. D.6—see Appendix C.1 (Page 295) for other cases. This proof 
conversion corresponds to the interplay of rules (T⊗R) and (Tcut). We have to show that Γ ;Δ � M ≈ N :: z:A ⊗ B where

Δ = Δ1,Δ2,Δ3 Γ ;Δ1 � D̂ :: x:C Γ ;Δ2, x:C � Ê :: y:A Γ ;Δ3 � F̂ :: z:B
M = (νx)

(
D̂

∣∣ z(y).(Ê | F̂ )
)

N = z(y).
(
(νx)(D̂ | Ê)

∣∣ F̂
)

(25)

Using Proposition 6.3, we have to show that for every K ∈ KΓ ;Δ , we have � K [M] ≈ K [N] :: z:A ⊗ B . In turn, this implies 
exhibiting a typed context bisimulation R containing the pair (K [M], K [N]). We define R =W�z:A⊗B ∪ S ∪ S−1, with
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S = {(
K

[
M ′], K [N]) : M �⇒ M ′, K ∈ KΓ ;Δ

}
and W�z:A⊗B is as in Definition 6.6. Notice that S is a type-respecting relation indexed by � z:A ⊗ B . In fact, using the 
typings in (25)—with Γ = Δ = ∅—and exploiting subject reduction (Theorem 3.1), it can be checked that for all (P , Q ) ∈ S
both � P :: z:A ⊗ B and � Q :: z:A ⊗ B can be derived.

We now show that R is a typed context bisimulation. Pick any K ∈ KΓ ;Δ . Using Definition 6.5, we can assume K =
(νũ, ̃x )(KΓ | KΔ | [·]) where

• KΓ ≡ ∏
i∈I !ui(yi).Ri , with � Ri :: yi :Di , for every ui :Di ∈ Γ ;

• KΔ ≡ ∏
j∈ J S j , with � S j :: x j :C j , for every x j:C j ∈ Δ.

Clearly, (K [M], K [N]) ∈ S , and so it is in R. Now, suppose K [M] moves first: K [M] α−→ M

1. We have to find a matching 

action α from K [N], i.e., K [N] α�⇒ N

1. Since � K [M] :: z:A ⊗ B , we have two possible cases for α:

1 Case α = τ . We consider the possibilities for the origin of the reduction:
(a) KΓ

τ−→ K ′
Γ and K [M] τ−→ K ′[M]. However, this cannot be the case, as by construction KΓ corresponds to the parallel 

composition of input-guarded replicated processes which cannot evolve on their own.
(b) KΔ

τ−→ K ′
Δ and K [M] τ−→ K ′[M]. Then, for some l ∈ J , Sl

τ−→ S ′
l :

K [M] τ−→ (νũ, x̃ )
(

KΓ

∣∣ K ′
Δ

∣∣ M
) = K ′[M] = M


1

Now, context K is the same in K [N]. Then KΔ occurs identically in K [N], and this reduction can be matched by a 
finite weak transition (Theorem 5.1):

K [N] �⇒ (νũ, x̃ )
(

KΓ

∣∣ K ′′
Δ

∣∣ N
) = K ′′[N] = N


1

By subject reduction (Theorem 3.1), � S ′
l :: xl:Cl; hence, K ′, K ′′ are in KΓ ;Δ . Hence, the pair (K ′[M], K ′′[N]) is in S

(as M �⇒ M) and so it is in R.
(c) M τ−→ M ′ and K [M] τ−→ K [M ′]. Since M = (νx)(D̂ | z(y).(Ê | F̂ )), the only possibility is that there is a D̂1 such that 

D̂ τ−→ D̂1 and M ′ = (νx)(D̂1 | z(y).(Ê | F̂ )). This way,

K [M] τ−→ (νũ, x̃ )
(

KΓ

∣∣ KΔ

∣∣ M ′) = K [M ′] = M

1

We observe that K [N] cannot match this action, but K [N] �⇒ K [N] is a valid weak transition. Hence, N

1 = K [N]. 

By subject reduction (Theorem 3.1), we infer that � K [M ′] :: z:A ⊗ B . We use this fact to observe that the pair 
(K [M ′], K [N]) is included in S . Hence, it is in R.

(d) There is an interaction between M and KΓ or between M and KΔ: this is only possible by the interaction of D̂
with KΓ or KΔ on names in ũ, ̃x . Again, the only possible weak transition from K [N] matching this reduction is 
K [N] �⇒ K [N], and the analysis proceeds as in the previous case.

2 Case α �= τ . Then the only possibility, starting from K [M], is an output action of the form α = z(y). This action can 
only originate in M:

K [M] z(y)−−→ (ν̃x, ũ)
(

KΓ

∣∣ KΔ

∣∣ (νx)
(

D̂
∣∣ (ν y)(Ê | F̂ )

)) = M

1

Process K [N] can match this action via the following finite weak transition:

K [N] z(y)�⇒ (ν̃x, ũ)
(

K ′
Γ

∣∣ K ′
Δ

∣∣ (ν y)
(
(νx)

(
D̂ ′ ∣∣ Ê ′) ∣∣ F̂ ′)) = N


1

Observe how N

1 reflects the changes in K [N] due to the possible reductions before and after the output action. By 

definition of ≈ (output case), we consider the composition of M

1 and N


1 with any V such that y:A � V :: −:1. Using 
the typings in (25) and subject reduction (Theorem 3.1), we infer both

� M

2 = (ν x̃, ũ)

(
KΓ

∣∣ KΔ

∣∣ (νx)
(

D̂
∣∣ (ν y)(Ê | V | F̂ )

)) :: z:B
� N


2 = (ν x̃, ũ)
(

K ′
Γ

∣∣ K ′
Δ

∣∣ (ν y)
(
(νx)

(
D̂ ′ ∣∣ Ê ′ ∣∣ V

) ∣∣ F̂ ′)) :: z:B
Hence, the pair (M


2, N


2) is in W�z:A⊗B and so it is in R.

Now suppose that K [N] moves first: K [N] α−→ N

1. We have to find a matching action α from K [M]: K [M] α�⇒ M


1. Similarly 
as before, there are two cases: either α = τ or α = z(y). The former is as detailed before; the only difference is that 
reductions from K [N] can only be originated in KΔ; these are matched by K [M] with finite weak transitions originating in 
both K and in M . We thus obtain pairs of processes in S−1. The analysis for the case for output mirrors the given above 
and is omitted. �
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7.2. A behavioral characterization of session type isomorphisms

In type theory, types A and B are called isomorphic if there are morphisms πA of B � A and πB of A � B which compose 
to the identity in both ways—see, e.g., [18]. For instance, in the λ-calculus the types A × B and B × A are isomorphic since 
we can construct terms M = λx:A × B.〈π2x, π1x〉 and N = λx:B × A.〈π2x, π1x〉, respectively of types A × B → B × A and 
B × A → A × B , such that both compositions λx:B × A.(M(Nx)) and λx:A × B.(N(Mx)) are equivalent (up to η-conversion) 
to the identity λx:B × A.x and λx:A × B.x.

We adapt this notion to our setting, by using proofs as morphisms, and by using typed context bisimilarity to account 
for isomorphisms in linear logic.

Given a sequence of names ̃x = x1, . . . , xn , below we write P 〈̃x〉 to denote a process such that fn(P ) = {x1, . . . , xn}.

Definition 7.1 (Type isomorphism). Two (session) types A and B are called isomorphic, noted A � B , if, for any names x, y, z, 
there exist processes P 〈x,y〉 and Q 〈y,x〉 such that:

(i) · ; x:A � P 〈x,y〉 :: y:B;
(ii) · ; y:B � Q 〈y,x〉 :: x:A;

(iii) · ; x:A � (ν y)(P 〈x,y〉 | Q 〈y,z〉) ≈ [x ↔ z] :: z:A; and
(iv) · ; y:B � (νx)(Q 〈y,x〉 | P 〈x,z〉) ≈ [y ↔ z] :: z:B .

Thus, intuitively, if A, B are service specifications then by establishing A � B one can claim that having A is as good as 
having B , because we can build one from the other using an isomorphism. Isomorphisms in linear logic can then be used 
to simplify/transform service interfaces in the π -calculus. They can also help validating our interpretation with respect to 
basic linear logic principles. As an example, let us consider multiplicative conjunction ⊗. A basic linear logic principle is 
A ⊗ B � B ⊗ A. Our interpretation of A ⊗ B may appear asymmetric as, in general, a channel of type A ⊗ B is not typable 
by B ⊗ A. Theorem 7.2 below states the symmetric nature of ⊗ as a type isomorphism: symmetry is realized by a process 
which coerces any session of type A ⊗ B to a session of type B ⊗ A.

Theorem 7.2. Let A, B, and C be any type, as in Definition 3.1. Then the following hold:

(i) A ⊗ B � B ⊗ A
(ii) (A ⊕ B)�C � (A�C) & (B�C)

(iii) !(A & B) �!A⊗!B.

Proof. We give details for the proof of (i) above; see Appendix C.2, Page 298, for further details.
We check conditions (i)–(iv) of Definition 7.1 for processes P 〈x,y〉, Q 〈y,x〉 defined as

P 〈x,y〉 = x(u).y(n).
([x ↔ n] ∣∣ [u ↔ y])

Q 〈y,x〉 = y(w).x(m).
([y ↔ m] ∣∣ [w ↔ x])

Checking (i)–(ii), i.e., · ; x:A ⊗ B � P 〈x,y〉::y:B ⊗ A and · ; y:B ⊗ A � Q 〈y,x〉::x:A ⊗ B is easy; rule (Tid) ensures that both 
typings hold for any A, B . We sketch only the proof of (iii); the proof of (iv) is analogous. Let M = (ν y)(P 〈x,y〉 | Q 〈y,z〉)
and N = [x ↔ z]; we need to show · ; x:A ⊗ B � M ≈ N :: z:A ⊗ B . By Proposition 6.3, we have to show that for every 
K ∈K· ; x:A⊗B , we have � K [M] ≈ K [N] :: z:A ⊗ B . In turn, this implies exhibiting a typed context bisimulation R containing 
(K [M], K [N]). Letting S = {(R1, R2) : K [M] �⇒ R1, K [N] �⇒ R2}, we set R =W�z:A⊗B ∪S ∪S−1. Following expected lines, 
R can be shown to be a typed context bisimulation. �
8. Related work

Logical relations in concurrency In a concurrent/process calculi setting, logical relations (or closely related techniques) have 
been investigated by Berger, Honda, and Yoshida [47,3,4], Sangiorgi [41], Caires [8], and Boudol [7]. None of these works 
considers session types, and so the logical relations proposed in such works are very different from ours. Boudol [7] relies 
on the classical realizability technique (together with a type and effect system) to establish termination in a higher-order 
imperative language. Caires [8] proposes a semantic approach to proving soundness for type systems for concurrency, by 
relying on a spatial logic interpretation of types. More related to our developments are works by Yoshida, Berger, Honda [47]
and by Sangiorgi [41], which aim at identifying terminating fragments of the π -calculus by using types, relying on argu-
ments based on logical relations. The logical relations framework developed in [47] is extended in [3,4] to the case of a 
second-order, polymorphic π -calculus. A main result in [3,4] is a proof of termination using the method of reducibility can-
didates; while [3] reports a relational parametricity result, [4] puts forward a behavioral theory based on generic transitions 
and a fully abstract embedding of System F. All of these works consider typing disciplines different from session types; con-
sequently, associated semantic interpretations of types are very different from ours, and rely on constraints on the syntax 
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and the types of processes. In sharp contrast to [47,41], which aim at type disciplines that guarantee termination, here we 
started from a well-established type discipline for the π -calculus and have used linear logical relations to show termina-
tion and confluence of well-typed processes. We have shown how the interpretation of intuitionistic linear logic as session 
types in [11] leads to intuitive logical relations, naturally defined on the structure of types. In this sense, our approach is 
more principled than in [47,41], as it is not an adaptation of the method, but rather an instantiation of the method on our 
canonical linear type structure.

Logical interpretations of session types Dal Lago and Di Giamberardino [14] introduce an interpretation of session types as 
soft linear logic propositions [28]. As a result, the exponential “!” is treated following a non-canonical discipline that uses 
two different typing environments. Hence, typing rules and judgments in [14] are rather different from ours. A bound on the 
length of reductions starting from well-typed-processes is obtained; the proof uses techniques from Implicit Computational 
Complexity. Neither confluence, observational equivalences, nor issues of inference permutability and type isomorphisms are 
addressed in [14]. Although here we do not provide a similar bound, it is remarkable that our proof of termination follows 
only the principles and properties of [11]; in contrast to [14], our proof appeals to well-known technical devices, and allows 
us to retain a standard, intuitive treatment of “!”. This is particularly desirable for extensions/generalizations of our logical 
interpretation of session types, such as the proposed in [45,35].

Loosely related is Mazurak and Zdancewic’s Lolliproc [29], a functional language with support for concurrency based 
on control operators. Lolliproc’s operational semantics is based on a runtime process calculus; thread communication is 
defined in terms of protocol types which are given a classic linear logic interpretation. As in our case, type soundness, 
strong normalization, and confluence results hold for Lolliproc; however, the details of the associated proof techniques are 
rather different from ours.

Determinacy and confluence in process calculi In term rewriting systems such as the λ-calculus, determinacy and confluence 
are well-understood issues, and typically rely on (unlabeled) reduction semantics. For process calculi, a semantics given in 
terms of labelled transition systems is often useful, for it describes the interaction of processes with their environment. As 
a result, notions of determinacy and confluence for process calculi typically account for those labels, thus setting a major 
difference with respect to traditional notions. It is worth noticing that our notion of confluence (Definition 5.2) considers 
only weak transitions based on internal behavior, and so it is closer to classical definitions of confluence rather than to 
the definitions used in process calculi. Early studies of determinacy and confluence for process calculi are due to Milner, in 
the setting of CCS [30]; his interest was on proper definitions of such notions, focusing on syntactic conditions on process 
constructs so as to build determinate, confluent systems by construction. There is a close relationship between determinacy, 
confluence, τ -inertness and the given notion of equivalence; Groote and Sellink [20] provide a general study on such a 
relationship, focusing on the impact of such notions on process verification. Milner’s approach to confluence was extended 
to the π -calculus by Walker and Philippou [36], and by Nestmann [32] who characterizes (forms of) confluence in terms of 
so-called port uniqueness for polarized name-passing, which is ensured by static typing. Most related to our work is the work 
by Kouzapas et al. [27], which adapts Walker and Philippou’s techniques to establish session determinacy and confluence for 
a session-typed asynchronous π -calculus. The above mentioned differences in the definition of determinacy and confluence 
prevent detailed comparisons with our confluence result, which relies on reductions and is shown using logical relations.

Typed behavioral equivalences Previous works on behavioral equivalences for typed process calculi have considered a number 
of different typing disciplines. For instance, behavioral theories for calculi with linear types (e.g., [26]), input/output types 
(e.g., [6,37,16]), subtyping with name matching (e.g., [21]), and polymorphic types (e.g., [38]) have been put forward. Still, 
the only work on behavioral equivalences for binary session-typed processes we are aware of is [27]. It studies the behavioral 
theory of a π -calculus with asynchronous, event-based binary session communication. The aim is to capture the distinction 
between order-preserving communications (those inside already established connections) and non-order-preserving com-
munications (those outside such connections). The behavioral theory in [27] accounts for principles for prefix commutation 
that appear similar to those induced by our proof conversions. However, the origin and nature of these commutations are 
quite different. In fact, in [27] prefix commutation arises from the above-mentioned distinction, whereas commutations in 
our (synchronous) framework are due to causality relations captured by types. Loosely related to typed context bisimilarity 
is [48], where a form of linear bisimilarity is proposed; following a linear type structure, it treats some visible actions as 
internal actions, thus leading to an equivalence larger than standard bisimilarity which is a congruence.

9. Concluding remarks

In this paper, we have introduced a theory of linear logical relations and a notion of typed behavioral equivalences for 
session-typed, concurrent processes. These developments extend the interpretation of linear logic propositions as session 
types developed by Caires and Pfenning in [11].

Our theory of linear logical relations is remarkably similar to that for functional languages; although in our setting ses-
sion types are assigned to names (and not to terms), our linear logical relations are defined on the structure of types, relying 
both on process reductions and labeled transitions. A main application of this theory is a proof that well-typed processes are 
both strongly normalizing (Theorem 5.1) and confluent (Theorem 5.2). In practice, certifying termination and confluence of 
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session-typed programs is important. We believe the extended correctness guarantees given by our results could be highly 
beneficial for the increasingly growing number of practical implementations (libraries, programming language extensions) 
based on session types foundations—see, e.g., [25,33,39].

We have also presented a behavioral theory for session-typed processes. We introduced typed context bisimilarity, a novel 
labeled bisimilarity over typed processes, and studied its properties. Our definition follows from the intuitive meaning of 
type judgments, and is stated in the style of conventional definitions for untyped processes. In addition to studying its main 
properties, we have illustrated this typed observational equivalence in two applications, which strengthen the properties of 
the logic interpretation established in [11]. On the one hand, we have shown soundness of proof conversions with respect 
to observational equivalence—an issue left open in [11] (Theorem 7.1). On the other hand, we studied type isomorphisms
resulting from linear logic equivalences in our setting (Theorem 7.2). The basic properties of the interpretation—especially, 
the combination of subject reduction and termination—were of the essence in the proofs of both applications.

There are some intuitive similarities in the definitions used in formalizing our theory of linear logical relations and those 
required for developing our behavioral theory. We have given a formal connection between the two topics in [9,10], where 
the linear logic relations developed here are generalized to the case of parametric polymorphism. In this extended setting, 
existential and universal quantification over types are interpreted as a form of session type-passing; using logical relations 
we have characterized barbed congruence in a sound and complete way. In future work, we plan to adapt the results here 
presented to the case of the interpretation of session types into classical linear logic, as defined in [12, §5] and [46].

Acknowledgments

We thank the anonymous reviewers for their comments and suggestions. This research was supported by the Fundação 
para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through grants INTERFACES NGN-44/2009 
(Carnegie Mellon Portugal Program), SFRH/BD/33763/2009 (Toninho), SFRH/BPD/84067/2012 (Pérez), and CITI.

Appendix A. Proofs of Section 5 (Logical Relations)

Below, we write P �−→ to mean that P cannot reduce; it can perform visible actions, though. Also, we write P −→k P ′
to denote a reduction sequence of length k from P to P ′ . Given a process P⇓, we write mlen(P ) to stand for the length 
of the longest reduction sequence originating from P . Given terminating processes P1, . . . , Pn , notation mlen(P1, . . . , Pn)

stands for mlen(P1) + · · · + mlen(Pn).

A.1. Proof of Proposition 5.7

We repeat the statement in Page 266:

Proposition Appendix A.1 (Proposition 5.7). Let P , Q be well-typed processes. If P ∈L[T ] and P ≡! Q then Q ∈L[T ].

Proof. By induction on the definition of P ≡! Q (Definition 5.3). Given Proposition 5.5, it suffices to consider only the sharp-
ened replication axioms. In each case, we use an auxiliary induction on the structure of T , which relies on Proposition 5.2
and on the operational correspondence between P and Q given by Proposition 5.1.

• Axiom (1): Then we have two sub-cases. In the first one, we have

P = (νu)
(!u(z).P1

∣∣ (ν y)(P2 | P3)
)

Q = (ν y)
(
(νu)

(!u(z).P1
∣∣ P2

) ∣∣ (νu)
(!u(z).P1

∣∣ P3
))

Hence, sub-process !u(z).P1 has been distributed to the unguarded processes P2 and P3. We proceed by induction 
on the structure of T . Each case proceeds by showing that Q satisfies termination, well-typedness, and operational 
correspondence requirements stated in Definition 5.4. For the latter, we use Proposition 5.1(1) and 5.1(2). We have six 
cases to check; we detail only some of them as the rest is similar.
Case P ∈L[z:1]. Then P⇓ and ·; · � P :: z:1 and for all P ′ such that P �⇒ P ′ and P ′ �−→ it implies that P ′ ≡! 0. First, by 

Proposition 5.2, we have that Q ⇓. Now, since ·; · � P :: z:1 it is easy to show that there exists a typing derivation 
for ·; · � Q :: z:1. Finally, by Proposition 5.1(1), we know that Q can match any reduction from P . Therefore, there 
exists a Q ′ such that Q �⇒ Q ′ and Q ′ �−→ and P ′ ≡! Q ′ . By transitivity of ≡! , we have that Q ′ ≡! 0 and so 
Q ∈L[z:1], as desired.

Case P ∈L[z:A�B]. Then P⇓ and ·; · � P :: z:A�B . Hence, by Proposition 5.6, P has an input action on z. Moreover, 
by Definition 5.4, for all P ′, y such that P

z(y)�⇒ P ′ it implies that ∀R ∈L[y:A].(ν y)(P ′ | R) ∈L[z:B]. First, by Propo-
sition 5.2, we have that Q ⇓. Now, since ·; · � P :: z:A�B , it is easy to show that there exists a typing derivation 
for ·; · � Q :: z:A�B . Finally, by Proposition 5.1(1) and 5.1(2), we know that Q can match any reduction/transition 
from P . Therefore, there exists a Q ′ such that Q

z(y)�⇒ Q ′ and P ′ ≡! Q ′ . Now, by induction hypothesis we have that 
∀R ∈L[y:A].(ν y)(Q ′ | R) ∈L[z:B], and so Q ∈L[z:A�B], as desired.
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Case P ∈L[z:A ⊗ B]. Then P⇓ and ·; · � P :: z:A ⊗ B . Hence, by Proposition 5.6, P has an output action on z. Moreover, 
by Definition 5.4, for all P ′ , y such that P

z(y)�⇒ P ′ it implies that there exist P1, P2 such that P ′ ≡! P1 | P2 and 
P1 ∈ L[y:A] and P2 ∈ L[z:B]. First, by Proposition 5.2, we have that Q ⇓. Now, since ·; · � P :: z:A ⊗ B , it is easy 
to show that there exists a typing derivation for ·; · � Q :: z:A ⊗ B . Now, by Proposition 5.1(1) and 5.1(2), we know 
that Q can match any reduction/transition from P . Therefore, there exists a Q ′ such that Q

z(y)�⇒ Q ′ and P ′ ≡! Q ′ . 
Now, by transitivity we have that Q ′ ≡! P1 | P2, and so Q ∈L[z:A ⊗ B], as desired.

Case P ∈L[z:!A]. Similar to the case P ∈L[z:1].
The second sub-case is symmetric to the first one, with P defined as Q and Q defined as P . As such, sub-process 
!u(z).P1 has been “factorized” from the process expression. The analysis follows the lines of the first case and is omitted.

• Axiom (2): Then we have two sub-cases. In the first one, we have:

P = (νu)
(!u(y).P1

∣∣ (νv)
(!v(z).P2

∣∣ P3
))

Q = (νv)
((!v(z).(νu)

(!u(y).P1
∣∣ P2

)) ∣∣ (νu)
(!u(y).P1

∣∣ P3
))

Similarly as before, sub-process !u(y).P1 has been distributed to the unguarded process P3 and to the input-guarded 
replicated process !v(z).P2. We proceed by induction on the structure of T . Each case proceeds by showing that Q
satisfies the requirements stated in Definition 5.4. The analysis mirrors the one given above for Axiom (1), using Propo-
sition 5.2, observing that typability of P under some type assignment T implies typability of Q under T , and exploiting 
the operational correspondence between P and Q given by Proposition 5.1(1) and 5.1(2).
In the second sub-case, P defined as Q and Q defined as P . As such, sub-process !u(y).P1 has been factorized from 
the process expression. The analysis follows the lines of the first sub-case and is omitted.

• Axiom (3): Then we have two sub-cases. In the first one, we have

P = (νu)
(!u(y).P1

∣∣ P2
)

with u /∈ fn(P2) Q = P2

Hence, sub-process !u(y).P1 is discarded, as it cannot be invoked by P2. We proceed by induction on the structure 
of T . Each case proceeds by showing that Q satisfies the requirements stated in Definition 5.4. The crucial point is 
to observe that since u /∈ fn(P2) then every reduction/transition from P originates in P2, and so they can be trivially 
matched by Q . As a consequence, P belongs to L[z:T ], for some z �= u. We have six cases to check; we detail two of 
them, the others are similar:
Case P ∈L[z:1]. Then P⇓ and ·; · � P :: z:1 and for all P ′ such that P �⇒ P ′ and P ′ �−→ it implies that P ′ ≡! 0. First, 

by Proposition 5.2, we have that Q ⇓. Now, since ·; · � P :: z:1 it is possible to show that ·; · � Q :: z:1. Notice also 
that since u /∈ fn(P2), none of the reductions from P to P ′ is a synchronization on u. Hence, every reduction of P
originates in P2, and since Q = P2, the thesis trivially holds.

Case P ∈L[z:A�B]. Then P⇓ and ·; · � P :: z:A�B . Hence, by Proposition 5.6, P has an input action on z. Moreover, 
by Definition 5.4, for all P ′ , y such that P

z(y)�⇒ P ′ it implies that ∀R ∈ L[y:A].(ν y)(P ′ | R) ∈ L[z:B]. First, by 
Proposition 5.2, we have that Q ⇓. Now, since ·; · � P :: z:A�B then it can be shown that ·; · � Q :: z:A�B . Now, 
since u /∈ fn(P2), none of the reductions/transition from P to P ′ is a synchronization on u. Hence, every reduction 
and transition of P originates in P2, and since Q = P2, we immediately infer that Q ∈L[z:A�B], as desired.

The second sub-case is the symmetric of the first one, with P defined as Q and Q defined as P . That is, process Q
is the extension of P = P2 with a process !u(y).P1 that it cannot invoke. Notice that we assume well-typed processes, 
and so the extended process Q is well-typed as well. The analysis follows the lines of the first case and is omitted. �

A.2. Proof of Proposition 5.8

We repeat the statement in Page 266:

Proposition Appendix A.2 (Proposition 5.8). Let · ; · � P :: z:A be a well-typed process. If P −→x P1 and P −→y P2 and P1 �= P2
then there exist P ′

1, P ′
2 such that P1 −→y P ′

1 and P2 −→x P ′
2 .

Proof. By a case analysis on the different ways in which two different reductions on private names can arise from the 
process P . By assumption, P ≡ (νñ)P0 where x and y occur in ̃n and both

(νñ)P0 −→x (νñ)P ′
0 = P1 (νñ)P0 −→y (νñ)P ′′

0 = P2

Observe that Theorem 3.1 ensures both · ; · � P1 :: z:A and · ; · � P2 :: z:A. Both these reductions are inferred by the following 
reduction rule (cf. Fig. 1):

P → P ′
′
(νz)P → (νz)P
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We must show that there exist P ′
1, P ′

2 such that P1 −→y P ′
1 and P2 −→x P ′

2. In our process model there are four main 
possibilities for enabling a reduction (namely, communication, a shared server invocation, a choice, and forwarding) which 
are realized by five reduction rules. Consequently, the required analysis involves 16 cases, resulting from the combination of 
these four main possibilities, using typing inversion. In all cases, we exploit Theorem 3.1 (to ensure type preservation) and 
Theorem 3.2 (which guarantees that processes are not stuck and reductions can proceed).

Case 1. The reduction on x is a communication; the reduction on y is a choice.
Then we would have two possibilities:

P ≡ (νñ)
(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ y.inl; P4

∣∣ y.case(P5, P6)
∣∣ Rz

)
P ≡ (νñ)

(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ y.inr; P4

∣∣ y.case(P5, P6)
∣∣ Rz

)
for some P1, . . . , P6, Rz , with x, y, and w occurring in ñ. Here and in the following, we write Rz to denote the 
free occurrence of name z. Let us consider only the first possibility; the second is analogous. The two enabled 
reductions correspond to independent sessions which are inherently non-interfering from each other:

P −→x (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ y.inl; P4
∣∣ y.case(P5, P6)

∣∣ Rz
) = P ′

P −→y (νñ)
(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ P4

∣∣ P5
∣∣ Rz

) = P ′′

Clearly, one reduction does not preclude the other:

P ′ −→y (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ P4
∣∣ P5

∣∣ Rz
)

P ′′ −→x (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ P4
∣∣ P5

∣∣ Rz
)

and thus the thesis follows.
Case 2. The reduction on x is a communication; the reduction on y is a forwarding.

Then we would have:

P ≡ (νñ)
(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ [y ↔ l] ∣∣ Rz

)
for some P1, . . . , P3, Rz , with x, y, and w occurring in ñ. Also in this case, one reduction does not preclude the 
other. We have:

P −→x (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ [y ↔ l] ∣∣ Rz
)

−→y (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ Rz
){l/y}

P −→y (νñ)
(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ Rz

){l/y}
−→x (νñ)

(
P1

∣∣ P2
∣∣ P3{w/v} ∣∣ Rz

){l/y}
and thus the thesis follows.

Case 3. The reduction on x is a communication; the reduction on y is a server invocation.
Then we would have:

P ≡ (νñ)
(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ y〈l〉.P4

∣∣ !y(u).P5
∣∣ Rz

)
for some P1, . . . , P5, Rz , with x, y, w , and l occurring in ̃n. Also in this case, one reduction does not preclude the 
other. We have:

P −→x (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ y〈l〉.P4
∣∣ !y(u).P5

∣∣ Rz
)

−→y (νñ)
(

P1
∣∣ P2

∣∣ P3{w/v} ∣∣ P4
∣∣ P5{l/u} ∣∣ !y(u).P5

∣∣ Rz
)

P −→y (νñ)
(
x〈w〉.(P1 | P2)

∣∣ x(v).P3
∣∣ P4

∣∣ P5{l/u} ∣∣ !y(u).P5
∣∣ Rz

)
−→x (νñ)

(
P1

∣∣ P2
∣∣ P3{w/v} ∣∣ P4

∣∣ P5{l/u} ∣∣ !y(u).P5
∣∣ Rz

)
and thus the thesis follows.

Case 4. The reduction on x is a communication; the reduction on y is also a communication.
This case is similar to Case 3.

Case 5. Both reductions, on x and y, are server invocations.
There are two sub-cases. In the first one we would have invocations to two different servers, i.e., x �= y:

P ≡ (νñ)
(
x〈w〉.P1

∣∣ !x(v).P2
∣∣ y〈l〉.P3

∣∣ !y(u).P4
∣∣ Rz

)
for some P1, . . . , P4, Rz , with x, y, w , and l occurring in ̃n. We have:
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P −→x (νñ)
(

P1
∣∣ P2{w/v} ∣∣ !x(v).P2

∣∣ y〈l〉.P3
∣∣ !y(u).P4

∣∣ Rz
)

−→y (νñ)
(

P1
∣∣ P2{w/v} ∣∣ !x(v).P2

∣∣ P3
∣∣ P4{l/u} ∣∣ !y(u).P4

∣∣ Rz
)

P −→y (νñ)
(
x〈w〉.P1

∣∣ !x(v).P2
∣∣ P3

∣∣ P4{l/u} ∣∣ !y(u).P4
∣∣ Rz

)
−→x (νñ)

(
P1

∣∣ P2{w/v} ∣∣ !x(v).P2
∣∣ P3

∣∣ P4{l/u} ∣∣ !y(u).P4
∣∣ Rz

)
Thus, one reduction does not preclude the other. In the second sub case, we have two invocations to the same 
server, i.e., x = y:

P ≡ (νñ)
(
x〈w〉.P1

∣∣ x〈l〉.P2
∣∣ !x(v).P3

∣∣ Rz
)

We assume that x, w , and l occur in ̃n. We have:

P −→x (νñ)
(

P1
∣∣ P3{w/v} ∣∣ x〈l〉.P2

∣∣ !x(v).P3
∣∣ Rz

)
−→x (νñ)

(
P1

∣∣ P3{w/v} ∣∣ P2
∣∣ P3{l/v} ∣∣ !x(v).P3

∣∣ Rz
)

P −→x (νñ)
(
x〈w〉.P1

∣∣ P2
∣∣ P3{l/v} ∣∣ !x(v).P3

∣∣ Rz
)

−→x (νñ)
(

P1
∣∣ P3{w/v} ∣∣ P2

∣∣ P3{l/v} ∣∣ !x(v).P3
∣∣ Rz

)
Here again, one reduction does not preclude the other. Notice that the order in which the synchronizations occur 
is irrelevant, for the shared server is a persistent (replicated) process.

Case 6. The reduction on x is a server invocation; the reduction on y is a communication.
We would have

P ≡ (νñ)
(
x〈w〉.P1

∣∣ !x(v).P2
∣∣ y〈l〉.(P3 | P4)

∣∣ y(u).P5
∣∣ Rz

)
where x, y, w , and l occur in ̃n. In this case, the reasoning is as in Case 3

Case 7. The reduction on x is a server invocation; the reduction on y is a forward.
We would have

P ≡ (νñ)
(
x〈w〉.P1

∣∣ !x(v).P2
∣∣ [y ↔ l] ∣∣ Rz

)
where x, y, and w occur in ̃n. The reasoning is similar as in Case 2 above.

Case 8. The reduction on x is a server invocation; the reduction on y is a choice.
We would have

P ≡ (νñ)
(
x〈w〉.P1

∣∣ !x(v).P2
∣∣ y.inl; P3

∣∣ y.case(P4, P5)
∣∣ Rz

)
where x, y, and w occur in ̃n and the reasoning is similar as in Case 1 above.

Case 9. The reduction on x is a forwarding; the reduction on y is a communication.
This case is symmetric to Case 2 above.

Case 10. The reduction on x is a forwarding; the reduction on y is a server invocation.
This case is symmetric to Case 7 above.

Case 11. Both reductions, on x and y, are forwardings.
We would have

P ≡ (νñ)
([x ↔ w] ∣∣ [y ↔ l] ∣∣ Rz

)
where x and y occur in ̃n, and the thesis follows easily.

Case 12. The reduction on x is a forwarding; the reduction on y is a choice.
We would have two possibilities:

P ≡ (νñ)
([x ↔ w] ∣∣ y.inl; P1

∣∣ y.case(P2, P3)
∣∣ Rz

)
P ≡ (νñ)

([x ↔ w] ∣∣ y.inr; P1
∣∣ y.case(P2, P3)

∣∣ Rz
)

for some P1, . . . , P3, Rz , with x and y occur in ̃n. In both cases the thesis follows easily.
Case 13. Both reductions, on x and y, are choices.

There are four sub-cases, depending on combinations of right and left selection along x and y. We consider one 
particular subcase—the other three are analogous:

P ≡ (νñ)
(
x.inr; P1

∣∣ x.case(P2, P3)
∣∣ y.inl; P4

∣∣ y.case(P5, P6)
∣∣ Rz

)
for some P1, . . . , P6, Rz , with x, y, and w occur in ñ. The two enabled reductions correspond to independent, 
non-interfering sessions:
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P −→x (νñ)
(

P1
∣∣ P3

∣∣ y.inl; P4
∣∣ y.case(P5, P6)

∣∣ Rz
)

−→y (νñ)(P1 | P3 | P4 | P5 | Rz)

P −→y (νñ)
(
x.inr; P1

∣∣ x.case(P2, P3)
∣∣ P4

∣∣ P5
∣∣ Rz

)
−→x (νñ)(P1 | P3 | P4 | P5 | Rz)

Thus, one reduction does not preclude the other and the thesis follows.
Case 14. The reduction on x is a choice; the reduction on y is a forwarding.

This case is symmetric to Case 12 above.
Case 15. The reduction on x is a choice; the reduction on y is a server invocation.

This case is symmetric to Case 8 above.
Case 16. The reduction on x is a choice; the reduction on y is a communication.

This case is symmetric to Case 1 above. �
A.3. Proof of Proposition 5.12

We repeat the statement in Page 267:

Proposition Appendix A.3 (Proposition 5.12). Let P , Q be processes such that P ∈L[T ] and Q ∈L[−:1]. Then, P | Q ∈L[T ].

Proof. By induction on the structure of T . First, it is worth observing that P ∈ L[T ] and Q ∈ L[−:1] imply ·; · � P :: T and 
·; · � Q :: −:1, respectively. Hence, we can derive the typing ·; · � P | Q :: T (cf. the derived rule (comp)). In fact, the type of 
Q indicates it cannot offer any visible action to its environment, and so it is “independent” from it.

If T = −:1 then P | Q represents the parallel composition of two terminating processes that cannot interact with each 
other. Hence, for all R such that P | Q �⇒ R and R � we have that R ≡! 0, and so P | Q ∈ L[−:1]. The cases in which 
T �= − :1 rely on the fact that if P

α�⇒ P ′ then there exists a process R such that P | Q
α�⇒ R . The proof is by induction on 

k = mlen(Q ). If k = 0 then Q �−→ and for every weak transition P
α�⇒ P ′ , we have P | Q

α�⇒ P ′ | Q = R . In the inductive 
case, we assume k > 0, and so reductions (or the action α) from P may go interleaved with reductions from Q . Given 
P

α�⇒ P ′ then by induction hypothesis there is an R ′ such that P | Q
α�⇒ P ′ | Q ′ = R ′ , with Q reducing to Q ′ in k − 1

steps. Then, if Q ′ −→ Q ′′ we would have P | Q
α�⇒ P ′ | Q ′ −→ P ′ | Q ′′ which is equivalent to write P | Q

α�⇒ R , with 
R = P ′ | Q ′′ , and we are done. Finally, we observe that, given P

α�⇒ P ′ , process Q (and its derivatives) pose no difficulties 
when decomposing P ′ into smaller processes (in the case T = z:A ⊗ B , for instance). Hence, we can conclude that if P ∈L[T ]
then P | Q ∈L[T ], as desired. �
A.4. Proof of Lemma 5.2

We repeat the statement in Page 267 below. In the proof, we use G, G ′, . . . and D, D ′, . . . to range over processes in CΓ

and CΔ , respectively. Also, by a slight abuse of notation we write L[x:A] and !z(y).L[y:A] to denote a process included in
L[x:A] and L[!z:A], respectively.

Lemma Appendix A.1 (Lemma 5.2). If Γ ; Δ � P :: T then P ∈L[Γ ; Δ � T ].

Proof. By induction on the derivation of Γ ; Δ � P :: T , with a case analysis on the last typing rule used.
Thus, we have 18 cases to check. In all of them, we use Lemma 5.1 and show that every M = (νũ, ̃x )(P | G | D) with 

G ∈ CΓ and D ∈ CΔ , is in L[T ]. In case (Tid), the proof uses Proposition 5.4 (closure wrt substitution) and Proposition 5.11
(backward closure). In cases (T⊗L), (T�L), (Tcopy), (T⊕L), (T & L1), and (T & L2), the proof proceeds in two steps: first, 
relying on Proposition 5.10 (forward closure) we show that every M ′′ such that M �⇒ M ′′ is in L[T ]; then, we use this 
result in combination with Proposition 5.11 (backward closure) to conclude that M ∈ L[T ]. In cases (T1R), (T⊗R), (T�R), 
(T!R), (T⊕R1), and (T⊕R2), the proof consists in showing that M conforms to some specific case of Definition 5.4. Case (T1L) 
uses Proposition 5.12. Cases (T⊗L), (T�L), (T⊕L), and (T & L1), use the liveness guarantee given by Proposition 5.6. Cases 
(Tcopy), (T!L)and (Tcut!) use Proposition 5.5 (closure under ≡). Cases (Tcut), (T�R), and (T!R) use Proposition 5.7 (closure 
under ≡!).

0. Case (Tid): Γ ; x:A � [x ↔ z] :: z:A.

Pick any G ∈ CΓ :
(a) G⇓, G �−→ [By Proposition 5.3]

(b) D ∈ L[x:A]
(c) M = (νũ, x)

([x ↔ z] ∣∣ G
∣∣ D

) ∈ L[z:A]
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The proof of (c) is immediate:

(d) M −→ (νũ)
(
G{z/x} ∣∣ D{z/x}) ≡! D{z/x} = M ′ [Since x /∈ fn(G)]

(e) M ′ ∈ L[z:A] [By (b) and Proposition 5.4]

(f) M ∈ L[z:A] [By (d), (e), and Proposition 5.11]

[x ↔ z] ∈ L[Γ ; x:A � z:A] [By (c) and Lemma 5.1]

1. Case (T1R): Γ ; · � 0 :: z:1.

Pick any G ∈ CΓ :
(a) G⇓, G �−→ [By Proposition 5.3]

(b) M = (νũ)(0 | G) ∈ L[z:1]
The proof of (b) is immediate:

(c) M �−→ ∧M ≡! 0 [Using (a)]

(d) M ∈ L[z:1] [By (c) and Definition 5.4]

0 ∈ L[Γ ; · � z:1] [By (b) and Lemma 5.1]

2. Case (T1L): Γ ; Δ, z:1 � P :: T .

(a) Γ ;Δ � P :: T [Premise of rule (T1L)]
(b) P ∈ L[Γ ;Δ � T ] [By i.h. on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) M1 = (νũ, x̃ )(P | G | D) ∈ L[T ] [By Lemma 5.1 on (b)]

Pick any R ∈ L[z:1] and fix M2 = M1 | R

(d) M2 ∈ L[T ] [By (c) and Proposition 5.12]

(e) (νũ, x̃, z)(P | G | D | R) ∈ L[T ] [Expanding (d)]

P ∈ L[Γ ;Δ, z:1 � T ] [By (e) and Lemma 5.1]

3. Case (T⊗L): Γ ; Δ, z:A ⊗ B � z(y).P :: T

(a) Γ ;Δ, y:A, z:B � P :: T [Premise of rule (T⊗L)]
(b) P ∈ L[Γ ;Δ, y:A, z:B � T ] [By i.h on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) G⇓, G �−→, D⇓ [By Proposition 5.3]

(d) (νũ, x̃, y, z)
(

P
∣∣ G

∣∣ D
∣∣ L[y:A] ∣∣ L[z:B]) ∈ L[T ] [By Lemma 5.1 on (b)]

Pick R ∈ L[z:A ⊗ B] :
(e) ·; · � R :: z:A ⊗ B, R⇓ [By Definition 5.4]

(f) R
z(y)�⇒ R ′ [By (e) and Proposition 5.6]

(g) R ′ ≡! R ′
1 | R ′

2 ∧ R ′
1 ∈ L[y:A] ∧ R ′

2 ∈ L[z:B] [By Definition 5.4]

Fix M = (νũ, x̃, z)
(
z(y).P

∣∣ G
∣∣ D

∣∣ R
)

(h) ∀M ′′.M �⇒ M ′′ ⇒ M ′′ ∈ L[T ]
We prove (h) by induction on k = mlen(D, R) : [Possible by (c) and (e)]

Base case k = 0. Hence, D �−→,and R �−→:
M −→ (νũ, x̃, z, y)

(
P

∣∣ G
∣∣ D

∣∣ R ′
1

∣∣ R ′
2

) = M ′′ [Because of (f)]

M ′′ ∈ L[T ] [Using (d) and (g)]

Inductive case k > 0 :
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Fix the set W = {
M ′ ∣∣ M −→k−1 M ′}

∀M ′ ∈ W .M ′ ∈ L[T ] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[T ] [By Proposition 5.10]

(i) M ∈ L[T ] [By (h) and Proposition 5.11]

z(y).P ∈ L[Γ ;Δ, z:A ⊗ B � T ] [By (i) and Lemma 5.1]

4. Case (T⊗R): Γ ; Δ, Δ′ � z(y).(P | Q ) :: z:A ⊗ B

(a) Γ ;Δ � P :: y:A [Premise of rule (T⊗R)]
(b) Γ ;Δ′ � Q :: z:B [Premise of rule (T⊗R)]
(c) P ∈ L[Γ ;Δ � y:A] [By i.h on (a)]

(d) Q ∈ L
[
Γ ;Δ′ � z:B]

[By i.h on (b)]

Pick any G ∈ CΓ , D ∈ CΔ, D ′ ∈ CΔ′ :
(e) G⇓, G �−→, D⇓, D ′⇓ [By Proposition 5.3]

(f) (νũ, x̃1)(P | G | D) ∈ L[y:A] [By Lemma 5.1 on (c)]

(g) (νũ, x̃2)
(

Q
∣∣ G

∣∣ D ′) ∈ L[z:B] [By Lemma 5.1 on (d)]

Fix x̃ = x̃1 ∪ x̃2 :
(h) M = (νũ, x̃ )

(
z(y).(P | Q )

∣∣ G
∣∣ D

∣∣ D ′) ∈ L[z:A ⊗ B]
We prove (h) by induction on k = mlen

(
D, D ′) : [Possible by (e)]

Base case k = 0. Hence, D �−→,and D ′ �−→:
(i) M

z(y)−−→ (νũ, x̃ )
(

P
∣∣ Q

∣∣ G
∣∣ D

∣∣ D ′) = M ′

M ′ ≡! (νũ, x̃1)(P | G | D)︸ ︷︷ ︸
M ′

1

| (νũ, x̃2)
(

Q
∣∣ G

∣∣ D ′)︸ ︷︷ ︸
M ′

2

(j) M ′
1 ∈ L[y:A] [By (f)]

(k) M ′
2 ∈ L[z:B] [By (g)]

M ∈ L[z:A ⊗ B] [By Definition 5.4, using (i), (j), and (k)]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[z:A ⊗ B] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[z:A ⊗ B] [By Proposition 5.10]

z(y).(P | Q ) ∈ L
[
Γ ;Δ,Δ′ � z:A ⊗ B

]
[By (h) and Lemma 5.1]

5. Case (T�L): Γ ; Δ, Δ′, z:A�B � z(y).(P | Q ) :: T

(a) Γ ;Δ � P :: y:A [Premise of rule (T�L)]
(b) Γ ;Δ′, z:B � Q :: T [Premise of rule (T�L)]
(c) P ∈ L[Γ ;Δ � y:A] [By i.h on (a)]

(d) Q ∈ L
[
Γ ;Δ′, z:B � T

]
[By i.h on (b)]

Pick any G ∈ CΓ , D ∈ CΔ, D ′ ∈ CΔ′ :
(e) G⇓, G �−→, D⇓, D ′⇓ [By Proposition 5.3]

(f) (νũ, x̃1)(P | G | D) ∈ L[y:A] [By Lemma 5.1 on (c)]
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(g) (νũ, x̃2, z)
(

Q
∣∣ G

∣∣ D ′ ∣∣ L[z:B]) ∈ L[T ] [By Lemma 5.1 on (d)]

Fix x̃ = x̃1 ∪ x̃2 and pick R ∈ L[z:A�B] :
(h) ·; · � R :: z:A�B, R⇓ [By Definition 5.4]

(i) R
z(y)�⇒ R ′ [By (h) and Proposition 5.6]

(j) ∀Q ∈ L[y:A].(ν y)
(

R ′ ∣∣ Q
) ∈ L[z:B] [By Definition 5.4]

Fix M = (νũ, x̃, z)
(
z(y).(P | Q )

∣∣ G
∣∣ D

∣∣ D ′ ∣∣ R
)

(k) ∀M ′′.M �⇒ M ′′ ⇒ M ′′ ∈ L[T ]
We prove (k) by induction on k = mlen

(
D, D ′, R

) : [Possible by (e) and (h)]

Base case k = 0. Hence, D �−→, D ′ �−→, R �−→:
M −→ (νũ, x̃, z, y)

(
P

∣∣ Q
∣∣ G

∣∣ D
∣∣ D ′ ∣∣ R ′) = M ′′ [Because of (i)]

Fix M∗ = (νũ, x̃1)(P | G | D) :
(l) M∗ ∈ L[y:A] [Using (f)]

M ′′ ≡! (νũ, x̃2, z)
(

Q
∣∣ G

∣∣ D ′ ∣∣ (ν y)
(

R ′ ∣∣ M∗)) = M1

(m) (ν y)
(

R ′ ∣∣ M∗) ∈ L[z: B] [Using (j) and (l)]

(n) M1 ∈ L[T ] [Using (g) and (m)]

M ′′ ∈ L[T ] [By Proposition 5.7 and (n)]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[T ] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[T ] [By Proposition 5.10]

(o) M ∈ L[T ] [By (k) and Proposition 5.11]

z(y).(P | Q ) ∈ L
[
Γ ;Δ,Δ′, z:A�B � T

]
[By (o) and Lemma 5.1]

6. Case (T�R): Γ ; Δ � z(y).P :: z:A�B

(a) Γ ;Δ, y:A � P :: z:B [Premise of rule (T�R)]
(b) P ∈ L[Γ ;Δ, y:A � z:B] [By i.h on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) G⇓, G �−→, D⇓ [By Proposition 5.3]

(d) (νũ, x̃, y)
(

P
∣∣ G

∣∣ D
∣∣ L[y:A]) ∈ L[z:B] [By Lemma 5.1 on (b)]

(e) M = (νũ, x̃ )
(
z(y).P

∣∣ G
∣∣ D

) ∈ L[z:A�B]
We prove (e) by induction on k = mlen(D) : [Possible by (c)]

Base case k = 0. Hence, D �−→:
(f) M

z(y)−−→ (νũ, x̃)(P | G | D) = M1

Pick any R ∈ L[y:A] :
(g) (νũ, x̃, y)(P | G | D | R) ∈ L[z:B] [Using (d)]

M ∈ L[z:A�B] [By Definition 5.4, using (f),(g)]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[z:A�B] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
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∀M ′′ ∈ W ′.M ′′ ∈ L[z:A�B] [Proposition 5.10]

z(y).P ∈ L[Γ ;Δ � z:A�B] [By Lemma 5.1 on (e)]

7. Case (Tcut): Γ ; Δ, Δ′ � (νz)(P | Q ) :: T

(a) Γ ;Δ � P :: z:A [Premise of rule (Tcut)]
(b) Γ ;Δ′, z:A � Q :: T [Premise of rule (Tcut)]
(c) P ∈ L[Γ ;Δ � z:A] [By i.h. on (a)]

(d) Q ∈ L
[
Γ ;Δ′, z:A � T

]
[By i.h. on (b)]

Pick any G ∈ CΓ , D ∈ CΔ, D ′ ∈ CΔ′ :
(e) (νũ, x̃1)(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (c)]

(f) (νũ, x̃2, z)
(

Q
∣∣ G

∣∣ D ′ ∣∣ L[z:A]) ∈ L[T ] [By Lemma 5.1 on (d)]

Fix M = (νũ, x̃ )
(
(νz)(P | Q )

∣∣ G
∣∣ D

∣∣ D ′)
M ≡! (νz)

(
(νũ, x̃2)

(
Q

∣∣ G
∣∣ D ′) ∣∣ (νũ, x̃1)(P | G | D)︸ ︷︷ ︸

M1

) = M ′

(g) M1 ∈ L[z:A] [Using (e)]

(h) M ′ ∈ L[T ] [Combining (g) and (f)]

(i) M ∈ L[T ] [Using (h) and Proposition 5.7]

(j) (νũ, x̃ )
(
(νz)(P | Q )

∣∣ G
∣∣ D

∣∣ D ′) ∈ L[T ] [Expanding (i)]

(νz)(P | Q ) ∈ L
[
Γ ;Δ,Δ′ � T

]
[By Lemma 5.1 on (j)]

8. Case (Tcut!): Γ ; Δ � (νz)(!z(y).P | Q ) :: T

(a) Γ ; · � P :: y:A [Premise of rule
(
Tcut!

)]
(b) Γ, z:A;Δ � Q :: T [Premise of rule

(
Tcut!

)]
(c) P ∈ L[Γ ; · � y:A] [By i.h. on (a)]

(d) Q ∈ L[Γ, z:A;Δ � T ] [By i.h. on (b)]

Pick any G ∈ CΓ , D ∈ CΔ :
(e) (νũ)(P | G) ∈ L[y:A] [By Lemma 5.1 on (c)]

(f) (νũ, x̃, z)
(

Q
∣∣ G

∣∣!z(y).L[y:A] ∣∣ D
) ∈ L[T ] [By Lemma 5.1 on (d)]

Fix M = (νũ, z, x̃ )
(!z(y).P

∣∣ Q
∣∣ G

∣∣ D
)

(g) M ∈ L[T ] [Combining (e) and (f)]

M ≡ (νũ, x̃ )
(
(νz)

(!z(y).P
∣∣ Q

) ∣∣ G
∣∣ D

) = M ′

(h) M ′ ∈ L[T ] [From (g), using Proposition 5.5]

(νz)
(!z(y).P

∣∣ Q
) ∈ L[Γ ;Δ � T ] [By Lemma 5.1 on (h)]

9. Case (Tcopy): Γ, z:A; Δ � z(y).P :: T

(a) Γ, z:A;Δ, y:A � P :: T [Premise of rule (Tcopy)]
(b) P ∈ L[Γ, z:A;Δ, y:A � P :: T ] [By i.h on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) G⇓, G �−→, D⇓ [By Proposition 5.3]

(d) (νũ, z, x̃, y)
(

P
∣∣ G

∣∣!z(y).L[y:A] ∣∣ D
∣∣ L[y:A]) ∈ L[T ] [By Lemma 5.1 on (b)]

Pick R ∈ L[y:A] :
Fix M = (νũ, z, x̃ )

(
z(y).P

∣∣ G
∣∣!z(y).R

∣∣ D
)
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(e) ∀M ′′.M �⇒ M ′′ ⇒ M ′′ ∈ L[T ]
We prove (e) by induction on k = mlen(D) : [Possible by (c)]

Base case k = 0. Hence, D �−→:
M −→≡ (νũ, z, x̃, y)

(
P

∣∣ G
∣∣!z(y).R

∣∣ D
∣∣ R

) = M ′′

M ′′ ∈ L[T ] [Using (d) and Proposition 5.5]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[T ] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[T ] [By Proposition 5.10]

(f) M ∈ L[T ] [By (e) and Proposition 5.11]

z(y).P ∈ L[Γ, z:A;Δ � T ] [By (f) and Lemma 5.1]

10. Case (T!L): Γ ; Δ, y:!A � P :: T

(a) Γ, z:A;Δ � P {z/y} :: T [Premise of rule (T!L)]
(b) P {z/y} ∈ L[Γ, z:A;Δ � T ] [By i.h on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) (νũ, z, x̃ )

(
P {z/y} ∣∣ G

∣∣!z(w).L[w:A] ∣∣ D
) ∈ L[T ] [By Lemma 5.1 on (b)]

(d) (νũ, y, x̃ )
(

P
∣∣ G

∣∣ !y(w).L[w:A]︸ ︷︷ ︸
R

∣∣ D
) ∈ L[T ] [By ≡ (α-conv) on (c)]

(e) R ∈ L[y:!A] [By Definition 5.4]

P ∈ L[Γ ;Δ, y:!A � T ] [By (d), (e), Proposition 5.5, and Lemma 5.1]

11. Case (T!R): Γ ; · �!z(y).P :: z:!A

(a) Γ ; · � P :: y:A [Premise of rule (T!R)]
(b) P ∈ L[Γ ; · � y:A] [By i.h on (a)]

Pick any G ∈ CΓ :
(c) G⇓, G �−→ [By Proposition 5.3]

(d) (νũ)(P | G) ∈ L[y:A] [By Lemma 5.1 on (b)]

Fix M = (νũ)
(!z(y).P

∣∣ G
)

M ≡!!z(y).(νũ)(P | G) = M ′ [By Definition 5.3, Axiom (2)]

(e) M ′ ∈ L[z:!A] [By Definition 5.4, using (d)]

(f) M ∈ L[z:!A] [By (e) and Proposition 5.7]

!z(y).P ∈ L[Γ ; · � z:!A] [By (f) and Lemma 5.1]

12. Case (T⊕L): Γ ; Δ, z:A ⊕ B � z.case(P , Q ) :: T

(a) Γ ;Δ, z:A � P :: T [Premise of rule (T⊕L)]
(b) Γ ;Δ, z:B � Q :: T [Premise of rule (T⊕L)]
(c) P ∈ L[Γ ;Δ, z:A � T ] [By i.h on (a)]

(d) Q ∈ L[Γ ;Δ, z:B � T ] [By i.h on (b)]

Pick any G ∈ CΓ , D ∈ CΔ :
(e) G⇓, G �−→, D⇓ [By Proposition 5.3]

(f) (νũ, x̃, z)
(

P
∣∣ G

∣∣ D
∣∣ L[z:A]) ∈ L[T ] [By Lemma 5.1 on (c)]
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(g) (νũ, x̃, z)
(

Q
∣∣ G

∣∣ D
∣∣ L[z:B]) ∈ L[T ] [By Lemma 5.1 on (d)]

Pick R ∈ L[z:A ⊕ B] :
(h) ·; · � R :: z:A ⊕ B, R⇓ [By Definition 5.4]

(i) R
z.inl�⇒ R ′ ∨ R

z.inr�⇒ R ′ [By (h) and Proposition 5.6]

(j) R
z.inl�⇒ R ′ ⇒ R ′ ∈ L[z:A] ∧ R

z.inr�⇒ R ′ ⇒ R ′ ∈ L[z:B] [By Definition 5.4]

Fix M = (νũ, x̃, z)
(
z.case(P , Q )

∣∣ G
∣∣ D

∣∣ R
) :

(k) ∀M ′′.M �⇒ M ′′ ⇒ M ′′ ∈ L[T ]
We prove (k) by induction on k = mlen(D, R) : [Possible by (e) and (h)]

Base case k = 0. Hence, D �−→, R �−→:
M −→ M ′′

1 ∨ M ′′ −→ M ′′
2,where :

M ′′
1 = (νũ, x̃, z)

(
P

∣∣ G
∣∣ D

∣∣ R ′) [Because of (i)]

M ′′
2 = (νũ, x̃, z)

(
Q

∣∣ G
∣∣ D

∣∣ R ′) [Because of (i)]

M ′′
1 ∈ L[T ] [Using (f)]

M ′′
2 ∈ L[T ] [Using (g)]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[T ] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[T ] [By Proposition 5.10]

(l) M ∈ L[T ] [By (k) and Proposition 5.11]

z.case(P , Q ) ∈ L[Γ ;Δ, z:A ⊕ B � T ] [By (l) and Lemma 5.1]

13. Case (T & L1): Γ ; Δ, z:A & B � z.inl; P :: T

(a) Γ ;Δ, z:A � P :: T [Premise of rule (T & L1)]
(b) P ∈ L[Γ ;Δ, z:A � T ] [By i.h on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) G⇓, G �−→, D⇓ [By Proposition 5.3]

(d) (νũ, x̃, z)
(

P
∣∣ G

∣∣ D
∣∣ L[z:A]) ∈ L[T ] [By Lemma 5.1 on (b)]

Pick R ∈ L[z:A & B] :
(e) · ; · � R :: z:A & B, R⇓ [By Definition 5.4]

(f) R
z.inl�⇒ R1 ∨ R

z.inr�⇒ R2 [By (e) and Proposition 5.6]

(g) R
z.inl�⇒ R1 ⇒ R1 ∈ L[z:A] ∧ R

z.inr�⇒ R2 ⇒ R2 ∈ L[z:B] [By Definition 5.4]

Fix M = (νũ, x̃, z)(z.inl; P | G | D | R) :
(h) ∀M ′′.M �⇒ M ′′ ⇒ M ′′ ∈ L[T ]
We prove (h) by induction on k = mlen(D, R) : [Possible by (c) and (e)]

Base case k = 0. Hence, D �−→, R �−→:
M −→ (νũ, x̃, z)(P | G | D | R1) = M ′′

M ′′ ∈ L[T ] [Using (d) and (g)]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
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∀M ′ ∈ W .M ′ ∈ L[T ] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[T ] [By Proposition 5.10]

(j) M ∈ L[T ] [By (h) and Proposition 5.11]

z.inl; P ∈ L[Γ ;Δ, z:A & B � T ] [By (j) and Lemma 5.1]

14. Case (T & L2): Analogous to case (T & L1).
15. Case (T & R): Γ ; Δ � z.case(P , Q ) :: z:A & B

(a) Γ ;Δ � P :: z:A [Premise of rule (T & R)]
(b) Γ ;Δ � Q :: z:B [Premise of rule (T & R)]
(c) P ∈ L[Γ ;Δ � z:A] [By i.h on (a)]

(d) Q ∈ L[Γ ;Δ � z:B] [By i.h on (b)]

Pick any G ∈ CΓ , D ∈ CΔ :
(e) G⇓, G �−→, D⇓ [By Proposition 5.3]

(f) (νũ, x̃ )(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (c)]

(g) (νũ, x̃ )(Q | G | D) ∈ L[z:B] [By Lemma 5.1 on (d)]

(h) M = (νũ, x̃ )
(
z.case(P , Q )

∣∣ G
∣∣ D

) ∈ L[z:A & B]
We prove (h) by induction on k = mlen(D) : [Possible by (e)]

Base case k = 0. Hence, D �−→:
(i) M z.inl−−→ M1 ∧ M z.inr−−→ M2,where :
M1 = (νũ, x̃ )(P | G | D)

M2 = (νũ, x̃ )(Q | G | D)

(j) M1 ∈ L[z:A] [Using (f)]

(k) M2 ∈ L[z:B] [Using (g)]

M ∈ L[z:A & B] [By Definition 5.4, using (i), (j), (k)]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[z:A & B] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[z:A & B] [By Proposition 5.10]

z.case(P , Q ) ∈ L[Γ ;Δ � z:A & B] [By (h) and Lemma 5.1]

16. Case (T⊕R1): Γ ; Δ � z.inl; P :: z:A ⊕ B

(a) Γ ;Δ � z.inl; P :: z:A ⊕ B [Premise of rule (T⊕R1)]
(b) P ∈ L[Γ ;Δ � z:A] [By i.h on (a)]

Pick any G ∈ CΓ , D ∈ CΔ :
(c) G⇓, G �−→, D⇓ [By Proposition 5.3]

(d) (νũ, x̃ )(P | G | D) ∈ L[z:A] [By Lemma 5.1 on (b)]

(e) M = (νũ, x̃ )(z.inl; P | G | D) ∈ L[z:A ⊕ B]
We prove (e) by induction on k = mlen(D) : [Possible by (c)]

Base case k = 0. Hence, D �−→:
(i) M z.inl−−−→ (νũ, x̃ )(P | G | D) = M1
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(j) M1 ∈ L[z:A] [Using (d)]

M ∈ L[z:A ⊕ B] [Using (i), (j), and Definition 5.4]

Inductive case k > 0 :
Fix the set W = {

M ′ ∣∣ M −→k−1 M ′}
∀M ′ ∈ W .M ′ ∈ L[z:A ⊕ B] [By i.h.]

Fix the set W ′ = {
M ′′ ∣∣ M ′ −→ M ′′ ∧ M ′ ∈ W

}
∀M ′′ ∈ W ′.M ′′ ∈ L[z:A ⊕ B] [By Proposition 5.10]

z.inl; P ∈ L[Γ ;Δ � z:A ⊕ B] [By (e) and Lemma 5.1]

17. Case (T⊕R2): Analogous to case (T⊕R1). �
A.5. Proof of Proposition 5.13

We repeat the statement in Page 267 and present its proof.

Proposition Appendix A.4 (Properties of confluent processes). Assume well-typed processes P , P ′, P1, . . . , Pk, Q . Then we have:

1. Forward closure: If P� and P −→ P ′ then P ′�.
2. Backward closure: If for all Pi such that P −→ Pi we have that Pi�, then P�.
3. Closure wrt composition: Let P , Q be such that (i) ·; · � P :: x:A, (ii) ·; x:A � Q :: T , (iii) P�, and (iv) Q �. Then (νx)(P | Q )�.

Proof. 1. By assumption, we have P� and P −→ P ′ . We have to show that for any P1, P2 such that P ′ �⇒ P1 and 
P ′ �⇒ P2, there exists process P3 such that P1 �⇒ P3 and P2 �⇒ P3. Since P�, for any R1, R2 such that P �⇒ R1 and 
P �⇒ R2, there exists an R ′ such that R1 �⇒ R ′ and R2 �⇒ R ′ . This includes the particular case in which P −→ P ′ �⇒ P1
and P −→ P ′ �⇒ P2. The existence of a P3 such that P1 �⇒ P3 and P2 �⇒ P3 follows from P�. Therefore, P ′�.

2. Given that whenever P −→ Pk , we have Pk�, we need to extend the diamond, starting from P . Precisely, we have to 
show that for any Pi, P j such that P −→ Pi , P −→ P j , Pi�, and P j�, and for any R1, R2 such that P −→ Pi �⇒ R1 and 
P −→ P j �⇒ R2, there exists an R ′ such that R1 �⇒ R ′ and R2 �⇒ R ′ . The thesis follows by Proposition 5.8 (Page 266) 
which ensures that a reduction P −→ Pi does not preclude all those reduction paths reachable if the first reduction is 
P −→ P j . Since we have Pi� and P j� by assumption, we may conclude that P�, as desired.

3. There are two cases, depending on whether P and Q can interact. In turn, this depends on their typing.

• If A = 1 then P and Q do not interact and P | Q represents their independent parallel composition. This guarantees 
that their reductions always proceed independently. Confluence of P | Q can be inferred directly from that of P and Q , 
in a compositional way.

• If A �=1 then P and Q can interact. Well-typedness ensures that interactions occur exclusively on name x. We must 
show that for any R1, R2 such that

(νx)(P | Q ) �⇒ R1

(νx)(P | Q ) �⇒ R2

there is a process R such that R1 �⇒ R and R2 �⇒ R . The only difference with respect to the previous case is that now 
weak transitions (νx)(P | Q ) �⇒ Ri (i ∈ {1, 2}) consist of (a) reductions already present in (enabled from) P and Q , 
but also of (b) new reductions originated by the interaction of P and Q on x. Such new reductions also include those 
internal actions on (private) names different from x but occurring behind prefixes with subject x. The existence of R
is ensured by the confluence of P and Q and the fact that new reductions originated from synchronizations on x are 
harmless, because (i) they are finite (Theorem 5.1); (ii) they are type preserving (Theorem 3.1); and, more importantly, 
by Proposition 5.8 (iii) these new reductions are not precluded by reductions enabled from P and Q , nor they preclude 
such enabled reductions. �

A.6. Proof of Lemma 5.4

We repeat the statement in Page 269 and give details of the proof.

Lemma Appendix A.2. Let P be a process. If Γ ; Δ � P :: T then P ∈L�[Γ ; Δ � T ].
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Proof. By induction on the derivation of Γ ; Δ � P :: T , with a case analysis on the last typing rule used. We have 18 cases 
to check; in all cases, we use Lemma 5.3 to show that every M = (νũ, ̃x )(P | G | D) with G ∈ C�

Γ and D ∈ C�
Δ , is in L�[T ].

The proof follows closely the lines of the proof of Lemma 5.2 (Page 283); it exploits the fact that well-typed processes 
are always terminating (Theorem 5.1). In case (Tid), we use Proposition 5.16 (closure wrt substitution) and Proposition 5.20
(backward closure). In cases (T⊗L), (T�L), (Tcopy), (T⊕L), (T & L1), and (T & L2), we proceed in two steps: first, using 
Proposition 5.19 (forward closure) we show that every M ′′ such that M �⇒ M ′′ is in L�[T ]; then, we use this result in 
combination with Proposition 5.20 (backward closure) to conclude that M ∈ L�[T ]. In cases (T1R), (T⊗R), (T�R), (T!R), 
(T⊕R1), and (T⊕R2), we show that M conforms to a specific case of Definition 5.7. Case (T1L) uses Proposition 5.13(3). 
Cases (T⊗L), (T�L), (T⊕L), and (T & L1) use the liveness guarantee given by Proposition 5.6. Cases (Tcopy), (T!L), and (Tcut!) 
use Proposition 5.17 (closure under ≡). Cases (Tcut), (T�R), and (T!R) use Proposition 5.18 (closure under ≡!).

Below, we illustrate a few cases; the rest are essentially as in the proof of Lemma 5.2 (Page 283).

Case (Tid): Γ ; x:A � [x ↔ z] :: z:A.

Pick any G ∈ C�
Γ :

(a) G�, G �−→ [By Proposition 5.15]

(b) D ∈ L�[x:A]
(c) M = (νũ, x)

([x ↔ z] ∣∣ G
∣∣ D

) ∈ L�[z:A]
The proof of (c) is immediate:

(d) M −→ (νũ)
(
G{z/x} ∣∣ D{z/x}) ≡! D{z/x} = M ′ [Since ui /∈ fn(D)]

(e) M ′ ∈ L�[z:A] [By (b) and Proposition 5.16]

(f) M ∈ L�[z:A] [By (d), (e), and Proposition 5.20]

[x ↔ z] ∈ L�[Γ ; x:A � z:A] [By (c) and Lemma 5.3]

Case (T1R): Γ ; · � 0 :: z:1.

Pick any G ∈ C�
Γ :

(a) G�, G �−→ [By Proposition 5.15]

(b) M = (νũ)(0 | G) ∈ L�[z:1]
The proof of (b) is immediate:

(c) M� ∧ M �−→ ∧M ≡! 0 [Using (a)]

(d) M ∈ L�[z:1] [By (c) and Definition 5.7]

0 ∈ L�[Γ ; · � z:1] [By (b) and Lemma 5.3]

Case (T1L): Γ ; Δ, z:1 � P :: T .

(a) Γ ;Δ � P :: T [Premise of rule (T1L)]
(b) P ∈ L�[Γ ;Δ � T ] [By i.h. on (a)]

Pick any G ∈ C�
Γ , D ∈ C�

Δ :
(c) M1 = (νũ, x̃ )(P | G | D) ∈ L�[T ] [By Lemma 5.3 on (b)]

Pick any R ∈ L�[z:1] and fix M2 = M1 | R

(d) M2 ∈ L�[T ] [By (c) and Proposition 5.13 (3)]

(e) (νũ, x̃, z)(P | G | D | R) ∈ L�[T ] [Expanding (d)]

P ∈ L�[Γ ;Δ, z:1 � T ] [By (e) and Lemma 5.3]. �
Appendix B. Proofs from Section 6 (Typed context bisimilarity)

B.1. Proof of Proposition 6.3

We repeat the statement in Page 273, and present its proof.
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Proposition Appendix B.1 (Proposition 6.3). Γ ;Δ � P ≈ Q :: T implies � K [P ] ≈ K [Q ] :: T , where K is any parallel representative 
in KΓ ;Δ�T , as in Definition 6.5.

Proof. Let #(Γ ), #(Δ) denote the cardinality of Γ, Δ, respectively. The proof is by induction on n = #(Γ ) + #(Δ). The base 
case is when n = 0: then both typing environments are empty and so K = • . Hence, K [P ] = P and K [Q ] = Q and the thesis 
trivially holds. In the inductive case, n > 0, and there are two sub-cases. In the first one, we have Γ, ui :Gi;Δ � P ≈ Q :: T . 
By definition of ≈, it implies

Γ ;Δ � (νui)
(!ui(yi).S

∣∣ P
) ≈ (νui)

(!ui(yi).S
∣∣ Q

) :: T

for every S such that � S :: yi :Gi . Now, using the induction hypothesis, the latter allows us to infer � K1[(νui)(!ui(yi).S |
P )] ≈ K1[(νui)(!ui(yi).S | Q )] :: T , for every K1 ∈ KΓ,Δ�T . We observe that, for any R , K1[(νui)(!ui(yi).S | R)] is the same 
as having K0[R], with a context K0 = (νui)(!ui(yi).S | K1[·]). By Definition 6.5, we infer that K0 ∈ KΓ,ui :Gi ;Δ�T . Therefore, 
Γ, ui :Gi;Δ � P ≈ Q :: T implies

� K [P ] ≈ K [Q ] :: T

for any K ∈ KΓ,ui :Gi ;Δ , as desired. In the second sub-case, we have Γ ;Δ, x j :A j � P ≈ Q :: T , and the analysis follows the 
same lines as before. �
B.2. Additional cases for proof of Lemma 6.1

We repeat the statement in Page 273, and detail some additional cases, thus complementing the proof given in that 
page.

Lemma Appendix B.1 (Contextuality of ≈). Typed context bisimilarity is a contextual relation, in the sense of Definition 6.3.

Proof. The proof proceeds by coinduction, exhibiting a typed context bisimulation for each of the conditions associated to 
Definition 6.3. We shall exploit the proof technique given by Proposition 6.3, which allows us to consider ≈ under empty 
left-hand side contexts, for pairs of processes enclosed within appropriate parallel representatives. As a result, it suffices to 
consider only some of the conditions in Figure 5; see Remark 6.1. In Page 273 we have detailed the case of closure under 
output prefix; below we show the cases for closure under parallel composition and under replicated input (Items (8) and 
(15), respectively).

Item (8): We have to show that Γ ; Δ1 � P ≈ Q :: y:A implies

Γ ;Δ1,Δ2 � (ν y)(P | S) ≈ (ν y)(Q | S) :: T

for any S, T , Δ2 such that Γ ; Δ2, y:A � S :: T . Using Proposition 6.3, it suffices to show � K1[P ] ≈ K1[Q ] :: y:A
implies

� K2
[
(ν y)

(
K1[P ] ∣∣ S

)] ≈ K2
[
(ν y)

(
K1[Q ] ∣∣ S

)] :: T

where K1 ∈KΓ ;Δ1�y:A and K2 ∈K·;Δ2�x:T .
Letting M = K2[(ν y)(K1[P ] | S)], N = K2[(ν y)(K1[Q ] | S)] we show that

R8 = {
(M, N) :� K1[P ] ≈ K1[Q ] :: y:A, K1 ∈ KΓ ;Δ1�y:A, K2 ∈ K·;Δ2�x:T

} ∪W�T

is a typed context bisimulation. Suppose that M moves first: M α−→ M ′; we need to find a matching action 
N

α�⇒ N ′ . Using the typing, we observe that there are two possibilities for α:
1. α = τ and � M ′ :: T , using subject reduction (Theorem 3.1)
2. α �= τ , and both α and the type of M ′ depend on the actual shape of type T

We consider case (1) first, and so we assume that M τ−→ M ′ . We examine the different possibilities for the origin 
of the reduction:
1. The reduction originates from K2. More precisely, by Definition 6.5 the reduction originates in the part of K

implementing names in Δ1, as the part of K2 implementing names in Γ cannot evolve on its own (cf. Defini-
tion 6.5). Therefore, for some K4, we have both K2

τ−→ K4 and M ′ = K4[(ν y)(K1[P ] | S)]. By subject reduction 
(Theorem 3.1), the type of K4 is the same than that of K , which in turn implies � M ′ :: T . Since K2 occurs 
identically in M and N , this reduction can be matched by N , possibly preceded/followed by zero or more 
reductions: and so we have that N �⇒ K5[(ν y)(K3[Q ′] | S ′)] = N ′ , with K1 �⇒ K3 K2 �⇒ K5, Q �⇒ Q ′ , and 
S �⇒ S ′ . Theorem 5.1 ensures that these weak transitions are finite. Moreover, subject reduction (Theorem 3.1) 
ensures � N ′ :: T . Therefore, the pair (M ′, N ′) is in R8, and we are done.
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2. The reduction originates from K1. The argument proceeds analogously as in the previous case.
3. The reduction originates from P . Then, for some P ′ , we have P τ−→ P ′ and M ′ = K2[(ν y)(K1[P ′] | S)]. 

By subject reduction (Theorem 3.1), the type remains unchanged, which in turn implies � M ′ :: T . Since 
� K1[P ] ≈ K1[Q ] :: y:A, we infer that N can match this reduction: there is a Q ′ such that Q �⇒ Q ′ . Again, 
reductions from Q may be preceded or followed by reductions from K1, K2, and S . More precisely, there is a 
weak transition N �⇒ K5[(ν y)(K3[Q ′] | S ′)] = N ′ , with K1 �⇒ K3, K2 �⇒ K5, Q �⇒ Q ′ , and S �⇒ S ′ . Theo-
rem 5.1 ensures these weak transitions are finite. Moreover, subject reduction (Theorem 3.1) ensures � N ′ :: T . 
Therefore, the pair (M ′, N ′) is in R8, and we are done.

4. The reduction originates from S . We proceed analogously as in the previous cases, relying on the fact that S
is the same in M and N .

5. The reduction originates from the interaction of P and K1. Therefore, for some K3, P ′ , we have M ′ =
K2[(ν y)(K3[P ′] | S)]. By subject reduction (Theorem 3.1), we can infer that � M ′ ::T . Since K1 occurs identically 
in M and N , and � K1[P ] ≈ K1[Q ] :: y:A, we infer that this interaction can be matched by N . Hence, there is 
a weak transition N �⇒ K5[(ν y)(K3[Q ′] | S ′)] = N ′ with K1 �⇒ K3, K2 �⇒ K5 Q �⇒ Q ′ , and S �⇒ S ′ . Theo-
rem 5.1 ensures these weak transitions are finite. Moreover, subject reduction (Theorem 3.1) ensures � N ′ :: T . 
Therefore, the pair (M ′, N ′) is in R8, and we are done.

6. The reduction originates from the interaction of S and K2. The argument proceeds analogously as in the 
previous case.

7. The reduction originates from the interaction of P and S . Therefore, M ′ = K2[(ν y)(K1[P ′] | S ′)]. Using the 
typings of each process, we infer that this interaction is only possible via a synchronization on y, which offers 
(case of P ) and requires (case of S) a behavior described by A. We then proceed by structural induction on 
type A. All the cases are covered by preservation lemmas which formalize the interaction of complementary 
actions. We detail only the case A = A1 ⊗ A2; the other cases are similar. Using Lemma 3.2 we infer P

x(y)−−−→ P ′

and S
x(y)−−−→ S ′ . Using Lemma 3.3 we infer that P ′ is well-typed, and we have � K2[(ν y)(K1[P ′] | S ′)] :: T . Since 

� K1[P ] ≈ K1[Q ] :: y:A and S is the same in N , we know that these actions can be matched by N , and that 
there exist Q ′ , S ′ such that Q

x(y)�⇒ Q ′ and S
x(y)�⇒ S ′ . Hence, there is an N ′ = K5[(ν y)(K3[Q ′] | S ′)] with K1 �⇒

K3 and K2 �⇒ K5. By virtue of Theorem 5.1 these are all finite weak transitions. Using again Lemma 3.3 and 
subject reduction (Theorem 3.1), one can show that N ′ is well-typed: � K5[(ν y)(K3[Q ′] | S ′)] :: T . Therefore, 
the pair (M ′, N ′) is in R8 and we are done.

Now we consider case (2), and so we assume M α−→ M ′ , for some α �= τ . The shape of α depends on the 
structure of T ; the typing information ensures that T can only be provided by S . Therefore, we proceed by 
induction on the structure of T . We consider only the case T = x:A1 ⊗ A2; the other cases are similar or simpler. 
Then, by Lemma 3.2, α = x(z) and M ′ = K2[(ν y)(K1[P ] | S ′)]. Since S is the same in N , we know that this action 
can be matched by N: indeed we have S

x(z)�⇒ S ′ and N ′ = K5[(ν y)(K3[Q ′] | S ′)], with K1 �⇒ K3, K2 �⇒ K5, 
Q �⇒ Q ′ , and S �⇒ S ′ . Theorem 5.1 ensures these weak transitions are finite. Now we follow the definition of 
≈ for output actions. Then, for any R such that ·; z:A1 � R :: −:1, we verify that both � (νz)(M ′ | R) :: x:A2 and 
� (νz)(N ′ | R) :: x:A2 hold. Hence, the pair ((νz)(M ′ | R), (νz)(N ′ | R)) is in W�x:A1⊗A2 and we are done.
The case in which N α−→ N ′ moves first is completely symmetric.

Item (15): We have to show that Γ ; Δ � P ≈ Q :: y:A implies

Γ ;Δ �!x(y).P ≈ !x(y).Q :: x:!A

Using Proposition 6.3, it suffices to show that � K [P ] ≈ K [Q ] :: y:A implies

�!x(y).K [P ] ≈ !x(y).K [Q ] :: x:!A

for any K ∈KΓ ;Δ�y:A . Let M =!x(y).K [P ] and N =!x(y).K [Q ]. We show that

R13 = {
(M, N) :� K [P ] ≈ K [Q ] :: y:A, K ∈ KΓ ;Δ�T

} ∪W�x:!A

is a typed context bisimulation. Suppose M moves first: M α−→ M ′ . We must find a matching action from N such 
that N

α�⇒ N ′ . The only possibility is an input on x and so we have M
x(z)−−−→!x(y).K [P ] | K [P ]{z/y} = M ′ . Process 

N can match this action immediately: N
x(z)−−−→!x(y).K [Q ] | K [Q ]{z/y} = N ′ . It is easy to show that typing is 

preserved by substitution, and so � K [P ] ≈ K [Q ] :: y:A allows to infer � K [P ]{z/y} ≈ K [Q ]{z/y} :: z:A.
Following the clause for replicated input of ≈, we consider the closure of M ′ and N ′ with a process L such that 
z:A � L :: −:1. Such closures correspond, respectively, to

(νz)
(

K [P ]{z/y} ∣∣ L
) ∣∣!x(y).K [P ] and (νz)

(
K [Q ]{z/y} ∣∣ L

) ∣∣!x(y).K [Q ]
We verify the type of these closures is indeed x:!A, as required by the replicated input clause. Since �
K [P ]{z/y}, K [Q ]{z/y} :: z:A, these processes can be composed with L, thus leading to processes of type −:1. 
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It is immediate to see that �!x(y).K [P ], !x(y).K [Q ] :: x:!A; hence, via an independent parallel composition the 
two processes above are of type x:!A, and the pair(

(νz)
(

K [P ]{z/y} ∣∣ L
) ∣∣!x(y).K [P ], (νz)

(
K [Q ]{z/y} ∣∣ L

) ∣∣!x(y).K [Q ])
is in R13, as desired. The reasoning when N moves first is completely symmetric. �

Appendix C. Proofs from Section 7.1 (Applications)

C.1. Additional cases for the proof of Theorem 7.1

We repeat the statement in Page 275, and detail some additional cases, thus complementing the proof given in that 
page.

Theorem Appendix C.1 (Theorem 7.1). Let P , Q be processes such that

(i) Γ ; Δ � D � P :: T ;
(ii) Γ ; Δ � E � Q :: T ;
(iii) P �c Q .

Then, Γ ;Δ � P ≈ Q :: T .

Proof. By coinduction, exhibiting appropriate typed context bisimulations for each commuting conversion. In the bisimula-
tion game, we exploit termination of well-typed processes (Theorem 5.1) to ensure that actions can be matched with finite 
weak transitions, and Theorem 3.1 to ensure preservation of type under reductions. We detail the cases of proof conversions 
A-2 and A-4 (cf. Fig. D.6), and C-11 (cf. Fig. D.7).

Proof conversion A-2 We then have that

Γ ;Δ � cutD(x.⊗REx F ) � M = (νx)
(

D̂
∣∣ z(y).(Ê

∣∣ F̂ )
) :: z:A ⊗ B

Γ ;Δ � ⊗R
(
cutD(x.Ex)

)
F � N = z(y).

(
(νx)(D̂ | Ê)

∣∣ F̂
) :: z:A ⊗ B

with

Γ ;Δ1 � D̂ :: x:C Γ ;Δ2, x:C � Ê :: y:A Γ ;Δ3 � F̂ :: z:B (C.1)

and Δ = Δ1, Δ2, Δ3. We show that M �c N implies Γ ;Δ � M ≈ N :: z:A ⊗ B .
By virtue of Proposition 6.3, we have to show that for every K ∈KΓ ;Δ , we have ·; · � K [M] ≈ K [N] :: z:A ⊗ B . In turn, 
this implies exhibiting a typed context bisimilarity R containing the pair (K [M], K [N]). We thus define R as :

R = W�z:A⊗B ∪ S ∪ S−1 where:

S = {(
K1

[
M ′], K2[N]) : M �⇒ M ′, K1, K2 ∈ KΓ ;Δ

}
and W�z:A⊗B is as in Definition 6.6. Notice that S is a type-respecting relation indexed by � z:A ⊗ B . In fact, using 
the typings in (C.1)—with Γ = Δ = ∅—and exploiting subject reduction (Theorem 3.1), it can be checked that for all 
(P , Q ) ∈ S both � P :: z:A ⊗ B and � Q :: z:A ⊗ B can be derived.
We now show that R is a typed context bisimilarity. Pick any K ∈KΓ ;Δ . Using Definition 6.5, we can assume

K = (νũ, x̃ )(• | KΓ | KΔ) where:

• KΓ ≡ ∏
i∈I !ui(yi).Ri , with � Ri :: yi :Di , for every ui :Di ∈ Γ ;

• KΔ ≡ ∏
j∈ J S j , with � S j :: x j :C j , for every x j:C j ∈ Δ.

Clearly, (K [M], K [N]) ∈ S , and so it is in R. Now, suppose K [M] moves first: K [M] α−→ M

1. We have to find a 

matching action α from K [N], i.e., K [N] α�⇒ N

1. Since � K [M] :: z:A ⊗ B , we have two possible cases for α:

1. Case α = τ . We consider the possibilities for the origin of the reduction:
(a) KΓ

τ−→ K ′
Γ and K [M] τ−→ K ′[M]. However, this cannot be the case, as by construction KΓ corresponds to the 

parallel composition of input-guarded replicated processes which cannot evolve on their own.
(b) KΔ

τ−→ K ′
Δ and K [M] τ−→ K ′[M]. Then, for some l ∈ J , Sl

τ−→ S ′
l :

K [M] τ−→ (νũ, x̃ )
(

KΓ

∣∣ K ′
Δ

∣∣ M
) = K ′[M] = M


1

Now, context K is the same in K [N]. Then KΔ occurs identically in K [N], and this reduction can be matched 
by a finite weak transition:
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K [N] �⇒ (νũ, x̃ )
(

KΓ

∣∣ K ′′
Δ

∣∣ N
) = K ′′[N] = N


1

By subject reduction (Theorem 3.1), � S ′
l :: xl:Cl; hence, K ′, K ′′ are in KΓ ;Δ . Hence, the pair (K ′[M], K ′′[N]) is 

in S (as M �⇒ M) and so it is in R.
(c) M τ−→ M ′ and K [M] τ−→ K [M ′]. Since M = (νx)(D̂ | z(y).(Ê | F̂ )), the only possibility is that there is a D̂1 such 

that D̂ τ−→ D̂1 and M ′ = (νx)(D̂1 | z(y).(Ê | F̂ )). This way,

K [M] τ−→ (νũ, x̃ )
(

KΓ

∣∣ KΔ

∣∣ M ′) = K [M ′] = M

1

We observe that K [N] cannot match this action, but K [N] �⇒ K [N] is a valid weak transition. Hence, N

1 =

K [N]. By subject reduction (Theorem 3.1), we infer that � K [M ′] :: z:A ⊗ B . We use this fact to observe that 
the pair (K [M ′], K [N]) is included in S . Hence, it is in R.

(d) There is an interaction between M and KΓ or between M and KΔ: this is only possible by the interaction 
of D̂ with KΓ or KΔ on names in ũ, ̃x . Again, the only possible weak transition from K [N] matching this 
reduction is K [N] �⇒ K [N], and the analysis proceeds as in the previous case.

2. Case α �= τ . Then the only possibility, starting from K [M], is an output action of the form α = z(y). This action 
can only originate in M:

K [M] z(y)−−→ (ν x̃, ũ)
(

KΓ

∣∣ KΔ

∣∣ (νx)
(

D̂
∣∣ (ν y)(Ê | F̂ )

)) = M

1

Process K [N] can match this action via the following finite (weak) transition:

K [N] z(y)�⇒ (ν̃x, ũ)
(

K ′
Γ

∣∣ K ′
Δ

∣∣ (ν y)
(
(νx)

(
D̂ ′ ∣∣ Ê ′) ∣∣ F̂ ′)) = N


1

Observe how N

1 reflects the changes in K [N] due to the possible reductions before and after α. By definition 

of ≈ (output case), we consider the composition of M

1 and N


1 with any V such that y:A � V :: −:1. Using the 
typings in (C.1) and subject reduction (Theorem 3.1), we infer

� M

2 = (ν x̃, ũ)

(
KΓ

∣∣ KΔ

∣∣ (νx)
(

D̂
∣∣ (ν y)(Ê | V | F̂ )

)) :: z:B
� N


2 = (ν x̃, ũ)
(

K ′
Γ

∣∣ K ′
Δ

∣∣ (ν y)
(
(νx)

(
D̂ ′ ∣∣ Ê ′ ∣∣ V

) ∣∣ F̂ ′)) :: z:B
Hence, the pair (M


2, N


2) is in W�z:A⊗B and so it is in R.

Now, let us suppose that K [N] moves first: K [N] α−→ N

1. We have to find a matching action α from K [M]: 

K [M] α�⇒ M

1. Similarly as before, there are two cases: either α = τ or α = z(y). The former is as detailed before; the 

only difference is that reductions from K [N] can only be originated in KΔ; these are matched by K [M] with weak 
transitions originating in both K and in M . We therefore obtain pairs of processes in S−1.
We now detail the case in which α = z(y). We have:

K [N] z(y)−−→ (ν̃x, ũ)
(

KΓ

∣∣ KΔ

∣∣ (ν y)
(
(νx)(D̂ | Ê)

∣∣ F̂
)) = N


1

and this action can be matched by K [M] with a finite weak transition:

K [M] z(y)�⇒ (ν̃x, ũ)
(

K ′
Γ

∣∣ K ′
Δ

∣∣ (νx)
(

D̂ ′ ∣∣ (ν y)
(

Ê ′ ∣∣ F̂ ′))) = M

1

where M

1 takes into account the possible reductions before and after α. As before, we consider the composition of 

N

1 and M


1 with any V such that y:A � V :: −:1. Using (C.1), we can infer both

� N

2 = (ν x̃, ũ)

(
KΓ

∣∣ KΔ

∣∣ (ν y)
(
(νx)(D̂ | Ê | V )

∣∣ F̂
)) :: z:B

� M

2 = (ν x̃, ũ)

(
K ′

Γ

∣∣ K ′
Δ

∣∣ (νx)
(

D̂ ′ ∣∣ (ν y)
(

Ê ′ ∣∣ V
∣∣ F̂ ′))) :: z:B

Hence, the pair (N

2, M



2) is in W�z:A⊗B and so it is in R. This concludes the proof for this case.

Proof conversion A-4 We then have that

Γ ;Δ, y:A ⊗ B � cutD
(
x.⊗Ly(z.y.Exzy)

) � M = (νx)
(

D̂
∣∣ y(z).Ê

) :: T

Γ ;Δ, y:A ⊗ B � ⊗Ly
(
z.y.cutD(x.Exzy)

) � N = y(z).(νx)(D̂ | Ê) :: T

with

Γ ;Δ1 � D̂ :: x:C Γ ;Δ2, x:C, z:A, y:B � Ê :: T (C.2)

and Δ = Δ1, Δ2. We show that M �c N implies Γ ;Δ, y:A ⊗ B � M ≈ N :: T .
By virtue of Proposition 6.3, we have to show that for every K ∈KΓ ;Δ,y:A⊗B , we have ·; · � K [M] ≈ K [N] :: T . In turn, 
this implies exhibiting a typed context bisimilarity R containing the pair (K [M], K [N]). We thus define R as
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R = I�T ∪W�T

recalling that IΓ ;Δ�T stands for the relation {(P , Q ) : Γ ; Δ � P :: T , Γ ; Δ � Q :: T }. We show that R is a typed context 
bisimilarity. Pick any K ∈KΓ ;Δ,y:A⊗B . Using Definition 6.5, we can assume

K = (νũ, x̃, y)(• | KΓ | KΔ | V )

where
• KΓ ≡ ∏

i∈I !ui(yi).Ri , with � Ri :: yi :Gi , for every ui :Gi ∈ Γ ;
• KΔ ≡ ∏

j∈ J S j , with � S j :: x j :C j , for every x j:C j ∈ Δ;
• � V :: y:A ⊗ B .
Clearly, (K [M], K [N]) ∈ LT , and so it is in R. Now, suppose K [M] moves first: K [M] α−→ M


1. We have to find a 
matching action α from K [N], i.e., K [N] α�⇒ N


1. We consider two possible cases:
1. Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ
τ−→ K ′

Γ : This cannot be the case, as by construction this process corresponds to the composition of zero 
or more input-guarded replications which cannot evolve on their own.

(b) KΔ
τ−→ K ′

Δ and K [M] τ−→ (νũ, ̃x, y)(KΓ | K ′
Δ | V | M) = M


1. Since KΔ occurs identically in both processes, this 
reduction can be matched by K [N] with a finite weak transition:

K [N] �⇒ (νũ, x̃, y)
(

KΓ

∣∣ K ′′
Δ

∣∣ V ′ ∣∣ M ′) = N

1

Using subject reduction (Theorem 3.1) it can be shown that K ′, K ′′ ∈KΓ ;Δ,y:A⊗B , and that V ′ and M ′ preserve 
the type of V and M , respectively. Hence, both � M


1 :: T and � N

1 :: T hold, and the pair (M


1, N


1) is in LT

and so it is in R.
(c) V τ−→ V ′ and K [M] τ−→ (νũ, ̃x, y)(KΓ | KΔ | V ′ | M) = M


1. This case proceeds similarly as the previous one, as 
V occurs in both processes.

(d) M τ−→ M ′ and K [M] τ−→ (νũ, ̃x )(KΓ | KΔ | V | M ′) = M

1. Since M = (νx)(D̂ | y(z).Ê), the only possibility is 

that there is a D̂1 such that D̂ τ−→ D̂1 and M ′ = (νx)(D̂1 | y(z).Ê). This way,

K [M] τ−→ (νũ, x̃ )
(

KΓ

∣∣ KΔ

∣∣ V
∣∣ M ′) = K [M ′] = M


1

We observe that K [N] cannot match this action, as D̂ is behind a prefix. Nevertheless, K [N] �⇒ K [N] is 
a valid weak transition, and so N


1 = K [N]. By subject reduction (Theorem 3.1), we infer that � K [M ′] :: T . 
Hence, the pair (M


1, N


1) is included in LT , and so it is in R.

(e) The reduction arises from the interaction of V and M . This can only correspond to a synchronization on y. 
We have:

K [M] τ−→ (νũ, x̃ )
(

KΓ

∣∣ KΔ

∣∣ (ν y)
(

V ′ ∣∣ (νx)(D̂
∣∣ Êσ)

)) = M

1

where σ stands for the substitution derived from the synchronization. This reduction can be matched by 
K [N] via a finite weak transition:

K [N] �⇒ (νũ, x̃ )
(

KΓ

∣∣ K ′
Δ

∣∣ (ν y)
(

V ′ ∣∣ (νx)
(

D̂ ′ ∣∣ Ê ′)σ )) = N

1

where N

1 captures the fact that internal actions could have occurred before and after the synchronization 

on y. By subject reduction (Theorem 3.1), typing is preserved in both cases, and so (M

1, N


1) ∈R.
2. Case α �= τ . Then α corresponds to the execution of some behavior described by T , in the right-hand side typing. 

However, this cannot be the case since, as specified by the typings in (C.2), the behavior described by T can only 
be provided by Ê , which is behind an input prefix on y, both in K [M] and K [N]. Therefore, behavior described 
by T cannot be exercised until such a prefix is consumed, and we have that, necessarily, α = τ . Observe that 
once such prefixes are consumed (via internal actions) the evolution corresponding to the behavior described by 
T is still in R, as the continuation relation W�T is in R.

The analysis when K [N] moves first follows the same lines and is omitted.
Proof conversion C-11 We then have that

Γ ;Δ, y:A ⊕ B � cut!D
(
u.⊕Ly(y.Euy)(y.Fuy)

) � M = (νu)
((!u(z).D̂

) ∣∣ y.case(Ê, F̂ )
) :: T

Γ ;Δ, y:A ⊕ B � ⊕Ly
(

y.cut!D(u.Euy)
)(

y.cut!D(u.Fuy)
)

� N = y.case
(
(νu)

((!u(z).D̂
) ∣∣ Ê

)
, (νu)

((!u(z).D̂
) ∣∣ F̂

)) :: T

with

Γ ; · � D̂ :: z:C Γ, u:C;Δ1, y:A � Ê :: T Γ, u:C;Δ2, y:B � F̂ :: T (C.3)

and Δ = Δ1, Δ2. We show that M �c N implies Γ ;Δ � M ≈ N :: T .
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By virtue of Proposition 6.3, we have to show that for every K ∈KΓ ;Δ,y:A⊕B , we have ·; · � K [M] ≈ K [N] :: T . In turn, 
this implies exhibiting a typed context bisimilarity R containing the pair (K [M], K [N]). We thus define R as

R = I�T ∪W�T

We now show that R is a typed context bisimilarity. Pick any K ∈KΓ ;Δ,y:A⊕B . Using Definition 6.5, we can assume

K = (νũ, x̃, y)(• | KΓ | KΔ | V )

where
• KΓ ≡ ∏

i∈I !ui(yi).Ri , with � Ri :: yi :Di , for every ui :Di ∈ Γ ;
• KΔ ≡ ∏

j∈ J S j , with � S j :: x j :C j , for every x j:C j ∈ Δ;
• � V :: y:A ⊕ B .
Clearly, (K [M], K [N]) ∈R. Now, suppose K [M] moves first: K [M] α−→ M


1. We have to find a matching action α from 
K [N], i.e., K [N] α�⇒ N


1. The analysis is similar to the one detailed for the commuting conversion No. A-4. We consider 
two possible cases:
1. Case α = τ . We consider the possibilities for the origin of the reduction:

(a) KΓ −→ K ′
Γ : This cannot be the case, as by construction this process corresponds to the composition of zero or 

more input guarded replications which cannot evolve on their own.
(b) M −→ M ′: This cannot be the case, as by inspecting the structure of M we observe that both the input guarded 

replication on u, and the selection on y cannot proceed on their own.
(c) KΔ −→ K ′

Δ and K [M] −→ (νũ, ̃x )(KΓ | K ′
Δ | V | M). This reduction can be matched by K [N] with a finite weak 

transition, as KΔ occurs identically in both processes. Using subject reduction (Theorem 3.1), it can be shown 
that the derivatives are still in R.

(d) V −→ V ′ and K [M] −→ (νũ, ̃x)(KΓ | KΔ | V ′ | M) = M

1. This case proceeds similarly, as V occurs identically in 

both K [M] and K [N].
(e) The reduction arises from a synchronization on y between V and M . Then we have two subcases. The first one 

is when V
y.inr−−−→ V ′:

K [M] −→ (νũ, x̃ )
(

KΓ

∣∣ KΔ

∣∣ (ν y)
(

V ′ ∣∣ (νu)
((!u(z).D̂

) ∣∣ Ê
))) = M


1

This reduction can be matched by K [N] via a finite weak transition:

K [N] �⇒ (νũ, x̃ )
(

KΓ

∣∣ K ′
Δ

∣∣ (ν y)
(

V ′′ ∣∣ (νu)
((!u(z).D̂

) ∣∣ Ê ′))) = N

1

where N

1 reflects the fact that internal actions could have taken place after the synchronization on y. The 

typing of the process can be shown to be preserved by subject reduction (Theorem 3.1), and so (M

1, N



1) ∈ R. 

The second subcase is when S
y.inl−−−→ S ′; this case is similar to the first one.

2. Case α �= τ : Then α corresponds to the execution of some behavior described by T , in the right-hand side typing. 
However, this cannot be the case since, as specified by the typings in (C.3), the behavior described by T can only be 
provided by Ê or by F̂ , which are behind a selection prefix on y, both in K [M] and K [N]. Therefore, the behavior 
described by T cannot be exercised until such a prefix is consumed, and we have that, necessarily, α = τ . Observe 
that once such prefixes are consumed (via internal actions) the evolution corresponding to the behavior described 
by T is still in R, as the continuation relation W�T is in R.

The analysis when K [N] α−→ N

1 follows the same lines and is omitted. �

C.2. Proof of Theorem 7.2

We repeat the statement of Theorem 7.2 and present its full proof.

Theorem 9.1 (Theorem 7.2). Let A, B be any type, as in Definition 3.1. Then the following hold:

(i) A ⊗ B � B ⊗ A
(ii) (A ⊕ B)�C � (A�C) & (B�C)

(iii) !(A & B) �!A⊗!B.

Proof. We detail the proof of (i). We verify conditions (i)–(iv) hold for processes P 〈x,y〉 , Q 〈y,x〉 defined as

P 〈x,y〉 = x(u).y(n).
([x ↔ n] ∣∣ [u ↔ y])

Q 〈y,x〉 = y(w).x(m).
([y ↔ m] ∣∣ [w ↔ x])
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Checking (i)–(ii), i.e., · ; x:A ⊗ B � P 〈x,y〉::y:B ⊗ A and · ; y:B ⊗ A � Q 〈y,x〉::x:A ⊗ B is easy; for instance, the typing derivation 
for (i) is as follows:

x:B � [x ↔ n] :: n:B (Tid)
u:A � [u ↔ y] :: y:A

(Tid)

u:A, x:B � y(n).
([x ↔ n] ∣∣ [u ↔ y]) :: y:B ⊗ A

(T⊗R)

x:A ⊗ B � x(u).y(n).
([x ↔ n] ∣∣ [u ↔ y]) :: y:B ⊗ A

(T⊗L)

Observe how the use of rule (Tid) ensures that typings hold for any A, B . We are then left to show (iii) and (iv). 
We sketch only the proof of (iii); the proof of (iv) is analogous. Let M = (ν y)(P 〈x,y〉 | Q 〈y,z〉), N = [x ↔ z]; we need to 
show · ; x:A ⊗ B � M ≈ N :: z:A ⊗ B . By Proposition 6.3, we have to show that for every K ∈ K· ; x:A⊗B , we have � K [M] ≈
K [N] :: z:A ⊗ B . In turn, this implies exhibiting a typed context bisimilarity R containing (K [M], K [N]).

Letting S = {(R1, R2) : K [M] �⇒ R1, K [N] �⇒ R2}, we set R = W�z:A⊗B ∪ S ∪ S−1. We show R is a typed context 
bisimilarity. Pick any K ∈ K· ; x:A⊗B . Using Definition 6.5, we can assume K = (νx)(T 〈x〉 | [·]) where � T 〈x〉 :: x:A ⊗ B . By 

Lemma 3.2 and Theorem 5.1, there exist l, T 〈x〉
1 such that T 〈x〉 x(l)�⇒ T 〈x〉

1 in a finite transition. Clearly, (K [M], K [N]) ∈R. Now, 
suppose K [N] α−→ N


1. We have to find a matching action α from K [M], i.e., K [N] α�⇒ M

1. K [N] has only an internal action, 

which leads to the renaming of T 〈x〉: K [N] τ−→ T 〈z〉 = N

1. Using Theorem 5.1, K [M] can match this action with a finite 

weak transition: K [M] �⇒ (νn)(T 〈n〉
1 | z(m).([l ↔ m] | [n ↔ z])) = M


1. Using Theorem 3.1, we know that (N

1, M



1) ∈ S−1. 

Now suppose N

1

z(l)−−→ T 〈z〉
1 ; M


1 can match this action with an output followed by a renaming: M

1

z(m)�⇒ T 〈z〉
1 | [l ↔ m]. By 

definition of ≈ (output clause), we take a process S〈c〉 such that ·; c:A � S〈c〉 :: −:1, and compose it with N

1 and M


1. We 
thus obtain N


2 = (νl)(T 〈z〉
1 | S〈l〉) and M


2 = (νm)(T 〈z〉
1 | [l ↔ m] | S〈m〉); it can be easily checked that (N


2, M

2) ∈ W�z:A⊗B . 

When K [M] moves first, the analysis is similar and we omit it.

The proof of (ii) uses processes

·; x:A ⊕ B�C � P 〈x,y〉 :: (A�C)& (B�C)

·; y:(A�C)& (B�C) � Q 〈y,x〉 :: x:A ⊕ B�C

defined as:

P 〈x,y〉 = y.case(M, N) where M = y(m).x(n).
(
n.inl; [m ↔ n] ∣∣ [x ↔ y])

N = y(v).x(w).
(

w.inr; [v ↔ w] ∣∣ [x ↔ y])
Q 〈y,x〉 = x(m).m.case(R, S) where R = y.inl; y(n).

([m ↔ n] ∣∣ [y ↔ x])
S = y.inr; y(w).

([m ↔ w] ∣∣ [y ↔ x])
The proof of (iii) uses processes

·; x:!(A & B) � P 〈x,y〉 :: y:!A⊗!B
·; y:!A⊗!B � Q 〈y,x〉 :: x:!(A & B)

defined as:

P 〈x,y〉 = y(n).(M | N) where M =!n(m).x(l).l.inl; [l ↔ m]
N =!y(h).x(k).k.inr; [k ↔ h]

Q 〈y,x〉 = y(z).!x(n).n.case(R, S) where R = z(l).[l ↔ n]
S = y(k).[k ↔ n]. �

Appendix D. Supplement to Section 4: full list of commuting conversions

For convenience, below we recall the definition of �c , given in Page 262.

Definition Appendix D.1 (Proof conversions). We define �c as the least congruence on processes induced by the process equalities in 
Figs. D.6, D.7, D.8, and D.9.

We recall that not all permutations are sound nor are possible. In particular, for permutability of two inference rules 
to be sound, one of them has to be a left rule; the permutation of two right rules leads to unsound transformations. In 
the figures, we consider only combinations with rule (T & L1); permutations involving (T & L2) are easily derivable. While 
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Γ ;Δ � (νx)
(

P
∣∣ z(y).(Q

∣∣ R)
) �c z(y).

(
(νx)(P | Q )

∣∣ R
) :: z:A ⊗ B (A-1)

Γ ;Δ � (νx)
(

P
∣∣ z(y).(Q

∣∣ R)
) �c z(y).

(
Q

∣∣ (νx)(P | R)
) :: z:A ⊗ B (A-2)

Γ ;Δ, y:A ⊗ B � (νx)
(

P
∣∣ y(z).Q

) �c y(z).(νx)(P | Q ) :: T (A-3)

Γ ;Δ, y:A ⊗ B � (νx)
(

y(z).P
∣∣ Q

) �c y(z).(νx)(P | Q ) :: T (A-4)

Γ ;Δ � (νx)
(

P
∣∣ z(y).Q

) �c z(y).(νx)(P | Q ) :: z:A�B (A-5)

Γ ;Δ, y:A�B � (νx)
(

P
∣∣ y(z).(Q | R)

) �c y(z).
(
(νx)(P | Q )

∣∣ R
) :: T (A-6)

Γ ;Δ, y:A�B � (νx)
(

P
∣∣ y(z).(Q | R)

) �c y(z).
(

Q
∣∣ (νx)(P | R)

) :: T (A-7)

Γ ;Δ, y:A�B � (νx)
(

y(z).(Q | P )
∣∣ R

) �c y(z).
(

Q
∣∣ (νx)(P | R)

) :: T (A-8)

Γ ;Δ � (νx)
(

P
∣∣ z.case(Q , R)

) �c z.case
(
(νx)(P | Q ), (νx)(P | R)

) :: z:A & B (A-9)

Γ ;Δ, y:A & B � (νx)(P | y.inl; Q ) �c y.inl; (νx)(P | Q ) :: T (A-10)

Γ ;Δ, y:A & B � (νx)(P | y.inr; R) �c y.inr; (νx)(P | R) :: T (A-11)

Γ ;Δ � (νx)(P | z.inl; Q ) �c z.inl; (νx)(P | Q ) :: z:A ⊕ B (A-12)

Γ ;Δ � (νx)(P | z.inr; R) �c z.inr; (νx)(P | R) :: z:A ⊕ B (A-13)

Γ ;Δ, y:A ⊕ B � (νx)
(

P
∣∣ y.case(Q , R)

) �c y.case
(
(νx)(P | Q ), (νx)(P | R)

) :: T (A-14)

Γ, u:A;Δ � (νx)(P | u(y).Q ) �c u(y).(νx)(P | Q ) :: T (A-15)

Γ ;Δ, y:A ⊗ B � (νx)
(

y(z).P
∣∣ R

) �c y(z).(νx)(P | R) :: T (B-1)

Γ ;Δ, y:A�B � (νx)
(

y(z).(P | Q )
∣∣ R

) �c y(z).
(

P
∣∣ (νx)(Q | R)

) :: T (B-2)

Γ ;Δ, y:A & B � (νx)(y.inl; P | R) �c y.inl; (νx)(P | R) :: T (B-3)

Γ ;Δ, y:A & B � (νx)(y.inr; P | R) �c y.inr; (νx)(P | R) :: T (B-4)

Γ ;Δ, y:A ⊕ B � (νx)
(

y.case(P , Q )
∣∣ R

) �c y.case
(
(νx)(P | R), (νx)(Q | R)

) :: T (B-5)

Γ ;Δ � (νx)
(

P {y/u} ∣∣ Q
) �c (νx)(P | Q ){y/u} :: T (B-6)

Γ ;Δ � (νx)
(

P
∣∣ Q {y/u}) �c (νx)(P | Q ){y/u} :: T (B-7)

Γ, u:A;Δ � (νx)(u(y).P | R) �c u(y).(νx)(P | R) :: T (B-8)

Γ, u:A;Δ � (νx)(P | u(y).R) �c u(y).(νx)(P | R) :: T (B-9)

Fig. D.6. Process equalities induced by proof conversions: classes (A) and (B).

Γ ; · � (νu)
((!u(y).P

) ∣∣ 0
) �c 0 :: −:1 (C-1)

Γ ;Δ � (νu)
((!u(y).P

) ∣∣ x(z).(Q | R)
) �c x(z).

(
(νu)

((!u(y).P
) ∣∣ Q

) ∣∣ (νu)
((!u(y).P

) ∣∣ R
)) :: x:A ⊗ B (C-2)

Γ ;Δ, y:A ⊗ B � (νu)
((!u(y).P

) ∣∣ y(z).Q
) �c y(z).(νu)

((!u(y).P
) ∣∣ Q

) :: T (C-3)

Γ ;Δ � (νu)
(!u(y).P

∣∣ z(y).Q
) �c z(y).(νu)

(!u(y).P
∣∣ Q

) :: z:A�B (C-4)

Γ ;Δ, y:A�B � (νu)
((!u(w).P

) ∣∣ y(z).(Q | R)
) �c y(z).

((
(νu)

(!u(w).P
∣∣ Q

) ∣∣ (νu)
((!u(w).P

) ∣∣ R
))) :: T (C-5)

Γ ;Δ � (νu)
((!u(y).P

) ∣∣ z.case(Q , R)
) �c z.case

(
(νu)

((!u(y).P
) ∣∣ Q

)
, (νu)

((!u(y).P
) ∣∣ R

))::z:A & B (C-6)

Γ ;Δ, y:A & B � (νu)
(!u(z).P

∣∣ y.inl; Q
) �c y.inl; (νu)

(!u(z).P
∣∣ Q

) :: T (C-7)

Γ ;Δ, y:A & B � (νu)
(!u(z).P

∣∣ y.inr; R
) �c y.inr; (νu)

(!u(z).P
∣∣ R

) :: T (C-8)

Γ ;Δ � (νu)
(!u(y).P

∣∣ z.inl; Q
) �c z.inl; (νu)

(!u(y).P
∣∣ Q

) :: z:A ⊕ B (C-9)

Γ ;Δ � (νu)
(!u(y).P

∣∣ z.inr; R
) �c z.inr; (νu)

(!u(y).P
∣∣ R

) :: z:A ⊕ B (C-10)

Γ ;Δ, y:A ⊕ B � (νu)
(!u(z).P

∣∣ y.case(Q , R)
) �c y.case

(
(νu)

(!u(z).P
∣∣ Q

)
, (νu)

(!u(z).P
∣∣ R

)) :: T (C-11)

Γ ;Δ � (νu)
(!u(y).P

∣∣!x(z).Q
) �c !x(z).(νu)

(!u(y).P
∣∣ Q

) :: x:!A (C-12)

Γ ;Δ � (νu)
(!u(y).P

∣∣ Q {y/v}) �c (νu)
(!u(y).P

∣∣ Q
){y/v} :: T (C-13)

Γ ;Δ � (νu)
(!u(y).P

∣∣ v(y).Q
) �c v(y).(νu)

(!u(y).P
∣∣ Q

) :: T (C-14)

Fig. D.7. Process equalities induced by proof conversions: class (C).

there is no rule that can permute with (T1R), rule (T1L) can permute with all rules without changing the process structure. 
The situation is similar for (T!R) and (T!L): the former is incompatible for permutation with all rules, while the latter can 
permute with all rules, excepting (T!R). The effect of (T!L) in processes is a substitution; equated processes only differ in 
the scope of such a substitution.
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Γ ;Δ, x:A ⊗ B, z:C ⊗ D � x(y).z(w).P �c z(w).x(y).P :: T (D-1)

Γ ;Δ, z:D�C, x:A�B � z(w).
(

R
∣∣ x(y).(P | Q )

) �c x(y).
(

P
∣∣ z(w).(R | Q )

) :: T (D-2)

Γ ;Δ, z:D�C, x:A�B � z(w).
(

R
∣∣ x(y).(P | Q )

) �c x(y).
(
z(w).(R | P )

∣∣ Q
) :: T (D-3)

Γ ;Δ, w:C�D, x:A ⊗ B � w(z).
(

Q
∣∣ x(y).P

) �c x(y).w(z).(Q | P ) :: T (D-4)

Γ ;Δ, w:C�D, x:A ⊗ B � w(z).
(
x(y).P

∣∣ Q
) �c x(y).w(z).(P | Q ) :: T (D-5)

Γ, u:A, v:C;Δ � u(y).v(x).P �c v(x).u(y).P :: T (D-6)

Γ, u:C;Δ, x:A�B � u(z).x(y).(P | Q ) �c x(y).(u(z).P | Q ) :: T (D-7)

Γ, u:C;Δ, x:A�B � u(z).x(y).(P | Q ) �c x(y).(P | u(z).Q ) :: T (D-8)

Γ, u:A;Δ, z:C ⊗ D � u(y).z(w).P �c z(w).u(y).P :: T (D-9)

Γ ;Δ, x:A ⊕ B, y:C ⊕ D � y.case
(
x.case(P1, Q 1), x.case(P2, Q 2)

) �c x.case
(

y.case(P1, P2), y.case(Q 1, Q 2)
) :: T (D-10)

Γ, u:C;Δ, x:A ⊕ B � u(z).x.case(P , Q ) �c x.case(u(z).P , u(z).Q ) :: T (D-11)

Γ ;Δ, w:A�E, z:C ⊕ D � z.case
(

w(y).(P | R1), w(y).(P | R2)
) �c w(y).

(
P

∣∣ z.case(R1, R2)
) :: T (D-12)

Γ ;Δ, z:C ⊕ D, x:A ⊗ B � z.case
(
x(y).P , x(y).Q

) �c x(y).z.case(P , Q ) :: T (D-13)

Γ ;Δ, x:A & B, y:C & D � x.inl; y.inl; P �c y.inl; x.inl; P :: T (D-14)

Γ ;Δ, x:A ⊕ B, y:C & D � x.case(y.inl; P , y.inl; Q ) �c y.inl; x.case(P , Q ) :: T (D-15)

Γ, u:C;Δ, z:A & B � z.inl; u(y).P �c u(y).z.inl; P :: T (D-16)

Γ ;Δ, z:C & D, x:A�B � z.inl; x(y).(P | Q ) �c x(y).(z.inl; P | Q ) :: T (D-17)

Γ ;Δ, z:C & D, x:A�B � z.inl; x(y).(P | Q ) �c x(y).(P | z.inl; Q ) :: T (D-18)

Γ ;Δ, z:C & D, x:A ⊗ B � z.inl; x(y).P �c x(y).z.inl; P :: T (D-19)

Fig. D.8. Process equalities induced by proof conversions: class (D).

Γ ;Δ, z:C & D � z.inl; x(y).(P | Q ) �c x(y).(P | z.inl; Q ) :: x:A ⊗ B (E-1)

Γ ;Δ, z:C & D � z.inl; x(y).(P | Q ) �c x(y).(z.inl; P | Q ) :: x:A ⊗ B (E-2)

Γ ;Δ, z:D ⊕ E � z.case
(
x(y).(P1 | Q ), x(y).(P2 | Q )

) �c x(y).
(

Q
∣∣ z.case(P1, P2)

) :: x:A ⊗ B (E-3)

Γ ;Δ, z:D ⊕ E � z.case
(
x(y).(Q | P1), x(y).(Q | P2)

) �c x(y).
(
z.case(P1, P2)

∣∣ Q
) :: x:A ⊗ B (E-4)

Γ, u:C;Δ � u(w).x(y).(P | Q ) �c x(y).(u(w).P | Q ) :: x:A ⊗ B (E-5)

Γ, u:C;Δ � u(w).x(y).(P | Q ) �c x(y).(P | u(w).Q ) :: x:A ⊗ B (E-6)

Γ ;Δ, w:C�D � w(z).
(

R
∣∣ x(y).(P | Q )

) �c x(y).
(

P
∣∣ w(z).(R | Q )

) :: x:A ⊗ B (E-7)

Γ ;Δ, x:C�D � z(y).
(
x(w).(P | Q )

∣∣ R
) �c x(w).

(
P

∣∣ z(y).(R | Q )
) :: z:A ⊗ B (E-8)

Γ ;Δ, z:C ⊗ D � z(w).x(y).(P | Q ) �c x(y).
(
z(w).P

∣∣ Q
) :: x:A ⊗ B (E-9)

Γ ;Δ, z:C ⊗ D � z(w).x(y).(P | Q ) �c x(y).
(

P
∣∣ z(w).Q

) :: x:A ⊗ B (E-10)

Γ ;Δ, z:C & D � z.inl; x(y).P �c x(y).z.inl; P :: x:A�B (E-11)

Γ ;Δ, z:C ⊕ D � x(y).z.case(P , Q ) �c z.case
(
x(y).P , x(y).Q

) :: x:A�B (E-12)

Γ, u:C;Δ � u(w).x(y).P �c x(y).u(w).P :: x:A�B (E-13)

Γ ;Δ, w:C�D � w(z).
(

R
∣∣ x(y).P

) �c x(y).w(z).(R | P ) :: x:A�B (E-14)

Γ ;Δ, z:C ⊗ D � x(y).z(w).P �c z(w).x(y).P :: x:A�B (E-15)

Γ ;Δ, y:C & D � y.inl; x.case(P , Q ) �c x.case(y.inl; P , y.inl; Q ) :: x:A & B (E-16)

Γ ;Δ, y:C ⊕ D � x.case
(

y.case(P1, Q 1), y.case(P2, Q 2)
) �c y.case

(
x.case(P1, P2), x.case(Q 1, Q 2)

) :: x:A & B (E-17)

Γ ; u:A;Δ � x.case(u(y).P , u(y).Q ) �c u(y).x.case(P , Q ) :: x:A & B (E-18)

Γ ;Δ, z:C�D � z(y).
(

R
∣∣ x.case(P , Q )

) �c x.case
(
z(y).(R | P ), z(y).(R | Q )

) :: x:A & B (E-19)

Γ ;Δ, x:A ⊗ B � z.case
(
x(y).P , x(y).Q

) �c x(y).z.case(P , Q ) :: z:C & D (E-20)

Γ ;Δ, y:C & D � y.inl; x.inl; P �c x.inl; y.inl; P :: x:A ⊕ B (E-21)

Γ ;Δ, y:A ⊕ B � x.inl; y.case(P , Q ) �c y.case(x.inl; P , x.inl; Q ) :: x:A ⊕ B (E-22)

Γ ; u:A;Δ � x.inl; u(y).P �c u(y).x.inl; P :: x:A ⊕ B (E-23)

Γ ;Δ, z:D�C � z(y).(Q | x.inl; P ) �c x.inl; z(y).(Q | P ) :: x:A ⊕ B (E-24)

Γ ;Δ, x:A ⊗ B � x(y).z.inl; P �c z.inl; x(y).P :: z:C ⊕ D (E-25)

Γ ;Δ, x:!C � z(y).
(

P {x/u} ∣∣ Q
) �c

(
z(y).(P | Q )

){x/u} :: z:A ⊗ B (E-26)

Γ ;Δ, x:!C � z(y).
(

P
∣∣ Q {x/u}) �c

(
z(y).(P | Q )

){x/u} :: z:A ⊗ B (E-27)

Fig. D.9. Process equalities induced by proof conversions: class (E).
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