
Derivations with Holes for Concept-Based Program
Synthesis∗

João Costa Seco
NOVA University Lisbon,

NOVA LINCS
Caparica, Portugal
joao.seco@fct.unl.pt

Jonathan Aldrich
Carnegie Mellon University

Pittsburgh, United States of America
jonathan.aldrich@cs.cmu.edu

Luís Carvalho
NOVA University Lisbon,

NOVA LINCS
Caparica, Portugal

la.carvalho@campus.fct.unl.pt

Bernardo Toninho
NOVA University Lisbon,

NOVA LINCS
Caparica, Portugal

bernardo.toninho@fct.unl.pt

Carla Ferreira
NOVA University Lisbon,

NOVA LINCS
Caparica, Portugal

carla.ferreira@fct.unl.pt

Abstract
Program synthesis has the potential to democratize program-
ming by enabling non-programmers to write software. But
conventional approaches to synthesis may fail if given in-
sufficient information—a common occurrence when asking
non-experts to describe the application they want to write.
This paper introduces a new concept-based program synthe-
sis mechanism that can cope with incomplete knowledge,
targeting low-code model-driven languages. Concepts are
modelled in an ontology that represents user intent, includ-
ing basic actions (e.g. show, filter, and create) along with their
associated data as well as basic user interface structures like
screens or pages. Our synthesis framework consists of a
system of derivation rules that supports deferred premises,
which need not be immediately satisfied during synthesis. A
derivation in which some deferred premises are missing will
thus contain holes; semantically, it represents a proof that is
conditional on the developer filling the holes with additional
facts from the ontology. We translate derivations with holes
to standard first-order logic derivations, where the holes are
transformed into assumptions. We illustrate the feasibility
and effectiveness of our framework with a proof-of-concept
implementation and a set of illustrative examples.

∗This work is supported by FCT/MCTES under Grant NOVA LINCS -
UIDB/04516/2020 and GOLEM Lisboa-01-0247-Feder-045917.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Onward! ’22, December 8–10, 2022, Auckland, New Zealand
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9909-8/22/12.
https://doi.org/10.1145/3563835.3567658

CCS Concepts: • Theory of computation→ Constraint
and logic programming; • Software and its engineer-
ing→ Automatic programming.

Keywords: low-code, program synthesis, automated pro-
gramming, user intent, incomplete knowledge

ACM Reference Format:
João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Ton-
inho, and Carla Ferreira. 2022. Derivations with Holes for Concept-
Based Program Synthesis. In Proceedings of the 2022 ACM SIGPLAN
International Symposium on New Ideas, New Paradigms, and Reflec-
tions on Programming and Software (Onward! ’22), December 8–10,
2022, Auckland, New Zealand. ACM, New York, NY, USA, 17 pages.
https://doi.org/10.1145/3563835.3567658

1 Introduction
Software has revolutionized productivity in numerous fields,
yet there remain many tasks for which software support is
missing. A key barrier is that only programmers can program:
if an application does not have enough users to justify a
programmer’s time, it will not be written.

Program synthesis is a potential solution to this problem:
the user describes what they want the software to do and
the program is synthesized from the description. However,
in the case of users who are not programmers, it is likely
that the user’s description will be highly incomplete. While
synthesis in the presence of limited underspecification is
possible, for instance by showing the user multiple programs
or predicting the most likely one, these techniques become
impractical as incompleteness grows.

A key insight is that non-programmers often do not need
to synthesize complex algorithms: they are typically inter-
ested in web and mobile applications that allow them to
enter, search, and visualize data. In our work we are pur-
suing an approach to automatically assemble such applica-
tions by configuring and combining coarse-grained, highly
parametrizable, library components. This problem domain
suggests an approach for dealing with missing information:

63

https://orcid.org/0000-0002-2840-3966
https://orcid.org/0000-0003-0631-5591
https://orcid.org/0000-0003-3445-939X
https://orcid.org/0000-0002-0746-7514
https://orcid.org/0000-0003-3680-7634
https://doi.org/10.1145/3563835.3567658
https://doi.org/10.1145/3563835.3567658

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

we can synthesize the partial structure of an application
from the information given, leaving holes where there is
insufficient information to select a component or to spec-
ify component parameter(s). Importantly, in this domain,
missing information is not arbitrary: it is likely about “de-
tails” that do not affect the large-scale program structure. A
designer familiar with the domain can enable synthesis in
the presence of incomplete specification by distinguishing
these details—which can be deferred until later—from the
core information that drives the synthesis procedure.

Our approach forms a pipeline, starting with an ontology
of programming concepts that captures the intent of a user in
a high-level way. We proceed by selecting components that
implement the desired functionalities and whose parameters
and preconditions (specification) are met by the surrounding
context. For instance, a user may start with an utterance

“I want to show a list of products on a products page”

which, in a conventional three-tier application, may lead to
the definition of a data type called “Products,” a database
table called “Product,” an app screen called “Products Page,”
and the instantiation of a code template that produces some
sort of pre-prepared (library) UI element that implements
the several logic layers of displaying the products.
Our approach to synthesis leverages inference rules, de-

signed by domain experts, that describe how requests by
the user should translate into computational elements. In
the example above, the inference rules might specify that
showing a list of products can be done by showing a table
with a column for each field in the “Products” datatype. This
information is enough if the system already knows about
products, but if it does not, synthesis will not be complete,
because the fields of “Products” are not known. We would
like synthesis to produce a preliminary result—even going so
far as to show the user a page with an empty table—and then
ask the user for the missing “Product” field information.
The novel technical solution proposed in this paper is to

allow the designer of the inference rules used in synthesis
to explicitly say what information can be deferred during
the initial synthesis and specified later. Such information is
specified in deferred premises, marked with a ? . When form-
ing a derivation, typically through backwards search (i.e.
from a goal to the facts needed to establish it), we allow an
inference rule to be triggered even if deferred premises are
not derivable. This forms a derivation with holes: locations
in the derivation tree where a branch is missing. Logically,
the conclusion of the derivation is conditional on filling in
the missing holes. We justify the soundness of this approach
via a (provability-preserving) translation of our system of
inference to first-order logic formulas. In our practical con-
text, holes represent missing information from the ontology
and can be filled by asking the user for that information.
Alternatively, machine learning techniques could be used to

predict the most likely ways to fill in the missing information
and present the user with a suite of choices for each hole.
A key design choice is that we do not make all premises

deferred; instead, deferral is a choice made by the designer of
the inference system. Typically, deferral is used for branches
of the derivation that do not determine the derivation’s over-
all structure, yet must eventually be present for the deriva-
tion to be complete and for all component parameters to
be fully determined. Premises that are fundamental to the
derivation’s structure should not be deferred; in our setting,
we expect the user to say something that indicates the over-
all shape or direction of the derivation, triggering the choice
of a rule, but where some details may not be readily avail-
able. These are accounted for with deferred premises, which
have to be subsequently filled in to complete the derivation.
Deferred premises, therefore, express the synthesis system
designer’s intent for how the system will interact with the
user, identifying which questions are productive to defer and
later ask the user, and which questions are not.

In this paper, we flesh out the approach sketched above to
ontology-driven application assembly. The target language
is OSTRICH [13, 14, 24], which provides an abstraction layer
over the model-driven development model by OutSystems,
a company providing a popular low-code programming plat-
form. Our work uses a library of OSTRICH component tem-
plates and the native capabilities of the OutSystems platform
to inspect and create persistent data types and UI elements.
The paper structure is described next. We start with an

overview of related work in Section 2. Section 3 describes the
motivating context for our work: a system that synthesizes
applications out of components based on natural language
specifications that are parsed into an ontology. Section 4
describes the baseline approach to synthesis that we are
building on, which assumes complete specifications in the
ontology. Section 5 outlines the primary contribution of
this paper: an approach to specifying inference rules with
deferred premises, to accommodate missing information in
the ontology. Examples illustrating the expressiveness of
the approach are giveen in Section 6, and then Section 7
gives deferred premises a semantics based on a translation
to first-order logic formulas. Section 8 discusses a prototype
implementation, and Section 9 evaluates our approach on a
set of sample queries that contain missing information. We
conclude with a discussion of future work in Section 10.

2 Related Work
The idea of semantically meaningful holes in programs has
been studied formally by Omar et al. [18, 19]. This line of
work expands on the idea of typed holes, found in func-
tional languages such as Haskell or Agda, going beyond the
idea of (typed) holes as an ad-hoc quality-of-life compiler
artifact and providing a semantic treatment of holes such
that incomplete programs are statically meaningful objects,

64

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

which is related to our idea of incomplete, yet semantically
meaningful, derivations.
Incomplete programs (or sketches [27]) are also found in

the program synthesis literature, where a programwith holes
is treated as a synthesis problem where the synthesizer uses
a specification combined with the contextual information
provided by the (partial) program fragment in order to mean-
ingfully fill the hole. The specification can take many forms
such as logical assertions [10, 27], polymorphic refinement
types [22] and input-output examples [1, 15, 20]. While pro-
gram synthesis fundamentally deals with under or partially
specified program fragments, the point of view of synthesis
is typically to produce the most suitable result (including
no result) with the given inputs. If the user deems the re-
sult inappropriate, the synthesis framework expects the user
to provide additional information (e.g., a refined specifica-
tion, more examples, etc.) to further prune or guide the next
synthesis attempt, which is independent of previous runs.

While sketching takes a program with holes as input and
uses partial specifications to fill the holes, our approach
takes partial specifications and uses them to synthesize a
program with holes. Those holes will later be filled with
other techniques, one of which could be the kind of synthesis
used in sketching. Our approach allows the system designer
to explicitly characterize the places where the developer
can initially leave out details, which are later asked of the
developer via direct or indirect means. We are not aware of
any other approach to synthesis that aims to characterize
what parts of a specification can be incomplete, and thereby
internalize this kind of user interaction.
Moreover, the representation of incomplete or deferred

premises enables our system to explicitly capture design
intent related to which component parameters are acces-
sories to the overall component assembly, in that they are
needed to ultimately complete the goal but are not essential
in determining the fundamental structure of the synthesis
target. This aspect is both unique and essential to the appli-
cability of our approach to our chosen target domain, where
we aim to synthesize (executable) component assemblies for
data-driven applications from high-level and intrinsically
imprecise or ambiguous user intents (e.g. natural language).

The work by Le et al. [11], SmartSynth, has similar goals
to ours, starting from natural language and producing a
script that orchestrates a sequence of operations in a mo-
bile device. It follows a rather different approach. The au-
thors propose a discovery method using the components of
a natural language utterance to come up with a set of base
components and a variety of data flow relations between
them. These relations are subsequently validated and ranked
using the signatures of the operations and the data being
exchanged. SmartSynth adds extra information to avoid am-
biguity through pre-prepared questions assigned to each
operation, whereas we achieve this via our suggestion en-
gine and user questions. Unlike SmartSynth, we provide a

constructive approach to the introduction of new compo-
nents and their dependencies. Our approach seems more
adequate for the more declarative constructs in the low-code
domain. This work is a good starting point to automatically
define the effects of user interface actions in our future work.

In existing related work, the conceptual distance between
the specification and the synthesis output is generally much
smaller. Specifications take the form of rich types, asser-
tions and examples and are used to synthesize functional
code [22], imperative heap-manipulating code [23] or even
SQL queries [28]. In this kind of setting, small increments to
the specification as a result of inspecting the synthesis out-
put are generally feasible as independent user-synthesizer
interactions, not internalized in the framework itself. Even
when the synthesis output is closer in spirit to that of our
work (e.g. web layouts [16]), the specification is still concep-
tually close to the synthesized outputs (i.e., examples). In our
context, specifications are both less precise and are signif-
icantly distant from the synthesized component assembly
such that small changes to the specification may result in
dramatic, and often undesired changes to the output. Thus,
making explicit the way in which the synthesizer addresses
incompleteness is key to producing an effective tool that
can take natural language specifications and produce Web
or mobile applications.

Our setting is similar to the work on staged compositions
by Düdder et al. [4, 5] that, on the one hand, uses a well-
typed two-stage template language like ours to specify and
instantiate components, and on the other hand combines
it with the synthesis of compositions using logic, in their
case using intersection types and combinatorial logic. Our
work offers the possibility of reasoning with incomplete
knowledge and using low-code components, as opposed to a
more complex, but language agnostic, template mechanism.
Our approach is also inspired on gradual typing [25]—

which can be considered types with holes—andmore recently
gradual verification [2, 29], in which specifications can have
holes. Most closely related is work [12] gradualizing the
Calculus of Inductive Constructions, the logic underlying
proof assistants such as Coq and Agda. These systems also
try to construct a derivation showing that a program can
be typed or verified when some information is missing. Our
work differs in the setting: inference rules intended to be used
in forward reasoning, with entire premises that are deferred—
as opposed to one part of a formula, type, or program.

3 System Architecture
In this section, we give a bird’s-eye view of the concept-
based program synthesis system that forms the context for
our approach. Our system, depicted in Figure 1, is a low-
code development environment that provides both visual
and natural language interfaces. In the middle of the dia-
gram is an inner loop composed of a concept-based ontology

65

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

IDE

NLP

concepts and

commands

Application
Inspector

Component
picker

ontology

facts

suggestions / user questions

Ontology
Representation

construction

commands

synthesis

questions

Synthesis Engine

code

view of application

view of

application

Application Model

suggestions

Suggestion Engine

specs

specs

Template Library

Figure 1. Architecture of the complete synthesis and suggestion system.

representing of the developer’s intent, a synthesis engine,
and a suggestion engine. The context of this synthesis loop
includes the IDE that gathers concepts and commands from
the user while posing questions generated by synthesis, a
library of component templates, and an Application Model
that assembles an application based on commands from the
synthesis engine as well as code from the template library.
This paper focuses mainly on one component of the inner
loop of this architecture, the concept-based synthesis engine.

The IDE captures the user intent based on a combination
of user inputs. One important modality is natural language
input combined with a simplified visual interface that shows
all application components and components available for
composition. Another is a set of high-level operations cap-
tured by gestures in a power user interface (e.g., dragging a
widget from a toolbar or an entity from the data section to
the canvas). All in all, these different user interfaces capture
the user’s intent along with extra information and context.
Our approach lies in the domain of concept-based pro-

gramming [8, 21] where high-level concepts are represented
in an ontology [26] and then transformed into assemblies of
pre-prepared components, synthesized data types, and glue
code. We make crucial use of a task-oriented ontology [26] in
our pipeline. The syntactic interpretation of the user’s utter-
ances, using the Stanza library tools,1 identifies the different
sentences’ components and matches them with commands
and datatypes in the ontology. This process tries to minimize
the alternative meanings of each component in the interac-
tion, following [26], based on distances between terms, and a
constraint-solving approach that takes the constraints built
into the task-oriented ontology as input. If more than one
alternative is still available after this minimization process,
an agenda-based dialogue is triggered that queries the user
with additional ontology-driven questions to address the
ambiguity. Once the number of alternatives reaches one, the
resulting ontology instance is passed on to the next step.
The ontology codifies the direct operations on data that

are typical of mobile and web applications (e.g., show, create,

1https://stanfordnlp.github.io/stanza/

search, filter), data representations of the domain (i.e., defi-
nitions for persistent data and its attributes), and computed
values using a series of known transformations (i.e., built-in
and library functions). Other concepts that may be supported
in the foreseeable future include declarative definitions of
access control conditions and the effects of user actions.

From the concepts expressed by the user, our approach pro-
duces code using the template language OSTRICH [13, 24] to
represent assemblies of pre-prepared components. Synthesis
results range from complete applications to parametrized
screens and widgets. One of the key elements of our system
is the component library containing a dynamic collection of
components and their specifications. The synthesis engine
matches concept facts from the ontology to specifications
from the library, producing proposed component instantia-
tions and connections with other synthesized elements. The
synthesis engine interacts with a suggestion engine to pro-
vide the necessary completions of deferred premises used by
the search process. The suggestion engine may use default
values, built-in (expert or common sense) rules, or AI-based
mechanisms to provide the missing information.

The last piece in our architecture is the Application Model,
which manages the concrete application being synthesized.
On every evolution step, it computes the differences between
what is being defined by the synthesis engine and what is
present in the current code base. It then uses the differences
to create or update elements in a resource-aware fashion
that avoids duplication of functionality.

4 Programming with Concepts
The pipeline introduced in this paper is triggered by com-
mands that the user provides in the form of a natural lan-
guage utterance (e.g. in a text prompt or speech recognition
engine). Recall that such utterance is represented using on-
tology facts [26] denoting the user’s intent.

Consider the utterance “I want to show a list of products
on a products page,” provided by the user in natural lan-
guage. Assuming that the natural language layer eliminates

66

https://stanfordnlp.github.io/stanza/

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

all ambiguities from this sentence and reaches a single ontol-
ogy instance representation. The concepts referred to in this
utterance are represented by the following ontology facts:2

Show(show1)
Page(ProductsPage)
Where(show1, ProductsPage)
What(show1, Products)
Record(Products)

(1)

where show1 identifies an event in the user interaction whose
main action is Show(_), defining the intent of displaying
data, that is related to a UI location (a page) named Prod-
uctsPage, and a data type (record) named Products. We also
assume that the following fact depicting the structure of a
database entity named Products is also represented in the
ontology, having flowed along the connection from the Ap-
plication Model to the Ontology Representation component
in Figure 1,

Entity(Products, {name : String,
description : String,
price : Int, 𝑠𝑡𝑜𝑐𝑘 : Int}) .

(2)

The synthesis engine then proposes the (conditional) in-
stantiation of a library template that creates a table in the UI,
on the page named ProductsPage. This result is represented
by a fact of the form

Query(ProductsQuery, show1, Products, {})
Template(’List’, show1, ProductsPage, ProductsQuery, ?𝐴)
Attributes(show1, ProductsQuery, ?𝐴)

(3)
where the name ’List’ is a reference to a template in the
library, ProductsPage is a reference to the target location,
ProductsQuery is the name of a new query that is also de-
rived in this process, and ?𝐴 is a placeholder for a list of
attributes to display. The lack of explicit information about
the list of attributes to display in the user utterance triggers
a feedback loop in the pipeline, in the form of an interroga-
tion. The questions in the interrogation are processed by the
suggestion engine, which may use default values, built-in, or
AI-based mechanisms to provide the missing information. If
the suggestion engine does not provide all the information,
a question may be directed to the developer in the IDE. In
the present example, a list with a (pre-checked) checkbox
for each possible attribute can be shown to the developer
to confirm. Once the information is provided and added to
the ontology, the derivation is complete, all the arguments
of the template are fully determined, and the application
components can be instantiated and previewed.

The target of our synthesis engine is the domain of mobile
and web applications, which are constructed via the instanti-
ation and assembly of pre-prepared components (cf. [5, 21]).

2For the sake of clarity we modified the predicate names wrt [26].

𝐶 ::= Field(𝑓)
| Record(𝑒)
| Type(f , T)
| PartOf(𝑎, 𝑒, 𝑓)
| Page(𝑝)
| Show(𝑎)
| Create(𝑎)
| Filter(𝑎)
| What(𝑎, 𝑒)
| Where(𝑎, 𝑝)
| Operator(𝑓 , 𝐹)

𝑃 ::= 𝐶

| Location(𝑝)
| Entity(𝑒, {𝑓 : 𝑇 })
| Query(𝑞, 𝑎, 𝑒, 𝑓)
| Attributes(𝑎, 𝑒, (𝑓 = 𝑒.𝑓 , 𝑓 = 𝐹 (𝑒)))
| Template(TemplateName, 𝑎, 𝑝, 𝑑, 𝑓)

Figure 2. Syntax of ontology and system-level facts

A low-code application model is a collection of components
with well-defined links that represent establish dependencies
and containment. Hence, each produced predicate denotes
one (or more) components in the target application model.
The predicate’s arguments help instantiate and link the com-
ponents together in a low-code application model. Since each
component in the template library is associated with one or
more actions represented in the ontology, several alterna-
tives may be derivable at any given time, in which case they
must be ranked and presented to the developer.

4.1 Representing Concepts
As illustrated by the examples above, we capture program-
ming concepts [8] with predicates parameterized with values
from the domain as well as names that are used to connect
components. Our system can express concepts for direct ac-
tions like showing data, searching rows using simple criteria,
creating new records in the database, or computing simple
functions over existing data. In the future, we plan to capture
UI effects and access control conditions in the ontology, but
for now we focus on the direct actions over data.

Recall that the programming concepts we consider in this
work represent a limited range of functionalities often used
in simple mobile and web applications. The basic concepts
are represented in an ontology (cf. [26]), whose instances in
our approach are provided by the developer. The facts of the
ontology are presented in the syntax in Figure 2. Consider a
set of names ranging over 𝑝 for pages (and other UI locations),
𝑓 for field labels, 𝑒 for entities such as records, 𝑎 for actions,
𝑞 for names of queries, and 𝑑 for data sources that can be
queries or entities.
Names are used in predicates that instantiate concepts.

The concepts present in the ontology and specified directly

67

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

by the user are ranged over by 𝐶 . Derived concepts, ranged
over by 𝑃 , are designed to represent the elements that will
be created or updated in the system. Our representation
assumes a system that is always running and where new ele-
ments can be created and existing elements can be updated.
The ontology facts Field(𝑓), Record(𝑒), Type(f , T), and

PartOf(𝑎, 𝑒, 𝑓) capture the different aspects of the structure
of record data types 𝑒 and their attributes 𝑓 related to the
user interaction named 𝑎. These structures are used to define
database entities. The predicate Operator(𝑓 , 𝐹) describes a
field 𝑓 that is computed using the formula 𝐹 . The name of the
operator is used to identify the operation to be performed
on the fields of an entity. For instance, the operator name
“price with VAT” can be used as a label for a computed field;
we assume that background knowledge or machine learning
techniques can be used when constructing the ontology facts
to identify the corresponding formula 𝐹 that needs to be ap-
plied to a product record (a row in a database) to provide the
intended result. The language of types (𝑇) for fields includes
base types in the style of a relational model: String, Int, and
Date.
Fact Page(𝑝) names locations (application pages) in the

user interface. For the sake of simplicity, we used only one
kind of possible UI location. The facts Show(𝑎), Create(𝑎),
and Filter(𝑎) define what direct action should be described
by and implemented for identifier 𝑎. These actions are com-
plemented by facts Where(𝑎, 𝑝) and What(𝑎, 𝑒) that link to
locations and entities in the user interface.
From the ontology facts (𝐶) our system will derive the

system-level concepts that represent an abstract composi-
tion of application components. In Figure 1 we can see that
this assembly is transported from the synthesis engine to the
actual Application Model. Concept Location(𝑝) declares a
valid target location to instantiate new elements. Notice that
the ontology concept Page(𝑝) above refers to one concrete
UI element where the effect can take place. Any number of
elements can be potentially added (e.g. through a point-and-
click interface). The concept Location(𝑝) is abstract and gen-
eralizes across Pages and other types of UI elements. Concept
Entity(𝑒, {𝑓 : 𝑇 }) describes a database table that is either al-
ready existing or is being defined by the present action. The
conceptQuery(𝑞, 𝑎, 𝑒, 𝑓) declares a query to be used in action
𝑎. The query uses entities 𝑒 and filters data by fields 𝑓 . In this
work, we consider a single entity in queries, even though the
concept is more general. To build on predicates describing
queries and their connection to the database, we define pred-
icate Attributes(𝐴,𝑞, 𝑓 = 𝑒.𝑓 , 𝑓 = 𝐹 (𝑒)) that selects a subset
of fields 𝑒.𝑓 from the entities in a query 𝑞 and specifies an
additional set of computed fields 𝑓 = 𝐹 (𝑒), given a set of op-
erators 𝐹 . Finally, a fact of the form Template(𝑁, 𝑎, 𝑝, 𝑑, 𝐴)
represents the instantiation of a template identified in the
library by N and relating to action 𝑎, placed at 𝑝 , using data
source 𝑑 (i.e., a query or an entity) and attributes 𝐴.

Notice that information about the application being built
is also expressed using these system-level concepts. For in-
stance, if the database already contains an entity called Prod-
ucts, the fact in equation 2 above is present in the context.

4.2 Derivation System Based on Concepts
In order to synthesize application code, we have developed a
derivation system that takes ontology facts specified by the
user and infers system-level concepts that can be interpreted
computationally to update or create elements in a running
system. The lower-level rules in the derivation system rea-
son about data types and UI concepts. Building on these, a
set of higher-level, library-specific rules reason about how
to carry out actions using components in the library. A com-
ponent is instantiated through a template that specifies what
action it implements, e.g. show, as well as various parameters
that provide the context of the action. When a rule’s conclu-
sion instantiates a component, the rule’s premises show the
preconditions for using that component.
Consider the following example as an illustration of our

system. We start with a set of known ontology concepts:

Show(show1)
Page(ProductsPage)
Where(show1, ProductsPage)
What(show1, Products)
Record(Products)
Field(name)
Field(price)
Field(stock)
PartOf(show1, Products, name)
PartOf(show1, Products, price)
PartOf(show1, Products, stock)
Type(name, String)
Type(price, Int)
Type(stock, Int)

(4)

This list of facts denotes the existence of the intent, of build-
ing an application component that shows some data, identi-
fied by name show1. Fresh names, like show1 above, identify
the interaction that took place to issue their related facts. In
the example, we define the (data) concept of Product and its
attributes name, price, and stock. We use Record(_) to denote
a record-like data abstraction and Field(_) to denote its prop-
erties or fields. The relation between the two is denoted by
facts with the form PartOf(_,_,_). The expressed location for
this event is an application page called ProductsPage. In this
case we define the action show1, as we want to show data
on a page called ProductsPage.
We now show the rules that progressively transform the

facts above into programming abstractions that realize the
user’s intent. First, we need to specify Location(_), an ab-
straction for a part of the UI where an application component
can be located. The following rule in our system specifies
that a Page(_) is a kind of Location(_):

68

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Page(𝑝)
Location(𝑝) (5)

Other rules could specify other kinds of locations, such as
screens, sidebars, footers, and headers.

Next, we give a set of rules that “typecheck” abstract infor-
mation in the ontology and capture it in a new, intermediate
predicate that is used in later stages of synthesis. For exam-
ple, if the predicate Where(𝑎, 𝑝) represents the user’s intent
to show action 𝑎 at 𝑝 , we need to validate that 𝑝 is actually
a location in the UI (as opposed to being a field, or some-
thing irrelevant). Checking that some predicate Location(𝑝)
exists is sufficient to do this. The validated location informa-
tion about action 𝑎 is then represented in a new predicate
WhatLocation(𝑎, 𝑝). All of this reasoning is captured by the
first rule below; the other rules work similarly for records
and fields associated with an action:

Where(𝑎, 𝑝) Location(𝑝)
WhatLocation(𝑎, 𝑝) (6)

What(𝑎, 𝑒) Record(𝑒)
WhatRecord(𝑎, 𝑒) (7)

What(𝑎, 𝑓) Field(𝑓)
WhatField(𝑎, 𝑓) (8)

Next, we need rules that inductively derive system-level data
representations (i.e. database tables) from ontology facts.
While the ontology represents information about each field
with a separate predicate, we would like to group these into
a single predicate representing a database entity and all of
its fields. For this we use an Entity predicate that captures a
set of fields. The predicate is defined inductively, with a base
case to create the Entity and an inductive case that adds a
field to an existing entity. The rules are applied until nothing
more can be added to the set:

Record(𝑒)
Entity(𝑒, {}) (9)

Entity(𝑒, {𝑓 : 𝑇 })
Field(𝑓 ′) PartOf(𝑎, 𝑒, 𝑓 ′) ?Type(f ′, T ′)

Entity(𝑒, {𝑓 : 𝑇, 𝑓 ′ : 𝑇 ′})
(10)

The entity concept is defined from the ontology concepts
of Record(𝑒), Field(𝑓), and PartOf(𝑎, 𝑒, 𝑓), which ultimately
come from the user’s utterances. In this case, 𝑎 identifies
an action where the field should appear, 𝑒 is the name for
a new datatype and 𝑓 , 𝑓 ′ are the labels of the fields or at-
tributes of that datatype. To create a database table, we need
types for the columns; this data is extracted from the premise
?Type(f ′, T ′) , stating that field 𝑓 ′ has type 𝑇 ′. The ? indi-
cates that this premise is deferred, meaning it represents a
part of the proof that does not need to be derived immedi-
ately for the synthesis engine to trigger this particular rule.

Its derivation is deferred to a later stage and the result be-
comes conditional on it. Facts to support deferred premises
can be later instantiated by the suggestion system or taken
back to the developer via an appropriate user interface. We
delve into the details of deferred premises in Section 5.

To represent database access, we derive a description of a
query, represented with the judgmentQuery(𝑞, 𝑎, 𝑒, 𝑓), with
𝑞 freshly generated. The judgment ties together the database
entity being accessed, 𝑒 , with the action 𝑎, and also selects
the subset of the fields 𝑓 that are used in this action as filters.

Show(𝑎) WhatRecord(𝑎, 𝑒) Entity(𝑒, 𝐴)
Query(𝑞, 𝑎, 𝑒, {}) (11)

Filter(𝑎) WhatRecord(𝑎, 𝑒) Entity(𝑒,𝐴)

WhatField(𝑎, 𝑓) 𝑓 ⊆ 𝐴

Query(𝑞, 𝑎, 𝑒, 𝑓)
(12)

These rules derive queries from existing entities in our rule
system. We define how to retrieve and also how to filter data
from the database and show it somewhere in the UI. Notice
that the transformation of the predicate generates queries
with parameters to match the fields being used to filter data.
Parameters in queries are common in any database abstrac-
tion from object relational mappings to low-code platforms.
Future developments of this work will include extensions
with more elaborate conditions and multi-entity queries.

An algorithmic interpretation for the derivation rules
above is to obtain all derivable system-level concepts from an
input consisting of concepts of the ontology and system-level
concepts depicting the current existing application. Some
of the facts will be mutually exclusive in terms of resources
consumed and space occupied in the UI of the target applica-
tion. The choice between alternatives is performed in a later
stage of the process where template instantiation is resource-
aware and does not instantiate widgets “repeatedly”.
From the ontology facts above, rules 9 and 10 derive the

following database entity facts:

Entity(Products, {})
Entity(Products, {𝑛𝑎𝑚𝑒 : String})
Entity(Products, {name : String, price : Int})
Entity(Products, {name : String, price : Int, 𝑠𝑡𝑜𝑐𝑘 : Int})

(13)
Rules 11 and 12 derive a query related to entity Products:

Query(ProductsQuery, show1, Products, {}) (14)

At this point, all datatypes and queries referred by the
developer’s utterances are captured by the rules and ready
for the next stage where code and database schemas are
generated or updated. Observing the architecture depicted
in Figure 1, these facts have to be linearly interpreted to
create or update existing resources in the Application Model
(the target application code) and corresponding database

69

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

instance. Care is needed to avoid situations where all deriv-
able intermediate steps are used to create or update artifacts.
For instance, the predicate Entity(_, _) always holds for all
subsets of attributes of a given entity. Our execution strategy
adds elements until no more can be added; only then is the
judgment that contains all elements used in future deriva-
tions. One way of interpreting this is to treat Entity(_, _) as
a linear resource; we do not formalize this notion here.

Notice that the initial set of facts used in the example above
allows the entity and query definitions to be derived using a
standard interpretation for the derivation rules. Notice also
that our initial user’s utterance did not refer to any datatypes
for fields of concept Products.

5 Reasoning with Deferred Premises
The knowledge encoded in the initial ontology (i.e. the input
for our synthesis mechanism) is not always sufficient to pro-
duce the desired components. To deal with this we allow for
premises to be annotated as deferred. Any deferred premise,
if undetermined in the derivation, is not sufficient to stop
the search procedure but is kept as a side condition along to
the overall derivation.

Given the initial information in equation 4, which satisfies
the deferred premise ?Type(f , T) , rule 10 derives the facts
in equations 13 and 14. However, if we consider data in equa-
tion 4without facts Type(name, String), Type(price, Int), and
Type(stock, Int), the search for the facts in equations 13 and 14
would fail. By stating that premise ?Type(f , T) in rule 10 is
deferred, we allow rule 10 to be triggered without needing
the information about the type of the attributes. Instead, in
each step, the optional premise that was skipped is kept as a
side condition and attached to the conclusions it supports.
Thus, the conclusions of the derivation are similar to those of
equation 13 but mentioning universally quantified variables
and with side conditions attached.

Entity(Products, {})
Entity(Products, {𝑛𝑎𝑚𝑒 : 𝑇 })
?Type(name, 𝑇)

Entity(Products, {name : 𝑇 , price : 𝑇 ′ })
?Type(name, 𝑇) ?Type(price, 𝑇 ′)

Entity(Products, {name : 𝑇 , price : 𝑇 ′ , 𝑠𝑡𝑜𝑐𝑘 : 𝑇 ′′ })
?Type(name, 𝑇) ?Type(price, 𝑇 ′) ?Type(stock, 𝑇 ′′)

(15)
The derivation of equation 15 indicates that once the types
of the attributes with the labels name, price, and stock are
determined, the derivation is complete. Again, it is conceiv-
able that this kind of information can be provided by an
automated suggestion engine, or be brought to the attention
of the developer and answered in a way that is supported by
the ontology.

Stepping up to richer concepts, we define rules to deter-
mine the attributes to be used in a particular action and
the code template or component we need to instantiate to
achieve the developer’s intent. We begin with the predicate
Attributes(_, _, _). The rule is defined as follows:

Query(𝑞, 𝑎, 𝑒, 𝑔)

?Field(𝑓) ?PartOf(𝑎, 𝑒, 𝑓)

Attributes(𝑎, 𝑞, 𝑓 = 𝑒.𝑓)
(16)

Query(𝑞, 𝑎, 𝑒, 𝑔) Attributes(𝑎, 𝑞, 𝑓 = 𝑒.𝑓)

?Operator(𝑓 ′, 𝐹) ?PartOf(𝑎, 𝑒, 𝑓 ′)

Attributes(𝑎, 𝑞, (𝑓 = 𝑒.𝑓 , 𝑓 ′ = 𝐹 (𝑒)))
(17)

Rule 16 has one main premise (an existing query), deferred
(multiple) premises that specify the set of fields used in the
action under consideration, and a side condition that re-
lates the fields to the entities used in the query. If premises
?Field(𝑓) and ?PartOf(𝑎, 𝑒, 𝑓) are not immediately deriv-
able, the developer may be prompted to declare the fields
that need to be displayed. We use sets of premises instead of
induction to allow for easier conversion to a question at the
ontology level. Rule 17 adds computed attributes to the list
based on Operator(_, _) predicates in the input ontology.

From the facts depicted above, we conclude by rule 16 that
action show1 will display the fields name, price, and stock to
the user. Notice that these attributes may be a subset of the
attributes in the designated entity, depending on the initial
facts in the ontology and the facts drawn from the actual
database schema:

Attributes(show1, ProductsQuery,
{n𝑎𝑚𝑒 = Products.name,
p𝑟𝑖𝑐𝑒 = Products.price,
s𝑡𝑜𝑐𝑘 = Products.stock})

(18)

This rule is also triggered in situations where no informa-
tion is given to determine the attributes to be shown. In the
case where no Field(_) or PartOf(show1, _, _) are present,
the conclusion would be

Attributes(show1, ProductsQuery, 𝑓)

?Field(𝑓) ?PartOf(show1, Products, 𝑓)
(19)

the deferred premises account now for the whole list of
attributes to be used in action show1.

Finally, to determine the library components or code tem-
plates to be instantiated to satisfy the developer’s intent, we
define predicates of the form

Template(’Name’, action, location, datasource, attributes)
that denote the instantiation of a template identified by
’Name’ with the corresponding arguments. Each template
added to the library is accompanied by a specification that

70

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

describes the preconditions to the template’s instantiation
and the set of concepts, intents, and functionalities imple-
mented. This directly corresponds to a derivation rule whose
conclusion is the template predicate and the premises corre-
spond to the preconditions. Here are rules for instantiating
components that display lists, create a new record, and allow
the user to filter a list by a given field:

Show(𝑎) ?WhatLocation(𝑎, 𝑝)

?Query(𝑞, 𝑎, 𝑒, {}) ?Attributes(𝑎, 𝑞,𝐴)
Template(’List’, 𝑎, 𝑝, 𝑞, 𝐴) (20)

Create(𝑎)

?WhatRecord(𝑎, 𝑒) ?WhatLocation(𝑎, 𝑝)
Template(′𝑅𝑒𝑐𝑜𝑟𝑑𝑆ℎ𝑜𝑤𝐸𝑑𝑖𝑡 ′, 𝑎, 𝑝, 𝑒, {}) (21)

Filter(𝑎) ?WhatLocation(𝑎, 𝑝)

?Query(𝑞, 𝑎, 𝑒, 𝑓) ?Attributes(𝑎, 𝑞,𝐴)
Template(’FilteredList’, 𝑎, 𝑝, 𝑞, 𝐴) (22)

These rules are triggered by actions Show(_), Create(_),
and Filter(_), with all other premises identified as deferred.
A typical situation is to have an already existing page

in the application, a predefined database schema, and not
determine the attributes to be shown. Consider now the
following set of facts, denoting an existing entity and the
intent to show such an entity.

Entity(Products, {name : String, description : String,
price : Int, s𝑡𝑜𝑐𝑘 : Int})

Record(Products)
Page(ProductsPage)
Show(show1)
What(show1, Products)

(23)

Note that these facts do not help to determine where in the
user interface the products will be presented, nor the list of
attributes to show. The rules above derive the following:

Query(ProductsQuery, show1, Products, {})
Location(ProductsPage)
WhatRecord(show1, Products)
Attributes(show1, ProductsQuery, (𝑓 , 𝑐))

?Field(𝑓) ?PartOf(𝑠, 𝑒, 𝑓)

?Operator(𝑐, 𝐹) ?PartOf(𝑠, 𝑒, 𝑐)

Template(’List’, show1, 𝑝 , ProductsQuery, (𝑓 , 𝑐))
?Where(show1, 𝑝) ?Page(𝑝)

(24)

where we highlight two universally quantified variables (𝑓
and 𝑝) that are used in the resulting predicates.

Having discussed the mechanics of deferred premises, let
us now take stock of the development. First, let us consider

how rules with deferred premises can be treated algorithmi-
cally. An algorithmic interpretation for our derivation rules
consists of using the concepts of the ontology and the facts
about the current application as axioms. Deferred premises
that cannot be derived are kept as side conditions. Since such
premises may themselves be the conclusion of rules in our
system, when the initial proof search concludes and results
in a set of deferred premises, we subsequently run a search
for such facts in order to trace deferred premises back to
their underlying ontology concepts. We do this since these
initial concepts are those that can potentially be transformed
into questions that the developer can answer directly.

Choosingwhich premises are deferred. In our approach,
any premise can be marked as deferred. On the other hand,
marking every premise as deferred is probably a bad idea in
any non-trivial synthesis setting: there would be a combina-
torial explosion in the number of possible alternatives and
the questions produced.

So, which premises should be marked deferred? It is up to
the designer of the formal system to decide where deferred
premises will be useful in the particular setting of that system.
Factors the designer may consider include:
• It is a good practice to create a path through the rules
from the user-defined concepts to the predicates that
describe the synthesized components. There should
be a non-deferred premise on every step of such paths.
This ensures that the approach can determine what
components should be synthesized based on required
predicates.
• It is helpful to use non-deferred premises to reduce
branching. If required predicates determine a unique
path to the synthesized component, or at least reduce
the number of possible paths, the synthesis systemwill
not overwhelm the user by asking about the possible
components to synthesize.

The factors above capture the intuition expressed in the
introduction that deferred premises should express the de-
tails of a derivation and mandatory premises should be used
to capture the “essential” aspects of each rule. For instance,
when selecting a template, the essential aspect is the intent
of the user (or the required action/functionality), and aux-
iliary aspects include the list of attributes to be shown to
the user. When defining an entity, the list of attributes is
essential whereas the types are not as essential to proceed
and can be inferred or asked for in a later stage.

From holes to questions. When a rule is triggered with
deferred premises, its derivation accumulates the deferred
premises as side conditions. To complete the derivation, the
system must provide answers to such conditions. As such,
we need a mechanism for providing answers or generating
questions from deferred premises that allows the user to
provide answers.

71

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

We start by tracing back each deferred premise to the on-
tology facts that are leaves in the proof to ensure a good level
of abstraction for non-technical users. By doing so, we only
generate questions that are at the user level thus expected
to be understood. For instance, if we consider the example
of equation 24, the template instantiation fact is generated
by rule 20, with the deferred premise ?WhatLocation(𝑎, 𝑝) .
This fact is not from the original ontology but can be traced
back to the ontology facts ?Page(𝑝) and ?Where(𝑎, 𝑝) by
inverting rule 6 and rule 5.

From questions to suggestions. Recall that the pipeline
proposed in this work includes a suggestion engine that can
provide possible values for deferred premises that may arise
in the conclusion of a derivation. The suggestion engine
generates several possible alternatives for deferred premises
which the user can then edit, confirm, or discard. We propose
the following alternatives to seeking answers to questions.

Existing components In the running example referred
above, of equation 24, the information regardingwhere
to place the list andwhich attributes to show ismissing.
In this case, we can use the names of existing entities,
with lists of attributes, and pages in the system to
generate closed alternatives for the deferred premises.
Initially, the engine suggests Page(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑃𝑎𝑔𝑒) and
Where(𝑠ℎ𝑜𝑤1, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑃𝑎𝑔𝑒) to denote the location
using the existing ProductsPage. Next, for the attributes,
the engine suggests that the list of attributes of entity
Products is used in event show1. A list of facts like
PartOf(𝑠ℎ𝑜𝑤1, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑛𝑎𝑚𝑒) is produced from the
original list of attributes and presented to the user.
They are then able to select which of the suggestions
are applicable if any.

Built-in rules In cases where there is no available in-
formation in the context from which to provide alter-
natives from, a system of built-in rules can be used
to provide the user with plausible suggestions. Con-
sider the example of equation 15, where information
regarding the types of attributes is missing from the
user utterance. The system designer may create a rule
to map common attribute names to their respective
types. In this case, the suggestion engine may provide
the alternatives Type(name, String), Type(stock, Int),
and Type(price, Int). These alternatives can, of course,
be approved by the user.

Other program synthesis methods Another method
of providing alternatives is to resort to other kinds
of synthesis methods. Many deferred premises can be
answered automatically by following patterns. One
way to obtain such patterns is to use machine learn-
ing on top of existing applications. For instance, it
is common to display attributes name and description
as well as all calculated attributes, but uncommon to

show attributes with internal information like foreign
keys or timestamps. Hence, the list of attributes to be
displayed can be suggested by learning from existing
applications.
Another possibility is to use well-established synthesis
methods that use examples as input data [7]. We envi-
sion that some of the questions can be translated into
different synthesis problems, alternative questions ask-
ing for examples, or sketches can be sent to the user
and solved.

Accepting a suggestion or alternatives. The user can
select from the alternatives provided by the suggestion en-
gine. For example, if the page on which to put the list is
missing (as in the case above) the suggestion engine may
suggest existing pages from the application to use. In case
the user wants to create a new page to place the list, then no
alternative from the suggestion engine is suitable. As such,
we need to generate a question so that the user can provide
the page name. The ontology fact Page(𝑝) can be posed as
a question with the prompt “Please provide a name for the
page.”. Once the user provides an answer with the intended
name (e.g. ProductsListPage), the suggestion engine is able
to provide the alternative Where(𝑠ℎ𝑜𝑤1, ProductsListPage)
to complete the derivation.

This mechanism allows for the necessary interaction with
the user to complete derivations with deferred premises by
either asking for confirmation of a possible alternative or
prompting the user for the missing information in the form
of questions.

Impact of question order. A remaining challenge is defin-
ing the order in which we ask the questions. Since our rules
are expressed in first-order logic and the encoding of the
problem has no notion of order, we expect the order of ques-
tions not to affect the final result. In our current implemen-
tation no special technique is used, and as such the result
will be the same no matter what path the derivation takes.

However, we expect the order of questions to affect the
performance of our pipeline. Consider the deferred premises
?Record(𝑒) and ?PartOf(𝑎1, 𝑒, 𝑓) , in the example of equa-
tion 25, that denote missing references to a database en-
tity and attributes in the user utterance. In a system with
multiple database entities, if we ask first for the Record(𝑒)
premise, then we reduce the search space when searching
for alternatives for PartOf(𝑎1, 𝑒, 𝑓), since 𝑒 is already known.
Conversely, if we were to ask first for the PartOf(𝑎1, 𝑒, 𝑓)
premise, then we would have many more possible alterna-
tives, which may not be that helpful for the user. Since the
search space for suggestions can reduce or increase depend-
ing on the order in which the information is provided, we
consider this to be a critical challenge. We leave the details
of this problem to future iterations of this work.

72

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

6 Examples
We now showcase the expressiveness of our framework in
three ways: an extremely underspecified user utterance, a
filtered data request, and a request to add an entry to an exist-
ing entity. We end this section with a consolidated example
showcasing the user interaction with the system.

Dealingwith extremeunderspecification. Consider the
case where the user utterance is simply

“I want to see a list.”
The ontology will contain only the fact Show(𝑎1) depicting
the intent to show something in the UI
Although the utterance is lacking details about what the

user wants to see or where to place the component that
shows it, our synthesis engine is still able to suggest the
instantiation of a template of type ’List’. Rules 20, 11, and 12
produce the following output:

Template(’List’, 𝑎1, 𝑝 , 𝑞, { 𝑓 , 𝑐 })
Query(𝑞, 𝑎1, 𝑒 , {})

?Record(𝑒) ?What(𝑎1, 𝑒)

?Page(𝑝) ?Where(𝑎1, 𝑝) ?Field(𝑓)

?PartOf(𝑎1, 𝑒, 𝑓) ?Operator(𝑐, 𝐹)

(25)

In the conclusion, there are a number of universally quanti-
fied variables (𝑝 , 𝑒 , 𝑓 , and 𝑐) that are central to the deferred
premises in the conclusion. Variable 𝑒 denotes an entity the
user would want to see in the list, variables 𝑓 denote fields
of entity 𝑒 and variables 𝑐 are calculated attributes to be dis-
played. The variable 𝑝 denotes a location in the UI where to
place the list, and variable 𝑞 is an internal identifier for the
query to be used.

The intermediate deferred premises in this derivation for
the instantiation of the template of type ’List’ are

?Attributes(𝑎1, 𝑞, {𝑓 , 𝑐})
?WhatRecord(𝑎1, 𝑒)
?WhatLocation(𝑎1, 𝑝)

(26)

However, these are not predicates at the level of ontology.
Thus, as mentioned Section 5, we subsequently expand the
search backwards from the deferred premise until the leafs
of the derivation, which are base facts of the ontology. The
resulting ontology facts are

?Field(𝑓) ?PartOf(𝑎1, 𝑒, 𝑓) ?Operator(𝑐, 𝐹)

?Record(𝑒) ?What(𝑎1, 𝑒)

?Page(𝑝) ?Where(𝑎1, 𝑝)

(27)

These facts can then be appropriately used by the sugges-
tion engine. Once the system can assign values to all the

open variables, the derivation becomes complete and the
template can be instantiated.

Filtering. Consider an utterance such as
“I want to see a list of products filtered by name.”

represented by ontology facts:

Show(𝑎2)
Filter(𝑎2)
What(𝑎2, Products)
Record(Products)
What(𝑎2, name)
Field(name)
PartOf(𝑎2, Products, name)

From these facts we can derive the instantiation of two
different templates from rules 20 and 22:

Template(’List’, 𝑎2, 𝑝 , 𝑞, {𝑛𝑎𝑚𝑒 = 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠.𝑛𝑎𝑚𝑒})
Template(’FilteredList’, 𝑎2, 𝑝 , 𝑞, {name = Products.name})
Entity(Products, {𝑛𝑎𝑚𝑒 : 𝑡 })
Query(𝑞, 𝑎2, Products, {name})

?Type(name, t) ?Page(𝑝) ?Where(𝑎2, 𝑝)
(28)

In this case, variable 𝑡 denotes the type of attribute name
in the database, which is missing from the initial utterance
and is not given in the context of the conversation. As such,
the premise ?Type(name, t) is deferred in the derivation
of entity Products. This would not happen if, for instance,
equation 2 was present in the context before. Variable 𝑝 is
the name of the page on which to place the list. Once the
user answers the questions for the missing pieces, they can
choose between which of the two alternatives to instantiate.

Entity creation. Consider the utterance
“I want a page to create products.”

which results in the ontology facts:

Create(𝑎3)
Record(Products)
What(𝑎3, Products)

in a context where equation 2 is also present in the ontol-
ogy as a result of a projection from the application model,
where the entity is defined. We derive by rule 21,

Template(’RecordShowEdit’, 𝑎3, 𝑝 , Products, {})
?Page(𝑝) ?Where(𝑎3, 𝑝)

(29)

Variable 𝑝 is the name of the page in which to place the (in-
stantiated) template. Once the user provides a value for 𝑝 the
derivation is complete and the template can be instantiated.
The examples above illustrate how each template may

trigger distinct system behaviours that are dependent on
the amount of information available from the ontology. This
information can be both extracted from the user’s utterance
and projected from the application model into ontology facts.

73

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

Consolidated example. Finally, we showcase how the
user interaction takes place from end-to-end using the run-
ning example of past sections. Consider the application with
an existing database entity named Products and a page Prod-
uctsPage, denoted by the following facts:

Entity(Products, {name : String, description : String,
price : Int, 𝑠𝑡𝑜𝑐𝑘 : Int})

Page(𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠𝑃𝑎𝑔𝑒)
(30)

The user interaction starts with a command in the form
of a natural language utterance, which can be provided via a
text prompt or provided as speech in the IDE. Consider the
user utterance

“I want to see a list of products.”
which is parsed and interpreted by the natural language layer
into the following ontology facts:

Record(Products)
Show(show1)
What(show1, Products)

(31)

These facts, together with the existing context in equation 30,
by rule 20 derive the following facts:

Query(ProductsQuery, show1, Products, {})
WhatRecord(show1, Products)
Attributes(show1, ProductsQuery, { 𝑓 , 𝑐 })

?Field(𝑓) ?PartOf(show1, Products, 𝑓)

?Operator(𝑐, 𝐹) ?PartOf(show1, Products, 𝑐)

Template(′𝐿𝑖𝑠𝑡 ′, show1, 𝑝 , ProductsQuery, { 𝑓 , 𝑐 })
?Where(show1, 𝑝) ?Page(𝑝)

(32)

The deferred premises in equation 32 denote the details
missing from the user utterance, namely which attributes to
display in the list and where to place the instantiation list.
Since these premises are needed to conclude the derivation,
we need to provide answers for them.

The systemmay start by addressing the question about the
attributes to display in the list. The suggestion engine, which
receives and processes the questions, does so by generating
possible alternatives, as described in Section 5, and asking
the user to approve or edit its suggestion. For the sake of
the example, let us assume the first suggestion is to display
all the attributes of the entity. This is represented by the
ontology facts

Field(𝑛𝑎𝑚𝑒) PartOf(𝑠ℎ𝑜𝑤1, Products, name)
Field(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) PartOf(𝑠ℎ𝑜𝑤1, Products, description)
Field(𝑝𝑟𝑖𝑐𝑒) PartOf(𝑠ℎ𝑜𝑤1, Products, price)
Field(𝑠𝑡𝑜𝑐𝑘) PartOf(𝑠ℎ𝑜𝑤1, Products, stock)

(33)

This suggestion is proposed to the user in the form of a
list of attributes and their names. For instance
Suggestion: Use attributes name, description, price, and

stock.
The user then has the choice to accept, reject, or edit the

suggestion. Let us suppose they reject the suggestion. In this
case, the suggestion engine will provide an alternative to
display the name, description, and a computed attribute dis-
playing the price with VAT. Assuming that a library function
vat exists to perform such a computation, this is represented
by the ontology facts

Field(𝑛𝑎𝑚𝑒) PartOf(𝑠ℎ𝑜𝑤1, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑛𝑎𝑚𝑒)
Field(𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛) PartOf(𝑠ℎ𝑜𝑤1, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛)
Operator(𝑝𝑟𝑖𝑐𝑒, 𝑣𝑎𝑡) PartOf(𝑠ℎ𝑜𝑤1, 𝑃𝑟𝑜𝑑𝑢𝑐𝑡𝑠, 𝑝𝑟𝑖𝑐𝑒)

(34)
Again, the suggestion is proposed to the user in natural

language. This is possible because the facts are in the domain
of the same ontology used to represent the utterances. In
this case, let’s consider that the user accepts the suggestion.
The remaining questions that the suggestion engine or

the user must fulfil are related to the location in which to
place the list. Generating alternatives to these premises in-
volves producing alternatives like using the existing page
ProductsPage. The suggestion engine first proposes this to
the user

“Suggestion: Use page ProductsPage.”
and they can accept or reject the suggestion. Let us assume
the user rejects the suggestion and no other suggestion is
provided. As such, the user is prompted to input the name
for a new page

“Please provide a name for the page.”
and they provide the name Online store. This results in the
ontology facts

Page(Online store) Where(𝑠ℎ𝑜𝑤1,Online store) (35)

With the facts from equations 34 and 35 added to the
context, the derivation from rule 20 may now conclude. The
complete result of the derivation is

Query(ProductsQuery, show1, Products, {})
Location(Online store)
WhatRecord(show1, Products)
Attributes(show1, ProductsQuery,

({𝑛𝑎𝑚𝑒,𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛}, {𝑝𝑟𝑖𝑐𝑒})
Template(′𝐿𝑖𝑠𝑡 ′, show1,𝑂𝑛𝑙𝑖𝑛𝑒 𝑠𝑡𝑜𝑟𝑒, ProductsQuery,

({𝑝𝑟𝑖𝑐𝑒}, {𝑛𝑎𝑚𝑒,𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛})

(36)

which produces a page in the application with an instance of
a list template with attributes name, description, and price
with VAT.

74

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

7 On the Semantics of the System
The system of rules presented in the previous sections incor-
porates a notion of deferred premises, which are accounted
for in one of two ways during proof search. When a rule
with a deferred premise is selected to be (potentially) applied
during search, the system can proceed by either deriving the
premise outright or by effectively assuming the premise to
be true, marking it as a fact that needs to be derived at a later
stage to complete the derivation.

Semantically, deferred premises act as global assumptions
of a given derivation, where the synthesis procedure must
ultimately be provided with appropriate witnesses to fill all
the holes and produce a complete derivation. Thus, complete,
valid derivations in our system are actually independent of
deferred premises. We can make this notion precise via a
mostly straightforward encoding of our rules as first-order
logic formulas. For instance, consider a rule of the form:

𝐴 ?𝐵
𝑃

(37)

where 𝐴 is a non-deferred premise, 𝐵 is a deferred premise
and 𝑃 is the conclusion. Our goal is to encode the rule as
a single logical formula, such that we can then state that
a complete derivation is valid in our system if and only
if its conclusion (i.e., the goal) is implied by the encoding
of all the rules. Since 𝐴, 𝐵 and 𝑃 are predicates, we must
codify the appropriate variable scoping and quantification.
Given a predicate 𝐴, let fv(𝐴) denote the free variables of
𝐴. Moreover let ∀ fv(𝐴).𝜙 denote the formula ∀𝑥1, . . . , 𝑥𝑛 .𝜙
with fv(𝐴) = {𝑥1, . . . , 𝑥𝑛}. We thus encode the rule above as
∀ fv(𝐴) ∪ fv(𝐵) ∪ fv(𝑃).(𝐴 ∧ 𝐵) ⇒ 𝑃 , where ∧ denotes con-
junction and⇒ denotes implication. The encoding captures
the fact that deferred premises play no special role in terms
of provability of complete (i.e., hole-free) proofs by encoding
both non-deferred and deferred premises in the same way,
simply as antecedents that imply the conclusion of the rule.

The general pattern of the encoding is therefore to produce
a formula of the form ∀ fv(𝐴1) ∪ · · · ∪ fv(𝐴𝑛) ∪ fv(𝑃).(𝐴1 ∧
· · · ∧𝐴𝑛) ⇒ 𝑃 per rule in the system, where the 𝐴𝑖 are the
premises of the rule (deferred or otherwise) and 𝑃 is the
conclusion. The encoding of the system of rules is simply
the conjunction of the encoding of all the rules. Facts (which
are necessarily ground) are encoded directly as a conjunc-
tion of facts. Therefore if 𝑆 is the formula encoding of the
rule system and 𝐹 is the encoding of the facts, we have the
following:

Lemma 7.1. Let 𝐺 be a derived fact in our system, with de-
ferred premises ?𝐴1 , . . . , ?𝐴𝑛 . Then

(𝑆 ∧ 𝐹 ∧𝐴1 ∧ · · · ∧𝐴𝑛) ⇒ 𝐺

is derivable in first-order logic.

The lemma above captures the fact that, from the point
of view of provability, deferred premises can simply be seen

as extra assumptions to the derivation of the overall goal
𝐺 . This shows that our treatment of deferred rules does not
affect the overall logical soundness of our approach, but
rather suggests some intensional aspects of proof search.
The reader may then wonder if we can characterize the

more operational aspects of deferred premise via a known
logic. While such an encoding would lead us too far astray
from the main focus of this paper, we conjecture that de-
ferral acts in a fashion akin to the lax operator from lax
logic [6]. In lax logic, the proposition ⃝𝐴 has a flavour of
both possibility and necessity, denoting a kind of local truth
modality. Propositions marked as locally true may only be
used to prove other locally true propositions. In our setting,
this is related to the aspect where if a derivation relies on
a deferred premise, then the entire derivation must itself
be seen as deferred – to be completed when the deferred
premise is satisfied. This modality has been given a categori-
cal interpretation in terms of strong monads [17] through
Moggi’s computational 𝜆-calculus. We plan to investigate
this connection in future work.

8 Implementation
To illustrate the use of our synthesis technique we have
implemented a proof of concept prototype that includes a
library of utility functions that assist with writing inference
rules in our system. The prototype is written in Haskell
and makes use of the Logic backtracking, logic-programming
monad [9]. The goal is to have a generic library that allows
us to define the language of predicates as a Haskell algebraic
data type, inference rules in monadic style (via the Logic

monad), and using combinators as modifiers for deferred
premises. Using the Logic Monad library functions we visit
all possible conclusions in the system while accounting for
all deferred subproofs.
We define types Sequent, StateType and Derivation below to

express for the result of a derivation based on the LogicT and
StateT Monad transformers.

1 type Sequent a = ([Int], [a], a)
2 type StateType a = (Int , Map String (Sequent a), Map Int Term)
3 type Derivation a =
4 LogicT (StateT (StateType a) Identity) (Sequent a)

A value of type Sequent a is the result of a derivation, parame-
terized in the actual language used to represent the domain.
It is represented by a triple. The first element is a list of inte-
gers (de Bruijn indexes) that represent variables in the terms
used in the derivation. The second element is a list of terms
representing deferred (ontology) facts in the derivation. The
third element of the triple is the conclusion of the derivation.
We combine the Logic Monad with a State Monad. The

state, depicted by type StateType contains a counter to allow
the generation of fresh variables (the first element of type
Int) a map (the second element of the triple) to implement
a simple form of memoization, and a unification table (the

75

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

1 data Fact =
2 Field FieldName
3 | Operator FieldName OpName
4 | Record EntName
5 | Page LocName
6 | Show ActionName
7 | Create ActionName
8 | Filter ActionName
9 | What ActionName EntName
10 | Where ActionName LocName
11 | PartOf ActionName EntName FieldName
12 | Type FieldName Type
13 | Location LocName
14 | Entity EntName (Map FieldName Type)
15 | QueryQueryName ActionName EntityList FieldList
16 | Attributes ActionNameQueryName FieldList
17 | Template TemplateType ActionName LocName Name FieldList
18 | WhatLocation ActionName LocName
19 | WhatRecord ActionName EntName
20 | MultiAnd IndexList ValueList Fact

Figure 3. Type definition for the language of facts.

third element of the triple) to track the dependencies between
variables introduced in the derivation. The state is threaded
through the entire backtracking, proof search procedure.
Type Derivation is a combination of state and logic monads
returning sequents.

We define a new datatype Fact in Figure 3 to represent all
possible predicates in a system. In the present case, the con-
crete definition of Fact closely follows the syntax of Figure 2.

We omit the definitions of types FieldName,OpName, LocName,
ActionName, EntName, QueryName, EntityList, FieldList, ValueList ,
TemplateType, and IndexList. These are intermediate types that
abstract basic value types and data structures and whose
names are self-explanatory. With relation to the syntax in
Figure 2, we added MultiAnd to more conveniently capture
(conjunctive) sets of premises.

This construction captures the multiple premises in their
deferred form. It is not possible to enumerate a set of premises
to create questions if they are deferred. In this way, we can
universally quantify a set of values and create a question
that iterates such set. For instance, in the example of Sec-
tion 6, the deferred premises of the form ?PartOf(𝑎1, 𝑒, 𝑓)
are captured by MultiAnd({𝑣}, 𝑓 , PartOf(𝑎1, 𝑒, 𝑣)). The user
provides one or more values to variable 𝑣 . This yields a set
of premises of the form PartOf(𝑎1, 𝑒, 𝑣𝑖) for each 𝑣𝑖 in 𝑣 . The
resulting set of premises is then bound to variable 𝑓 , and can
be referred to in the derivation.
Rule 10 from Section 4.2 is expressed in our implemen-

tation as function ruleEntity in Figure 4. Lines 3 to 5 of the
function definition consist of defining three globally fresh
variables (𝑣0, 𝑣1, and 𝑣2) that are used in the subsequent steps.
The argument of the function is a list of ontology facts. All

1 ruleTemplate :: [Fact] −> Derivation
2 ruleTemplate facts = do
3 𝑣0 ← fresh_variable
4 𝑣1 ← fresh_variable
5 𝑣2 ← fresh_variable
6 Show 𝑎0 ← ruleShow facts
7 (𝑖1, ℎ1, WhatRecord 𝑎1 𝑒0)← deferred (ruleWhatRecord facts 𝑣0)
8 (𝑖2, ℎ2, WhatLocation 𝑎2 ℓ)← deferred (ruleWhatLocation facts 𝑣1)
9 (𝑖3, ℎ3, Query 𝑞 𝑎3 [𝑒1] _)← deferred (ruleQuery facts 𝑣2)

10 (𝑖4, ℎ4, Attributes 𝑎4 𝑒2 fs)← deferred (ruleAttributes facts 𝑎0 𝑒1)
11 unify [𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4]
12 unify [𝑒0, 𝑒1, 𝑒2]
13 return (union [𝑖1, 𝑖2, 𝑖3, 𝑖4],
14 union [ℎ1, ℎ2, ℎ3, ℎ4],
15 Template List 𝑎0 ℓ 𝑞 fs)

Figure 4. Rule implementation for template instantiation.

rules in the system follow this pattern, and are parametrized
by such a list of facts. Some rules, such as rules ruleWhatRecord,
ruleWhatLocation, ruleQuery, and ruleAttributes , have additional
parameters as a pragmatic way to constrain the search. For
instance, the call to ruleAttributes relies on the list of ontology
facts but is further constrained by taking as argument 𝑎0, the
parameter of Show, and 𝑒1, the entity over which the Query

is derived. Lines 6 to 10 define the premises of this rule, cf.
rule 20. Line 6 specifies a mandatory premise (ruleShow). Lines
7 to 10 define deferred premises ruleWhatRecord, ruleWhatLocation,
ruleQuery, and ruleAttributes. Each of these calls produces a
triple of fresh variables, hypotheses, and a conclusion with
its corresponding arguments. All variables must then be
unified as prescribed by the rule (lines 11 and 12). The con-
clusion of the rule (i.e., the value returned by the function)
is then constructed by unifying variables, hypotheses, and a
constructor for the template predicate.

Our system is syntax-driven, allowing explicit calls to rules
yielding terminal results to obtain all possible derivations.

9 Evaluation
To evaluate our approach we used a set of examples as input
to our prototype and assess that the expected questions were
generated properly. For the examples, we considered an ex-
isting application with database tables Products, Customers,
and Orders, and pages homepage, best-selling, and admin.
We evaluated both the soundness and the size of the re-

sulting alternatives in different scenarios. In particular, we
experimented with different application contexts to observe
how it affects the proposed alternatives. We evaluated the
soundness of the approach by implementing the “human in
the loop” to answer the questions.We verified that the system
was indeed able to generate all the expected alternatives.

Table 1 summarizes the results of the example detailed in
Section 6, synthesized in an empty context. Table 2 summa-
rizes the results of the same examples but considering an

76

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

Table 1. Alternatives proposed for the examples of Section 6 without application context.

Utterance Ontology facts Questions Result

“I want a page to create
products.”

Create(𝑎0) , Record(Products) ,
What(𝑎0, Products)

Page(𝑥1) , Where(𝑎0, 𝑥1) Entity(Products, {}) ,
Template(’RecordShowEdit’, 𝑎0, 𝑥1,
Products, {})

“I want to see a list.” Show(𝑎1) Record(𝑥1) , What(𝑎1, 𝑥1) , Page(𝑥2) ,
Where(𝑎1, 𝑥2) ,
MultiAnd({𝑥5 }, 𝑥6, PartOf(𝑎1, 𝑥1, 𝑥5)) ,
MultiAnd({𝑥9, 𝑥10 }, 𝑥11,Operator(𝑥9, 𝑥10))

Template(’List’, 𝑎1, 𝑥2, 𝑞1, 𝑥6)

“I want to see a list of prod-
ucts filtered by name.”

Show(𝑎2) , Filter(𝑎2) ,
Record(Products) , What(𝑎2, Products) ,
What(𝑎2, name) ,
PartOf(𝑎2, Products, name) ,
Field(name)

Type(name, x0) , Page(𝑥4) ,
Where(𝑎2, 𝑥4)

Entity(Products, {name : 𝑥0 }) ,
Query(𝑞1, 𝑎2, {Products}, {}) ,
Template(’List’, 𝑎2, 𝑥4, 𝑞1, {name :
Products.name}) ,
Template(’FilteredList’, 𝑎2, 𝑥4, 𝑞1, {name :
Products.name}, {name})

Table 2. Number of alternatives proposed for examples of Section 6 with application context as input.

Utterance Ontology facts Alternatives Context

“I want a page to create products.” Create(𝑎0) , Record(Products) ,
What(𝑎0, Products)

4
Entity(Products, {price : Int, stock : Int, name :
String}) , Entity(customers, {email : String}) ,
Entity(orders, {email : String, product :
String}) , Location(homepage) ,
Location(admin) , Location(best-selling)

“I want to see a list.” Show(𝑎1) 12
“I want to see a list of products fil-
tered by name.”

Show(𝑎2) , Filter(𝑎2) , Record(Products) ,
What(𝑎2, Products) , What(𝑎2, name) ,
PartOf(𝑎2, Products, name) , Field(name)

8

ontology depicting the relevant entities. Table 3 presents the
results for utterances that close in on the missing details to
guide the system. Each step in this table depicts the same
intent but augments the available information. In closing,
Table 4 presents the results for a single utterance in different
application contexts.

Discussion of results. Table 1 demonstrates that in the
absence of context, the system is effective at generating
questions when the user’s utterance does not have all the
necessary details. While there may be many such questions,
the aim is that they be relatively simple to answer, by the
suggestion engine or the user. Notice, for instance, the sec-
ond row, where almost no information is given, and yet the
system can select one adequate template.

If context is provided, Table 2 shows that our system can
generate several alternatives to complete an utterance that
ambiguous. Alternatives include all combinations of variable
assignments that are possible given the context and also
account for new elements. For instance, the example in row
1 of Table 2, generates four alternatives:

Template(’RecordShowEdit’, 𝑎0, homepage, Products, {})
Template(’RecordShowEdit’, 𝑎0, admin, Products, {})
Template(’RecordShowEdit’, 𝑎0, best-selling, Products, {})
Template(’RecordShowEdit’, 𝑎0, 𝑝 , Products, {})

the first three for all the existing pages and the last one for a
new page (𝑝) to which the user has to provide a name. These
values can be assigned to the corresponding variable 𝑥1 in
row 1 of Table 1, containing the same example, to complete
a derivation of the template.
But there is a tradeoff: more context often leads to more

alternatives and more questions to be answered or alterna-
tives to be confirmed. Consider row 3 of Table 1. We can
avoid asking the type of attribute name by having the entity
definition in context, projected from the current application
model. However, this approach yields a higher number of
alternatives (row 3 of Table 2) that need to be discharged.
A more reasonable approach would be to just place a selec-
tion of components, e.g. entity Products, in the context and
omit others, for instance, the pages of the application. Simple
heuristics and contextual information from the IDE can be
used to frame the reasoning process.
Table 3 shows that context can be particularly useful in

supplying missing information when the programmer gives
more details. In row 1, very little detail is provided by the
programmer, and 12 alternatives are generated in a given
context. But saying only a little bit more to describe which
fields are to be shown reduces the alternatives to only 4, and
mentioning the page narrows it further to just one possibility.
Note that even on row 3 our approach is aiding the user, who

77

Onward! ’22, December 8–10, 2022, Auckland, New Zealand João Costa Seco, Jonathan Aldrich, Luís Carvalho, Bernardo Toninho, and Carla Ferreira

Table 3. Number of alternatives proposed for each utterance with the application context as input.

Utterance Ontology facts Alternatives Context

“I want to see a list.” Show(𝑎0) 12

Entity(Products, {price : Int, stock : Int, name :
String}) , Entity(customers, {email : String}) ,
Entity(orders, {email : String, product : String}) ,
Location(homepage) , Location(admin) ,
Location(best-selling)

“I want to see a list of prod-
ucts with price and name.”

Show(𝑎1) , Record(Products) , What(𝑎1, Products) ,
PartOf(𝑎1, Products, name) ,
PartOf(𝑎1, Products, price) , Field(name) ,
Field(price)

4

“I want to see a list of prod-
ucts with price and name
in page products.”

Show(𝑎2) , Record(Products) , Page(Products) ,
Where(𝑎2, Products),What(𝑎2, Products) ,
PartOf(𝑎2, Products, name) ,
PartOf(𝑎2, Products, price) , Field(name) ,
Field(price)

1

Table 4. Number of alternatives proposed for the same utterance in different contexts.

Utterance Ontology facts Alternatives Context

“I want to see a list.” Show(𝑎0)

2 Entity(Products, {price : Int, stock : Int, name : String}) , Location(homepage)
3 Entity(Products, {price : Int, stock : Int, name : String}) , Location(homepage) ,

Location(best-selling)
18 Entity(Products, {price : Int, stock : Int, name : String}) ,

Entity(customers, {email : String}) , Entity(orders, {email : String, product : String}) ,
Location(homepage) , Location(admin) , Location(best-selling) , Location(products) ,
Location(profile-page)

would nevertheless have to specify the types of attributes
price and name if no context were provided.
Finally, Table 4 shows the orthogonal perspective. If the

utterance is unclear, the number of alternatives suggested
increases exponentially as more context is provided. A pos-
sible approach to this problem is to provide less information
and let the suggestion engine rank the possible alternatives
and only show the user a selected few.

Future work will focus on studying the integration of this
synthesis method with other methods in the suggestion en-
gine. For instance, if the user’s intent suggests that a built-in
function or query may be needed, but the query or function
is not defined, the engine could trigger an example-based
synthesis technique (cf. [3]) that would ask the user for ex-
amples of the computation or sample results of the query.

10 Conclusions and Future Work
Application synthesis for non-programmers is challenging,
in part because users’ descriptions of what they want are
often incomplete. This paper presented an approach to man-
aging that incompleteness in the context of logic-based syn-
thesis by supporting a notion of deferred premises in infer-
ence rules. Our approach leads naturally to derivations of an

application specification that contains holes—missing logical
predicates that must be supplied by a suggestion facility or
by asking the user for input. While preliminary, our evalua-
tion suggests that this approach can be used to effectively
synthesize a variety of examples in the domain of informa-
tion processing mobile and web apps—even when a lot of
required information is missing from the initial specification.
The concepts of deferred premises and derivations with

holes were devised to deal with missing information in our
domain of synthesis, but they can potentially have wider
applications. Deferred premises can be used to support hypo-
thetical reasoning when some information is unknown. As
mentioned, holes in proofs are already being used in proof
assistants such as Agda, in the gradual calculus of inductive
constructions, as well as in various proof IDEs; a more sys-
tematic study that relates these approaches could be useful.

On the formal side, the study of the relationship between
holes in derivations and lax logic may be fruitful. Algorith-
mically, it may be interesting to study both backwards and
forward proof search in the presence of deferred premises.
Overall, we believe deferred premises and derivation holes
are a general idea with many avenues of future work.

78

Derivations with Holes for Concept-Based Program Synthesis Onward! ’22, December 8–10, 2022, Auckland, New Zealand

References
[1] Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. 2013. Re-

cursive Program Synthesis. In Computer Aided Verification. Springer,
934–950. https://doi.org/10.1007/978-3-642-39799-8_67

[2] Johannes Bader, Jonathan Aldrich, and Éric Tanter. 2018. Grad-
ual program verification. In International Conference on Verification,
Model Checking, and Abstract Interpretation. Springer, 25–46. https:
//doi.org/10.1007/978-3-319-73721-8_2

[3] Ricardo Brancas, Miguel Terra-Neves, Miguel Ventura, Vasco M. Man-
quinho, and Ruben Martins. 2022. CUBES: A Parallel Synthesizer for
SQL Using Examples. CoRR abs/2203.04995 (2022). https://doi.org/10.
48550/arXiv.2203.04995 arXiv:2203.04995

[4] Boris Düdder, Moritz Martens, and Jakob Rehof. 2014. Staged Com-
position Synthesis. In Programming Languages and Systems (Lec-
ture Notes in Computer Science), Vol. 8410. Springer, 67–86. https:
//doi.org/10.1007/978-3-642-54833-8_5

[5] Boris Düdder, Moritz Martens, and Jakob Rehof. 2015. Staged Composi-
tion Synthesis. In Software Engineering &Management (LNI), Vol. P-239.
GI, 89–90.

[6] Matt Fairtlough and Michael Mendler. 1997. Propositional Lax Logic.
Inf. Comp. 137, 1 (aug 1997), 33. https://doi.org/10.1006/inco.1997.2627

[7] Margarida Ferreira, Miguel Terra-Neves, Miguel Ventura, Inês Lynce,
and Ruben Martins. 2021. FOREST: An Interactive Multi-tree Syn-
thesizer for Regular Expressions. In Tools and Algorithms for the Con-
struction and Analysis of Systems (Lecture Notes in Computer Science),
Vol. 12651. 152–169. https://doi.org/10.1007/978-3-030-72016-2_9

[8] Daniel Jackson. 2015. Towards a Theory of Conceptual Design for Soft-
ware. In ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming and Software (Onward!) (Onward! 2015).
ACM, 282–296. https://doi.org/10.1145/2814228.2814248

[9] Oleg Kiselyov, Chung-chieh Shan, Daniel P. Friedman, and Amr Sabry.
2005. Backtracking, Interleaving, and Terminating Monad Transform-
ers: (Functional Pearl). In Proc. of the Tenth ACM SIGPLAN Interna-
tional Conference on Functional Programming (ICFP ’05). ACM, 192–203.
https://doi.org/10.1145/1086365.1086390

[10] Etienne Kneuss, Ivan Kuraj, Viktor Kuncak, and Philippe Suter. 2013.
Synthesis modulo Recursive Functions. In Proc. of the 2013 ACM SIG-
PLAN International Conference on Object Oriented Programming Sys-
tems Languages & Applications (OOPSLA ’13). ACM, 407–426. https:
//doi.org/10.1145/2509136.2509555

[11] Vu Le, Sumit Gulwani, and Zhendong Su. 2013. SmartSynth: Syn-
thesizing Smartphone Automation Scripts from Natural Language.
In Proceeding of the 11th Annual International Conference on Mo-
bile Systems, Applications, and Services (MobiSys ’13). ACM, 193–206.
https://doi.org/10.1145/2462456.2464443

[12] Meven Lennon-Bertrand, Kenji Maillard, Nicolas Tabareau, and Éric
Tanter. 2022. Gradualizing the Calculus of Inductive Constructions.
ACM Trans. Program. Lang. Syst. 44, 2, Article 7 (apr 2022), 82 pages.
https://doi.org/10.1145/3495528

[13] Hugo Lourenço, Carla Ferreira, and João Costa Seco. 2021. OS-
TRICH - A Type-Safe Template Language for Low-Code Development.
In 24th International Conference on Model Driven Engineering Lan-
guages and Systems, MODELS 2021, October 10-15, 2021. IEEE, 216–226.
https://doi.org/10.1109/MODELS50736.2021.00030

[14] Hugo Lourenço, Carla Ferreira, and João Costa Seco. 2022. OSTRICH
- A Rich Template Language for Low-code Development (Extended
version). Softw. Syst. Model. (2022). To appear.

[15] Justin Lubin, Nick Collins, Cyrus Omar, and Ravi Chugh. 2020. Pro-
gram Sketchingwith Live Bidirectional Evaluation. Proc. ACM Program.
Lang. 4, ICFP, Article 109 (aug 2020), 29 pages. https://doi.org/10.1145/
3408991

[16] Dylan Lukes, John Sarracino, Cora Coleman, Hila Peleg, Sorin Lerner,
and Nadia Polikarpova. 2021. Synthesis ofWeb Layouts from Examples.
In ACM Joint Meeting on European Software Engineering Conference
and Symposium on the Foundations of Software Engineering (ESEC/FSE
2021). ACM, 651–663. https://doi.org/10.1145/3468264.3468533

[17] Eugenio Moggi. 1991. Notions of Computation and Monads. Inf. Comp.
93, 1 (jul 1991), 55–92. https://doi.org/10.1016/0890-5401(91)90052-4

[18] Cyrus Omar, Ian Voysey, Ravi Chugh, and Matthew A. Hammer. 2019.
Live Functional Programming with Typed Holes. 3, Proc. of the 46th
ACM SIGPLAN Symposium on Principles of Programming Languages
(2019). https://doi.org/10.1145/3290327

[19] Cyrus Omar, Ian Voysey, Michael Hilton, Jonathan Aldrich, and
Matthew A. Hammer. 2017. Hazelnut: A Bidirectionally Typed Struc-
ture Editor Calculus. In Proc. of the 44th ACM SIGPLAN Symposium
on Principles of Programming Languages (POPL ’17). ACM, 86–99.
https://doi.org/10.1145/3009837.3009900

[20] Peter-Michael Osera and Steve Zdancewic. 2015. Type-and-Example-
Directed Program Synthesis. In Proc. of the 36th ACM SIGPLAN Con-
ference on Programming Language Design and Implementation (PLDI
’15). ACM, 619–630. https://doi.org/10.1145/2737924.2738007

[21] Santiago Perez De Rosso, Daniel Jackson, Maryam Archie, Czarina
Lao, and Barry A. McNamara III. 2019. Declarative Assembly of Web
Applications from Predefined Concepts. In Proc. of the 2019 ACM SIG-
PLAN International Symposium on New Ideas, New Paradigms, and
Reflections on Programming and Software (Onward! 2019). ACM, 79–93.
https://doi.org/10.1145/3359591.3359728

[22] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Pro-
gram Synthesis from Polymorphic Refinement Types. In Proc. of the
37th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI ’16). ACM, 522–538. https://doi.org/10.1145/
2908080.2908093

[23] Nadia Polikarpova and Ilya Sergey. 2019. Structuring the Synthesis
of Heap-Manipulating Programs. Proc. ACM Program. Lang. 3, POPL,
Article 72 (jan 2019), 30 pages. https://doi.org/10.1145/3290385

[24] João Costa Seco, Hugo Lourenço, Joana Parreira, and Carla Ferreira.
2022. Nested OSTRICH: Hatching Compositions of Low-Code Tem-
plates. In Proc. of the 25th International Conference on Model Driven
Engineering Languages and Systems (MODELS ’22). ACM, 210–220.
https://doi.org/10.1145/3550355.3552442

[25] Jeremy Siek and Walid Taha. 2007. Gradual Typing for Objects. In
Proc. of the 21st European conference on Object-Oriented Programming.
Springer-Verlag, 2–27. https://doi.org/10.1007/978-3-540-73589-2_2

[26] João Quirino Silva, Dora Melo, Irene Pimenta Rodrigues, João Costa
Seco, Carla Ferreira, and Joana Parreira. 2021. An Ontology based
Task Oriented Dialogue. In Proc. of the 13th International Joint Con-
ference on Knowledge Discovery, Knowledge Engineering and Knowl-
edge Management, IC3K 2021, Volume 2: KEOD. SCITEPRESS, 96–107.
https://doi.org/10.5220/0010711900003064

[27] Armando Solar-Lezama. 2009. The Sketching Approach to Pro-
gram Synthesis. In Proc. of the 7th Asian Symposium on Program-
ming Languages and Systems (APLAS ’09). Springer-Verlag, 4–13.
https://doi.org/10.1007/978-3-642-10672-9_3

[28] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Syn-
thesizing Highly Expressive SQL Queries from Input-Output Exam-
ples. In Proc. of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI 2017). ACM, 452–466.
https://doi.org/10.1145/3062341.3062365

[29] Jenna Wise, Johannes Bader, Cameron Wong, Jonathan Aldrich, Éric
Tanter, and Joshua Sunshine. 2020. Gradual Verification of Recursive
Heap Data Structures. Proc. ACM Program. Lang. 4, OOPSLA, Article
228 (nov 2020), 28 pages. https://doi.org/10.1145/3428296

Received 2022-07-12; accepted 2022-10-02

79

https://doi.org/10.1007/978-3-642-39799-8_67
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.1007/978-3-319-73721-8_2
https://doi.org/10.48550/arXiv.2203.04995
https://doi.org/10.48550/arXiv.2203.04995
https://arxiv.org/abs/2203.04995
https://doi.org/10.1007/978-3-642-54833-8_5
https://doi.org/10.1007/978-3-642-54833-8_5
https://doi.org/10.1006/inco.1997.2627
https://doi.org/10.1007/978-3-030-72016-2_9
https://doi.org/10.1145/2814228.2814248
https://doi.org/10.1145/1086365.1086390
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2509136.2509555
https://doi.org/10.1145/2462456.2464443
https://doi.org/10.1145/3495528
https://doi.org/10.1109/MODELS50736.2021.00030
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3408991
https://doi.org/10.1145/3468264.3468533
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1145/3290327
https://doi.org/10.1145/3009837.3009900
https://doi.org/10.1145/2737924.2738007
https://doi.org/10.1145/3359591.3359728
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/2908080.2908093
https://doi.org/10.1145/3290385
https://doi.org/10.1145/3550355.3552442
https://doi.org/10.1007/978-3-540-73589-2_2
https://doi.org/10.5220/0010711900003064
https://doi.org/10.1007/978-3-642-10672-9_3
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1145/3428296

	Abstract
	1 Introduction
	2 Related Work
	3 System Architecture
	4 Programming with Concepts
	4.1 Representing Concepts
	4.2 Derivation System Based on Concepts

	5 Reasoning with Deferred Premises
	6 Examples
	7 On the Semantics of the System
	8 Implementation
	9 Evaluation
	10 Conclusions and Future Work
	References

