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Session Types
A bit of history

» Session types were developed in the 90s [Honda93,HVK98].
» Originally a typing system for a w-calculus.
» Structure communication around the concept of a session.
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Session Types
A bit of history

» Session types were developed in the 90s [Honda93,HVK98].
» Originally a typing system for a w-calculus.
» Structure communication around the concept of a session.

Predetermined sequence of interactions along a (session) channel:
» “Input a number, output a string and terminate.”
» “Either output or input a number.”

Session ~ Communication Protocol
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Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).
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Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)
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Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

> “Input a number, output a string and terminate.” ~ Int — String® 1 (71)
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Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)
» “Send a number, input a string and terminate.” ~ Int ® String — 1 (T3)
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Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)
» “Send a number, input a string and terminate.” ~ Int ® String — 1 (T3)

CZT1|—P C:TQl_Q

» T and Ty are dual (77 = T3), no communication errors between P and Q!
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Session Types
Properties

Session types statically guarantee:

» Session fidelity (“No communication errors.”)
» Deadlock-freedom...
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Session types statically guarantee:

» Session fidelity (“No communication errors.”)
» Deadlock-freedom...

» |f threads communicate on exactly one session channel
» Excludes session interleaving
» Excludes higher-order sessions (sending channels over channels)
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Session Types
Properties

Session types statically guarantee:

» Session fidelity (“No communication errors.”)
» Deadlock-freedom...

» |f threads communicate on exactly one session channel
» Excludes session interleaving
» Excludes higher-order sessions (sending channels over channels)

Progress with session interleaving [DLY07] via sophisticated machinery.
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Session Types
Limitations

» Deadlock-freedom only in (very) restricted settings.
» Session typing only really about two communicating peers.
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» Deadlock-freedom only in (very) restricted settings.
» Session typing only really about two communicating peers.
» Express only fairly basic protocols (e.g., send/receive, choice/select).
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Session Types
Limitations

» Deadlock-freedom only in (very) restricted settings.
» Session typing only really about two communicating peers.
» Express only fairly basic protocols (e.g., send/receive, choice/select).

» Sometimes, simple i.0o. communication behavior is not enough!

» “balance inquiry for authenticated user receives a signed statement”
» “ATM deducts a fee of at most $2 per transaction”
> .
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Session Types
Addressing the Limitations

Multiparty Session Types [HYC08]

» Types can specify interactions between more than two peers.
» Deadlock-freedom in (well-formed) multiparty sessions.
» More complex system (global types, local types, projection, etc.)
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Session Types
Addressing the Limitations

Multiparty Session Types [HYC08]

» Types can specify interactions between more than two peers.
» Deadlock-freedom in (well-formed) multiparty sessions.
» More complex system (global types, local types, projection, etc.)

w

Dependent Session Types [TCP11]

» Beyond simple protocols as types.
» Types can express arbitrary properties of exchanged data.
» Based on a computational interpretation of linear logic.
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Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.
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> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

» Linear Implication (A — B): Receive a channel of type A and continue with 5.
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Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

» Linear Implication (A — B): Receive a channel of type A and continue with 5.

v

Multiplicative Conjunction (4 © B): Send a channel of type 4 and cont. as B.
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Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

» Linear Implication (A — B): Receive a channel of type A and continue with 5.
» Multiplicative Conjunction (A @ B): Send a channel of type A and cont. as B.

» Additive Conjunction (A & B): Receive either inl and continue as A or inr and
continue as B.

» Additive Disjunction (A & B): Send inl and continue as A orinr and cont. as B.
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Logical Session Types
Propositions as Sessions

» Proof composition (cut) as process composition.

» Global progress “for free” (with interleaved and higher-order sessions).
» Termination, cut-elimination, confluence.

» A unifying framework to explore various extensions of session types:

» Classical linear logic [W12,CPT16]

» Dependent session types [TCP11,PCT11,TY18§]

» Structural recursion for session types [TCP14,LM16]
» Sharing in sessions [ALM16,BP17,RC21]

>
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» Propositional linear logic as session types:
» Input and output of session channels (4 — B and A ® B)
» Choice and selection of alternatives (4 & B and A ¢ B)
> Replicated servers (1A4)
» Termination or inaction (1)
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» Propositional linear logic as session types:

» Input and output of session channels (4 — B and A ® B)
» Choice and selection of alternatives (4 & B and A ¢ B)

> Replicated servers (1A4)

» Termination or inaction (1)

Types express very limited protocols...
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:
» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send ) :7 and continue as A{M /x}.
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send ) :7 and continue as A{M /x}.
» Values in domain of quantification () from a dependent type theory.

» $7 — A as shorthand for Vy:7. A if y not free in A

» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send ) :7 and continue as A{M /x}.
» Values in domain of quantification () from a dependent type theory.

» $7 — A as shorthand for Vy:7. A if y not free in A

» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

P :z:%nat —- $nat® 1
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.
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» Values in domain of quantification () from a dependent type theory.
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» Types can now express contracts on communicated data.

P z:Vnnat.In":inat. $(n’ =n+1) @1
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Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:
» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /x}.
» Existential Quantification (Jx:7.4): Send M :7 and continue as A{M /z}.
» Values in domain of quantification () from a dependent type theory.
» $7 — A as shorthand for Vy:7. A if y not free in A
» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

P:z:Vnnat. In"inat. $(n' =n+1) @1

Processes send and receive proof objects that witness the desired properties.

NBVA szt R
A Decade of Dependent Session Types

12/39




Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
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Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
indexy @ !(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in PDF format, then output
a PDF file g, and a proof that ¢ is in PDF format and terminate the session.
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Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
indexy @ !(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in PDF format, then output
a PDF file g, and a proof that ¢ is in PDF format and terminate the session.

> Persistent file storage

store; : !(file —!(file® 1))
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Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
indexy @ !(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in PDF format, then output
a PDF file g, and a proof that ¢ is in PDF format and terminate the session.

> Persistent file storage

store; : !(file —!(file® 1))
storey : (Vf:file.!3g:file.g = f @ 1)

Persistently offer to input a file, then output a persistent channel for retrieving
this file and a proof that the two are equal.
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Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them
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Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them

» We can easily check ispdf(g) when using the indexing service
» The proof of g = f (by reflexivity) would not be informative
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Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them
» We can easily check ispdf(g) when using the indexing service
» The proof of g = f (by reflexivity) would not be informative
» Use proof irrelevance in type theory

» M : [r] — M is a term of type 7 that is computationally irrelevant.
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Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them

» We can easily check ispdf(g) when using the indexing service
» The proof of g = f (by reflexivity) would not be informative

» Use proof irrelevance in type theory

» M : [r] — M is a term of type 7 that is computationally irrelevant.
» By agreement, terms [M] will be erased before transmission.

» Typing guarantees this can be done consistently.
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Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service

indexy : !(Vf:file.ispdf(f) —o Fg:file.ispdf(g) ® 1)
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Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service

indexy @ I(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)
indexs : l(Vf:file.[ispdf(f)] — Jg:file. [ispdf(g)] ® 1)
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Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service

indexy @ I(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)
indexs : l(Vf:file.[ispdf(f)] — Jg:file. [ispdf(g)] ® 1)

> Persistent file storage

stores : l(Vf:file.!3g:file.g=f®1)
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Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service
indexy @ I(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)
indexs : l(Vf:file.[ispdf(f)] — Jg:file. [ispdf(g)] ® 1)
> Persistent file storage
stores : l(Vf:file.!3g:file.g = f®1)
stores : l(Vf:file.!3g:file.[¢g = f]® 1)
» After erasure, communication can be optimized further (via type

isomorphism).

N.VA NowsciooL of Bernardo Toninho 15/39
A Decade of Dependent Session Types




Dependent Session Types
Taking Stock

> A flexible and general framework of session type dependency.
» Session types enriched to certified contracts on exchanged data:

Bernardo Toninho
A Decade of Dependent Session Types

16/39




Dependent Session Types
Taking Stock

> A flexible and general framework of session type dependency.
» Session types enriched to certified contracts on exchanged data:

» Arbitrary properties of data ensured statically, witnessed by proof objects.

» Proof communication can be selectively omitted (c.f. type refinements).
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Dependent Session Types
Taking Stock

> A flexible and general framework of session type dependency.
» Session types enriched to certified contracts on exchanged data:

» Arbitrary properties of data ensured statically, witnessed by proof objects.

» Proof communication can be selectively omitted (c.f. type refinements).
» Logical basis provides modularity.

» Type preservation and progress ensure contracts are preserved by
computation/communication.

. Bernardo Toninho
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Outline

(Some of) what came after
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Roadmap

1. Digital signatures through modal affirmation.
2. Recursion and Sharing

3. Ergometric and Temporal Session Types

4. Richer forms of dependency
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Dependent Session Types
Modalities — Affirmation [PCT11]

» In the PDF indexing example, we may want to have some evidence the two
files agree.
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Dependent Session Types
Modalities — Affirmation [PCT11]

» In the PDF indexing example, we may want to have some evidence the two
files agree.

indexy : [!(Vf:file.[ispdf(f)]
—o Jg:file. [ispdf(g)] ® [agree(g, f)] ® 1)

agree(g, f) if g and f differ at most in the index.
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Dependent Session Types
Modalities — Affirmation [PCT11]

» In the PDF indexing example, we may want to have some evidence the two
files agree.

index, : l(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® [agree(g, f)] ® 1)

agree(g, f) if g and f differ at most in the index.

» Since no proof is transmitted, client may require indexer X's explicit
affirmation (= digital signature)!
» Similarly, in the persistent file storage example
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Dependent Session Types
Modalities — Affirmation [PCT11]

» An affirmation modality: “Principal K affirms property 7 due to evidence M".
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Dependent Session Types
Modalities — Affirmation [PCT11]

» An affirmation modality: “Principal K affirms property 7 due to evidence M".
» Embodied in type O i 7:

» A value of type ¢ x7 denotes a term M of type 7, digitally signed by K.
» Assume some public key infrastructure.

NS VA o B 20/39
A Decade of Dependent Session Types




Dependent Session Types
Modalities — Affirmation [PCT11]

» An affirmation modality: “Principal K affirms property 7 due to evidence M".
» Embodied in type O i 7:

» A value of type ¢ x7 denotes a term M of type 7, digitally signed by K.
» Assume some public key infrastructure.

» Ok is a K-indexed family of strong monads.

» In general cannot get a value of type 7 from (7.
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Dependent Session Types
Affirmation — Example

» PDF indexing service, with indexer X

indexs : |(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® O x[agree(g, )] @ 1)
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Dependent Session Types
Affirmation — Example

» PDF indexing service, with indexer X

indexs : !(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® O x[agree(g, f)] ®1)

» Persistent file storage, with file system Y’

store, : |(Vf:file.!3g:file. Oy [g = [l ® 1)
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Dependent Session Types
Affirmation — Example

» PDF indexing service, with indexer X

indexs : !(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® O x[agree(g, f)] ®1)

» Persistent file storage, with file system Y’
store, : |(Vf:file.!3g:file. Oy [g = [l ® 1)

» Idiom Ok [r] may transmit
» ([]:7)k, a certificate, digitally signed by K affirming
» Some proof that [r] follows from affirmations by K, according to the laws of ¢ x
(e.g. K affirms that X affirms 7).
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Dependent Session Types
Affirmation — Trust Axioms

» Affirmations track aspects of provenance and info. flow

» “Diamonds are forever”
» Ingeneral,t/ Oxm — T
» Need declassification
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Dependent Session Types
Affirmation — Trust Axioms

» Affirmations track aspects of provenance and info. flow

» “Diamonds are forever”
» Ingeneral,t/ Oxm — T
» Need declassification

» Trust axioms
» For specific types 7 and principals K:

trustg » : Ox7 — 7

» Implementable, in general, by stripping signature

N.VA NowscrooLor Bernardo Toninho
A Decade of Dependent Session Types

22/39



Dependent Session Types
Affirmation — Trust Axioms

» Affirmations track aspects of provenance and info. flow
» “Diamonds are forever”

» Ingeneral,t/ Oxm — T
» Need declassification

» Trust axioms
» For specific types 7 and principals K:

trustg » : Ox7 — 7

» Implementable, in general, by stripping signature
» Omitted proofs [r] cannot be recovered, in general

Virl =7 not implementable, in general
t/ Ox[r] — 7 notimplementable, in general
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Roadmap

» Digital signatures through modal affirmation.
» Recursion and Sharing

» Ergometric and Temporal Session Types

» Richer forms of dependency
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Recursion and Sharing
Motivation

> Logical types so far cannot express iterative behaviors.
» Limits applicability to many real-world examples.
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Recursion and Sharing
Motivation

> Logical types so far cannot express iterative behaviors.
» Limits applicability to many real-world examples.

» Especially the case due to linearity (sessions are isolated, one-shot).

» Two approaches:
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Recursion and Sharing
Motivation

> Logical types so far cannot express iterative behaviors.
» Limits applicability to many real-world examples.

» Especially the case due to linearity (sessions are isolated, one-shot).

» Two approaches:

> Recursive and co-recursive session types [TCP13,TCP14,LM16,TY19]
» Shared Sessions [ALM16,BP17]
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Recursion and Sharing
Recursive Types and Processes

Via fixed point combinators [TCP13,TCP14]

» Ability to write recursive programs (e.g. a stream of natural numbers):

nats : nat -> {c:nu X.$nat * X}
nats n = {c.

send c n

nats (n+1)

}
» Combines/conflates recursion and corecursion.
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Recursion and Sharing
Recursive Types and Processes

Via fixed point combinators [TCP13,TCP14]

» Ability to write recursive programs (e.g. a stream of natural numbers):

nats : nat -> {c:nu X.$nat * X}
nats n = {c.

send c n

nats (n+1)

}
» Combines/conflates recursion and corecursion.
» General recursion abandons logical soundness (non-termination).

» Can be recovered via syntactic means of ensuring productivity [TCP14].
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Recursion and Sharing
Recursive Types and Processes

Via initial algebra and final coalgebra semantics [LM16,TY20]:

» Extend language with type functors F' and their least and greatest fixed points
uwF and vF.

» Terms extended with appropriate operators: in, out, fold, unfold.
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Recursion and Sharing
Recursive Types and Processes

Via initial algebra and final coalgebra semantics [LM16,TY20]:

» Extend language with type functors F' and their least and greatest fixed points
uwF and vF.

» Terms extended with appropriate operators: in, out, fold, unfold.
Recursive channels for natural numbers (finitely generated):

NC(X)=1@® (nat® X)  Nats = uNC
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Recursion and Sharing
Recursive Types and Processes

Via initial algebra and final coalgebra semantics [LM16,TY20]:

» Extend language with type functors F' and their least and greatest fixed points
uwF and vF.

» Terms extended with appropriate operators: in, out, fold, unfold.
Recursive channels for natural numbers (finitely generated):

NC(X)=1® (nat® X)  Nats = uNC
Corecursive channels for natural numbers (finitely consumed):

NC(X) = ($nat® X)  Nats'’ = vNC'
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Recursion and Sharing
Sharing

> Logical session types fail to capture numerous features of process calculus,
even when extended recursion.

» Computation is confluent and only features “don’t care” non-determinism.

» Linearity itself can be very restrictive (e.g. well-typed compositions require
sharing exactly 1 channel).
» How to recover these features? and at what cost?
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Recursion and Sharing
Sharing

> Logical session types fail to capture numerous features of process calculus,
even when extended recursion.

» Computation is confluent and only features “don’t care” non-determinism.

» Linearity itself can be very restrictive (e.g. well-typed compositions require
sharing exactly 1 channel).

» How to recover these features? and at what cost?

» Conflation of dual types [ALM16]
» Manifest sharing [BP17]
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Recursion and Sharing
Sharing

Conflation of dual types, in classical linear logic [ALM16]:

» ® and —o: Sharing of multiple channels between parallel threads.

» !and ?: Access points (i.e. stateful non-determinism).
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Sharing

Conflation of dual types, in classical linear logic [ALM16]:
» ® and —o: Sharing of multiple channels between parallel threads.

» @ and &: Local non-determinism / failures (c.f. P + Q in w-calculus).

» !and ?: Access points (i.e. stateful non-determinism).
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Recursion and Sharing
Sharing

Conflation of dual types, in classical linear logic [ALM16]:
» ® and —o: Sharing of multiple channels between parallel threads.
» @ and &: Local non-determinism / failures (c.f. P + Q in w-calculus).
» !and ?: Access points (i.e. stateful non-determinism).

The price of conflation:

» ® and —: Deadlocks typable, termination and determinism preserved.

» @ and &: Determinism is lost.
» ! and ?: Termination, deadlock-freedom and determinism lost.
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Recursion and Sharing
Sharing

Manifest sharing [BP17]:
» Alternative interpretation of the exponential ! 4, sharing instead of copying.
» Programmatically, controlled via an acquire-release discipline.

» Manifest in the type structure via TE Aand LE A (based on Benton's LNL [B94]
and Reed’s adjoint logic [R09]).

Bernardo Toninho
A Decade of Dependent Session Types

PATEY)




Recursion and Sharing
Sharing

Manifest sharing [BP17]:
>
>
>

Alternative interpretation of the exponential ! A, sharing instead of copying.
Programmatically, controlled via an acquire-release discipline.

Manifest in the type structure via 13 A and |S A (based on Benton’s LNL [B94]
and Reed’s adjoint logic [R09]).

A shared session of type 17 A may be acquired by clients (race for shared
resource), subsequently used as A.

A linear session of type |7 A may then be released, back to shared mode.
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Recursion and Sharing
Sharing

Manifest sharing [BP17]:

>
>
>
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Alternative interpretation of the exponential ! A, sharing instead of copying.
Programmatically, controlled via an acquire-release discipline.

Manifest in the type structure via 13 A and |S A (based on Benton’s LNL [B94]
and Reed’s adjoint logic [R09]).

A shared session of type 17 A may be acquired by clients (race for shared
resource), subsequently used as A.

A linear session of type |7 A may then be released, back to shared mode.

Asynchronous 7-calculus becomes encodable (non-determinism,
non-termination, deadlocks).
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Roadmap

» Digital signatures through modal affirmation.
» Recursion and Sharing

» Ergometric and Temporal Session Types

» Richer forms of dependency
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Ergometric and Temporal Session Types
Indexed Types

» With recursive types, it becomes natural to think of indexed session types:

nats = $nat ® nats
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Ergometric and Temporal Session Types
Indexed Types

» With recursive types, it becomes natural to think of indexed session types:

nats[n] = 3Im : nat.$[m = n| @ nats[n + 1]
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Ergometric and Temporal Session Types
Indexed Types

» With recursive types, it becomes natural to think of indexed session types:

nats[n] = 3Im : nat.$[m = n] @ nats[n + 1]

queuey[n] = &{ins : A — queuey[n + 1],
del : ®{none : §[n = 0| ® 1,
some : $[n > 0] ® A ® queue [n — 1]}}
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Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

Bernardo Toninho
A Decade of Dependent Session Types

32/39




Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

» Ergometric session types [DHP18a] capture exchange of potential, in the style
of amortized complexity analysis (>" A):
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Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

» Ergometric session types [DHP18a] capture exchange of potential, in the style
of amortized complexity analysis (>" A):

queue 4[n] = &{ins : 2" A — queue 4[n + 1],

del : >° @ {none : $§[n = 0] ® 1,
some : §[n > 0] ® A ® queuey[n — 1]}}
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Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

» Ergometric session types [DHP18a] capture exchange of potential, in the style
of amortized complexity analysis (>" A):

queue 4 [n] = &{ins : > A — queue 4[n + 1],
del : >? @ {none : §[n = 0] ® 1,
some : §[n > 0] ® A ® queuey[n — 1]}}

» Temporal session types [DHP18b] capture parallel complexity (span) via
temporal modalities over linear time (o4, A4, O A).

» Can check constant number of delays between insertions and deletions in
(bucket-brigade) queue.
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Roadmap

» Digital signatures through modal affirmation
» Recursion and Sharing

» Ergometric and Temporal Session Types

» Richer forms of dependency
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Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

N.VA NowscrooLor Bernardo Toninho
A Decade of Dependent Session Types

34/39



Richer forms of Dependency
Idea
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» “If the received value is OK, receive a String ; otherwise, send a termination
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» Need type-level functions [TY18].
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» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if falseAB = B
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Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if = ($nat ® 1) ($bool ® 1)
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» Need type-level functions [TY18].

Boolean-driven Communication
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Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if z ($nat @ 1) ($bool ® 1)

F z(z).case z of (true = z(23), false = z(true)) :: 2:T
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Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if z ($nat @ 1) ($bool ® 1)
F z(z).case z of (true = z(23), false = z(true)) :: 2:T

t/ z(z).case z of (false = z(23), true = z(true)) :: z:T

NS VA o B
A Decade of Dependent Session Types

34/39



Outline

Open Problems and Ongoing Work
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Indexing and Decidability

So far:
» Recursive session types
» Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
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Indexing and Decidability

So far:
» Recursive session types
» Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
> Type equality?
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Indexing and Decidability

So far:
» Recursive session types
» Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
» Type equality? Type bisimulation.
» Decidable in functional (i.e. nominal) settings...
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Indexing and Decidability

So far:
» Recursive session types
Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
Type equality? Type bisimulation.
Decidable in functional (i.e. nominal) settings...

Undecidable in a structural setting [DP20]:

> Just one type constructor (¢ or &) is enough.
» Undecidable with iso or equirecursive types.
» Undecidable with linear arithmetic + universal prefix quantification.

>
>
>
>
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Indexing and Decidability

So far:

>

>
| 4
| 4
>

Recursive session types

Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.

Type equality? Type bisimulation.
Decidable in functional (i.e. nominal) settings...

Undecidable in a structural setting [DP20]:

> Just one type constructor (¢ or &) is enough.
» Undecidable with iso or equirecursive types.
» Undecidable with linear arithmetic + universal prefix quantification.

Practical and effective algorithms can be found [DP20]...

More work to do on this front — nested types [DDMP21], richer dependency
[TY18], etc.
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Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?
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Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?
» Linearity + dependency is a longstanding complex problem.

» Dependency on (quoted) processes studied [TY18], but no
inductive/coinductive types.
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Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?
» Linearity + dependency is a longstanding complex problem.

» Dependency on (quoted) processes studied [TY18], but no
inductive/coinductive types.

» Decidability of type equality is very subtle.

» Many reasonable notions of process equality (observational, reduction-based,
etc.).
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Implementation

» All this theory is well and good, but...
» what about implementations of refined/dependent session types?

>
>
>

>
| 4

Rast [DDP19,DP20] — Resource-aware session types with arithmetic refinements.

LiquidPi [GG13] - refinements only on basic data, inference is decidable.
Label-dependent session types [TV20] — indexed by naturals, fixed-iteration
schema.

Session* [ZFHNY20] - multiparty protocol description toolchain, targeting F*
STP [NHYA18] — multiparty data refinements in F# type providers.
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Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.
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» Logical approach provides a general framework of dependency and indexing.
» Extensible and flexible (proof-carrying code, resource-awareness, etc.)
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Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.
» Logical approach provides a general framework of dependency and indexing.

» Extensible and flexible (proof-carrying code, resource-awareness, etc.)
» A bunch of other people got interested in these ideas over the years!
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Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.
» Logical approach provides a general framework of dependency and indexing.
» Extensible and flexible (proof-carrying code, resource-awareness, etc.)

» A bunch of other people got interested in these ideas over the years!

Thank you for your time! Questions?

Bernardo Toninho
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