
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A Decade of Dependent Session Types

Bernardo Toninho (NOVA)
Luís Caires (NOVA) and Frank Pfenning (CMU)

September 6, ѱѶѱȣ

Bernardo Toninho
A Decade of Dependent Session Types ȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

Before our Work

Our Work

(Some of) what came after

Open Problems and Ongoing Work

Bernardo Toninho
A Decade of Dependent Session Types ѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
A bit of history

▶ Session types were developed in the ѵѶs [HondaѵѲ,HVKѵ8].
▶ Originally a typing system for a π-calculus.
▶ Structure communication around the concept of a session.

Session
Predetermined sequence of interactions along a (session) channel:
▶ “Input a number, output a string and terminate.”
▶ “Either output or input a number.”

Session ≈ Communication Protocol

Bernardo Toninho
A Decade of Dependent Session Types Ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
A bit of history

▶ Session types were developed in the ѵѶs [HondaѵѲ,HVKѵ8].
▶ Originally a typing system for a π-calculus.
▶ Structure communication around the concept of a session.

Session
Predetermined sequence of interactions along a (session) channel:
▶ “Input a number, output a string and terminate.”
▶ “Either output or input a number.”

Session ≈ Communication Protocol

Bernardo Toninho
A Decade of Dependent Session Types Ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
A bit of history

▶ Session types were developed in the ѵѶs [HondaѵѲ,HVKѵ8].
▶ Originally a typing system for a π-calculus.
▶ Structure communication around the concept of a session.

Session
Predetermined sequence of interactions along a (session) channel:
▶ “Input a number, output a string and terminate.”
▶ “Either output or input a number.”

Session ≈ Communication Protocol

Bernardo Toninho
A Decade of Dependent Session Types Ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Types as Protocols

▶ Session types are descriptions of comm. behavior, assigned to channels.
▶ A way of guaranteeing communication discipline, statically.
▶ Intrinsic notion of duality: Send/Receive, Offer choice/Select.
▶ Duality ensures session Ƥdelity (and deadlock-freedom, with some caveats).

Session Types
▶ “Input a number, output a string and terminate.” ≈ Int ⊸ String⊗ Ȣ (T1)

▶ “Send a number, input a string and terminate.” ≈ Int⊗ String ⊸ Ȣ (T2)

c : T1 ⊢ P c : T2 ⊢ Q

▶ T1 and T2 are dual (T1 = T2), no communication errors between P and Q!

Bernardo Toninho
A Decade of Dependent Session Types ѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Properties

Session types statically guarantee:
▶ Session Ƥdelity (“No communication errors.”)
▶ Deadlock-freedom…

▶ If threads communicate on exactly one session channel
▶ Excludes session interleaving
▶ Excludes higher-order sessions (sending channels over channels)

Progress with session interleaving [DLYѶƭ] via sophisticated machinery.

Bernardo Toninho
A Decade of Dependent Session Types Ѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Properties

Session types statically guarantee:
▶ Session Ƥdelity (“No communication errors.”)
▶ Deadlock-freedom…

▶ If threads communicate on exactly one session channel
▶ Excludes session interleaving
▶ Excludes higher-order sessions (sending channels over channels)

Progress with session interleaving [DLYѶƭ] via sophisticated machinery.

Bernardo Toninho
A Decade of Dependent Session Types Ѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Properties

Session types statically guarantee:
▶ Session Ƥdelity (“No communication errors.”)
▶ Deadlock-freedom…

▶ If threads communicate on exactly one session channel
▶ Excludes session interleaving
▶ Excludes higher-order sessions (sending channels over channels)

Progress with session interleaving [DLYѶƭ] via sophisticated machinery.

Bernardo Toninho
A Decade of Dependent Session Types Ѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Limitations

▶ Deadlock-freedom only in (very) restricted settings.
▶ Session typing only really about two communicating peers.

▶ Express only fairly basic protocols (e.g., send/receive, choice/select).
▶ Sometimes, simple i.o. communication behavior is not enough!

▶ “balance inquiry for authenticated user receives a signed statement”
▶ “ATM deducts a fee of at most $ѱ per transaction”
▶ …

Bernardo Toninho
A Decade of Dependent Session Types 6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Limitations

▶ Deadlock-freedom only in (very) restricted settings.
▶ Session typing only really about two communicating peers.
▶ Express only fairly basic protocols (e.g., send/receive, choice/select).

▶ Sometimes, simple i.o. communication behavior is not enough!

▶ “balance inquiry for authenticated user receives a signed statement”
▶ “ATM deducts a fee of at most $ѱ per transaction”
▶ …

Bernardo Toninho
A Decade of Dependent Session Types 6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Limitations

▶ Deadlock-freedom only in (very) restricted settings.
▶ Session typing only really about two communicating peers.
▶ Express only fairly basic protocols (e.g., send/receive, choice/select).
▶ Sometimes, simple i.o. communication behavior is not enough!

▶ “balance inquiry for authenticated user receives a signed statement”
▶ “ATM deducts a fee of at most $ѱ per transaction”
▶ …

Bernardo Toninho
A Decade of Dependent Session Types 6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Addressing the Limitations

Multiparty Session Types [HYCѶ8]
▶ Types can specify interactions between more than two peers.
▶ Deadlock-freedom in (well-formed) multiparty sessions.
▶ More complex system (global types, local types, projection, etc.)

Dependent Session Types [TCPȣȣ]
▶ Beyond simple protocols as types.
▶ Types can express arbitrary properties of exchanged data.
▶ Based on a computational interpretation of linear logic.

Bernardo Toninho
A Decade of Dependent Session Types ƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Session Types
Addressing the Limitations

Multiparty Session Types [HYCѶ8]
▶ Types can specify interactions between more than two peers.
▶ Deadlock-freedom in (well-formed) multiparty sessions.
▶ More complex system (global types, local types, projection, etc.)

Dependent Session Types [TCPȣȣ]
▶ Beyond simple protocols as types.
▶ Types can express arbitrary properties of exchanged data.
▶ Based on a computational interpretation of linear logic.

Bernardo Toninho
A Decade of Dependent Session Types ƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CPȣѶ]
▶ Its possible to interpret session types as linear logic propositions.
▶ Linear logic proofs as (process) typing derivations.
▶ Proof simpliƤcation as communication.

▶ Linear Implication (A ⊸ B): Receive a channel of type A and continue with B.
▶ Multiplicative Conjunction (A⊗B): Send a channel of type A and cont. as B.
▶ Additive Conjunction (A N B): Receive either inl and continue as A or inr and

continue as B.
▶ Additive Disjunction (A⊕B): Send inl and continue as A or inr and cont. as B.

Bernardo Toninho
A Decade of Dependent Session Types 8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CPȣѶ]
▶ Its possible to interpret session types as linear logic propositions.
▶ Linear logic proofs as (process) typing derivations.
▶ Proof simpliƤcation as communication.

▶ Linear Implication (A ⊸ B): Receive a channel of type A and continue with B.

▶ Multiplicative Conjunction (A⊗B): Send a channel of type A and cont. as B.
▶ Additive Conjunction (A N B): Receive either inl and continue as A or inr and

continue as B.
▶ Additive Disjunction (A⊕B): Send inl and continue as A or inr and cont. as B.

Bernardo Toninho
A Decade of Dependent Session Types 8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CPȣѶ]
▶ Its possible to interpret session types as linear logic propositions.
▶ Linear logic proofs as (process) typing derivations.
▶ Proof simpliƤcation as communication.

▶ Linear Implication (A ⊸ B): Receive a channel of type A and continue with B.
▶ Multiplicative Conjunction (A⊗B): Send a channel of type A and cont. as B.

▶ Additive Conjunction (A N B): Receive either inl and continue as A or inr and
continue as B.

▶ Additive Disjunction (A⊕B): Send inl and continue as A or inr and cont. as B.

Bernardo Toninho
A Decade of Dependent Session Types 8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CPȣѶ]
▶ Its possible to interpret session types as linear logic propositions.
▶ Linear logic proofs as (process) typing derivations.
▶ Proof simpliƤcation as communication.

▶ Linear Implication (A ⊸ B): Receive a channel of type A and continue with B.
▶ Multiplicative Conjunction (A⊗B): Send a channel of type A and cont. as B.
▶ Additive Conjunction (A N B): Receive either inl and continue as A or inr and

continue as B.
▶ Additive Disjunction (A⊕B): Send inl and continue as A or inr and cont. as B.

Bernardo Toninho
A Decade of Dependent Session Types 8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Logical Session Types
Propositions as Sessions

▶ Proof composition (cut) as process composition.
▶ Global progress “for free” (with interleaved and higher-order sessions).
▶ Termination, cut-elimination, conƥuence.
▶ A unifying framework to explore various extensions of session types:

▶ Classical linear logic [Wȣѱ,CPTȣ6]
▶ Dependent session types [TCPȣȣ,PCTȣȣ,TYȣ8]
▶ Structural recursion for session types [TCPȣѳ,LMȣ6]
▶ Sharing in sessions [ALMȣ6,BPȣƭ,RCѱȣ]
▶ …

Bernardo Toninho
A Decade of Dependent Session Types ѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

Before our Work

Our Work

(Some of) what came after

Open Problems and Ongoing Work

Bernardo Toninho
A Decade of Dependent Session Types ȣѶ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ Propositional linear logic as session types:
▶ Input and output of session channels (A ⊸ B and A⊗B)
▶ Choice and selection of alternatives (A N B and A⊕B)
▶ Replicated servers (!A)
▶ Termination or inaction (Ȣ)

Types express very limited protocols…

Bernardo Toninho
A Decade of Dependent Session Types ȣȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ Propositional linear logic as session types:
▶ Input and output of session channels (A ⊸ B and A⊗B)
▶ Choice and selection of alternatives (A N B and A⊕B)
▶ Replicated servers (!A)
▶ Termination or inaction (Ȣ)

Types express very limited protocols…

Bernardo Toninho
A Decade of Dependent Session Types ȣȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.

▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.
▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z :

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.
▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.

▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z :

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.
▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.
▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z :

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.
▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.
▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z : $nat ⊸ $nat⊗ Ȣ

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.
▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.
▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z : ∀n:nat. ∃n′:nat. $(n′ = n+ 1)⊗ Ȣ

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.
▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.
▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z : ∀n:nat. ∃n′:nat. $(n′ = n+ 1)⊗ Ȣ

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
First-Order Propositions as Dependent Sessions

▶ First-order linear logic as session types:
▶ Universal QuantiƤcation (∀x:τ.A): ReceiveM :τ and continue as A{M/x}.
▶ Existential QuantiƤcation (∃x:τ.A): SendM :τ and continue as A{M/x}.
▶ Values in domain of quantiƤcation (τ) from a dependent type theory.
▶ $τ ⊸ A as shorthand for ∀y:τ.A if y not free in A
▶ $τ ⊗A as shorthand for ∃y:τ.A if y not free in A

▶ Types can now express contracts on communicated data.

P :: z : ∀n:nat. ∃n′:nat. $(n′ = n+ 1)⊗ Ȣ

Processes send and receive proof objects that witness the desired properties.

Bernardo Toninho
A Decade of Dependent Session Types ȣѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Examples with Proof-Carrying

▶ PDF indexing service

index1 : !(file ⊸ file⊗ Ȣ)

index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

Persistently offer to input a Ƥle f , a proof that f is in PDF format, then output
a PDF Ƥle g, and a proof that g is in PDF format and terminate the session.

▶ Persistent Ƥle storage

store1 : !(file ⊸!(file⊗ Ȣ))

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

Persistently offer to input a Ƥle, then output a persistent channel for retrieving
this Ƥle and a proof that the two are equal.

Bernardo Toninho
A Decade of Dependent Session Types ȣѲ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Examples with Proof-Carrying

▶ PDF indexing service

index1 : !(file ⊸ file⊗ Ȣ)
index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

Persistently offer to input a Ƥle f , a proof that f is in PDF format, then output
a PDF Ƥle g, and a proof that g is in PDF format and terminate the session.

▶ Persistent Ƥle storage

store1 : !(file ⊸!(file⊗ Ȣ))

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

Persistently offer to input a Ƥle, then output a persistent channel for retrieving
this Ƥle and a proof that the two are equal.

Bernardo Toninho
A Decade of Dependent Session Types ȣѲ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Examples with Proof-Carrying

▶ PDF indexing service

index1 : !(file ⊸ file⊗ Ȣ)
index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

Persistently offer to input a Ƥle f , a proof that f is in PDF format, then output
a PDF Ƥle g, and a proof that g is in PDF format and terminate the session.

▶ Persistent Ƥle storage

store1 : !(file ⊸!(file⊗ Ȣ))

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

Persistently offer to input a Ƥle, then output a persistent channel for retrieving
this Ƥle and a proof that the two are equal.

Bernardo Toninho
A Decade of Dependent Session Types ȣѲ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Examples with Proof-Carrying

▶ PDF indexing service

index1 : !(file ⊸ file⊗ Ȣ)
index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

Persistently offer to input a Ƥle f , a proof that f is in PDF format, then output
a PDF Ƥle g, and a proof that g is in PDF format and terminate the session.

▶ Persistent Ƥle storage

store1 : !(file ⊸!(file⊗ Ȣ))
store2 : !(∀f :file. !∃g:file. g .

= f ⊗ Ȣ)

Persistently offer to input a Ƥle, then output a persistent channel for retrieving
this Ƥle and a proof that the two are equal.

Bernardo Toninho
A Decade of Dependent Session Types ȣѲ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ In many examples, we want to know that proofs exist, but we do not want to
transmit them

▶ We can easily check ispdf(g) when using the indexing service
▶ The proof of g .

= f (by reƥexivity) would not be informative
▶ Use proof irrelevance in type theory
▶ M : [τ] —M is a term of type τ that is computationally irrelevant.
▶ By agreement, terms [M] will be erased before transmission.
▶ Typing guarantees this can be done consistently.

Bernardo Toninho
A Decade of Dependent Session Types ȣѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ In many examples, we want to know that proofs exist, but we do not want to
transmit them
▶ We can easily check ispdf(g) when using the indexing service
▶ The proof of g .

= f (by reƥexivity) would not be informative

▶ Use proof irrelevance in type theory
▶ M : [τ] —M is a term of type τ that is computationally irrelevant.
▶ By agreement, terms [M] will be erased before transmission.
▶ Typing guarantees this can be done consistently.

Bernardo Toninho
A Decade of Dependent Session Types ȣѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ In many examples, we want to know that proofs exist, but we do not want to
transmit them
▶ We can easily check ispdf(g) when using the indexing service
▶ The proof of g .

= f (by reƥexivity) would not be informative
▶ Use proof irrelevance in type theory
▶ M : [τ] —M is a term of type τ that is computationally irrelevant.

▶ By agreement, terms [M] will be erased before transmission.
▶ Typing guarantees this can be done consistently.

Bernardo Toninho
A Decade of Dependent Session Types ȣѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ In many examples, we want to know that proofs exist, but we do not want to
transmit them
▶ We can easily check ispdf(g) when using the indexing service
▶ The proof of g .

= f (by reƥexivity) would not be informative
▶ Use proof irrelevance in type theory
▶ M : [τ] —M is a term of type τ that is computationally irrelevant.
▶ By agreement, terms [M] will be erased before transmission.
▶ Typing guarantees this can be done consistently.

Bernardo Toninho
A Decade of Dependent Session Types ȣѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ Mark proofs as computationally irrelevant
▶ PDF indexing service

index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

index3 : !(∀f :file. [ispdf(f)] ⊸ ∃g:file. [ispdf(g)]⊗ Ȣ)

▶ Persistent Ƥle storage

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

store3 : !(∀f :file. !∃g:file. [g .
= f]⊗ Ȣ)

▶ After erasure, communication can be optimized further (via type
isomorphism).

Bernardo Toninho
A Decade of Dependent Session Types ȣѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ Mark proofs as computationally irrelevant
▶ PDF indexing service

index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

index3 : !(∀f :file. [ispdf(f)] ⊸ ∃g:file. [ispdf(g)]⊗ Ȣ)

▶ Persistent Ƥle storage

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

store3 : !(∀f :file. !∃g:file. [g .
= f]⊗ Ȣ)

▶ After erasure, communication can be optimized further (via type
isomorphism).

Bernardo Toninho
A Decade of Dependent Session Types ȣѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ Mark proofs as computationally irrelevant
▶ PDF indexing service

index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

index3 : !(∀f :file. [ispdf(f)] ⊸ ∃g:file. [ispdf(g)]⊗ Ȣ)

▶ Persistent Ƥle storage

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

store3 : !(∀f :file. !∃g:file. [g .
= f]⊗ Ȣ)

▶ After erasure, communication can be optimized further (via type
isomorphism).

Bernardo Toninho
A Decade of Dependent Session Types ȣѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – Proof Irrelevance

▶ Mark proofs as computationally irrelevant
▶ PDF indexing service

index2 : !(∀f :file. ispdf(f) ⊸ ∃g:file. ispdf(g)⊗ Ȣ)

index3 : !(∀f :file. [ispdf(f)] ⊸ ∃g:file. [ispdf(g)]⊗ Ȣ)

▶ Persistent Ƥle storage

store2 : !(∀f :file. !∃g:file. g .
= f ⊗ Ȣ)

store3 : !(∀f :file. !∃g:file. [g .
= f]⊗ Ȣ)

▶ After erasure, communication can be optimized further (via type
isomorphism).

Bernardo Toninho
A Decade of Dependent Session Types ȣѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Taking Stock

▶ A ƥexible and general framework of session type dependency.
▶ Session types enriched to certiƤed contracts on exchanged data:

▶ Arbitrary properties of data ensured statically, witnessed by proof objects.
▶ Proof communication can be selectively omitted (c.f. type reƤnements).

▶ Logical basis provides modularity.
▶ Type preservation and progress ensure contracts are preserved by

computation/communication.

Bernardo Toninho
A Decade of Dependent Session Types ȣ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Taking Stock

▶ A ƥexible and general framework of session type dependency.
▶ Session types enriched to certiƤed contracts on exchanged data:

▶ Arbitrary properties of data ensured statically, witnessed by proof objects.
▶ Proof communication can be selectively omitted (c.f. type reƤnements).

▶ Logical basis provides modularity.
▶ Type preservation and progress ensure contracts are preserved by

computation/communication.

Bernardo Toninho
A Decade of Dependent Session Types ȣ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Taking Stock

▶ A ƥexible and general framework of session type dependency.
▶ Session types enriched to certiƤed contracts on exchanged data:

▶ Arbitrary properties of data ensured statically, witnessed by proof objects.
▶ Proof communication can be selectively omitted (c.f. type reƤnements).

▶ Logical basis provides modularity.
▶ Type preservation and progress ensure contracts are preserved by

computation/communication.

Bernardo Toninho
A Decade of Dependent Session Types ȣ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

Before our Work

Our Work

(Some of) what came after

Open Problems and Ongoing Work

Bernardo Toninho
A Decade of Dependent Session Types ȣƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Roadmap

ȣ. Digital signatures through modal afƤrmation.
ѱ. Recursion and Sharing
Ѳ. Ergometric and Temporal Session Types
ѳ. Richer forms of dependency

Bernardo Toninho
A Decade of Dependent Session Types ȣ8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – AfƤrmation [PCTȣȣ]

▶ In the PDF indexing example, we may want to have some evidence the two
Ƥles agree.

index4 : !(∀f :file. [ispdf(f)]
⊸ ∃g:file. [ispdf(g)]⊗ [agree(g, f)]⊗ Ȣ)

agree(g, f) if g and f differ at most in the index.
▶ Since no proof is transmitted, client may require indexerX ’s explicit

afƤrmation (= digital signature)!
▶ Similarly, in the persistent Ƥle storage example

Bernardo Toninho
A Decade of Dependent Session Types ȣѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – AfƤrmation [PCTȣȣ]

▶ In the PDF indexing example, we may want to have some evidence the two
Ƥles agree.

index4 : !(∀f :file. [ispdf(f)]
⊸ ∃g:file. [ispdf(g)]⊗ [agree(g, f)]⊗ Ȣ)

agree(g, f) if g and f differ at most in the index.

▶ Since no proof is transmitted, client may require indexerX ’s explicit
afƤrmation (= digital signature)!

▶ Similarly, in the persistent Ƥle storage example

Bernardo Toninho
A Decade of Dependent Session Types ȣѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – AfƤrmation [PCTȣȣ]

▶ In the PDF indexing example, we may want to have some evidence the two
Ƥles agree.

index4 : !(∀f :file. [ispdf(f)]
⊸ ∃g:file. [ispdf(g)]⊗ [agree(g, f)]⊗ Ȣ)

agree(g, f) if g and f differ at most in the index.
▶ Since no proof is transmitted, client may require indexerX ’s explicit

afƤrmation (= digital signature)!
▶ Similarly, in the persistent Ƥle storage example

Bernardo Toninho
A Decade of Dependent Session Types ȣѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – AfƤrmation [PCTȣȣ]

▶ An afƤrmationmodality: “PrincipalK afƤrms property τ due to evidenceM ”.

▶ Embodied in type ♢Kτ :

▶ A value of type ♢Kτ denotes a termM of type τ , digitally signed byK.
▶ Assume some public key infrastructure.
▶ ♢K is aK-indexed family of strong monads.
▶ In general cannot get a value of type τ from ♢Kτ .

Bernardo Toninho
A Decade of Dependent Session Types ѱѶ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – AfƤrmation [PCTȣȣ]

▶ An afƤrmationmodality: “PrincipalK afƤrms property τ due to evidenceM ”.
▶ Embodied in type ♢Kτ :

▶ A value of type ♢Kτ denotes a termM of type τ , digitally signed byK.
▶ Assume some public key infrastructure.

▶ ♢K is aK-indexed family of strong monads.
▶ In general cannot get a value of type τ from ♢Kτ .

Bernardo Toninho
A Decade of Dependent Session Types ѱѶ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
Modalities – AfƤrmation [PCTȣȣ]

▶ An afƤrmationmodality: “PrincipalK afƤrms property τ due to evidenceM ”.
▶ Embodied in type ♢Kτ :

▶ A value of type ♢Kτ denotes a termM of type τ , digitally signed byK.
▶ Assume some public key infrastructure.
▶ ♢K is aK-indexed family of strong monads.
▶ In general cannot get a value of type τ from ♢Kτ .

Bernardo Toninho
A Decade of Dependent Session Types ѱѶ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
AfƤrmation – Example

▶ PDF indexing service, with indexerX

index5 : !(∀f :file. [ispdf(f)]
⊸ ∃g:file. [ispdf(g)]⊗ ♢X [agree(g, f)]⊗ Ȣ)

▶ Persistent Ƥle storage, with Ƥle system Y

store4 : !(∀f :file. !∃g:file.♢Y [g
.
= f]⊗ Ȣ)

▶ Idiom ♢K [τ]may transmit

▶ ⟨[]:τ⟩K , a certiƤcate, digitally signed byK afƤrming τ
▶ Some proof that [τ] follows from afƤrmations byK , according to the laws of ♢K

(e.g. K afƤrms thatX afƤrms τ).

Bernardo Toninho
A Decade of Dependent Session Types ѱȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
AfƤrmation – Example

▶ PDF indexing service, with indexerX

index5 : !(∀f :file. [ispdf(f)]
⊸ ∃g:file. [ispdf(g)]⊗ ♢X [agree(g, f)]⊗ Ȣ)

▶ Persistent Ƥle storage, with Ƥle system Y

store4 : !(∀f :file. !∃g:file.♢Y [g
.
= f]⊗ Ȣ)

▶ Idiom ♢K [τ]may transmit

▶ ⟨[]:τ⟩K , a certiƤcate, digitally signed byK afƤrming τ
▶ Some proof that [τ] follows from afƤrmations byK , according to the laws of ♢K

(e.g. K afƤrms thatX afƤrms τ).

Bernardo Toninho
A Decade of Dependent Session Types ѱȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
AfƤrmation – Example

▶ PDF indexing service, with indexerX

index5 : !(∀f :file. [ispdf(f)]
⊸ ∃g:file. [ispdf(g)]⊗ ♢X [agree(g, f)]⊗ Ȣ)

▶ Persistent Ƥle storage, with Ƥle system Y

store4 : !(∀f :file. !∃g:file.♢Y [g
.
= f]⊗ Ȣ)

▶ Idiom ♢K [τ]may transmit
▶ ⟨[]:τ⟩K , a certiƤcate, digitally signed byK afƤrming τ
▶ Some proof that [τ] follows from afƤrmations byK , according to the laws of ♢K

(e.g. K afƤrms thatX afƤrms τ).

Bernardo Toninho
A Decade of Dependent Session Types ѱȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
AfƤrmation – Trust Axioms

▶ AfƤrmations track aspects of provenance and info. ƥow
▶ “Diamonds are forever”
▶ In general, ̸⊢ ♢Kτ → τ
▶ Need declassiƤcation

▶ Trust axioms

▶ For speciƤc types τ and principalsK:

trustK,τ : ♢Kτ → τ

▶ Implementable, in general, by stripping signature

▶ Omitted proofs [τ] cannot be recovered, in general

̸⊢ [τ] → τ not implementable, in general
̸⊢ ♢K [τ] → τ not implementable, in general

Bernardo Toninho
A Decade of Dependent Session Types ѱѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
AfƤrmation – Trust Axioms

▶ AfƤrmations track aspects of provenance and info. ƥow
▶ “Diamonds are forever”
▶ In general, ̸⊢ ♢Kτ → τ
▶ Need declassiƤcation

▶ Trust axioms
▶ For speciƤc types τ and principalsK:

trustK,τ : ♢Kτ → τ

▶ Implementable, in general, by stripping signature

▶ Omitted proofs [τ] cannot be recovered, in general

̸⊢ [τ] → τ not implementable, in general
̸⊢ ♢K [τ] → τ not implementable, in general

Bernardo Toninho
A Decade of Dependent Session Types ѱѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Dependent Session Types
AfƤrmation – Trust Axioms

▶ AfƤrmations track aspects of provenance and info. ƥow
▶ “Diamonds are forever”
▶ In general, ̸⊢ ♢Kτ → τ
▶ Need declassiƤcation

▶ Trust axioms
▶ For speciƤc types τ and principalsK:

trustK,τ : ♢Kτ → τ

▶ Implementable, in general, by stripping signature
▶ Omitted proofs [τ] cannot be recovered, in general

̸⊢ [τ] → τ not implementable, in general
̸⊢ ♢K [τ] → τ not implementable, in general

Bernardo Toninho
A Decade of Dependent Session Types ѱѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Roadmap

▶ Digital signatures through modal afƤrmation.
▶ Recursion and Sharing
▶ Ergometric and Temporal Session Types
▶ Richer forms of dependency

Bernardo Toninho
A Decade of Dependent Session Types ѱѲ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Motivation

▶ Logical types so far cannot express iterative behaviors.
▶ Limits applicability to many real-world examples.

▶ Especially the case due to linearity (sessions are isolated, one-shot).
▶ Two approaches:

▶ Recursive and co-recursive session types [TCPȣѲ,TCPȣѳ,LMȣ6,TYȣѵ]
▶ Shared Sessions [ALMȣ6,BPȣƭ]

Bernardo Toninho
A Decade of Dependent Session Types ѱѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Motivation

▶ Logical types so far cannot express iterative behaviors.
▶ Limits applicability to many real-world examples.
▶ Especially the case due to linearity (sessions are isolated, one-shot).
▶ Two approaches:

▶ Recursive and co-recursive session types [TCPȣѲ,TCPȣѳ,LMȣ6,TYȣѵ]
▶ Shared Sessions [ALMȣ6,BPȣƭ]

Bernardo Toninho
A Decade of Dependent Session Types ѱѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Motivation

▶ Logical types so far cannot express iterative behaviors.
▶ Limits applicability to many real-world examples.
▶ Especially the case due to linearity (sessions are isolated, one-shot).
▶ Two approaches:

▶ Recursive and co-recursive session types [TCPȣѲ,TCPȣѳ,LMȣ6,TYȣѵ]
▶ Shared Sessions [ALMȣ6,BPȣƭ]

Bernardo Toninho
A Decade of Dependent Session Types ѱѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Recursive Types and Processes

Via Ƥxed point combinators [TCPȣѲ,TCPȣѳ]
▶ Ability to write recursive programs (e.g. a stream of natural numbers):

nats : nat -> {c:nu X.$nat * X}
nats n = {c.
send c n
nats (n+1)

}
▶ Combines/conƥates recursion and corecursion.

▶ General recursion abandons logical soundness (non-termination).
▶ Can be recovered via syntactic means of ensuring productivity [TCPȣѳ].

Bernardo Toninho
A Decade of Dependent Session Types ѱѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Recursive Types and Processes

Via Ƥxed point combinators [TCPȣѲ,TCPȣѳ]
▶ Ability to write recursive programs (e.g. a stream of natural numbers):

nats : nat -> {c:nu X.$nat * X}
nats n = {c.
send c n
nats (n+1)

}
▶ Combines/conƥates recursion and corecursion.
▶ General recursion abandons logical soundness (non-termination).
▶ Can be recovered via syntactic means of ensuring productivity [TCPȣѳ].

Bernardo Toninho
A Decade of Dependent Session Types ѱѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Recursive Types and Processes

Via initial algebra and Ƥnal coalgebra semantics [LMȣ6,TYѱѶ]:
▶ Extend language with type functors F and their least and greatest Ƥxed points

µF and νF .
▶ Terms extended with appropriate operators: in, out, fold, unfold.

Recursive channels for natural numbers (Ƥnitely generated):

NC(X) = Ȣ⊕ (nat⊗X) Nats = µNC

Corecursive channels for natural numbers (Ƥnitely consumed):

NC′(X) = ($nat⊗X) Nats′ = νNC′

Bernardo Toninho
A Decade of Dependent Session Types ѱ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Recursive Types and Processes

Via initial algebra and Ƥnal coalgebra semantics [LMȣ6,TYѱѶ]:
▶ Extend language with type functors F and their least and greatest Ƥxed points

µF and νF .
▶ Terms extended with appropriate operators: in, out, fold, unfold.

Recursive channels for natural numbers (Ƥnitely generated):

NC(X) = Ȣ⊕ (nat⊗X) Nats = µNC

Corecursive channels for natural numbers (Ƥnitely consumed):

NC′(X) = ($nat⊗X) Nats′ = νNC′

Bernardo Toninho
A Decade of Dependent Session Types ѱ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Recursive Types and Processes

Via initial algebra and Ƥnal coalgebra semantics [LMȣ6,TYѱѶ]:
▶ Extend language with type functors F and their least and greatest Ƥxed points

µF and νF .
▶ Terms extended with appropriate operators: in, out, fold, unfold.

Recursive channels for natural numbers (Ƥnitely generated):

NC(X) = Ȣ⊕ (nat⊗X) Nats = µNC

Corecursive channels for natural numbers (Ƥnitely consumed):

NC′(X) = ($nat⊗X) Nats′ = νNC′

Bernardo Toninho
A Decade of Dependent Session Types ѱ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

▶ Logical session types fail to capture numerous features of process calculus,
even when extended recursion.

▶ Computation is conƥuent and only features “don’t care” non-determinism.
▶ Linearity itself can be very restrictive (e.g. well-typed compositions require

sharing exactly ȣ channel).
▶ How to recover these features? and at what cost?

▶ Conƥation of dual types [ALMȣ6]
▶ Manifest sharing [BPȣƭ]

Bernardo Toninho
A Decade of Dependent Session Types ѱƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

▶ Logical session types fail to capture numerous features of process calculus,
even when extended recursion.

▶ Computation is conƥuent and only features “don’t care” non-determinism.
▶ Linearity itself can be very restrictive (e.g. well-typed compositions require

sharing exactly ȣ channel).
▶ How to recover these features? and at what cost?

▶ Conƥation of dual types [ALMȣ6]
▶ Manifest sharing [BPȣƭ]

Bernardo Toninho
A Decade of Dependent Session Types ѱƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

Conƥation of dual types, in classical linear logic [ALMȣ6]:
▶ ⊗ and⊸: Sharing of multiple channels between parallel threads.

▶ ⊕ and N: Local non-determinism / failures (c.f. P +Q in π-calculus).

▶ ! and ?: Access points (i.e. stateful non-determinism).

The price of conƥation:
▶ ⊗ and⊸: Deadlocks typable, termination and determinism preserved.
▶ ⊕ and N: Determinism is lost.
▶ ! and ?: Termination, deadlock-freedom and determinism lost.

Bernardo Toninho
A Decade of Dependent Session Types ѱ8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

Conƥation of dual types, in classical linear logic [ALMȣ6]:
▶ ⊗ and⊸: Sharing of multiple channels between parallel threads.
▶ ⊕ and N: Local non-determinism / failures (c.f. P +Q in π-calculus).
▶ ! and ?: Access points (i.e. stateful non-determinism).

The price of conƥation:
▶ ⊗ and⊸: Deadlocks typable, termination and determinism preserved.
▶ ⊕ and N: Determinism is lost.
▶ ! and ?: Termination, deadlock-freedom and determinism lost.

Bernardo Toninho
A Decade of Dependent Session Types ѱ8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

Conƥation of dual types, in classical linear logic [ALMȣ6]:
▶ ⊗ and⊸: Sharing of multiple channels between parallel threads.
▶ ⊕ and N: Local non-determinism / failures (c.f. P +Q in π-calculus).
▶ ! and ?: Access points (i.e. stateful non-determinism).

The price of conƥation:
▶ ⊗ and⊸: Deadlocks typable, termination and determinism preserved.
▶ ⊕ and N: Determinism is lost.
▶ ! and ?: Termination, deadlock-freedom and determinism lost.

Bernardo Toninho
A Decade of Dependent Session Types ѱ8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

Manifest sharing [BPȣƭ]:
▶ Alternative interpretation of the exponential !A, sharing instead of copying.
▶ Programmatically, controlled via an acquire-release discipline.
▶ Manifest in the type structure via ↑SL A and ↓SL A (based on Benton’s LNL [Bѵѳ]

and Reed’s adjoint logic [RѶѵ]).

▶ A shared session of type ↑SL Amay be acquired by clients (race for shared
resource), subsequently used as A.

▶ A linear session of type ↓SL Amay then be released, back to shared mode.
▶ Asynchronous π-calculus becomes encodable (non-determinism,

non-termination, deadlocks).

Bernardo Toninho
A Decade of Dependent Session Types ѱѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

Manifest sharing [BPȣƭ]:
▶ Alternative interpretation of the exponential !A, sharing instead of copying.
▶ Programmatically, controlled via an acquire-release discipline.
▶ Manifest in the type structure via ↑SL A and ↓SL A (based on Benton’s LNL [Bѵѳ]

and Reed’s adjoint logic [RѶѵ]).
▶ A shared session of type ↑SL Amay be acquired by clients (race for shared

resource), subsequently used as A.
▶ A linear session of type ↓SL Amay then be released, back to shared mode.

▶ Asynchronous π-calculus becomes encodable (non-determinism,
non-termination, deadlocks).

Bernardo Toninho
A Decade of Dependent Session Types ѱѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Recursion and Sharing
Sharing

Manifest sharing [BPȣƭ]:
▶ Alternative interpretation of the exponential !A, sharing instead of copying.
▶ Programmatically, controlled via an acquire-release discipline.
▶ Manifest in the type structure via ↑SL A and ↓SL A (based on Benton’s LNL [Bѵѳ]

and Reed’s adjoint logic [RѶѵ]).
▶ A shared session of type ↑SL Amay be acquired by clients (race for shared

resource), subsequently used as A.
▶ A linear session of type ↓SL Amay then be released, back to shared mode.
▶ Asynchronous π-calculus becomes encodable (non-determinism,

non-termination, deadlocks).

Bernardo Toninho
A Decade of Dependent Session Types ѱѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Roadmap

▶ Digital signatures through modal afƤrmation.
▶ Recursion and Sharing
▶ Ergometric and Temporal Session Types
▶ Richer forms of dependency

Bernardo Toninho
A Decade of Dependent Session Types ѲѶ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Indexed Types

▶ With recursive types, it becomes natural to think of indexed session types:

nats = $nat⊗ nats

queueA[n] = N{ins : A ⊸ queueA[n+ 1],
del : ⊕{none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

Bernardo Toninho
A Decade of Dependent Session Types Ѳȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Indexed Types

▶ With recursive types, it becomes natural to think of indexed session types:

nats[n] = ∃m : nat.$[m = n]⊗ nats[n+ 1]

queueA[n] = N{ins : A ⊸ queueA[n+ 1],
del : ⊕{none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

Bernardo Toninho
A Decade of Dependent Session Types Ѳȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Indexed Types

▶ With recursive types, it becomes natural to think of indexed session types:

nats[n] = ∃m : nat.$[m = n]⊗ nats[n+ 1]

queueA[n] = N{ins : A ⊸ queueA[n+ 1],
del : ⊕{none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

Bernardo Toninho
A Decade of Dependent Session Types Ѳȣ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHPȣ8a,DHPȣ8b,DPѱѶ]

▶ Complexity analysis of concurrent, message-passing programs.

▶ Ergometric session types [DHPȣ8a] capture exchange of potential, in the style
of amortized complexity analysis (▷rA):

queueA[n] = N{ins : ▷2nA ⊸ queueA[n+ 1],
del : ▷2 ⊕ {none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

▶ Temporal session types [DHPȣ8b] capture parallel complexity (span) via
temporal modalities over linear time (◦A, □A, ♢A).

▶ Can check constant number of delays between insertions and deletions in
(bucket-brigade) queue.

Bernardo Toninho
A Decade of Dependent Session Types Ѳѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHPȣ8a,DHPȣ8b,DPѱѶ]

▶ Complexity analysis of concurrent, message-passing programs.
▶ Ergometric session types [DHPȣ8a] capture exchange of potential, in the style

of amortized complexity analysis (▷rA):

queueA[n] = N{ins : ▷2nA ⊸ queueA[n+ 1],
del : ▷2 ⊕ {none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

▶ Temporal session types [DHPȣ8b] capture parallel complexity (span) via
temporal modalities over linear time (◦A, □A, ♢A).

▶ Can check constant number of delays between insertions and deletions in
(bucket-brigade) queue.

Bernardo Toninho
A Decade of Dependent Session Types Ѳѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHPȣ8a,DHPȣ8b,DPѱѶ]

▶ Complexity analysis of concurrent, message-passing programs.
▶ Ergometric session types [DHPȣ8a] capture exchange of potential, in the style

of amortized complexity analysis (▷rA):

queueA[n] = N{ins : ▷2nA ⊸ queueA[n+ 1],
del : ▷2 ⊕ {none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

▶ Temporal session types [DHPȣ8b] capture parallel complexity (span) via
temporal modalities over linear time (◦A, □A, ♢A).

▶ Can check constant number of delays between insertions and deletions in
(bucket-brigade) queue.

Bernardo Toninho
A Decade of Dependent Session Types Ѳѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHPȣ8a,DHPȣ8b,DPѱѶ]

▶ Complexity analysis of concurrent, message-passing programs.
▶ Ergometric session types [DHPȣ8a] capture exchange of potential, in the style

of amortized complexity analysis (▷rA):

queueA[n] = N{ins : ▷2nA ⊸ queueA[n+ 1],
del : ▷2 ⊕ {none : $[n = 0]⊗ Ȣ,

some : $[n > 0]⊗A⊗ queueA[n− 1]}}

▶ Temporal session types [DHPȣ8b] capture parallel complexity (span) via
temporal modalities over linear time (◦A, □A, ♢A).

▶ Can check constant number of delays between insertions and deletions in
(bucket-brigade) queue.

Bernardo Toninho
A Decade of Dependent Session Types Ѳѱ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Roadmap

▶ Digital signatures through modal afƤrmation
▶ Recursion and Sharing
▶ Ergometric and Temporal Session Types
▶ Richer forms of dependency

Bernardo Toninho
A Decade of Dependent Session Types ѲѲ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication

if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication

if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication
if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication
if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication
if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication
if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication
if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Richer forms of Dependency
Idea

▶ All dependencies so far are purely at the level of values
▶ No way of having protocol structure depend on data:

▶ “If the received value is OK, receive a String ; otherwise, send a termination
message”.

▶ Need type-level functions [TYȣ8].

Boolean-driven Communication
if :: Bool → stype → stype → stype
if trueAB = A if falseAB = B

T ≜ ∀x:bool.ifx ($nat⊗ Ȣ) ($bool⊗ Ȣ)

⊢ z(x).case x of (true ⇒ z⟨23⟩, false ⇒ z⟨true⟩) :: z:T

̸⊢ z(x).case x of (false ⇒ z⟨23⟩, true ⇒ z⟨true⟩) :: z:T

Bernardo Toninho
A Decade of Dependent Session Types Ѳѳ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Outline

Before our Work

Our Work

(Some of) what came after

Open Problems and Ongoing Work

Bernardo Toninho
A Decade of Dependent Session Types ѲѴ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indexing and Decidability

So far:
▶ Recursive session types
▶ Indexing + ReƤnements with decidable (e.g. linear or Presburger) arithmetic.

▶ Type equality?

Type bisimulation.

▶ Decidable in functional (i.e. nominal) settings…
▶ Undecidable in a structural setting [DPѱѶ]:

▶ Just one type constructor (⊕ or N) is enough.
▶ Undecidable with iso or equirecursive types.
▶ Undecidable with linear arithmetic + universal preƤx quantiƤcation.

▶ Practical and effective algorithms can be found [DPѱѶ]…
▶ More work to do on this front – nested types [DDMPѱȣ], richer dependency

[TYȣ8], etc.

Bernardo Toninho
A Decade of Dependent Session Types Ѳ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indexing and Decidability

So far:
▶ Recursive session types
▶ Indexing + ReƤnements with decidable (e.g. linear or Presburger) arithmetic.
▶ Type equality?

Type bisimulation.
▶ Decidable in functional (i.e. nominal) settings…
▶ Undecidable in a structural setting [DPѱѶ]:

▶ Just one type constructor (⊕ or N) is enough.
▶ Undecidable with iso or equirecursive types.
▶ Undecidable with linear arithmetic + universal preƤx quantiƤcation.

▶ Practical and effective algorithms can be found [DPѱѶ]…
▶ More work to do on this front – nested types [DDMPѱȣ], richer dependency

[TYȣ8], etc.

Bernardo Toninho
A Decade of Dependent Session Types Ѳ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indexing and Decidability

So far:
▶ Recursive session types
▶ Indexing + ReƤnements with decidable (e.g. linear or Presburger) arithmetic.
▶ Type equality? Type bisimulation.
▶ Decidable in functional (i.e. nominal) settings…

▶ Undecidable in a structural setting [DPѱѶ]:

▶ Just one type constructor (⊕ or N) is enough.
▶ Undecidable with iso or equirecursive types.
▶ Undecidable with linear arithmetic + universal preƤx quantiƤcation.

▶ Practical and effective algorithms can be found [DPѱѶ]…
▶ More work to do on this front – nested types [DDMPѱȣ], richer dependency

[TYȣ8], etc.

Bernardo Toninho
A Decade of Dependent Session Types Ѳ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indexing and Decidability

So far:
▶ Recursive session types
▶ Indexing + ReƤnements with decidable (e.g. linear or Presburger) arithmetic.
▶ Type equality? Type bisimulation.
▶ Decidable in functional (i.e. nominal) settings…
▶ Undecidable in a structural setting [DPѱѶ]:

▶ Just one type constructor (⊕ or N) is enough.
▶ Undecidable with iso or equirecursive types.
▶ Undecidable with linear arithmetic + universal preƤx quantiƤcation.

▶ Practical and effective algorithms can be found [DPѱѶ]…
▶ More work to do on this front – nested types [DDMPѱȣ], richer dependency

[TYȣ8], etc.

Bernardo Toninho
A Decade of Dependent Session Types Ѳ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Indexing and Decidability

So far:
▶ Recursive session types
▶ Indexing + ReƤnements with decidable (e.g. linear or Presburger) arithmetic.
▶ Type equality? Type bisimulation.
▶ Decidable in functional (i.e. nominal) settings…
▶ Undecidable in a structural setting [DPѱѶ]:

▶ Just one type constructor (⊕ or N) is enough.
▶ Undecidable with iso or equirecursive types.
▶ Undecidable with linear arithmetic + universal preƤx quantiƤcation.

▶ Practical and effective algorithms can be found [DPѱѶ]…
▶ More work to do on this front – nested types [DDMPѱȣ], richer dependency

[TYȣ8], etc.

Bernardo Toninho
A Decade of Dependent Session Types Ѳ6/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fully-Dependent Type Theory

▶ What about general dependency instead of just data dependency?

▶ Linearity + dependency is a longstanding complex problem.
▶ Dependency on (quoted) processes studied [TYȣ8], but no

inductive/coinductive types.
▶ Decidability of type equality is very subtle.
▶ Many reasonable notions of process equality (observational, reduction-based,

etc.).

Bernardo Toninho
A Decade of Dependent Session Types Ѳƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fully-Dependent Type Theory

▶ What about general dependency instead of just data dependency?
▶ Linearity + dependency is a longstanding complex problem.
▶ Dependency on (quoted) processes studied [TYȣ8], but no

inductive/coinductive types.

▶ Decidability of type equality is very subtle.
▶ Many reasonable notions of process equality (observational, reduction-based,

etc.).

Bernardo Toninho
A Decade of Dependent Session Types Ѳƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fully-Dependent Type Theory

▶ What about general dependency instead of just data dependency?
▶ Linearity + dependency is a longstanding complex problem.
▶ Dependency on (quoted) processes studied [TYȣ8], but no

inductive/coinductive types.

▶ Decidability of type equality is very subtle.
▶ Many reasonable notions of process equality (observational, reduction-based,

etc.).

Bernardo Toninho
A Decade of Dependent Session Types Ѳƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Fully-Dependent Type Theory

▶ What about general dependency instead of just data dependency?
▶ Linearity + dependency is a longstanding complex problem.
▶ Dependency on (quoted) processes studied [TYȣ8], but no

inductive/coinductive types.
▶ Decidability of type equality is very subtle.
▶ Many reasonable notions of process equality (observational, reduction-based,

etc.).

Bernardo Toninho
A Decade of Dependent Session Types Ѳƭ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Implementation

▶ All this theory is well and good, but…
▶ what about implementations of reƤned/dependent session types?

▶ Rast [DDPȣѵ,DPѱѶ] – Resource-aware session types with arithmetic reƤnements.
▶ LiquidPi [GGȣѲ] – reƤnements only on basic data, inference is decidable.
▶ Label-dependent session types [TVѱѶ] – indexed by naturals, Ƥxed-iteration

schema.
▶ Session∗ [ZFHNYѱѶ] – multiparty protocol description toolchain, targeting F∗
▶ STP [NHYAȣ8] – multiparty data reƤnements in F# type providers.

Bernardo Toninho
A Decade of Dependent Session Types Ѳ8/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wrapping Up

▶ An (incomplete) overview of ȣѶ years of dependent and logical session types.

▶ Logical approach provides a general framework of dependency and indexing.
▶ Extensible and ƥexible (proof-carrying code, resource-awareness, etc.)
▶ A bunch of other people got interested in these ideas over the years!

Thank you for your time! Questions?

Bernardo Toninho
A Decade of Dependent Session Types Ѳѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wrapping Up

▶ An (incomplete) overview of ȣѶ years of dependent and logical session types.
▶ Logical approach provides a general framework of dependency and indexing.
▶ Extensible and ƥexible (proof-carrying code, resource-awareness, etc.)

▶ A bunch of other people got interested in these ideas over the years!

Thank you for your time! Questions?

Bernardo Toninho
A Decade of Dependent Session Types Ѳѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wrapping Up

▶ An (incomplete) overview of ȣѶ years of dependent and logical session types.
▶ Logical approach provides a general framework of dependency and indexing.
▶ Extensible and ƥexible (proof-carrying code, resource-awareness, etc.)
▶ A bunch of other people got interested in these ideas over the years!

Thank you for your time! Questions?

Bernardo Toninho
A Decade of Dependent Session Types Ѳѵ/Ѳѵ

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Wrapping Up

▶ An (incomplete) overview of ȣѶ years of dependent and logical session types.
▶ Logical approach provides a general framework of dependency and indexing.
▶ Extensible and ƥexible (proof-carrying code, resource-awareness, etc.)
▶ A bunch of other people got interested in these ideas over the years!

Thank you for your time! Questions?

Bernardo Toninho
A Decade of Dependent Session Types Ѳѵ/Ѳѵ

	Before our Work
	Our Work
	(Some of) what came after
	Open Problems and Ongoing Work

