N‘VA SClnCe & TEcHNOLOGY . NOVALINCS

A Decade of Dependent Session Types
Bernardo Toninho (NOVA)
Luis Caires (NOVA) and Frank Pfenning (CMU)

September 6, 2021

Bernardo Toninho

A Decade of Dependent Session Types 1/39

Outline

Before our Work

NS VA o B 2/39
A Decade of Dependent Session Types

Session Types
A bit of history

» Session types were developed in the 90s [Honda93,HVK98].
» Originally a typing system for a w-calculus.
» Structure communication around the concept of a session.

Bernardo Toninho
A Decade of Dependent Session Types

3/39

Session Types
A bit of history

» Session types were developed in the 90s [Honda93,HVK98].
» Originally a typing system for a w-calculus.
» Structure communication around the concept of a session.

Predetermined sequence of interactions along a (session) channel:
» “Input a number, output a string and terminate.”
» “Either output or input a number.”

Bernardo Toninho
A Decade of Dependent Session Types

3/39

Session Types
A bit of history

» Session types were developed in the 90s [Honda93,HVK98].
» Originally a typing system for a w-calculus.
» Structure communication around the concept of a session.

Predetermined sequence of interactions along a (session) channel:
» “Input a number, output a string and terminate.”
» “Either output or input a number.”

Session ~ Communication Protocol

NS VA o B 3/39
A Decade of Dependent Session Types

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

NS VA = [4/39
A Decade of Dependent Session Types

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)

. Bernardo Toninho
A Decade of Dependent Session Types

4/39

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)

. Bernardo Toninho
A Decade of Dependent Session Types

4/39

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)

. Bernardo Toninho
A Decade of Dependent Session Types

4/39

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

> “Input a number, output a string and terminate.” ~ Int — String® 1 (71)

. Bernardo Toninho
A Decade of Dependent Session Types

4/39

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)
» “Send a number, input a string and terminate.” ~ Int ® String — 1 (T3)

. Bernardo Toninho
A Decade of Dependent Session Types

4/39

Session Types
Types as Protocols

> Session types are descriptions of comm. behavior, assigned to channels.

» A way of guaranteeing communication discipline, statically.

» Intrinsic notion of duality: Send/Receive, Offer choice/Select.

» Duality ensures session fidelity (and deadlock-freedom, with some caveats).

Session Types

» “Input a number, output a string and terminate.” ~ Int — String® 1 (71)
» “Send a number, input a string and terminate.” ~ Int ® String — 1 (T3)

CZT1|—P C:TQl_Q

» T and Ty are dual (77 = T3), no communication errors between P and Q!

. Bernardo Toninho
A Decade of Dependent Session Types

4/39

Session Types
Properties

Session types statically guarantee:

» Session fidelity (“No communication errors.”)
» Deadlock-freedom...

NS VA o B 5/39
A Decade of Dependent Session Types

Session Types
Properties

Session types statically guarantee:

» Session fidelity (“No communication errors.”)
» Deadlock-freedom...

» |f threads communicate on exactly one session channel
» Excludes session interleaving
» Excludes higher-order sessions (sending channels over channels)

NS VA o B 5/39
A Decade of Dependent Session Types

Session Types
Properties

Session types statically guarantee:

» Session fidelity (“No communication errors.”)
» Deadlock-freedom...

» |f threads communicate on exactly one session channel
» Excludes session interleaving
» Excludes higher-order sessions (sending channels over channels)

Progress with session interleaving [DLY07] via sophisticated machinery.

NS VA = [5/39
A Decade of Dependent Session Types

Session Types
Limitations

» Deadlock-freedom only in (very) restricted settings.
» Session typing only really about two communicating peers.

N.VA NovascHooL oF Bernardo Toninho 6/39
A Decade of Dependent Session Types

Session Types
Limitations

» Deadlock-freedom only in (very) restricted settings.
» Session typing only really about two communicating peers.
» Express only fairly basic protocols (e.g., send/receive, choice/select).

NS VA o B 6/39
A Decade of Dependent Session Types

Session Types
Limitations

» Deadlock-freedom only in (very) restricted settings.
» Session typing only really about two communicating peers.
» Express only fairly basic protocols (e.g., send/receive, choice/select).

» Sometimes, simple i.0o. communication behavior is not enough!

» “balance inquiry for authenticated user receives a signed statement”
» “ATM deducts a fee of at most $2 per transaction”
> .

N‘VA ke toumll Bernardo Toninho 6/39
A Decade of Dependent Session Types

Session Types
Addressing the Limitations

Multiparty Session Types [HYC08]

» Types can specify interactions between more than two peers.
» Deadlock-freedom in (well-formed) multiparty sessions.
» More complex system (global types, local types, projection, etc.)

Bernardo Toninho
A Decade of Dependent Session Types

7/39

Session Types
Addressing the Limitations

Multiparty Session Types [HYC08]

» Types can specify interactions between more than two peers.
» Deadlock-freedom in (well-formed) multiparty sessions.
» More complex system (global types, local types, projection, etc.)

w

Dependent Session Types [TCP11]

» Beyond simple protocols as types.
» Types can express arbitrary properties of exchanged data.
» Based on a computational interpretation of linear logic.

N.VA NowsciooL of Bernardo Toninho 7/39
A Decade of Dependent Session Types

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

Bernardo Toninho
A Decade of Dependent Session Types

8/39

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

» Linear Implication (A — B): Receive a channel of type A and continue with 5.

Bernardo Toninho
A Decade of Dependent Session Types

8/39

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

» Linear Implication (A — B): Receive a channel of type A and continue with 5.

v

Multiplicative Conjunction (4 © B): Send a channel of type 4 and cont. as B.

NS VA o B 8/39
A Decade of Dependent Session Types

Logical Session Types
Propositions as Sessions

Session Types and Propositional Linear Logic [CP10]

> Its possible to interpret session types as linear logic propositions.
» Linear logic proofs as (process) typing derivations.
» Proof simplification as communication.

» Linear Implication (A — B): Receive a channel of type A and continue with 5.
» Multiplicative Conjunction (A @ B): Send a channel of type A and cont. as B.

» Additive Conjunction (A & B): Receive either inl and continue as A or inr and
continue as B.

» Additive Disjunction (A & B): Send inl and continue as A orinr and cont. as B.

NS VA = [8/39
A Decade of Dependent Session Types

Logical Session Types
Propositions as Sessions

» Proof composition (cut) as process composition.

» Global progress “for free” (with interleaved and higher-order sessions).
» Termination, cut-elimination, confluence.

» A unifying framework to explore various extensions of session types:

» Classical linear logic [W12,CPT16]

» Dependent session types [TCP11,PCT11,TY18§]

» Structural recursion for session types [TCP14,LM16]
» Sharing in sessions [ALM16,BP17,RC21]

>

NS VA o B 9/39
A Decade of Dependent Session Types

Outline

Our Work

NBVA szt R
A Decade of Dependent Session Types

Dependent Session Types
First-Order Propositions as Dependent Sessions

» Propositional linear logic as session types:
» Input and output of session channels (4 — B and A ® B)
» Choice and selection of alternatives (4 & B and A ¢ B)
> Replicated servers (1A4)
» Termination or inaction (1)

NBVA szt R
A Decade of Dependent Session Types

11/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» Propositional linear logic as session types:

» Input and output of session channels (4 — B and A ® B)
» Choice and selection of alternatives (4 & B and A ¢ B)

> Replicated servers (1A4)

» Termination or inaction (1)

Types express very limited protocols...

NBVA szt R
A Decade of Dependent Session Types

11/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:
» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

NS VA o B 12/39
A Decade of Dependent Session Types

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send) :7 and continue as A{M /x}.

NBVA szt R
A Decade of Dependent Session Types

12/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send) :7 and continue as A{M /x}.
» Values in domain of quantification () from a dependent type theory.

» $7 — A as shorthand for Vy:7. A if y not free in A

» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

NS VA o B
A Decade of Dependent Session Types

12/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send) :7 and continue as A{M /x}.
» Values in domain of quantification () from a dependent type theory.

» $7 — A as shorthand for Vy:7. A if y not free in A

» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

P :z:%nat —- $nat® 1

NS VA o B
A Decade of Dependent Session Types

12/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send) :7 and continue as A{M /x}.
» Values in domain of quantification () from a dependent type theory.

» $7 — A as shorthand for Vy:7. A if y not free in A

» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

P z:Vnnat.In":inat. $(n’ =n+1) @1

NS VA o B
A Decade of Dependent Session Types

12/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:

» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /xz}.

> Existential Quantification (3x:7.4): Send) :7 and continue as A{M /x}.
» Values in domain of quantification () from a dependent type theory.

» $7 — A as shorthand for Vy:7. A if y not free in A

» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

Pz :Vnnat. In'inat. $(n’ =n+1) @1

NS VA o B
A Decade of Dependent Session Types

12/39

Dependent Session Types
First-Order Propositions as Dependent Sessions

» First-order linear logic as session types:
» Universal Quantification (vx:7.A): Receive M:7 and continue as A{M /x}.
» Existential Quantification (Jx:7.4): Send M :7 and continue as A{M /z}.
» Values in domain of quantification () from a dependent type theory.
» $7 — A as shorthand for Vy:7. A if y not free in A
» $7 ® A as shorthand for Jy:7. A if y not free in A

» Types can now express contracts on communicated data.

P:z:Vnnat. In"inat. $(n' =n+1) @1

Processes send and receive proof objects that witness the desired properties.

NBVA szt R
A Decade of Dependent Session Types

12/39

Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)

Bernardo Toninho
A Decade of Dependent Session Types

13/39

Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
indexy @ !(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in PDF format, then output
a PDF file g, and a proof that ¢ is in PDF format and terminate the session.

N.VA NowsciooL of Bernardo Toninho
A Decade of Dependent Session Types

13/39

Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
indexy @ !(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in PDF format, then output
a PDF file g, and a proof that ¢ is in PDF format and terminate the session.

> Persistent file storage

store; : !(file —!(file® 1))

N.VA NowsciooL of Bernardo Toninho
A Decade of Dependent Session Types

13/39

Dependent Session Types
Examples with Proof-Carrying

» PDF indexing service

index; : !(file — file® 1)
indexy @ !(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)

Persistently offer to input a file f, a proof that f is in PDF format, then output
a PDF file g, and a proof that ¢ is in PDF format and terminate the session.

> Persistent file storage

store; : !(file —!(file® 1))
storey : (Vf:file.!3g:file.g = f @ 1)

Persistently offer to input a file, then output a persistent channel for retrieving
this file and a proof that the two are equal.

N‘VA NowsciooL of Bernardo Toninho
A Decade of Dependent Session Types

13/39

Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them

NS VA = [14/39
A Decade of Dependent Session Types

Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them

» We can easily check ispdf(g) when using the indexing service
» The proof of g = f (by reflexivity) would not be informative

Bernardo Toninho
A Decade of Dependent Session Types

14/39

Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them
» We can easily check ispdf(g) when using the indexing service
» The proof of g = f (by reflexivity) would not be informative
» Use proof irrelevance in type theory

» M : [r] — M is a term of type 7 that is computationally irrelevant.

. Bernardo Toninho
A Decade of Dependent Session Types

14/39

Dependent Session Types
Modalities — Proof Irrelevance

» In many examples, we want to know that proofs exist, but we do not want to
transmit them

» We can easily check ispdf(g) when using the indexing service
» The proof of g = f (by reflexivity) would not be informative

» Use proof irrelevance in type theory

» M : [r] — M is a term of type 7 that is computationally irrelevant.
» By agreement, terms [M] will be erased before transmission.

» Typing guarantees this can be done consistently.

. Bernardo Toninho
A Decade of Dependent Session Types

14/39

Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service

indexy : !(Vf:file.ispdf(f) —o Fg:file.ispdf(g) ® 1)

Bernardo Toninho
A Decade of Dependent Session Types

15/39

Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service

indexy @ I(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)
indexs : l(Vf:file.[ispdf(f)] — Jg:file. [ispdf(g)] ® 1)

Bernardo Toninho

A Decade of Dependent Session Types

Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service

indexy @ I(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)
indexs : l(Vf:file.[ispdf(f)] — Jg:file. [ispdf(g)] ® 1)

> Persistent file storage

stores : l(Vf:file.!3g:file.g=f®1)

Bernardo Toninho

A Decade of Dependent Session Types

Dependent Session Types
Modalities — Proof Irrelevance

» Mark proofs as computationally irrelevant
» PDF indexing service
indexy @ I(Vf:file.ispdf(f) — Jg:file.ispdf(g) ® 1)
indexs : l(Vf:file.[ispdf(f)] — Jg:file. [ispdf(g)] ® 1)
> Persistent file storage
stores : l(Vf:file.!3g:file.g = f®1)
stores : l(Vf:file.!3g:file.[¢g = f]® 1)
» After erasure, communication can be optimized further (via type

isomorphism).

N.VA NowsciooL of Bernardo Toninho 15/39
A Decade of Dependent Session Types

Dependent Session Types
Taking Stock

> A flexible and general framework of session type dependency.
» Session types enriched to certified contracts on exchanged data:

Bernardo Toninho
A Decade of Dependent Session Types

16/39

Dependent Session Types
Taking Stock

> A flexible and general framework of session type dependency.
» Session types enriched to certified contracts on exchanged data:

» Arbitrary properties of data ensured statically, witnessed by proof objects.

» Proof communication can be selectively omitted (c.f. type refinements).

Bernardo Toninho
A Decade of Dependent Session Types

16/39

Dependent Session Types
Taking Stock

> A flexible and general framework of session type dependency.
» Session types enriched to certified contracts on exchanged data:

» Arbitrary properties of data ensured statically, witnessed by proof objects.

» Proof communication can be selectively omitted (c.f. type refinements).
» Logical basis provides modularity.

» Type preservation and progress ensure contracts are preserved by
computation/communication.

. Bernardo Toninho
A Decade of Dependent Session Types

16/39

Outline

(Some of) what came after

NS VA o B 17/39
A Decade of Dependent Session Types

Roadmap

1. Digital signatures through modal affirmation.
2. Recursion and Sharing

3. Ergometric and Temporal Session Types

4. Richer forms of dependency

NS VA o B 18/39
A Decade of Dependent Session Types

Dependent Session Types
Modalities — Affirmation [PCT11]

» In the PDF indexing example, we may want to have some evidence the two
files agree.

Bernardo Toninho
A Decade of Dependent Session Types

19/39

Dependent Session Types
Modalities — Affirmation [PCT11]

» In the PDF indexing example, we may want to have some evidence the two
files agree.

indexy : [!(Vf:file.[ispdf(f)]
—o Jg:file. [ispdf(g)] ® [agree(g, f)] ® 1)

agree(g, f) if g and f differ at most in the index.

Bernardo Toninho

A Decade of Dependent Session Types

Dependent Session Types
Modalities — Affirmation [PCT11]

» In the PDF indexing example, we may want to have some evidence the two
files agree.

index, : l(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® [agree(g, f)] ® 1)

agree(g, f) if g and f differ at most in the index.

» Since no proof is transmitted, client may require indexer X's explicit
affirmation (= digital signature)!
» Similarly, in the persistent file storage example

N.VA NowsciooL of Bernardo Toninho 19/39
A Decade of Dependent Session Types

Dependent Session Types
Modalities — Affirmation [PCT11]

» An affirmation modality: “Principal K affirms property 7 due to evidence M".

Bernardo Toninho
A Decade of Dependent Session Types

20/39

Dependent Session Types
Modalities — Affirmation [PCT11]

» An affirmation modality: “Principal K affirms property 7 due to evidence M".
» Embodied in type O i 7:

» A value of type ¢ x7 denotes a term M of type 7, digitally signed by K.
» Assume some public key infrastructure.

NS VA o B 20/39
A Decade of Dependent Session Types

Dependent Session Types
Modalities — Affirmation [PCT11]

» An affirmation modality: “Principal K affirms property 7 due to evidence M".
» Embodied in type O i 7:

» A value of type ¢ x7 denotes a term M of type 7, digitally signed by K.
» Assume some public key infrastructure.

» Ok is a K-indexed family of strong monads.

» In general cannot get a value of type 7 from (7.

NS VA o B 20/39
A Decade of Dependent Session Types

Dependent Session Types
Affirmation — Example

» PDF indexing service, with indexer X

indexs : |(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® O x[agree(g,)] @ 1)

Bernardo Toninho

A Decade of Dependent Session Types

Dependent Session Types
Affirmation — Example

» PDF indexing service, with indexer X

indexs : !(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® O x[agree(g, f)] ®1)

» Persistent file storage, with file system Y’

store, : |(Vf:file.!3g:file. Oy [g = [l ® 1)

Bernardo Toninho

A Decade of Dependent Session Types

Dependent Session Types
Affirmation — Example

» PDF indexing service, with indexer X

indexs : !(Vf:file. [ispdf(f)]
—o Jg:file. [ispdf(g)] ® O x[agree(g, f)] ®1)

» Persistent file storage, with file system Y’
store, : |(Vf:file.!3g:file. Oy [g = [l ® 1)

» Idiom Ok [r] may transmit
» ([]:7)k, a certificate, digitally signed by K affirming
» Some proof that [r] follows from affirmations by K, according to the laws of ¢ x
(e.g. K affirms that X affirms 7).

N.VA NowscrooLor Bernardo Toninho
A Decade of Dependent Session Types

AVER)

Dependent Session Types
Affirmation — Trust Axioms

» Affirmations track aspects of provenance and info. flow

» “Diamonds are forever”
» Ingeneral,t/ Oxm — T
» Need declassification

NS VA o B 22/39
A Decade of Dependent Session Types

Dependent Session Types
Affirmation — Trust Axioms

» Affirmations track aspects of provenance and info. flow

» “Diamonds are forever”
» Ingeneral,t/ Oxm — T
» Need declassification

» Trust axioms
» For specific types 7 and principals K:

trustg » : Ox7 — 7

» Implementable, in general, by stripping signature

N.VA NowscrooLor Bernardo Toninho
A Decade of Dependent Session Types

22/39

Dependent Session Types
Affirmation — Trust Axioms

» Affirmations track aspects of provenance and info. flow
» “Diamonds are forever”

» Ingeneral,t/ Oxm — T
» Need declassification

» Trust axioms
» For specific types 7 and principals K:

trustg » : Ox7 — 7

» Implementable, in general, by stripping signature
» Omitted proofs [r] cannot be recovered, in general

Virl =7 not implementable, in general
t/ Ox[r] — 7 notimplementable, in general

N.VA ke toumll Bernardo Toninho 22/39
A Decade of Dependent Session Types

Roadmap

» Digital signatures through modal affirmation.
» Recursion and Sharing

» Ergometric and Temporal Session Types

» Richer forms of dependency

NS VA o B 23/39
A Decade of Dependent Session Types

Recursion and Sharing
Motivation

> Logical types so far cannot express iterative behaviors.
» Limits applicability to many real-world examples.

NS VA = [24/39
A Decade of Dependent Session Types

Recursion and Sharing
Motivation

> Logical types so far cannot express iterative behaviors.
» Limits applicability to many real-world examples.

» Especially the case due to linearity (sessions are isolated, one-shot).

» Two approaches:

Bernardo Toninho
A Decade of Dependent Session Types

24/39

Recursion and Sharing
Motivation

> Logical types so far cannot express iterative behaviors.
» Limits applicability to many real-world examples.

» Especially the case due to linearity (sessions are isolated, one-shot).

» Two approaches:

> Recursive and co-recursive session types [TCP13,TCP14,LM16,TY19]
» Shared Sessions [ALM16,BP17]

Bernardo Toninho
A Decade of Dependent Session Types

24/39

Recursion and Sharing
Recursive Types and Processes

Via fixed point combinators [TCP13,TCP14]

» Ability to write recursive programs (e.g. a stream of natural numbers):

nats : nat -> {c:nu X.$nat * X}
nats n = {c.

send c n

nats (n+1)

}
» Combines/conflates recursion and corecursion.

Bernardo Toninho
A Decade of Dependent Session Types

ATEY)

Recursion and Sharing
Recursive Types and Processes

Via fixed point combinators [TCP13,TCP14]

» Ability to write recursive programs (e.g. a stream of natural numbers):

nats : nat -> {c:nu X.$nat * X}
nats n = {c.

send c n

nats (n+1)

}
» Combines/conflates recursion and corecursion.
» General recursion abandons logical soundness (non-termination).

» Can be recovered via syntactic means of ensuring productivity [TCP14].

Bernardo Toninho
A Decade of Dependent Session Types

ATEY)

Recursion and Sharing
Recursive Types and Processes

Via initial algebra and final coalgebra semantics [LM16,TY20]:

» Extend language with type functors F' and their least and greatest fixed points
uwF and vF.

» Terms extended with appropriate operators: in, out, fold, unfold.

NS VA o B
A Decade of Dependent Session Types

26/39

Recursion and Sharing
Recursive Types and Processes

Via initial algebra and final coalgebra semantics [LM16,TY20]:

» Extend language with type functors F' and their least and greatest fixed points
uwF and vF.

» Terms extended with appropriate operators: in, out, fold, unfold.
Recursive channels for natural numbers (finitely generated):

NC(X)=1@® (nat® X) Nats = uNC

NBVA szt R
A Decade of Dependent Session Types

26/39

Recursion and Sharing
Recursive Types and Processes

Via initial algebra and final coalgebra semantics [LM16,TY20]:

» Extend language with type functors F' and their least and greatest fixed points
uwF and vF.

» Terms extended with appropriate operators: in, out, fold, unfold.
Recursive channels for natural numbers (finitely generated):

NC(X)=1® (nat® X) Nats = uNC
Corecursive channels for natural numbers (finitely consumed):

NC(X) = ($nat® X) Nats'’ = vNC'

NBVA szt R
A Decade of Dependent Session Types

26/39

Recursion and Sharing
Sharing

> Logical session types fail to capture numerous features of process calculus,
even when extended recursion.

» Computation is confluent and only features “don’t care” non-determinism.

» Linearity itself can be very restrictive (e.g. well-typed compositions require
sharing exactly 1 channel).
» How to recover these features? and at what cost?

N'VA ke toumll Bernardo Toninho 27/39
A Decade of Dependent Session Types

Recursion and Sharing
Sharing

> Logical session types fail to capture numerous features of process calculus,
even when extended recursion.

» Computation is confluent and only features “don’t care” non-determinism.

» Linearity itself can be very restrictive (e.g. well-typed compositions require
sharing exactly 1 channel).

» How to recover these features? and at what cost?

» Conflation of dual types [ALM16]
» Manifest sharing [BP17]

NBVA szt R
A Decade of Dependent Session Types

27/39

Recursion and Sharing
Sharing

Conflation of dual types, in classical linear logic [ALM16]:

» ® and —o: Sharing of multiple channels between parallel threads.

» !and ?: Access points (i.e. stateful non-determinism).

Bernardo Toninho
A Decade of Dependent Session Types

28/39

Recursion and Sharing
Sharing

Conflation of dual types, in classical linear logic [ALM16]:
» ® and —o: Sharing of multiple channels between parallel threads.

» @ and &: Local non-determinism / failures (c.f. P + Q in w-calculus).

» !and ?: Access points (i.e. stateful non-determinism).

Bernardo Toninho
A Decade of Dependent Session Types

28/39

Recursion and Sharing
Sharing

Conflation of dual types, in classical linear logic [ALM16]:
» ® and —o: Sharing of multiple channels between parallel threads.
» @ and &: Local non-determinism / failures (c.f. P + Q in w-calculus).
» !and ?: Access points (i.e. stateful non-determinism).

The price of conflation:

» ® and —: Deadlocks typable, termination and determinism preserved.

» @ and &: Determinism is lost.
» ! and ?: Termination, deadlock-freedom and determinism lost.

. Bernardo Toninho
A Decade of Dependent Session Types

28/39

Recursion and Sharing
Sharing

Manifest sharing [BP17]:
» Alternative interpretation of the exponential ! 4, sharing instead of copying.
» Programmatically, controlled via an acquire-release discipline.

» Manifest in the type structure via TE Aand LE A (based on Benton's LNL [B94]
and Reed’s adjoint logic [R09]).

Bernardo Toninho
A Decade of Dependent Session Types

PATEY)

Recursion and Sharing
Sharing

Manifest sharing [BP17]:
>
>
>

Alternative interpretation of the exponential ! A, sharing instead of copying.
Programmatically, controlled via an acquire-release discipline.

Manifest in the type structure via 13 A and |S A (based on Benton’s LNL [B94]
and Reed’s adjoint logic [R09]).

A shared session of type 17 A may be acquired by clients (race for shared
resource), subsequently used as A.

A linear session of type |7 A may then be released, back to shared mode.

. Bernardo Toninho
A Decade of Dependent Session Types

PATEY)

Recursion and Sharing
Sharing

Manifest sharing [BP17]:

>
>
>

. N‘VA NOVA SCHOOL OF Bernardo Toninho
scie 1o6r

Alternative interpretation of the exponential ! A, sharing instead of copying.
Programmatically, controlled via an acquire-release discipline.

Manifest in the type structure via 13 A and |S A (based on Benton’s LNL [B94]
and Reed’s adjoint logic [R09]).

A shared session of type 17 A may be acquired by clients (race for shared
resource), subsequently used as A.

A linear session of type |7 A may then be released, back to shared mode.

Asynchronous 7-calculus becomes encodable (non-determinism,
non-termination, deadlocks).

A Decade of Dependent Session Types

PATEY)

Roadmap

» Digital signatures through modal affirmation.
» Recursion and Sharing

» Ergometric and Temporal Session Types

» Richer forms of dependency

NS VA o B 30/39
A Decade of Dependent Session Types

Ergometric and Temporal Session Types
Indexed Types

» With recursive types, it becomes natural to think of indexed session types:

nats = $nat ® nats

Bernardo Toninho
A Decade of Dependent Session Types

31/39

Ergometric and Temporal Session Types
Indexed Types

» With recursive types, it becomes natural to think of indexed session types:

nats[n] = 3Im : nat.$[m = n| @ nats[n + 1]

Bernardo Toninho
A Decade of Dependent Session Types

31/39

Ergometric and Temporal Session Types
Indexed Types

» With recursive types, it becomes natural to think of indexed session types:

nats[n] = 3Im : nat.$[m = n] @ nats[n + 1]

queuey[n] = &{ins : A — queuey[n + 1],
del : ®{none : §[n = 0| ® 1,
some : $[n > 0] ® A ® queue [n — 1]}}

N.VA NovascHooL oF Bernardo Toninho 31/39
A Decade of Dependent Session Types

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

Bernardo Toninho
A Decade of Dependent Session Types

32/39

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

» Ergometric session types [DHP18a] capture exchange of potential, in the style
of amortized complexity analysis (>" A):

N.VA NovascHooL oF Bernardo Toninho
A Decade of Dependent Session Types

32/39

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

» Ergometric session types [DHP18a] capture exchange of potential, in the style
of amortized complexity analysis (>" A):

queue 4[n] = &{ins : 2" A — queue 4[n + 1],

del : >° @ {none : $§[n = 0] ® 1,
some : §[n > 0] ® A ® queuey[n — 1]}}

N.VA NowsciooL of Bernardo Toninho
A Decade of Dependent Session Types

32/39

Ergometric and Temporal Session Types
Ergometric and Temporal Modalities [DHP18a,DHP18b,DP20]

» Complexity analysis of concurrent, message-passing programs.

» Ergometric session types [DHP18a] capture exchange of potential, in the style
of amortized complexity analysis (>" A):

queue 4 [n] = &{ins : > A — queue 4[n + 1],
del : >? @ {none : §[n = 0] ® 1,
some : §[n > 0] ® A ® queuey[n — 1]}}

» Temporal session types [DHP18b] capture parallel complexity (span) via
temporal modalities over linear time (o4, A4, O A).

» Can check constant number of delays between insertions and deletions in
(bucket-brigade) queue.

N‘VA NowsciooL of Bernardo Toninho 32/39
A Decade of Dependent Session Types

Roadmap

» Digital signatures through modal affirmation
» Recursion and Sharing

» Ergometric and Temporal Session Types

» Richer forms of dependency

NS VA o B 33/39
A Decade of Dependent Session Types

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

N.VA NowscrooLor Bernardo Toninho
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Bernardo Toninho
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if falseAB = B

Bernardo Toninho
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if = ($nat ® 1) ($bool ® 1)

NS VA o B
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if z ($nat @ 1) ($bool ® 1)

NBVA szt R
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if z ($nat @ 1) ($bool @ 1)

NBVA szt R
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if z ($nat @ 1) ($bool ® 1)

F z(z).case z of (true = z(23), false = z(true)) :: 2:T

NS VA o B
A Decade of Dependent Session Types

34/39

Richer forms of Dependency
Idea

» All dependencies so far are purely at the level of values
» No way of having protocol structure depend on data:

» “If the received value is OK, receive a String ; otherwise, send a termination
message”.

» Need type-level functions [TY18].

Boolean-driven Communication

if :: Bool — stype — stype — stype
iftrueAB = A if false AB = B

T £ Va:bool.if z ($nat @ 1) ($bool ® 1)
F z(z).case z of (true = z(23), false = z(true)) :: 2:T

t/ z(z).case z of (false = z(23), true = z(true)) :: z:T

NS VA o B
A Decade of Dependent Session Types

34/39

Outline

Open Problems and Ongoing Work

NS VA o B 35/39
A Decade of Dependent Session Types

Indexing and Decidability

So far:
» Recursive session types
» Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.

Bernardo Toninho
A Decade of Dependent Session Types

36/39

Indexing and Decidability

So far:
» Recursive session types
» Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
> Type equality?

NS VA o B 36/39
A Decade of Dependent Session Types

Indexing and Decidability

So far:
» Recursive session types
» Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
» Type equality? Type bisimulation.
» Decidable in functional (i.e. nominal) settings...

NS VA o B 36/39
A Decade of Dependent Session Types

Indexing and Decidability

So far:
» Recursive session types
Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.
Type equality? Type bisimulation.
Decidable in functional (i.e. nominal) settings...

Undecidable in a structural setting [DP20]:

> Just one type constructor (¢ or &) is enough.
» Undecidable with iso or equirecursive types.
» Undecidable with linear arithmetic + universal prefix quantification.

>
>
>
>

NS VA = [36/39
A Decade of Dependent Session Types

Indexing and Decidability

So far:

>

>
| 4
| 4
>

Recursive session types

Indexing + Refinements with decidable (e.g. linear or Presburger) arithmetic.

Type equality? Type bisimulation.
Decidable in functional (i.e. nominal) settings...

Undecidable in a structural setting [DP20]:

> Just one type constructor (¢ or &) is enough.
» Undecidable with iso or equirecursive types.
» Undecidable with linear arithmetic + universal prefix quantification.

Practical and effective algorithms can be found [DP20]...

More work to do on this front — nested types [DDMP21], richer dependency
[TY18], etc.

Bernardo Toninho
A Decade of Dependent Session Types

NOVA
ssssssssssssss

36/39

Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?

Bernardo Toninho
A Decade of Dependent Session Types

37/39

Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?
» Linearity + dependency is a longstanding complex problem.

» Dependency on (quoted) processes studied [TY18], but no
inductive/coinductive types.

Bernardo Toninho
A Decade of Dependent Session Types

37/39

Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?
» Linearity + dependency is a longstanding complex problem.

» Dependency on (quoted) processes studied [TY18], but no
inductive/coinductive types.

Bernardo Toninho
A Decade of Dependent Session Types

37/39

Fully-Dependent Type Theory

» What about general dependency instead of just data dependency?
» Linearity + dependency is a longstanding complex problem.

» Dependency on (quoted) processes studied [TY18], but no
inductive/coinductive types.

» Decidability of type equality is very subtle.

» Many reasonable notions of process equality (observational, reduction-based,
etc.).

o Bernardo Toninho 37/39
A Decade of Dependent Session Types

Implementation

» All this theory is well and good, but...
» what about implementations of refined/dependent session types?

>
>
>

>
| 4

Rast [DDP19,DP20] — Resource-aware session types with arithmetic refinements.

LiquidPi [GG13] - refinements only on basic data, inference is decidable.
Label-dependent session types [TV20] — indexed by naturals, fixed-iteration
schema.

Session* [ZFHNY20] - multiparty protocol description toolchain, targeting F*
STP [NHYA18] — multiparty data refinements in F# type providers.

. Bernardo Toninho
A Decade of Dependent Session Types

38/39

Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.

NS VA o B 39/39
A Decade of Dependent Session Types

Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.
» Logical approach provides a general framework of dependency and indexing.
» Extensible and flexible (proof-carrying code, resource-awareness, etc.)

NS VA o B 39/39
A Decade of Dependent Session Types

Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.
» Logical approach provides a general framework of dependency and indexing.

» Extensible and flexible (proof-carrying code, resource-awareness, etc.)
» A bunch of other people got interested in these ideas over the years!

Bernardo Toninho
A Decade of Dependent Session Types

39/39

Wrapping Up

» An (incomplete) overview of 10 years of dependent and logical session types.
» Logical approach provides a general framework of dependency and indexing.
» Extensible and flexible (proof-carrying code, resource-awareness, etc.)

» A bunch of other people got interested in these ideas over the years!

Thank you for your time! Questions?

Bernardo Toninho

8l ADecade of Dependent Session Types

	Before our Work
	Our Work
	(Some of) what came after
	Open Problems and Ongoing Work

