
Corecursion and Non-Divergence in Session-Typed
Processes

Bernardo Toninho1,2, Luis Caires1, and Frank Pfenning2

1 Universidade Nova de Lisboa, Portugal
2 Carnegie Mellon University, USA

Abstract. Session types are widely accepted as an expressive discipline for structuring
communications in concurrent and distributed systems. In order to express infinitely un-
bounded sessions, session typed languages often include general recursion which may
introduce undesirable divergence, e.g., infinite unobservable reduction sequences. In
this paper we address, by means of typing, the challenge of ensuring non-divergence in
a session-typed π-calculus with general (co)recursion, while still allowing interesting
infinite behaviors to be definable. Our approach builds on a Curry-Howard correspon-
dence between our type system and linear logic extended with co-inductive types, for
which our non-divergence property implies consistency. We prove type safety for our
framework, implying protocol compliance and global progress of well-typed processes.
We also establish, using a logical relation argument, that well-typed processes are com-
positionally non-divergent, that is, that no well-typed composition of processes, includ-
ing those dynamically assembled via name passing, can result in divergent behavior.

1 Introduction

We live in an age of concurrent and distributed software, meant to run not only as
local applications but as cooperating parts of larger, distributed and mobile services,
meant to run indefinitely with multiple independent clients, which are hard to build and
ensure correct. Process models combined with techniques for precisely characterizing
and analyzing system behavior have been used to verify properties such as deadlock
freedom, protocol compliance, and availability in distributed and service based systems.

Among type-based approaches to verification, a rather successful technique has
been that of session types [1–3]. Session types structure message-based concurrency
based on the notion of a session, which is a precise description of the interaction pat-
terns of two (or more) communicating agents with an intrinsic notion of protocol state
(e.g. input a string and then output an integer) and duality. Thus, session types are a
form of protocol descriptions that can be statically checked for compliance. The re-
cent discovery of a correspondence between session types and linear logic in the style
of Curry-Howard [4], linking proofs with typed processes and proof reduction with
communication, has sparked a renewed interest in session types and their foundations
[5], and in the idea of exploiting logically motivated approaches for providing power-
ful reasoning techniques about concurrent and distributed systems. This line of work
has addressed concepts such as value-dependent types [6], proof-carrying code [7], be-
havioural polymorphism [8], and higher-order computation [9], approaching a general

type theory for session-based concurrency, with strong typing guarantees such as dead-
lock freedom and session fidelity.

Although in the untyped setting infinite behavior is encodable using (π-calculus)
replication, more “practical” session typed languages often introduce general recursion
at both the program and type level [2]. In a typed setting, replication can only capture
finite session behaviors, even if replicated arbitrarily often. It is insufficient to model
infinite session behavior, or repeating behavioral patterns depending on evolving state.

Unfortunately, existing session type systems for languages equipped with general
recursion do not avoid validating systems exhibiting undesirable internal divergence,
e.g., infinite sequences of unobservable internal reduction steps. While this issue al-
ready arises at the level of individual systems, it becomes more serious when one needs
to consider dynamically linked systems. For example, plugging together subsystems,
e.g. as a result of dynamic channel passing or of linking higher-order code, may unde-
sirably result in a system unable to offer its intended services due to divergent behavior,
even if the subsystems are independently well-typed and divergence-free.

In this work, we tackle the challenge, within a session typed framework, of rec-
onciling general recursion, enabling potentially infinite behavior to be expressed, with
local termination (non-divergence), strong normalization, and compositionality (i.e. any
well-typed process composition is non-divergent).

We illustrate our language with a toy example: consider a Twitter web service offer-
ing a replicated session trends which is intended to produce a stream of current trends,
according to some custom metrics. The service is parametrized by a filter session that
given a stream of tweets produces a stream of trends. The session types involved are ((
and ∧ denote session data input and data output, respectively, and ! service offering):

TrendService , !(Filter (Trends) Filter , Tweets (Trends

Tweets , νX.(tweet ∧X) Trends , νY.(trend ∧ Y)

Type TrendService specifies a replicated service that given an appropriate filter process
providing the trend metrics specified by the client, transforms a stream of tweets (a
recursive session that outputs tweets) into a stream of trends (a recursive session that
outputs trends), produces the stream of trends the client wishes to measure. A possible
client for the service is the following process (we write corec Z.P for a corecursive
definition of P with recursion variable Z):

Client , (νx)trends〈x〉.(νk)x〈k〉.(Fk | (corec Z.x(y).p〈y〉.Z))

The Client process invokes the shared server, resulting in a fresh session on channel x,
sends a handle k to the analytics package Fk, and then sits in a loop printing out (on
session p) each trend received from the server on session x. In our type system, we may
derive the typing judgment: trends:TrendService ` Client :: p:Trends. We follow the
formulation of linear logic based session types of [4], where typing judgments have the
form Γ ;∆ ` P :: x:U . Such a judgment states of process P that it provides a session
of type U at x, when composed with services / sessions as specified by Γ ;∆. We may
compose the client and the trend service (offered by a process Serv) into a closed system
Sys , (νtrends)(Serv | Client). Sys will (unboundedly) print out trends on channel
p. Although it generates an infinite stream of trends at p, involves higher-order name
passing, dynamic linking, and occurrences of recursive calls, Sys will never get into
internal divergence, as a result of being well-typed in our type system.

2

It is challenging to obtain an expressive and flexible typing discipline for general
co-recursion (provably) ensuring the compositional non-divergence property, as we do
in this work. For instance, consider the similar looking processes:

Loop , corec L(c).c(x).(νd)(L(d) | d〈n〉.[d↔ c])

Good , corecG(c).c〈x〉.(νd)(G(d) | c〈n〉.[d↔ c])

Both processes do not autonomously diverge. It is possible to type Good in our system,
ensuring that it will never diverge, even when composed with arbitrary (well-typed)
processes. However, this is not the case for Loop which produces an infinite reduction
sequence after the first communication on c (see Section 4), and is not well-typed.

Our typing discipline eliminates unproductive internal behavior, ensuring together
with global progress (actually, lock-freedom) and protocol fidelity, the compositional
non-divergence of infinite behaviors (i.e. there is no well-typed process context under
which a well-typed process will evolve to a divergent behavior), an important property
out of the scope of existing session type systems with recursive types. We summarize
the contributions of our work:

– We introduce a session type system for our process calculus based on linear logic
with coinductive types, associating corecursive process definitions with coinductive
session types which encode potentially infinite session behavior.

– We show that well-typed processes enjoy very strong safety properties such as type
preservation (or session fidelity) and progress, even in the presence of corecursion.

– We prove that well-typed processes are compositionally non-divergent by employ-
ing a logical relations argument, extended to coinductive session types, ensuring
that any well-typed service implemented in our calculus may never become un-
available through divergent behavior.

2 Process Model

In this section we introduce our process calculus, essentially consisting of a (syn-
chronous) π-calculus with basic data types for convenience, input-guarded replication,
labelled choice and selection and corecursion. The syntax of processes is given below:

M,N ::= . . . (basic data constructors)
P,Q ::= x〈M〉.P | x(y).P | x〈y〉.P | (νy)P | !x(y).P | P |Q

| x.case(lj ⇒ Pj) | x.li;P | (corec X(y).P) c | X(c) | [x↔ y] | 0

We range over basic data withM,N and processes with P,Q. We write y and c for a list
of variables and channels, respectively. We write fn(P) for the free names of process
P . Basic data type constructors include the typical constructs for manipulating data such
as numbers, strings and lists. The process language is a synchronous π-calculus with
term input x(y).P and output x〈M〉.P , channel output c〈y〉.P , input-guarded replica-
tion !x(y).P , n-ary labelled choice x.case(lj ⇒ Pj) and selection x.li;P , channel for-
warding [x↔ y] and, crucially, a parametrized corecursion operator (corec X(y).P) c,
enabling corecursive process definitions (the variables y are bound in P). The parame-
ters are used to instantiate channels (and values) in recursive calls accordingly.

3

x 6∈ fn(P)⇒ P |(νx)Q ≡ (νx)(P |Q) P ≡α Q⇒ P ≡ Q
P | (Q |R) ≡ (P |Q) | R P |Q ≡ Q |P
(νx)(νy)P ≡ (νy)(νx)P [y ↔ x] ≡ [x↔ y]
P |0 ≡ P (νx)0 ≡ 0

Fig. 1. Structural Congruence

c〈V 〉.P | c(x).Q −→ P | Q{V/x} c〈y〉.P | c(x).Q −→ P | Q{y/x}
c〈y〉.P | !c(x).Q −→ P | Q{y/x} | !c(x).Q c.case(li ⇒ Pi) | c.li;Q −→ Pi | Q
(νx)(P | [y ↔ x]) −→ P{y/x} (x 6= y) If Q −→ Q′ then P | Q −→ P | Q′

(corec X(y).P) c −→ P{c/y}{(corec X(y).P)/X} If P −→ Q then (νy)P −→ (νy)Q
If P ≡ P ′ and P ′ −→ Q′ and Q′ ≡ Q then P −→ Q

Fig. 2. Reduction

The operational behavior of processes is given in terms of reduction and labelled
transitions, both defined modulo structural congruence (written≡) which captures basic
structural identities of processes (Fig. 1). Reduction P −→ Q is defined by the rules
in Fig. 2. Term communication is only done in value form, meaning that all terms are
reduced to values – written as V – before communication takes place (the reduction
rules for terms and the compatible closure rules are omitted). We note the standard
unfolding semantics for corecursion. We write⇒ for the reflexive transitive closure of
−→ and P ⇓ iff P is non-divergent (i.e. no infinite reduction sequence starting with P).

To define the interactions of a process with its environment we adopt the early la-
belled transition system for the π-calculus [10] extended with the appropriate labels
and rules for choice, value communication, forwarding and corecursion. A transition
P

α−→ Q denotes that process P may evolve to Q by performing the action represented
by label α. Transition labels are defined as:

α ::= τ | x(y) | x(V) | x.l | x y | xV | x〈y〉 | x.l

Actions are channel input x(y), value input x(V), the offer of a labelled choice x.l
and their matching co-actions, respectively the channel output x y, value output xV
and bound output x〈y〉 actions, and the selection x.l. The bound output x〈y〉 denotes
extrusion of a fresh name y along x. Internal action is denoted by τ . For conciseness
we highlight only the transition rules for forwarding and corecursion, which are given
a silent transition semantics:

(νx)(P | [y ↔ x])
τ−→ P{y/x} (y 6= x) (corec X(y).P) c

τ−→ P{c/y}{(corec X(y).P)/X}

The remaining rules for the labelled transitions semantics are identical to those in [4].

3 Type System

In this section we motivate and present our type system based on intuitionistic linear
logic. The syntax of types is given below:

τ, σ ::= nat | string | . . .
A,B,C ::= τ ⊃ A | τ ∧A | A(B | A⊗B | 1 | N{lj :Aj} | ⊕{lj :Aj} | !A | νX.A | X

4

We distinguish the types of data τ, σ from sessions A,B,C. The language of session
types covers the standard session constructs: data input and output (τ ⊃ A and τ ∧A),
session input and output (A (B and A ⊗ B), termination (1), labelled choice and
selection (N{lj :Aj} and ⊕{lj :Aj}), replication (!A) and coinductive sessions (νX.A).

From General Recursion to Corecursion While both recursive and coinductive ses-
sion types denote potentially infinite session behavior, the fundamental distinction is
that general recursion might generate an infinite sequence of internal actions and thus
cause divergence, whereas a valid coinductive definition of a session typed process is
guaranteed to always have a finite sequence of internal actions before offering some ob-
servable behavior – i.e. be productive – and thus cannot diverge. It is this external, ob-
servable behavior that may be infinite in a coinductively defined, session typed process.
Moreover, this non-divergence result is compositional: well-typed coinductive sessions
may be safely composed, ensuring that the resulting system is itself non-divergent.

To rule out divergence we impose a discipline on the occurrence of the recursion
variable in processes, in line with the work on coinductive definitions in dependent type
theories such as that of Coq [11] or Agda [12], but here mapped to a concurrent setting,
where types describe behavior that is produced by processes rather than data that is con-
structed by functions, making many of the more recent type-based termination methods
[13] based on indexing constructors for coinductive data types not immediately appli-
cable. Essentially, we require that a corecursive process definition be productive – there
is always a finite sequence of internal actions between observable actions.

Observable actions are those that take place on the session channel that is being
offered by a given process, whereas internal actions are those generated through inter-
actions with ambient sessions. Given our notion of productivity, a natural restriction is
to require an action on the offered channel before allowing recursive calls to take place
(i.e. recursive calls must be guarded by an observable action). However, guardedness
alone is not sufficient to ensure productivity. Process Loop from Section 1 is guarded
but produces divergent behavior when composed with a process that provides it with an
output. The issue is that after the input along c, we have an occurrence of the recursion
variable in parallel with a process that interacts with the recursive occurrence locally,
destroying the productivity of the original definition.

Thus, ensuring non-divergence in a compositional way requires not only guarded-
ness but also disallowing interactions with corecursive calls within corecursive def-
initions, a property we call co-regular recursion. To this end, we must impose that
processes that are placed in parallel with corecursive calls may not communicate with
the corecursive call, although they may themselves perform other actions. As we dis-
cuss at the end of this section, our type system ensures this form of non-interference
by not exposing the communication interface of corecursive calls, ensuring that pro-
cesses composed with corecursive calls may perform communication, but not with the
corecursive call itself.

3.1 Typing Coinductive Sessions

Having made the informal case for the kinds of restrictions on general recursion that are
needed in order to eliminate divergent computation, we now present the type system for

5

(∧R)
Ψ `M :τ Ψ ;Γ ;∆ `η P :: c:A

Ψ ;Γ ;∆ `η c〈M〉.P :: c:τ ∧A

(∧L)
Ψ, x:τ ; Γ ;∆, c:A `η Q :: d:D

Ψ ; Γ ;∆, c:τ ∧A `η c(x).Q :: d:D

(1L)

Ψ ;Γ ;∆ `η P :: d:D

Ψ ;Γ ;∆, c:1 `η P :: d:D

(⊗R)
Ψ ;Γ ;∆1 `η P1 :: x:A Ψ ;Γ ;∆2 `η P2 :: c:B

Ψ ;Γ ;∆1,∆2 `η (νx)c〈x〉.(P1 | P2) :: c:A⊗B
(⊗L)
Ψ ;Γ ;∆,x:A, c:B `η Q :: d:D

Ψ ;Γ ;∆, c:A⊗B `η c(x).Q :: d:D

((R)

Ψ ;Γ ;∆,x:A `η P :: c:B

Ψ ;Γ ;∆ `η c(x).P :: c:A(B

((L)

Ψ ;Γ ;∆1 `η Q1 :: x:A Ψ ;Γ ;∆2, c:B `η Q2 :: d:D

Ψ ;Γ ;∆1,∆2, c:A(B `η (νx)c〈x〉.(Q1 | Q2) :: d:D

(1R)

Ψ ;Γ ; · `η 0 :: c:1

(NR)

Ψ ;Γ ;∆ `η P1 :: c:A1 . . . Ψ ;Γ ;∆ `η Pn :: c:An

Ψ ;Γ ;∆ `η c.case(lj ⇒ Pj) :: c: N {lj :Aj}

(NL)

Ψ ;Γ ;∆, c:Ai `η Q :: d:D

Ψ ;Γ ;∆, c: N {lj :Aj} `η c.li;Q :: d:D

(νL)

Ψ ;Γ ;∆, c:A{νX.A/X} `η Q :: d:D

Ψ ;Γ ;∆, c:νX.A `η Q :: d:D

(VAR)
η(X(y)) = Ψ ;Γ ;∆ ` d:Y ρ = {z/y}
ρ(Ψ); ρ(Γ); ρ(∆) `η X(z) :: ρ(d):Y

(νR)

Ψ ;Γ ;∆ `η′ P :: c:A η′ = η[X(y) 7→ Ψ ;Γ ;∆ ` c:Y]

Ψ ;Γ ;∆ `η (corec X(y).P{y/z}) z :: c:νY.A

(ID)

Ψ ;Γ ; d:A `η [d↔ c] :: c:A

(CUT)
Ψ ;Γ ;∆1 `η P :: x:A Ψ ;Γ ;∆2, x:A `η Q :: d:D

Ψ ;Γ ;∆1,∆2 `η (νx)(P | Q) :: d:D

(CUT!)
Ψ ;Γ ; · `η P :: x:A Ψ ;Γ, u:A;∆ ` Q :: d:D

Ψ ;Γ ;∆ `η (νu)(!u(x).P | Q) :: d:D

Fig. 3. Typing Rules (abridged)

our language, essentially made up of the rules of linear logic plus the rules that pertain to
corecursive process definitions, coinductive session types and the corecursion variable.

We define the typing judgment: Ψ ;Γ ;∆ `η P :: z:A denoting that process P offers
the session behavior typed with A along channel z, when composed with the (linear)
session behaviors specified in ∆, with the (unrestricted, or shared) session behaviors
specified in Γ and where η is a mapping from (corecursive) type variables to typing
contexts (we detail this further below). We note that the names in Γ , ∆ and z are all
pairwise distinct. We assume typing to be defined modulo structural congruence by
definition. Context Ψ tracks the free variables in P that pertain to basic data values that
are to be sent and received. We make use of judgment Ψ `M :τ to denote that term M ,
denoting a value that is to be communicated, is well typed under the assumptions in Ψ .

The rules that define our type system are given in Fig. 3, consisting essentially of
those of [4] with the identity rule, value input and output (present in [9]) and coinduc-
tive types, which are associated with corecursion in the process calculus. We note that
coinductive types have strictly positive occurrences of the type variable, also excluding
coinductive types that have no associated session behavior before the type variable oc-
currence (such as νX.X). Moreover, we require coinductive types to mention the type

6

variable. These restrictions are standard and thus enforced implicitly. As usual, in the
presence of type annotations, typechecking is decidable.

We refrain from a detailed presentation of every rule for the sake of conciseness,
highlighting instead the rules pertaining to corecursive processes and coinductive ses-
sion types. We begin with the right rule for coinductive sessions, which types (parame-
terized) corecursive process definitions:

Ψ ;Γ ;∆ `η′ P :: c:A η′ = η[X(y) 7→ Ψ ;Γ ;∆ ` c:Y]

Ψ ;Γ ;∆ `η (corec X(y).P{y/z}) z :: c:νY.A
(νR)

In the rule above, the process P may use the recursion variable X and refer to the
parameter list y, which is instantiated with the list of (distinct) names z which may
occur in Ψ ,∆, Γ or c. Moreover, we keep track of the contexts Ψ , Γ and∆ in which the
corecursive definition is made, as well as the channel name along which the coinductive
behavior is offered and the type variable associated with the corecursive behavior, by
extending the mapping η with a binding for X with the appropriate information. This
is necessary because, intuitively, each occurrence of the corecursion variable stands for
P itself (modulo the parameter instantiations) and therefore we must check that the
necessary ambient session behaviors are available for P to execute in a type correct
way, respecting linearity. P itself simply offers along channel c the session behavior A
(which is an open type). To type the corecursion variable we use the following rule:

η(X(y)) = Ψ ;Γ ;∆ ` d:Y ρ = {z/y}
ρ(Ψ); ρ(Γ); ρ(∆) `η X(z) :: ρ(d):Y

(VAR)

We type a process corecursion variable X by looking up in η the binding for X , which
references the typing environments Ψ , Γ and ∆ under which the corecursive defini-
tion is well defined, the coinductive type variable Y associated with the corecursive
behavior and the channel name d along which the behavior is offered. The corecursion
variable X is typed with the type variable Y if the parameter instantiation is able to
satisfy the typing signature (by renaming available linear and exponential resources or
term variables). We also allow for the offered session channel to be a parameter of the
corecursion. Finally, the left rule for coinductive session types simply unfolds the type:

Ψ ;Γ ;∆, c:A{νX.A/X} `η Q :: d:D

Ψ ;Γ ;∆, c:νX.A `η Q :: d:D
(νL)

While the rules look fairly straightforward, they turn out to introduce quite subtle re-
strictions on what constitutes a well-formed (i.e. well-typed) corecursive process def-
inition. First, observe that the introduction form for corecursive definitions does not
directly unfold the coinductive type in its premise and thus references an open type,
which means that the (corecursive) definition of P provides the behavior specified in
A up to occurrences of the coinductive type variable Y . On the other hand, using a
coinductive session type (which is achieved by the left rule νL) entails unfolding the
coinductive type as expected, and so a user of a coinductive behavior may use as many
unfoldings of νY.A as required.

Up to this point, we have yet to discuss how our type system enforces the necessary
restrictions to ensure non-divergence. It turns out that these restrictions are imposed by
the variable rule in quite subtle ways, due to its interaction with the νR rule. While we
do not syntactically exclude processes without terminal recursion (for instance, process

7

Good from Section 1), a well-typed corecursive definition crucially cannot interact with
its corecursive calls (which could potentially destroy productivity). To see why this is
the case, consider how such an interaction might be allowed in our type system: in
order for a corecursive definition to interact with its own corecursive call in a well-
typed manner, the system would require some form of parallel composition where we
obtain a handle to the corecursive call. That is, we need to obtain a typing where the
channel of the corecursive call is in the context, which is only possible through a cut.

However, since the coinductive type is never unfolded when offering a coinductive
definition, the session interface of the corecursive occurrence is not visible internally.
Thus, a cut of the corecursion variable with some other process Q will generate a fresh
channel c that offers the coinductive type variable, but not the coinductive type, mean-
ing that no left rules that interact with the unfolding of the recursive definition can be
applied. In fact, the only rule that can use c:X is the identity rule, which will forward the
corecursively defined session. This does not prohibit Q from having additional behav-
ior besides forwarding, it simply excludes (potentially) problematic internal interactions
with corecursive calls.

4 Examples

Excluding Unobservable Divergence Elaborating on the process Loop given in Sec-
tion 1, we show how it can result in divergent behavior when interacting with a client
and why Loop is not typeable in our system.

The intended behavior of Loop is to continuously input along the channel c, which
is represented by the session type νX.nat ⊃ X . Consider a process P that provides an
output along c, composed with Loop. We have the following reduction(s):

(νc)(Loop(c) | P)⇒ (νc)(νd)(Loop(d) | d〈n〉.[d↔ c] | P ′)

In the process to the right of the arrow, there is an internal synchronization between the
output along d and the input along the unfolding of Loop, resulting in the following:

⇒ (νc)(νd)((νd′)(Loop(d′) | d′〈n〉.[d′ ↔ d]) | [d↔ c] | P ′)

The infinite internal reduction is now made clear, where regardless of the behavior of
P ′ there is always an internal reduction that produces an additional unfolding of Loop
and may repeat this behavior an unbounded number of times.

It is easy to see that Loop is not well-typed: if we try to type the process bottom-up,
we first apply the νR rule, followed by the⊃R rule. We are then left with the following:

(cut)
` L(d) :: d:X d:X ` d〈n〉.[d↔ c] :: c:X

` (νd)(L(d) | d〈n〉.[d↔ c]) :: c:X

It is immediate that the right premise of the cut cannot be typed, since all that is known
about session d is that it has type X , so no communication along d can be well-typed.

The fundamental motivation for excluding these forms of unobservable divergence
is that morally a process must offer some observable behavior in order to be useful.
Realistically, even a divergent process should be receptive to a “kill” signal, which is
encodable in our setting using choice and 1.

8

Little Endian Bit Counter We illustrate how our framework can express fairly general
process networks with nodes interacting according to structured session protocols. We
consider the implementation of a binary counter, where each bit of a (arbitrary length)
binary numeral is implemented by a process node which can only communicate with
its neighboring processes in the network (in [9] we discussed a similar example, but
expressed using non co-regular recursion, and not typeable in our system. We present
here a version using co-regular recursion, and requiring more sophisticated handshak-
ing). The network implements a protocol offering three operations: poll the counter
for its current integer value; increment the counter value, or terminate the counter. The
corresponding session type is: Counter , νX.N{val:int ∧X, inc:X, halt:1}

Our implementation of Counter is based on a coordinator process that keeps a (lin-
ear) network of communicating processes, representing the counter value in little endian
form (the tail process in the network holds the least significant bit). Each network node
communicates with its two adjacent bit representations, whereas the coordinator com-
municates with the most significant bit process (and with the counter’s external client),
spawning new bits as needed. Overall, the coordinator works as follows: To halt the
counter, the coordinator halts every node and then terminates. To provide the value of
the counter, the coordinator propagates a val message along the network, which will
compute the value as an integer and forward it back to the coordinator. To increment
the counter, the coordinator injects an inc message into the network, which will be prop-
agated to the least significant bit process, and, in a second phase, propagated back as
a carry message, incrementing each bit (modulo 2) as needed. If the carry message,
instead of a done message, reaches the coordinator, a new bit process will be spawned.

The behavior of each node is as follows. When a node receives a val message it
receives the integer value computed by all the nodes encoding more significant bits, up-
dates it with its own contribution and propagates the val message to the less significant
bit nodes, from which it will receive the total counter value and send it forward to the co-
ordinator. When an inc message is received, a node forwards it to its less significant bit
neighbor, and waits for it to send back either a carry or done message. In the latter case,
it will just forward the done message network along the most significant bit node up to
the coordinator, signaling that nothing more needs to be done. In the former case, it will
flip its value and either send a carry or a done message to its most significant bit neigh-
bor. When a carry message reaches the coordinator, it generates a new bit, as mentioned
above. The type for Node(b, x, n) is given by x:CImpl ` Node(b, x, n) :: n:CImpl with

CImpl , νX.N {val:int ⊃ int ∧ X, inc:⊕ {carry:X, done:X}, halt:1}

In Node(b, x, n), b holds the bit value, x is the session channel connecting to the less
significant node (or to the terminal node) and n is the channel connecting to the most
significant node (or to the coordinator). Code for Node(b, x, n) is given in Fig. 4.

The coordinator process code interfaces with clients and wraps the bit process net-
work, generating new bit nodes as needed.

Coord(x, z) , corec X(x, z).z.case(val⇒ x.val;x〈0〉.x(n).z〈n〉.X(x, z),
inc⇒ x.inc;x.case(carry⇒ (νn′)(Node(1, x, n′) | Coord(n′, z)),

done⇒ X(x, z)), halt⇒ x.halt;0) (x, z)

To complete the system we provide the implementation of the empty bit string epsilon,
which will be a closed process of type CImpl. For the val branch, it ping pongs the

9

Node(b, x, n) , corec X(b, x, n).n.case(
val⇒ x.val;n(m).x〈(2 ∗m+ b)〉.x(v).n〈v〉.X(b, x, n),
inc⇒ x.inc;x.case(carry⇒ if (b = 1) then n.carry;X(0, x, n)

else n.done;X(1, x, n), done⇒ X(1, x, n)),
halt⇒ x.halt;0) (b, x, n)

Fig. 4. Node Process

received value. For incrementing, it emits the (first) carry message:

epsilon(x) , corec X(x).x.case(val⇒ x(n).x〈n〉.X(x), inc⇒ x.carry;X(x),
halt⇒ 0) x

Counter(c) , (νe)(epsilon(e) | Coord(e, c))

The system (offering c:Counter) is then produced by composing epsilon and Coord.

5 Results

In this section, we establish type safety for our calculus, entailing session fidelity and
deadlock freedom. We also develop our main result of compositional non-divergence
by extending the linear logical relations of [8, 14] to the coinductive setting, restoring
the connection of our framework with the logical interpretation.

Type Safety Following [4], our proof of type preservation relies on a simulation be-
tween reductions in the session-typed π-calculus and proof reductions from logic.

Theorem 1 (Type Preservation). If Ψ ;Γ ;∆ `η P :: z:A and P −→ Q then Ψ ;Γ ;∆ `η
Q :: z:A.

The proof of progress also follows the lines of [4], but with some additional caveats
due to the presence of corecursive definitions. The key technical aspects of the proof
are a series of inversion lemmas and a notion of a live process, consisting of a process
that has not yet fully carried out its ascribed session behavior, and thus is a parallel
composition of processes where at least one is a non-replicated process, guarded by
some action. We define live(P) if and only if P ≡ (νñ)(π.Q | R), for some process
R, sequence of names ñ and a non-replicated guarded process π.Q.

Theorem 2 (Progress). If Ψ ;Γ ;∆ ` P :: z:A and live(P) then there is some Q with
P −→ Q or one of the following holds:

(a) ∆ = ∆′, y:B, for some ∆′ and y:B. There exists R s.t. Ψ ;Γ ;∆′′ ` R :: y:B, R 6−→
and (νy)(R | P) −→ Q.

(b) There exists R s.t. Ψ ;Γ ; z:A,∆′ ` R :: w:C, R 6−→ and (νz)(P |R) −→ Q.
(c) Γ = Γ ′, u:B, for some Γ ′ and u:B. There exists Ψ ;Γ ; · ` R :: x:B s.t. (νu)(!u(x).R |

P) −→ Q.

Our notion of progress states that well-typed processes never get stuck even in the
presence of infinite session behavior. Either the process progresses outright via internal
computation, awaits on an interaction with its environment ((a) or (c)) or is waiting for
an interaction along its offered channel ((b)).

10

Compositional Non-Divergence To prove the key property of compositional non-
divergence, we develop a (linear) logical relations argument for coinductive session
types. As in prior work for languages without recursion [14, 8], we build on Girard’s
technique of reducibility candidates: sets of non-divergent, well-typed terms, closed
under reduction and (typed) expansion, adapted to the setting of our process calculus.

Definition 1 (Reducibility Candidates). Given a type A and name z, a reducibility
candidate at z:A, written R[z:A] is a set of closed, well-typed processes offering z:A
that satisfy the following:

1. If P ∈ R[z:A] then P ⇓.
2. If P ∈ R[z:A] and P ⇒ P ′ then P ′ ∈ R[z:A]
3. If for all Pi such that P ⇒ Pi we have Pi ∈ R[z:A] then P ∈ R[z:A].

We refer to R[−:A] as the collection of all sets of reducibility candidates at (closed)
type A. Our definition of the logical predicate identifies processes up to the compati-
ble extension of structural congruence with the well-known sharpened replication ax-
ioms [10], written≡!. The replication axioms express strong behavioral equivalences in
our typed setting [14].

Definition 2. We write ≡! for the least congruence relation on process expressions
resulting from extending structural congruence ≡ with the following axioms:

1. (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))
2. (νu)(!u(y).P | (νv)(!v(z).Q | R)) ≡! (νv)((!v(z).(νu)(!u(y).P |Q)) | (νu)(!u(y).P |R))
3. (νu)(!u(y).Q | P) ≡! P if u 6∈ fn(P)

Intuitively, axioms (1) and (2) represent the distribution of shared servers among “client”
processes, and (3) garbage collects shared servers which can no longer be invoked.

We define a logical predicate on processes by induction on types and the size of
typing contexts. The predicate captures the computational behavior of non-divergent
processes, as defined by their typing. In the development below, we make use of L[τ],
which denotes the logical interpretation of the values exchanged in communication (i.e.
sets for well-typed values of the appropriate type). We omit this definition due to its
simplicity and for the sake of conciseness.

Definition 3 (Logical Predicate - Open Process Expressions). Given Ψ ;Γ ;∆ `η T
with a non-empty left hand side environment, we define Lω[Ψ ;Γ ;∆ `η T], where ω
is a mapping from type variables to reducibility candidates, as the set of processes
inductively defined as:

P ∈ Lω[Ψ, x:τ ;Γ ;∆ `η T] iff ∀M ∈ L[τ].P{M/x} ∈ Lω[Ψ ;Γ ;∆ `η T]
P ∈ Lω[Γ ;∆, y:A `η T] iff ∀R ∈ Lω[y:A].(νy)(R | P) ∈ Lω[Γ ;∆ `η T]
P ∈ Lω[Γ, u:A;∆ `η T] iff ∀R ∈ Lω[y:A].(νu)(!u(y).R | P) ∈ Lω[Γ ;∆ `η T]

The definition of the logical interpretation for open processes inductively composes
the process with the appropriate witnesses in the logical interpretation at the types spec-
ified in the three contexts, following [14].

The key part of our development is the definition of the logical predicate for closed
processes. Similar to the treatment of type variables in logical relations for polymorphic

11

Lω[z:νX.A] ,
⋃
{Ψ ∈ R[−:νX.A] | Ψ ⊆ Lω[X 7→Ψ][z:A]}

Lω[z:X] , ω(X)(z)

Lω[z:1] , {P | ∀P ′.(P =⇒ P ′ ∧ P ′ 6−→)⇒ P ′ ≡! 0}
Lω[z:A(B] , {P | ∀P ′y.(P

z(y)
=⇒ P ′)⇒ ∀Q ∈ Lω[y:A].(νy)(P ′ | Q) ∈ Lω[z:B]}

Lω[z:A⊗B] , {P | ∀P ′y.(P
(νy)z〈y〉
=⇒ P ′)⇒

∃P1, P2.(P
′ ≡! P1 | P2 ∧ P1 ∈ Lω[y:A] ∧ P2 ∈ Lω[z:B])}

Lω[z:!A] , {P | ∀P ′.(P =⇒ P ′)⇒ ∃P1.(P
′ ≡! !z(y).P1 ∧ P1 ∈ Lω[y:A])}

Lω[z: N {li ⇒ Ai}] , {P |
∧
i (∀P ′.(P

z.li=⇒ P ′)⇒ P ′ ∈ Lω[z:Ai])}

Lω[z:⊕ {li ⇒ Ai}] , {P |
∧
i (∀P ′.(P

z.li=⇒ P ′)⇒ P ′ ∈ Lω[z:Ai])}
Lω[z:τ ∧A] , {P | ∀P ′.(P

z〈M〉
=⇒ P ′)⇒ (M ∈ L[τ] ∧ P ′ ∈ Lω[z:A])}

Lω[z:τ ⊃ A] , {P | ∀P ′,M.(M ∈ L[τ] ∧ P z(M)
=⇒ P ′)⇒ P ′ ∈ Lω[z:A]}

Fig. 5. Logical Predicate - Closed Processes

languages (c.f. [8]), we employ a mapping from type variables to candidates at a given
type. More precisely, we map type variables to candidates at the appropriate coinductive
type, representing the unfolding of coinductive types.

We interpret a coinductive session type νX.A as the union of all reducibility can-
didates ψ of the appropriate coinductive type that are in the interpretation of the open
type A, when X is mapped to ψ itself, enabling a principle of proof by coinduction.

Definition 4 (Logical Predicate - Closed Process Expressions). For any type T =
z:A we define Lω[T] as the set of all processes P such that P⇓ and ·; ·; · `η P :: T
satisfying the rules of Fig. 5.

We elide several technical aspects and focus mainly on the intuitions behind the
development. The key observation is that for open types, we may view our logical pred-
icate as a mapping between sets of reducibility candidates, of which the interpretation
for coinductive session type turns out to be a greatest fixpoint (Theorem 3).

Definition 5. Let νX.A be a strictly positive type. We define: φA(s) , Lω[X 7→s][z:A]

Theorem 3 (Greatest Fixpoint). Lω[z:νX.A] is a greatest fixpoint of φA.

The combination of these results enables us to obtain our main result (Theorem 4):
all well-typed processes are in the logical predicate, from which follows that all well-
typed processes are compositionally non-divergent.

Theorem 4. If Ψ ;Γ ;∆ `η P :: z:A then P ∈ L[Ψ ;Γ ;∆ `η z:A].

Proof. We proceed by induction on typing. The most interesting case is the one for the
νR rule. Since the interpretation of coinductive types νX.A is a greatest fixpoint (The-
orem 3), we proceed by coinduction: we produce a set of processes CP ′ , containing
the body of the corecursive definition P ′ where the corecursion variable has been in-
stantiated with an unfolding of the corecursive definition (let us refer to this process as
P ′′), closed under reduction and (typed) expansion. We show that CP ′ is a reducibility

12

candidate at νX.A and that CP ′ ⊆ Lω[X 7→CP ′][z:A]. This is a sufficient condition since
L[c:νX.A] is the largest such set. We need essentially to focus on P ′′.

Showing this property relies crucially on the fact that type variables are ultimately
offered by the unfolding of the corecursive definition. The key points are the occur-
rences of the corecursion variable in P ′, which in P ′′ are instantiated with P ′ itself:
if its a terminal occurrence the property is immediate, since the corecursion variable is
typed with the type variable X , which is mapped to CP ′ , containing P ′. If the corecur-
sion variable occurs in the left branch of a cut, we know that the only possible use of
the fresh channel (typed with the type variable) by the right branch of the cut is to even-
tually forward it, potentially after a number of internal reductions or observable actions
as specified by the session A. When the forwarder is triggered, we must necessarily be
at the type variable X and we can conclude since the resulting process is P ′, in CP ′ .
We remark that if the corecursion variable is guarded in the left branch of a cut, these
guards must be consumed by the right branch of the cut (this follows by well-typedness
and progress) through internal reductions.

Corollary 1 (Non-Divergence). If Ψ ;Γ ;∆ `η P :: z:A then P ⇓

Combining type safety (Theorems 1 and 2) and non-divergence (Corollary 1) we con-
clude that typing enables strong guarantees on processes written in our calculus. A well-
typed process is always be able to fulfil its protocol: no divergence can take place, nor
can any deadlocks occur. Moreover, these properties are compositional, ensuring that
any (well-typed) service composition produces a deadlock-free, non-divergent service.

6 Related Work and Concluding Remarks

Expressiveness relationships between replication and recursion in the context of π-
calculi have been investigated (e.g, [15]); in general such constructs are not reducible
to each other, in particular in the presence of name scoping constructs. In our con-
text, replication codifies behavior that may be repeated arbitrarily often on independent
channels, whereas recursion denotes potentially infinite behavior on the same channel.

Forms of general recursion have been often introduced in session typed languages,
but without much concern on how to conciliate unbounded behaviour with local ter-
mination (e.g, [2, 16]). From the perspective of more traditional work on session typed
languages, [17] establishes a strong normalization result for action types, which are
similar to session types, but without addressing recursive types. Still within the logic
based approach to session typed programming, our work is related to [5], which de-
velops a logical interpretation of session types using second-order classical linear logic
and a polymorphic session-typed functional language similar to that of [18], but does
not consider coinductive sessions.

In prior work, we have studied strong normalization for session types based on
linear logic, including extensions to behavioral polymorphism [14, 8], however, this
work is the first to address general corecursion in the framework. While there are works
that address termination by typability in the π-calculus, they either do not have explicit
recursion [19] or consider simpler type systems [20] without notions of session fidelity
or lock freedom and impose more intricate syntactic restrictions on processes.

13

The particular issues related to coinductive session types have to the best of our
knowledge been overlooked in the traditional literature, which typically deals with gen-
eral recursive types and definitions [2, 3, 18], including divergence by construction.
More recently, [21] considers least and greatest fixpoints in classical linear logic (in
the sense of [22]) as primitive recursors and corecursors in a session typed calculus,
respectively. Since, in their setting, a corecursor can only synchronize with a recursor,
it is not straightforward how to encode transducers that transform one coinductive ses-
sion into another. This is a common programming pattern, where a service is offered
through composition and transformation of a collection of other coinductive sessions.
Moreover, their work does not develop a logical relation proof technique nor establish
a non-divergence result, as we do.

In this regard our work is closer to that on termination for λ-calculi with inductive
and coinductive types [23]. For instance, [24] develops a strong normalization result for
the second-order λ-calculus with explicit inductive and coinductive types using logical
relations. The restrictions imposed by our type system to ensure non-divergence are
related to those developed in [25] for the Coq proof assistant, but with obvious distinc-
tions given the very different settings. Our interpretation of coinductive types as greatest
fixed points is also related to the work of Baelde [22]. The main differences are that his
work uses classical linear logic and does not consider a proof term assignment. The
former makes the system and logical relation techniques substantially different since
they rely on orthogonality, whereas ours do not; the latter leads Baelde’s work towards
proof search related techniques, which is in sharp contrast to our work.

The work on type-based methods for ensuring termination has been generalized to
include inductive and coinductive definitions in the style of Coq [26] (although the proof
of strong normalization is substantially more complex due to the expressive power of
CIC and type annotations). It is not clear how to adapt these type-based methods to
our setting since type annotations are a measure of the size of “values”, which do not
immediately apply to processes. Similar difficulties arise when considering copatterns
[13], which seem to be inherently tied to the term structure.

Concluding Remarks We have developed a theory of coinductive definitions for a
synchronous π-calculus with corecursion, establishing a logical foundation based on in-
tuitionistic linear logic which provides guarantees of deadlock freedom, session fidelity
and, crucially, compositional non-divergence by typing. Thus, services implemented in
our calculus do not “get stuck”, nor become unavailable due to divergent behavior.

Our type system ensures termination by eliminating unproductive internal behavior
in corecursive process definitions. While the restrictions we impose are not particularly
oppressive, they naturally still exclude processes that are non-divergent (for instance,
the binary counter example of [9]), as often is the case in these settings given that
productivity is undecidable in general. Having set forth a first significant benchmark, it
is certainly a challenge for future work to find less restrictive or more general conditions
for guaranteeing productivity in this setting, potentially adapting type-based termination
techniques (viz. [26, 13]).

By establishing a logical foundation for coinductive session-typed processes, the
work set forth in this paper is an important stepping stone towards the development of a
dependent type theory rich enough to allow us to express and reason about session-

14

based concurrency. These concurrent programs are often coinductive in nature, and
are typically studied using coinductive proof techniques. Since we establish typed pro-
cesses as coinductive objects, we may be able to use processes as witnesses to coin-
ductive proofs. A sound (wrt an extensional typed equivalence, c.f. [8, 14]) notion of
definitional equality of corecursive processes is also part of future work.

References
1. Honda, K.: Types for dyadic interaction. In: CONCUR’93. (1993) 509–523
2. Honda, K., Vasconcelos, V.T., Kubo, M.: Language primitives and type discipline for struc-

tured communication-based programming. In: ESOP. (1998) 122–138
3. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In: POPL.

(2008) 273–284
4. Caires, L., Pfenning, F.: Session types as intuitionistic linear propositions. In: CONCUR’10.

(2010) 222–236
5. Wadler, P.: Propositions as sessions. In: ICFP’12. (2012) 273–286
6. Toninho, B., Caires, L., Pfenning, F.: Dependent session types via intuitionistic linear type

theory. In: PPDP’11. (2011) 161–172
7. Pfenning, F., Caires, L., Toninho, B.: Proof-carrying code in a session-typed process calcu-

lus. In: CPP. (2011) 21–36
8. Caires, L., Pérez, J.A., Pfenning, F., Toninho, B.: Behavioral polymorphism and parametric-

ity in session-based communication. In: ESOP. (2013) 330–349
9. Toninho, B., Caires, L., Pfenning, F.: Higher-order processes, functions, and sessions: A

monadic integration. In: ESOP’13. (2013) 350–369
10. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge

University Press (2001)
11. The Coq Development Team: The Coq Proof Assistant Reference Manual. (2013)
12. Norell, U.: Towards a practical programming language based on dependent type theory. PhD

thesis, Chalmers University of Technology (2007)
13. Abel, A., Pientka, B.: Wellfounded recursion with copatterns: A unified approach to termi-

nation and productivity. In: LICS. (2013)
14. Pérez, J.A., Caires, L., Pfenning, F., Toninho, B.: Linear logical relations for session-based

concurrency. In: ESOP’12. (2012) 539–558
15. Aranda, J., Giusto, C.D., Palamidessi, C., Valencia, F.D.: On recursion, replication and scope

mechanisms in process calculi. In: FMCO. (2006) 185–206
16. Gay, S., Hole, M.: Subtyping for Session Types in the Pi Calculus. Acta Informatica 42(2-3)

(2005) 191–225
17. Yoshida, N., Berger, M., Honda, K.: Strong normalisation in the pi -calculus. Inf. Comput.

191(2) (2004) 145–202
18. Gay, S., Vasconcelos, V.T.: Linear type theory for asynchronous session types. J. Funct.

Programming 20(1) (2010) 19–50
19. Deng, Y., Sangiorgi, D.: Ensuring termination by typability. In: IFIP TCS. (2004) 619–632
20. Sangiorgi, D.: Termination of processes. Math. Struct. in Comp. Sci. 16(1) (2006) 1–39
21. Morris, J.G., Lindley, S., Wadler, P.: The least must speak with the greatest (2014) Draft.
22. Baelde, D.: Least and greatest fixed points in linear logic. TOCL 13(1) (January 2012)
23. Abel, A.: Strong normalization and equi-(co)inductive types. In: TLCA. (2007) 8–22
24. Mendler, N.P.: Inductive types and type constraints in the second-order lambda calculus.

Annals of Pure and Applied Logic 51(12) (1991) 159 – 172
25. Gimenez, E.: Structural recursive definitions in type theory. In: ICALP. (1998) 13–17
26. Grégoire, B., Sacchini, J.L.: On strong normalization of the calculus of constructions with

type-based termination. In: LPAR. (2010) 333–347

15

