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1 INTRODUCTION
The π -calculus is an analytical tool for understanding [interactive] systems – Robin Milner [41]

Encodability is the main traditional method to compare and examine process calculi and their

operators with respect to their expressive power. There are in fact an enormous number of process

calculi for expressing non-determinism, parallelism, distribution, locality, real-time, stochastic phe-

nomena, etc, and each of these aspects can be described in different ways. Encodings not only allow

a comparison of the expressive power of languages but also formalise similarities and differences

between the considered calculi. Thus, they provide a basis for design and implementations of con-

current language primitives and operators into real systems and programming languages [49, 52].

One of the first examples of this is an input-guarded choice encoding in the π -calculus [44], which
provided a library in the Pict Programming Language [57].

Dating back to Milner’s seminal work [42], encodings of λ-calculus into π -calculus are, in particu-

lar, seen as essential benchmarks to examine expressiveness of various extensions of the π -calculus.
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Milner’s original motivation was to demonstrate the power of link mobility by decomposing higher-

order computations into pure name passing. Another goal was to analyse functional behaviours in

a broad computational universe of concurrency and non-determinism. While operationally correct

encodings of many higher-order constructs exist, it is challenging to obtain encodings that are pre-

cise with respect to behavioural equivalence: the semantic distance between the λ-calculus and the

π -calculus typically requires either restricting process behaviours [64] (e.g. via typed equivalences

[8]) or enriching the λ-calculus with constants that allow for a suitable characterisation of the term

equivalence induced by the behavioural equivalence on processes [62].

Pierce and Sangiorgi [56], exploring the fact that types for π -calculi limit the valid contexts

in which processes may interact, observed the semantic consequences of typed equivalences

by showing that the observational congruence induced by IO-subtyping can prove the semantic
correctness of Milner’s encoding [55], which was impossible in the untyped setting. Following

these developments, many works on typed π -calculi have investigated the correctness of Milner’s

encodings in order to examine the power of proposed typing systems.

Encodings in π -calculi also gave rise to new typing disciplines: Session types [28, 30], a typing
system that is able to ensure deadlock-freedom for communication protocols between two or more

parties [31], were originally motivated “from process encodings of various data structures in an

asynchronous version of the π -calculus” [29]. Following this original motivation, session types

have been integrated into mainstream programming languages [1, 21]. A popular technique is to

use “encodings” of session types into linear or functional types to correctly implement structured
communications in programming languages such as Haskell [46], OCaml [32, 34, 48] and Scala

[67, 68] (see Section 6).

Recently, a propositions-as-types correspondence between linear logic and session types [12,

13, 76] has produced several new developments and logically-motivated techniques [11, 37, 70, 76]

to augment both the theory and practice of session-based message-passing concurrency. Notably,

parametric session polymorphism [11] (in the sense of Reynolds [59]) has been proposed and a

corresponding abstraction theorem has been shown.

Our work expands upon the proof theoretic consequences of this propositions-as-types corre-

spondence to address the problem of how to exactly match the behaviours induced by session

π -calculus encodings of the λ-calculus with those of the λ-calculus. We develop mutually inverse
and fully abstract encodings (up to typed observational congruences) between a polymorphic

session-typed π -calculus and the polymorphic λ-calculus. The encodings arise from the proof

theoretic content of the equivalence between sequent calculus (i.e. the session calculus) and natural

deduction (i.e. the λ-calculus) for second-order intuitionistic linear logic, greatly generalising those

for the propositional setting [70]. While fully abstract encodings between λ-calculi and π -calculi
have been proposed (e.g. [8, 62]), our work is the first to consider a two-way, both mutually inverse

and fully abstract embedding between the two calculi by crucially exploiting the linear logic-based

session discipline. This also sheds some definitive light on the nature of concurrency in the (logical)

session calculi, which exhibit “don’t care” forms of non-determinism (e.g. processes may race

on stateless replicated servers) rather than “don’t know” non-determinism (which requires less

harmonious logical features [3]).

In the spirit of Gentzen [22], who established soundness and completeness of his sequent calculus

and natural deduction in order to use the former as a way to study the latter (i.e., to show consistency

and normalisation of natural deduction through cut elimination in the sequent calculus), we use

our encodings as a tool to study non-trivial properties of the session calculus, deriving them

from results in the λ-calculus: We show the existence of inductive and coinductive sessions in

the polymorphic session calculus by considering the representation of initial F -algebras and final

F -coalgebras [40] in the polymorphic λ-calculus [2, 27] (in a linear setting [10]). By appealing to
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full abstraction, we are able to derive processes that satisfy the necessary algebraic properties

and thus form adequate uniform representations of inductive and coinductive session types. The

derived algebraic properties enable us to reason about standard data structure examples, providing

a logical justification to typed variations of the representations in [43].

We systematically extend our results to a session calculus with λ-term and process passing [71],

inspired by Benton’s LNL [6]. By showing that our encodings naturally adapt to this setting, we

prove that it is possible to encode higher-order process passing in the first-order session calculus

fully abstractly, providing a typed and proof-theoretically justified re-envisioning of Sangiorgi’s

encodings of higher-order π -calculus [65]. In addition, the encoding instantly provides a strong

normalisation property of the higher-order session calculus.

Contributions and Outline. Contributions of our article are as follows:
Section 3.1 develops a functions-as-processes encoding of a linear formulation of System F,

Linear-F, using a logically motivated polymorphic session π -calculus, Polyπ , and shows that

the encoding is operationally sound and complete.

Section 3.2 develops a processes-as-functions encoding of Polyπ into Linear-F, arising from

the completeness of the sequent calculus wrt natural deduction, also operationally sound

and complete.

Section 3.3 studies the relationship between the two encodings, establishing they aremutually
inverse and fully abstract wrt typed congruence, the first two-way embedding satisfying both
properties.

Section 4 develops a faithful representation of inductive and coinductive session types in

Polyπ via the encoding of initial and final (co)algebras in the polymorphic λ-calculus, which
is driven through our encodings to produce processes satisfying the necessary algebraic

properties. We demonstrate a use of these algebraic properties via examples.

Sections 5 and 5.2 study term-passing and process-passing session calculi, extending our

encodings to provide embeddings into the first-order session calculus. As a consequence, we

obtain a proof-theoretically, type-driven reinvisioning of Sangiorgi’s encodings of higher-

order processes into first-order processes. We show that the full abstraction and mutual

inversion results are smoothly extended to these calculi and derive strong normalisation of

the higher-order session calculus from the encoding.

In order to introduce our encodings, we first overview the logically motivated polymorphic session

calculus Polyπ , its typing system and behavioural equivalence (Section 2). We discuss related work

in Section 6 and conclude with future work in Section 7. The appendix includes detailed proofs and

additional lemmas.

Outline. This article revises and extends an earlier version of this work [73] with additional

materials and full proofs. § 2 was extended to include all the necessary formal definitions for the

development of the coming sections, namely the definitions of structural and extended structural

congruence, typed barbed congruence and logical equivalence. We further include the complete set

of typing rules of the system and extended discussion on their relationship with the literature on

linear logic. We further include a more detailed analysis of logical equivalence. Section 3 now details

the operational semantics of Linear-F. Section 3.2 includes the encoding from session π -calculus
typing derivations to Linear-F typing derivations explicitly. We have also included additional

discussion throughout the section on the relationship with various proof theoretic considerations

and extended the examples, as well as additional discussion on the nature of the encodings with

respect to the operational semantics of Linear-F and potential extensions to effects and non-

divergence. The proofs of the main results of the section, namely of full abstraction (Theorems 3.15
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4 Bernardo Toninho and Nobuko Yoshida

and 3.16) are included in the main article. Proofs of the results in the remainder of the section

can be found in detail in the appendix. Section 4 has been extended with additional discussion,

explanations and proofs. Section 5 has generally been extended with additional results and proofs.

Section 5.2 now includes the development of the strong normalisation result (Theorem 5.24) for the

higher-order process passing calculus via a modification of the encoding presented previously in the

section, which also includes the reestablishment of the properties of operational correspondence,

and the inverse theorem for the reformulated encoding. Finally, Section 6 has been enhanced with

additional discussion of related work, including works that were published after the conference

version of this work [73].

2 POLYMORPHIC SESSION π -CALCULUS
This section summarises the polymorphic session π -calculus [11], dubbed Polyπ , arising as a process
assignment to second-order linear logic [23], its typing system and behavioural equivalences.

2.1 Processes and Typing
Syntax. Given an infinite set of names x ,y, z,u,v,w , the grammar of processes P ,Q,R and

session types A,B,C is defined by:

P ,Q,R ::= x ⟨y⟩.P | x(y).P | P | Q | (νy)P | [x ↔ y] | 0
| x ⟨A⟩.P | x(Y ).P | x .inl; P | x .inr; P | x .case(P ,Q) | !x(y).P

A,B ::= 1 | A ⊸ B | A ⊗ B | A& B | A ⊕ B | !A | ∀X .A | ∃X .A | X
x ⟨y⟩.P denotes the output of channel y on x with continuation process P ; x(y).P denotes an input

along x , bound to y in P ; P | Q denotes parallel composition; (νy)P denotes the restriction of name

y to the scope of P ; 0 denotes the inactive process; [x ↔ y] denotes the linking of the two channels
x and y (implemented as renaming); x ⟨A⟩.P and x(Y ).P denote the sending and receiving of a type
A along x bound to Y in P of the receiver process; x .inl; P and x .inr; P denote the emission of a

selection between the left or right branch of a receiver x .case(P ,Q) process; !x(y).P denotes an

input-guarded replication that spawns replicas upon receiving an input along x . We often abbreviate

(νy)x ⟨y⟩.P to x ⟨y⟩.P and omit trailing 0 processes. By convention, we range over linear channels

with x ,y, z and shared channels with u,v,w .

The syntax of session types is that of (intuitionistic) linear logic propositions which are assigned

to channels according to their usages in processes: 1 denotes the type of a channel along which
no further behaviour occurs; A ⊸ B denotes a session that waits to receive a channel of type A
and will then proceed as a session of type B; dually, A ⊗ B denotes a session that sends a channel

of type A and continues as B; A& B denotes a session that offers a choice between proceeding as

behaviours A or B; A ⊕ B denotes a session that internally chooses to continue as either A or B,
signalling appropriately to the communicating partner; !A denotes a session offering an unbounded

(but finite) number of behaviours of type A; ∀X .A denotes a polymorphic session that receives

a type B and behaves uniformly as A{B/X }; dually, ∃X .A denotes an existentially typed session,

which emits a type B and behaves as A{B/X }.

Operational Semantics. The operational semantics of our calculus is presented as a standard

labelled transition system (Fig. 1) in the style of the early system for the π -calculus [65].
In the remainder of this work we write ≡ for a standard π -calculus structural congruence

(Def. 2.1) extended with the clause [x ↔ y] ≡ [y ↔ x]. In order to streamline the presentation of

observational equivalence [11, 50], we write ≡! (Def. 2.2) for structural congruence extended with

the so-called sharpened replication axioms [65], which capture basic equivalences of replicated

processes (and are present in the proof dynamics of the exponential of linear logic).
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On Polymorphic Sessions and Functions 5

(out)

x ⟨y⟩.P
x ⟨y ⟩
→ P

(in)

x(y).P
x (z)
→ P{z/y}

(outT)

x ⟨A⟩.P
x ⟨A⟩
→ P

(inT)

x(Y ).P
x (B)
→ P{B/Y }

(rout)

x .inr; P
x .inr
→ P

(lout)

x .inl; P
x .inl
→ P

(id)

(νx)([x ↔ y] | P)
τ
→ P{y/x}

(rin)

x .case(P ,Q)
x .inr
→ Q

(lin)

x .case(P ,Q)
x .inl
→ P

(rep)

!x(y).P
x (z)
→ P{z/y} |!x(y).P

(open)

P
x ⟨y ⟩
→ Q

(νy)P
(νy)x ⟨y ⟩
→ Q

(close)

P
(νy)x ⟨y ⟩
→ P ′ Q

x (y)
→ Q ′

P | Q
τ
→ (νy)(P ′ | Q ′)

(par)

P
α
→ Q

P | R
α
→ Q | R

(com)

P
α
→ P ′ Q

α
→ Q ′

P | Q
τ
→ P ′ | Q ′

(res)

P
α
→ Q

(νy)P
α
→ (νy)Q

Fig. 1. Labelled Transition System.

Definition 2.1 (Structural congruence). (P ≡ Q), is the least congruence relation generated by the

following laws:

P | 0 ≡ P P ≡α Q ⇒ P ≡ Q P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R

(νx)(νy)P ≡ (νy)(νx)P x < fn(P) ⇒ P | (νx)Q ≡ (νx)(P | Q) (νx)0 ≡ 0 [x ↔ y] ≡ [y ↔ x]

Definition 2.2 (Extended Structural Congruence). We write ≡! for the least congruence relation on

processes which results from extending structural congruence ≡ with the following axioms:

(1) (νu)(!u(z).P | (νy)(Q | R)) ≡! (νy)((νu)(!u(z).P | Q) | (νu)(!u(z).P | R))
(2) (νu)(!u(y).P | (νv)(!v(z).Q | R)) ≡! (νv)((!v(z).(νu)(!u(y).P | Q)) | (νu)(!u(y).P | R))
(3) (νu)(!u(y).Q | P) ≡! P if u < fn(P)

Axioms (1) and (2) above represent principles for the distribution of shared servers among

processes, while (3) formalises the garbage collection of shared servers which cannot be invoked

by any process. The axioms embody distributivity, contraction and weakening of shared resources

and are sound wrt (typed) observational equivalence [50].

A transition P
α
→ Q denotes that P may evolve to Q by performing the action represented by

label α . An action α (α ) requires a matching α (α ) in the environment to enable progress. Labels of

our transition semantics include the silent internal action τ , output and bound output actions (x ⟨y⟩

and (νz)x ⟨z⟩); input action x(y); labels pertaining to the binary choice actions (x .inl, x .inl, x .inr,
and x .inr); and labels describing output and input actions of types (x ⟨A⟩ and x(A)).

Definition 2.3 (Labelled Transition System). The labelled transition relation is defined by the rules

in Fig. 1, subject to the side conditions: in rule (res), we require y < fn(α); in rule (par), we require
bn(α) ∩ fn(R) = ∅; in rule (close), we require y < fn(Q). We omit the symmetric versions of (par),
(com), (id), (close) and closure under α-conversion.

We write ρ1ρ2 for the composition of relations ρ1, ρ2. We write → to stand for

τ
→≡. Weak

transitions are defined as usual: we write =⇒ for the reflexive, transitive closure of→ and→
+
for

the transitive closure of→. Given α , τ , notation
α
=⇒ stands for =⇒

α
→=⇒ and

τ
=⇒ stands for =⇒.

Typing System. The typing rules of Polyπ are given in Fig. 2, following [11]. The rules define

the judgment Ω; Γ;∆ ⊢ P :: z:A, denoting that process P offers a session of type A along channel

z, using the linear sessions in ∆, (potentially) using the unrestricted or shared sessions in Γ, with
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6 Bernardo Toninho and Nobuko Yoshida

(1R)
Ω; Γ; · ⊢ 0 :: z:1

(1L)
Ω; Γ;∆ ⊢ P :: z:C

Ω; Γ;∆,x :1 ⊢ P :: z:C

(⊸R)
Ω; Γ;∆,x :A ⊢ P :: z:B

Ω; Γ;∆ ⊢ z(x).P :: z:A ⊸ B
(⊗R)

Ω; Γ;∆1 ⊢ P :: y:A Ω; Γ;∆2 ⊢ Q :: z:B

Ω; Γ;∆1,∆2 ⊢ (νy)z⟨y⟩.(P | Q) :: z:A ⊗ B

(⊸L)
Ω; Γ;∆1 ⊢ P :: y:A Ω; Γ;∆2,x :B ⊢ Q :: z:C

Ω; Γ;∆1,∆2,x :A ⊸ B ⊢ (νy)x ⟨y⟩.(P | Q) :: z:C
(⊗L)

Ω; Γ;∆,y:A,x :B ⊢ P :: z:C

Ω; Γ;∆,x :A ⊗ B ⊢ x(y).P :: z:C

(&R)
Ω; Γ;∆ ⊢ P :: z:A Ω; Γ;∆ ⊢ Q :: z:B

Ω; Γ;∆ ⊢ z.case(P ,Q) :: z:A& B
(&L1)

Ω; Γ;∆,x :A ⊢ P :: z:C

Ω; Γ;∆,x :A& B ⊢ x .inl; P :: z:C

(&L2)
Ω; Γ;∆,x :B ⊢ P :: z:C

Ω; Γ;∆,x :A& B ⊢ x .inr; P :: z:C
(⊕R1)

Ω; Γ;∆ ⊢ P :: z:A

Ω; Γ;∆ ⊢ z.inl; P :: z:A ⊕ B

(⊕R2)
Ω; Γ;∆ ⊢ P :: z:B

Ω; Γ;∆ ⊢ z.inr; P :: z:A ⊕ B
(⊕L)

Ω; Γ;∆,x :A ⊢ P :: z:C Ω; Γ;∆,x :B ⊢ Q :: z:C

Ω; Γ;∆,x :A ⊕ B ⊢ x .case(P ,Q) :: z:C

(!R)
Ω; Γ; · ⊢ P :: x :A

Ω; Γ; · ⊢!z(x).P :: z:!A
(!L)

Ω; Γ,u:A;∆ ⊢ P :: z:C

Ω; Γ;∆,x :!A ⊢ P{x/u} :: z:C

(copy)
Ω; Γ,u:A;∆,y:A ⊢ P :: z:C

Ω; Γ,u:A;∆ ⊢ (νy)u⟨y⟩.P :: z:C

(∀R) Ω,X ; Γ;∆ ⊢ P :: z:A

Ω; Γ;∆ ⊢ z(X ).P :: z:∀X .A (∀L) Ω ⊢ B type Ω; Γ;∆,x :A{B/X } ⊢ P :: z:C

Ω; Γ;∆,x :∀X .A ⊢ x ⟨B⟩.P :: z:C

(∃R) Ω ⊢ B type Ω; Γ;∆ ⊢ P :: z:A{B/X }

Ω; Γ;∆ ⊢ z⟨B⟩.P :: z:∃X .A (∃L) Ω,X ; Γ;∆,x :A ⊢ P :: z:C

Ω; Γ;∆,x :∃X .A ⊢ x(X ).P :: z:C

(id)
Ω; Γ;x :A ⊢ [x ↔ z] :: z:A

(cut)
Ω; Γ;∆1 ⊢ P :: x :A Ω; Γ;∆2,x :A ⊢ Q :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)(P | Q) :: z:C

(cut!)
Ω; Γ; · ⊢ P :: x :A Ω; Γ,u:A;∆ ⊢ Q :: z:C

Ω; Γ;∆ ⊢ (νu)(!u(x).P | Q) :: z:C

Fig. 2. Typing Rules

polymorphic type variables maintained in Ω. We use a well-formedness judgment Ω ⊢ A typewhich
states that A is well-formed wrt the type variable environment Ω (i.e. fv(A) ⊆ Ω). We often writeT
for the right-hand side typing z:A, · for the empty context and ∆,∆′ for the union of contexts ∆
and ∆′, only defined when ∆ and ∆′ are disjoint. We write · ⊢ P :: T for ·; ·; · ⊢ P :: T .
Moreover, typing treats processes quotiented by structural congruence – given a well-typed

process Ω; Γ;∆ ⊢ P :: T , subject reduction ensures that for all possible reductions P
τ
→ P ′, there

exists a process Q where P ′ ≡ Q such that Ω; Γ;∆ ⊢ Q :: T . Related properties hold wrt general

transitions P
α
→ P ′. We refer the reader to [12, 13] for additional details on this matter.
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As in [12, 13, 50, 76], the typing discipline enforces that channel outputs always have as object a

fresh name, in the style of the internal mobility π -calculus [63]. We clarify a few of the key rules:

Rule id types a linear forwarding between the sole ambient linear session x :A and the offered

session at channel z with the same type (the use of a non-empty Γ context embodies weakening

of persistent resources). Rule ∀R defines the meaning of (impredicative) universal quantification

over session types, stating that a session of type ∀X .A inputs a type and then behaves uniformly

as A; dually, to use such a session (rule ∀L), a process must output a type B which then warrants

the use of the session as type A{B/X }. Rule⊸R captures session input, where a session of type

A ⊸ B expects to receive a session of type A which will then be used to produce a session of

type B. Dually, session output (rule ⊗R) is achieved by producing a fresh session of type A (that

uses a disjoint set of sessions to those of the continuation) and outputting the fresh session along

z, which is then a session of type B. Rule !R types a process offering a session of type !A along

channel z, consisting of a replicated input along z which may be triggered an arbitrary (but finite)

number of times. To preserve linearity, the replicated process cannot use any linear sessions. We

note that the !R rule is often called the promotion rule in linear logic literature, whereas rule !L
formalises the idea that a channel u:A in the persistent context Γ is the same as a channel x :!A in

the linear context ∆. The use of a persistent session is captured by the copy rule: To use a persistent
session u of type A, a process must output along u a fresh linear name y, triggering the replication

and warranting the linear use of y as a session of type A. Proof-theoretically, copy corresponds

to an instance of dereliction followed by contraction. Linear and persistent session composition is

captured by rules cut and cut!, respectively. The former enables a process that offers a session x :A
(using linear sessions in ∆1) to be composed with a process that uses that session (amongst others

in ∆2) to offer z:C . The latter allows for a process that uses no linear sessions to be replicated and

thus composed with processes that use the offered session in an unrestricted fashion. As shown in

[11], typing entails Subject Reduction, Global Progress, and Termination.

The key properties of the typing system follow. For any P , we define live(P) iff P ≡ (νñ)(π .Q | R),
for some set of names ñ, process R, and non-replicated guarded process π .Q . We write P ⇓ if there
is no infinite reduction sequence starting from P .

Theorem 2.4 (Properties of Well-Typed Processes [11]).

Subject Reduction If Ω; Γ;∆ ⊢ P :: z:A and P → Q then Ω; Γ;∆ ⊢ Q :: z:A.
Global Progress If ⊢ P :: z:1 and live(P), there exists Q such that P → Q .
Termination/Strong Normalisation If Ω; Γ;∆ ⊢ P :: z:A then P ⇓.

Observational Equivalences. We briefly summarise the typed congruence and logical equiva-

lence with polymorphism, giving rise to a suitable notion of relational parametricity in the sense of

Reynolds [59], defined as a contextual logical relation on typed processes [11]. The logical relation

is reminiscent of a typed bisimulation. However, extra care is needed to ensure well-foundedness

due to impredicative type instantiation. As a consequence, the logical relation allows us to reason

about process equivalences where type variables are not instantiated with the same, but rather
related types.

Typed Barbed Congruence (�). We use the typed contextual congruence from [11], which

preserves observable actions, called barbs. In untyped process settings, barbed congruence is

typically defined as the largest equivalence relation on processes, closed under all possible process

contexts and internal actions, that preserves some basic notion of observable, called a barb. In our

setting, following [11], we consider a typed variant of barbed congruence in which the notion

of context is typed. Thus, typed barbed congruence is the largest equivalence relation on typed

processes that is type-respecting, τ -closed, barb-preserving and contextual (for a suitable notion of
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8 Bernardo Toninho and Nobuko Yoshida

typed context). We make these four notions precise. Thus, a relation is contextual if it is closed under
any typed process context. A typed process context consists of a process with a typed hole (these

can be mechanically derived from the typing rules by exhaustively considering all possibilities for

typed holes). We omit the full details of defining typed contexts and refer the reader to the work of

[11] for the full development.

Definition 2.5 (Type-respecting Relations [11]). A type-respecting relation over processes, written

{RS }S is defined as a family of relations over processes indexed by typing S (i.e., S lists the left-hand

context and right-hand typing information for processes in the relation). We often write R to refer

to the whole family, and write Ω; Γ;∆ ⊢ PRQ :: T to denote Ω; Γ;∆ ⊢ P ,Q :: T and (P ,Q) ∈ RΩ;Γ;∆⊢T .

We say that a type-respecting relation is an equivalence if it satisfies the usual properties of

reflexivity, transitivity and symmetry. In the remainder of this development we often omit “type-

respecting”.

Definition 2.6 (τ -closed [11]). Relation R is τ -closed if Ω; Γ;∆ ⊢ PRQ :: T and P → P ′ imply there

exists a Q ′ such that Q =⇒ Q ′ and Ω; Γ;∆ ⊢ P ′RQ ′ :: T .

Our definition of basic observable on processes, or barb, is given below.

Definition 2.7 (Barbs [11]). Let Ox = {x ,x ,x .inl,x .inr,x .inl,x .inr} be the set of basic observables
under name x . Given a well-typed process P , we write:

(i) barb(P ,x), if P
(νy)x ⟨y ⟩
→ P ′;

(ii) barb(P ,x), if P
x ⟨A⟩
→ P ′, for some A, P ′;

(iii) barb(P ,x), if P
x (A)
→ P ′, for some A, P ′;

(iv) barb(P ,x), if P
x (y)
→ P ′, for some y, P ′;

(v) barb(P ,α), if P
α
→ P ′, for some P ′ and α ∈ Ox \ {x ,x}.

Given some o ∈ Ox , we write wbarb(P ,o) if there exists a P ′ such that P =⇒ P ′ and barb(P ′,o)
holds.

Definition 2.8 (Barb preserving relation). Relation R is a barb preserving if, for every name x ,
Ω; Γ;∆ ⊢ PRQ :: T and barb(P ,o) imply wbarb(Q,o), for any o ∈ Ox .

Definition 2.9 (Contextuality). A relation R is contextual if Ω; Γ;∆ ⊢ PRQ :: T implies Ω; Γ;∆′ ⊢
C[P] R C[Q] :: T ′, for every ∆′ T ′ and typed context C.

Definition 2.10 (Barbed Congruence). Barbed congruence, noted �, is the largest equivalence on
well-typed processes symmetric type-respecting relation that is τ -closed, barb preserving, and

contextual.

Logical Equivalence (≈L). The definition of logical equivalence is no more than a typed con-

textual bisimulation with the following intuitive reading: given two open processes P and Q (i.e.

processes with non-empty left-hand side typings), we define their equivalence by inductively

closing out the context, composing with equivalent processes offering appropriately typed sessions.

When processes are closed, we have a single distinguished session channel along which we can

perform observations, and proceed inductively on the structure of the offered session type. We can

then show that such an equivalence satisfies the necessary fundamental properties (Theorem 2.13).

The logical relation is defined using the candidates technique of Girard [24]. In this setting,

an equivalence candidate is a relation on typed processes satisfying basic closure conditions: an

equivalence candidate must be compatible with barbed congruence and closed under forward and

converse reduction.
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Definition 2.11 (Equivalence Candidate). An equivalence candidate R at z:A and z:B, noted R ::

z:A⇔B, is a binary relation on processes such that, for every (P ,Q) ∈ R :: z:A⇔B both · ⊢ P :: z:A
and · ⊢ Q :: z:B hold, together with the following (we often write (P ,Q) ∈ R :: z:A⇔B as

P RQ :: z:A⇔B):

(1) If (P ,Q) ∈ R :: z:A⇔B, · ⊢ P � P ′ :: z:A, and · ⊢ Q � Q ′ :: z:B then (P ′,Q ′) ∈ R :: z:A⇔B.
(2) If (P ,Q) ∈ R :: z:A⇔B then, for all P0 such that · ⊢ P0 :: z:A and P0 =⇒ P , we have

(P0,Q) ∈ R :: z:A⇔B. Symmetrically for Q .

To define the logical relation we rely on some auxiliary notation, pertaining to the treatment of

type variables arising due to impredicative polymorphism. We write ω : Ω to denote a mapping ω
that assigns a closed type to the type variables in Ω. We write ω(X ) for the type mapped by ω to

variable X . Given two mappings ω : Ω and ω ′ : Ω, we define an equivalence candidate assignment

η between ω and ω ′ as a mapping of equivalence candidate η(X ) :: −:ω(X )⇔ω ′(X ) to the type

variables in Ω, where the particular choice of a distinguished right-hand side channel is delayed
(i.e. to be instantiated later on). We write η(X )(z) for the instantiation of the (delayed) candidate

with the name z. We write η : ω⇔ω ′ to denote that η is a candidate assignment between ω and ω ′;
and ω̂(P) to denote the application of mapping ω to P .

We define a sequent-indexed family of process relations, that is, a set of pairs of processes (P ,Q),
written Γ;∆ ⊢ P ≈L Q :: T [η : ω⇔ω ′], satisfying some conditions, typed under Ω; Γ;∆ ⊢ T , with
ω : Ω, ω ′ : Ω and η : ω⇔ω ′. Logical equivalence is defined inductively on the size of the typing

contexts and then on the structure of the right-hand side type.

Definition 2.12 (Logical Equivalence). (Base Case) Given a type A and mappings ω,ω ′,η, we
define logical equivalence, noted P ≈L Q :: z:A[η : ω⇔ω ′], as the smallest symmetric binary relation

containing all pairs of processes (P ,Q) such that (i) · ⊢ ω̂(P) :: z:ω̂(A); (ii) · ⊢ ω̂ ′(Q) :: z:ω̂ ′(A); and
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10 Bernardo Toninho and Nobuko Yoshida

(iii) satisfies the conditions given below we write P ̸→ to denote that P cannot reduce):

P ≈L Q :: z:X [η : ω⇔ω ′] iff (P ,Q) ∈ η(X )(z)
P ≈L Q :: z:1[η : ω⇔ω ′] iff ∀P ′,Q ′. (P =⇒ P ′ ∧ P ′ ̸→ ∧Q =⇒ Q ′ ∧Q ′ ̸→) ⇒

(P ′ ≡! 0 ∧Q ′ ≡! 0)

P ≈L Q :: z:A ⊸ B[η : ω⇔ω ′] iff ∀P ′,y. (P z(y)
→ P ′) ⇒ ∃Q ′.Q z(y)

=⇒ Q ′ s .t .
∀R1,R2. R1 ≈L R2 :: y:A[η : ω⇔ω ′]
(νy)(P ′ | R1) ≈L (νy)(Q

′ | R2) :: z:B[η : ω⇔ω ′]

P ≈L Q :: z:A ⊗ B[η : ω⇔ω ′] iff ∀P ′,y. (P (νy)z ⟨y ⟩→ P ′) ⇒ ∃Q ′.Q (νy)z ⟨y ⟩=⇒ Q ′ s .t .
∃P1, P2,Q1,Q2.P

′ ≡! P1 | P2 ∧Q
′ ≡! Q1 | Q2

P1 ≈L Q1 :: y:A[η : ω⇔ω ′] ∧ P2 ≈L Q2 :: z:B[η : ω⇔ω ′]

P ≈L Q :: z:!A[η : ω⇔ω ′] iff ∀P ′. (P z(y)
→ P ′) ⇒ ∃Q ′.Q z(y)

=⇒ Q ′∧
P ′ ≈L Q

′
:: y:A[η : ω⇔ω ′]

P ≈L Q :: z:A& B[η : ω⇔ω ′] iff

(∀P ′.(P z .inl
→ P ′) ⇒ ∃Q ′.(Q z .inl

=⇒ Q ′ ∧ P ′ ≈L Q
′
:: z:A[η : ω⇔ω ′])) ∧

(∀P ′.(P z .inr
→ P ′) ⇒ ∃Q ′.(Q z .inr

=⇒ Q ′ ∧ P ′ ≈L Q
′
:: z:B[η : ω⇔ω ′]))

P ≈L Q :: z:A ⊕ B[η : ω⇔ω ′] iff

(∀P ′.(P z .inl
→ P ′) ⇒ ∃Q ′.(Q z .inl

=⇒ Q ′ ∧ P ′ ≈L Q
′
:: z:A[η : ω⇔ω ′])) ∧

(∀P ′.(P z .inr
→ P ′) ⇒ ∃Q ′.(Q z .inr

=⇒ Q ′ ∧ P ′ ≈L Q
′
:: z:B[η : ω⇔ω ′]))

P ≈L Q :: z:∀X .A[η : ω⇔ω ′] iff ∀B1,B2, P
′,R :: −:B1⇔B2. (P

z(B1)
→ P ′) implies

∃Q ′.Q z(B2)
=⇒ Q ′, P ′ ≈L Q ′ :: z:A[η[X 7→ R] : ω[X 7→ B1]⇔ω ′[X 7→ B2]]

P ≈L Q :: z:∃X .A[η : ω⇔ω ′] iff ∃B1,B2,R :: −:B1⇔B2. (P
z ⟨B1 ⟩
→ P ′) implies

∃Q ′.Q z ⟨B2 ⟩
=⇒ Q ′, P ′ ≈L Q ′ :: z:A[η[X 7→ R] : ω[X 7→ B1]⇔ω ′[X 7→ B2]]

(Inductive Case) Let Γ,∆ be non empty. Given Ω; Γ;∆ ⊢ P :: T and Ω; Γ;∆ ⊢ Q :: T , the binary
relation on processes Γ;∆ ⊢ P ≈L Q :: T [η : ω⇔ω ′] (with ω,ω ′ : Ω and η : ω⇔ω ′) is inductively
defined as:

Γ;∆,y : A ⊢ P ≈L Q :: T [η : ω⇔ω ′] iff ∀R1,R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω ′],
Γ;∆ ⊢ (νy)(ω̂(P) | ω̂(R1)) ≈L (νy)(ω̂

′(Q) | ω̂ ′(R2)) :: T [η : ω⇔ω ′]

Γ,u : A;∆ ⊢ P ≈L Q :: T [η : ω⇔ω ′] iff ∀R1,R2. s.t. R1 ≈L R2 :: y:A[η : ω⇔ω ′],
Γ;∆ ⊢ (νu)(ω̂(P) |!u(y).ω̂(R1)) ≈L (νu)(ω̂

′(Q) |!u(y).ω̂ ′(R2)) :: T [η : ω⇔ω ′]

For the sake of readability we often omit the η : ω⇔ω ′ portion of ≈L, which is henceforth

implicitly universally quantified. Thus, we write Ω; Γ;∆ ⊢ P ≈L Q :: z:A (or P ≈L Q) iff the two

given processes are logically equivalent for all consistent instantiations of its type variables.

It is instructive to inspect the clause for type input (∀X .A): the two processes must be able

to match inputs of any pair of related types (i.e. types related by a candidate), such that the

continuations are related at the open type A with the appropriate type variable instantiations,

following Girard [24]. The power of this style of logical relation arises from a combination of the

extensional flavour of the equivalence and the fact that polymorphic equivalences do not require

the same type to be instantiated in both processes, but rather that the types are related (via a

suitable equivalence candidate relation).

Theorem 2.13 (Properties of Logical Eqivalence [11]).
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Parametricity: If Ω; Γ;∆ ⊢ P :: z:A then, for allω,ω ′ : Ω and η : ω⇔ω ′, we have Γ;∆ ⊢ ω̂(P) ≈L
ω̂ ′(P) :: z:A[η : ω⇔ω ′].

Soundness: If Ω; Γ;∆ ⊢ P ≈L Q :: z:A then C[P] � C[Q] :: z:A, for any closing C[−].
Completeness: If Ω; Γ;∆ ⊢ P � Q :: z:A then Ω; Γ;∆ ⊢ P ≈L Q :: z:A.

The contextual nature of logical equivalence (and thus of typed barbed congruence) admits what

may at first seem as exotic equivalences from a concurrency perspective. For instance, the following

can be a valid equivalence: x(a).(νb)y⟨b⟩.(P1 | P2) ≈L (νb)y⟨b⟩.(P1 | x(a).P2). To argue why such

prefix commutations are reasonable, we first consider a possible typing for such processes:

·; ·; · ⊢ P1 :: b : C ·; ·;a:A,x :B ⊢ P2 :: y:D

·; ·;a:A,x :B ⊢ (νb)y⟨b⟩.(P1 | P2) :: y:C ⊗ D
(⊗R)

·; ·;x :A ⊗ B ⊢ x(a).(νb)y⟨b⟩.(P1 | P2) :: y:C ⊗ D
(⊗L)

·; ·; · ⊢ P1 :: b : C

·; ·;a:A,x :B ⊢ P2 :: y:D

·; ·;x :A ⊗ B ⊢ x(a).P :: y:D
(⊗L)

·; ·;x :A ⊗ B ⊢ (νb)y⟨b⟩.(P1 | x(a).P2) :: y:C ⊗ D
(⊗R)

To type the first process we first apply rule ⊗L, receiving on x and then rule ⊗R to send on y
accordingly. To type the second process, we apply the same rules in reverse order. Why is it then

reasonable to equate the two processes through logical equivalence? Both processes are typed in a

context that must provide a session x :A ⊗ B so that the processes may offer y:C ⊗ D. Let us posit
a process Q :: x :A ⊗ B, we can compose Q with the given processes via the cut rule to then have

(νx)(Q | x(a).(νb)y⟨b⟩.(P1 | P2)) and (νx)(Q | (νb)y⟨b⟩.(P1 | x(a).P2)), respectively, both offering

y:C ⊗ D in the empty context. Now the contextual nature of the equivalence becomes clear: since

both processes are typed in a context requiring x :A ⊗ B, they must be reasoned about as if their

contextual requirements are satisfied. In this setting, the channel x is now hidden by the ν-binder
and therefore no actions on x are visible, only those on y (the right-hand side typing). Thus, it is

impossible for any well-typed process (and any well-typed context) to distinguish between the two

processes, and so the equivalence is justified.

We further note that if P1 ≡ 0 and C = 1, we can specialize the equivalence to the seemingly

more exotic x(a).(νb)y⟨b⟩.P2 ≡ (νb)y⟨b⟩.x(a).P2, or, if C = D = 1 and P1 ≡ 0, we can even derive

x(a).(νb)y⟨b⟩.P2 ≡ (νb)y⟨b⟩.0 | x(a).P2. Neither of these are derivable in the general case, albeit all

are perfectly justified given the typed and contextual nature of logical equivalence (and barbed

congruence). A more complete discussion of commuting conversions and their interpretation as

behavioural equivalences can be found in [11, 50, 51].

3 TO LINEAR-F AND BACK
We now develop our mutually inverse and fully abstract encodings between Polyπ and a linear

polymorphic λ-calculus [79] that we dub Linear-F. We first introduce the syntax and typing of the

linear λ-calculus and then proceed to detail our encodings and their properties (we omit typing

ascriptions from the existential polymorphism constructs for readability).

Definition 3.1 (Linear-F). The syntax of termsM,N and types A,B of Linear-F is given below.

M,N ::= λx :A.M | M N | ⟨M ⊗ N ⟩ | letx ⊗ y = M inN | !M | let !u = M inN | ΛX .M

| M[A] | packAwithM | let (X ,y) = M inN | let 1 = M inN | ⟨⟩ | T | F

A,B ::= A ⊸ B | A ⊗ B | !A | ∀X .A | ∃X .A | X | 1 | 2
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(var)

Ω; Γ;x :A ⊢ x :A

(⊸ I )

Ω; Γ;∆,x :A ⊢ M : B

Ω; Γ;∆ ⊢ λx :A.M : A ⊸ B

(⊸ E)

Ω; Γ;∆ ⊢ M : A ⊸ B Ω; Γ;∆′ ⊢ N : A

Ω; Γ;∆,∆′ ⊢ M N : B
(⊗I )

Ω; Γ;∆ ⊢ M : A Ω; Γ;∆′ ⊢ N : B

Ω; Γ;∆,∆′ ⊢ ⟨M ⊗ N ⟩ : A ⊗ B

(⊗E)

Ω; Γ;∆ ⊢ M : A ⊗ B Ω; Γ;∆′,x :A,y:B ⊢ N : B′

Ω; Γ;∆,∆′ ⊢ letx ⊗ y = M inN : B′

(!I )

Ω; Γ; · ⊢ M : A

Ω; Γ; · ⊢!M :!A

(!E)

Ω; Γ;∆ ⊢ M :!A Ω; Γ,u:A;∆′ ⊢ N : B

Ω; Γ;∆,∆′ ⊢ let !u = M inN : B

(uvar)

Ω; Γ,u:A; · ⊢ u:A
(∀I )

Ω,X ; Γ;∆ ⊢ M : A

Ω; Γ;∆ ⊢ ΛX .M : ∀X .A

(∀E)
Ω ⊢ A type Ω; Γ;∆ ⊢ M : ∀X .B

Ω; Γ;∆ ⊢ M[A] : B{A/X }
(∃I )
Ω ⊢ A type Ω; Γ;∆ ⊢ M : B{A/X }

Ω; Γ;∆ ⊢ packAwithM : ∃X .B

(∃E)
Ω; Γ;∆ ⊢ M : ∃X .A Ω,X ; Γ;∆′,y:A ⊢ N : B Ω ⊢ B type

Ω; Γ;∆,∆′ ⊢ let (X ,y) = M inN : B
(1I )

Ω; Γ; · ⊢ ⟨⟩ : 1

(1E)
Ω; Γ;∆ ⊢ M : 1 Ω; Γ;∆′ ⊢ N : C

Ω; Γ;∆,∆′ ⊢ let 1 = M inN : C

(2I1)

Ω; Γ; · ⊢ T : 2

(2I2)

Ω; Γ; · ⊢ F : 2

Fig. 3. Linear-F Typing Rules

The syntax of types is that of the multiplicative and exponential fragments of second-order intuition-

istic linear logic. The term assignment is mostly standard: λx :A.M denotes linear λ-abstractions;
M N denotes the application; ⟨M ⊗ N ⟩ denotes the multiplicative pairing ofM and N , as reflected

in its elimination form letx ⊗ y = M inN which simultaneously deconstructs the pairM , binding

its first and second projection to x and y in N , respectively; !M denotes a termM that does not use

any linear variables and so may be used an arbitrary number of times; let !u = M inN binds the

underlying exponential term of M as u in N ; ΛX .M is the type abstraction former; M[A] stands
for type application; packAwithM is the existential type introduction form, where M is a term

where the existentially typed variable is instantiated with A; let (X ,y) = M inN unpacks an exis-

tential package M , binding the representation type to X and the underlying term to y in N ; the

multiplicative unit 1 has as introduction form the nullary pair ⟨⟩ and is eliminated by the construct

let 1 = M inN , where M is a term of type 1. Booleans (type 2 with values T and F) are the basic
observable.

The typing judgment in Linear-F is given as Ω; Γ;∆ ⊢ M : A, following the DILL formulation

of linear logic [5], stating that term M has type A in a linear context ∆ (i.e. bindings for linear

variables x :B), intuitionistic context Γ (i.e. binding for intuitionistic variables u:B) and type variable
context Ω. The typing rules are given in Figure 3.

The operational semantics of the calculus are the expected call-by-name semantics [39, 79], given

in Figure 4. For conciseness we use a evaluation context to codify the various congruence rules,

where E[M] stands for the instantiation of the single hole • in context E with the termM . We write

⇓ for the usual evaluation relation.

We write � for the largest typed congruence that is consistent with the observables of type 2 (i.e.
a so-called Morris-style equivalence as in [8]).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



On Polymorphic Sessions and Functions 13

(λx :A.M)N → M{N /x} let !u = !M inN → N {M/u}

(ΛX .M)[A] → M{A/X } letx ⊗ y = ⟨M1 ⊗ M2⟩ inN → N {M1/x ,M2/y}

let (X ,y) = packAwithM inN → N {A/X ,M/y} let 1 = ⟨⟩ inM → M

M → M ′

E[M] → E[M ′]

E ::= • | E M | let 1 = E inM | let 1 = M inE | let !u = M inE | let !u = E inM
| letx ⊗ y = E inM | ⟨E ⊗ M⟩ | ⟨M ⊗ E⟩

Fig. 4. Operational Semantics of Linear-F

3.1 Encoding Linear-F into Session π -Calculus
We define a translation from Linear-F to Polyπ generalising the one from [70], accounting for

polymorphism and multiplicative pairs. We translate typing derivations of λ-terms to those of

π -calculus terms (we omit the full typing derivation for the sake of readability).

Proof theoretically, the λ-calculus corresponds to a proof term assignment for natural deduction

presentations of logic, whereas the session π -calculus from § 2 corresponds to a proof term assign-

ment for sequent calculus. Thus, we obtain a translation from λ-calculus to the session π -calculus
by considering the proof theoretic content of the constructive proof of soundness of the sequent

calculus wrt natural deduction. Following Gentzen [22], the translation from natural deduction to

sequent calculus maps introduction rules to the corresponding right rules and elimination rules to

a combination of the corresponding left rule, cut and/or identity.

Since typing in the session calculus identifies a distinguished channel along which a process offers

a session, the translation of λ-terms is parameterised by a “result” channel alongwhich the behaviour

of the λ-term is implemented. Given a λ-termM , the process JMKz encodes the behaviour ofM along

the session channel z.We enforce that the type 2 of booleans and its two constructors are consistently
translated to their polymorphic Church encodings before applying the translation to Polyπ . Thus,
type 2 is first translated to ∀X .!X⊸ !X⊸X , the value T to ΛX .λu:!X .λv :!X .let !x = u in let !y =
v inx and the value F to ΛX .λu:!X .λv :!X .let !x = u in let !y = v iny. Such representations of the

booleans are adequate up to parametricity [10] and suitable for our purposes of relating the session

calculus (which has no primitive notion of value or result type) with the λ-calculus precisely due to

the tight correspondence between the two calculi.

Definition 3.2 (From Linear-F to Polyπ ). JΩK; JΓK; J∆K ⊢ JMKz :: z:A denotes the translation of

contexts, types and terms from Linear-F to the polymorphic session calculus. The translations

on contexts and types are the identity function. Booleans and their values are first translated to

their (typed) Church encodings, that is, type 2 is translated to type ∀X .!X⊸ !X⊸X , the value T
to ΛX .λu:!X .λv :!X .let !x = u in let !y = v inx and value F to ΛX .λu:!X .λv :!X .let !x = u in let !y =
v iny, as specified above. The translation on λ-terms is given below:
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JxKz ≜ [x ↔ z] JM N Kz ≜ (νx)(JMKx | (νy)x ⟨y⟩.(JN Ky | [x ↔ z]))
JuKz ≜ (νx)u⟨x⟩.[x ↔ z] Jlet !u = M inN Kz ≜ (νx)(JMKx | JN Kz {x/u})
Jλx :A.MKz ≜ z(x).JMKz J⟨M ⊗ N ⟩Kz ≜ (νy)z⟨y⟩.(JMKy | JN Kz )
J!MKz ≜ !z(x).JMKx Jletx ⊗ y = M inN Kz ≜ (νy)(JMKy | y(x).JN Kz )
JΛX .MKz ≜ z(X ).JMKz JM[A]Kz ≜ (νx)(JMKx | x ⟨A⟩.[x ↔ z])
JpackAwithMKz ≜ z⟨A⟩.JMKz Jlet (X ,y) = M inN Kz ≜ (νy)(JMKy | y(X ).JN Kz )
J⟨⟩Kz ≜ 0 Jlet 1 = M inN Kz ≜ (νx)(JMKx | JN Kz )

To translate a (linear) λ-abstraction λx :A.M , which corresponds to the proof term for the introduc-

tion rule for⊸, we map it to the corresponding⊸R rule, thus obtaining a process z(x).JMKz that
inputs along the result channel z a channel x which will be used in JMKz to access the function

argument. To encode the application M N , we compose (i.e. cut) JMKx , where x is a fresh name,

with a process that provides the (encoded) function argument by outputting along x a channel y
which offers the behaviour of JN Ky . After the output is performed, the type of x is now that of the

function’s codomain and thus we conclude by forwarding (i.e. the id rule) between x and the result

channel z.
The encoding for polymorphism follows a similar pattern: To encode the abstraction ΛX .M ,

we receive along the result channel a type that is bound to X and proceed inductively. To encode

type application M[A] we encode the abstraction M in parallel with a process that sends A to it,

and forwards accordingly. Finally, the encoding of the existential package packAwithM maps to

an output of the type A followed by the behaviour JMKz , with the encoding of the elimination

form let (X ,y) = M inN composing the translation of the term of existential typeM with a process

performing the appropriate type input and proceeding as JN Kz .
Computation in the λ-calculus entails substitution of variables with terms whereas commu-

nication in the π -calculus substitutes names for names. Thus, we observe that the encoding of

M{N /x} is identified with (νx)(JMKz | JN Kx ). Similarly, the encoding ofM{N /u} corresponds to
(νu)(!u(x).JN Kx | JMKz ).

Example 3.3 (Encoding of Linear-F). Consider the following λ-term corresponding to a polymor-

phic pairing function (recall that we write z⟨w⟩.P for (νw)z⟨w⟩.P ):

M ≜ ΛX .ΛY .λx :X .λy:Y .⟨x ⊗ y⟩ and N ≜ ((M[A][B]M1)M2)

Then we have, with x̃ = x1x2x3x4:

JN Kz ≡ (νx̃)( JMKx1 | x1⟨A⟩.[x1 ↔ x2] | x2⟨B⟩.[x2 ↔ x3] |
x3⟨x⟩.(JM1Kx | [x3 ↔ x4]) | x4⟨y⟩.(JM2Ky | [x4 ↔ z]))

≡ (νx̃)( x1(X ).x1(Y ).x1(x).x1(y).x1⟨w⟩.([x ↔ w] | [y ↔ x1]) | x1⟨A⟩.[x1 ↔ x2] |
x2⟨B⟩.[x2 ↔ x3] | x3⟨x⟩.(JM1Kx | [x3 ↔ x4]) | x4⟨y⟩.(JM2Ky | [x4 ↔ z]))

We can observe that N →+ (((λx :A.λy:B.⟨x ⊗y⟩)M1)M2) →
+
⟨M1 ⊗M2⟩. At the process level, each

reduction corresponding to the redex of type application is simulated by two reductions, obtaining:

JN Kz →
+
(νx3,x4)( x3(x).x3(y).x3⟨w⟩.([x ↔ w] | [y ↔ x3]) |

x3⟨x⟩.(JM1Kx | [x3 ↔ x4]) | x4⟨y⟩.(JM2Ky | [x4 ↔ z])) = P

The reductions corresponding to the β-redexes clarify the way in which the encoding represents

substitution of terms for variables via fine-grained name passing. Consider J⟨M1 ⊗ M2⟩Kz ≜
z⟨w⟩.(JM1Kw | JM2Kz ) and

P →
+
(νx ,y)(JM1Kx | JM2Ky | z⟨w⟩.([x ↔ w] | [y ↔ z]))

The encoding of the pairing ofM1 andM2 outputs a fresh namew which will denote the behaviour

of (the encoding of)M1, and then the behaviour of the encoding ofM2 is offered on z. The reduct
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of P outputs a fresh name w which is then identified with x and thus denotes the behaviour of

JM1Kw . The channel z is identified with y and thus denotes the behaviour of JM2Kz , making the

two processes listed above equivalent. This informal reasoning exposes the insights that justify the

operational correspondence of the encoding. Proof-theoretically, these equivalences simply map to

commuting conversions which push the processes JM1Kx and JM2Kz under the output on z.

We note that in Theorem 3.5 (and in the subsequent development) we distinguish between the

soundness and completeness directions of operational correspondence (c.f. [25]).

Lemma 3.4 (Compositionality).

(1) Let Ω; Γ;∆1,x :A ⊢ M : B and Ω; Γ;∆2 ⊢ N : A. We have that Ω; Γ;∆1,∆2 ⊢ JM{N /x}Kz ≈L
(νx)(JMKz | JN Kx ) :: z:B.

(2) Let Ω; Γ,u:A;∆ ⊢ M : B and Ω; Γ; · ⊢ N : A. we have that Ω; Γ;∆ ⊢ JM{N /u}Kz ≈L (νu)(JMKz |
!u(x).JN Kx ) :: z:B.

Proof. By induction on the structure ofM , exploiting the fact that commuting conversions and

≡! are sound ≈L equivalences. See Lemma 5.2 for further details. □

Theorem 3.5 (Operational Correspondence). Let Ω; Γ;∆ ⊢ M : A.

Completeness: IfM → N then JMKz =⇒ P such that JN Kz ≈L P
Soundness: If JMKz → P thenM →+ N and JN Kz ≈L P

3.2 Encoding Session π -calculus to Linear-F
Just as the proof theoretic content of the soundness of sequent calculus wrt natural deduction

induces a translation from λ-terms to session-typed processes, the completeness of the sequent
calculus wrt natural deduction induces a translation from the session calculus to the λ-calculus. For
conciseness, we omit the additive types ⊕ and& from the translation, which can be straightforwardly

considered by adding the corresponding additive pairs and sums to Linear-F. This mapping identifies

sequent calculus right rules with the introduction rules of natural deduction and left rules with

elimination rules combined with (type-preserving) substitution. Crucially, the mapping is defined

on typing derivations, enabling us to consistently identify when a process uses a session (i.e. left

rules) or, dually, when a process offers a session (i.e. right rules). The encoding makes use of the

two admissible substitution principles denoted by the following rules:

(subst)

Ω; Γ;∆1,x :B ⊢ M : A Ω; Γ;∆2 ⊢ N : B

Ω; Γ;∆1,∆2 ⊢ M{N /x} : A

(subst
!
)

Ω; Γ,u:B;∆ ⊢ M : A Ω; Γ; · ⊢ N : B

Ω; Γ;∆ ⊢ M{N /u} : A

Definition 3.6 (From Polyπ to Linear-F). We write LΩM; LΓM; L∆M ⊢ LPM : A for the translation from

typing derivations in Polyπ to derivations in Linear-F. The translations on types and contexts

are the identity function. The translation on processes is given below, where the leftmost column

indicates the typing rule at the root of the derivation (Figures 5 and 6 list the translation on typing
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16 Bernardo Toninho and Nobuko Yoshida

derivations, where we write LPMΩ;Γ;∆⊢z :A to denote the translation of Ω; Γ;∆ ⊢ P :: z:A).

(id) L[x ↔ y]M ≜ x (copy) L(νx)u⟨x⟩.PM ≜ LPM{u/x}
(1R) L0M ≜ ⟨⟩ (1L) LPM ≜ let 1 = x in LPM
(⊸R) Lz(x).PM ≜ λx :A.LPM (⊸L) L(νy)x ⟨y⟩.(P | Q)M ≜ LQM{(x LPM)/x}
(⊗R) L(νx)z⟨x⟩.(P | Q)M ≜ ⟨LPM ⊗ LQM⟩ (⊗L) Lx(y).PM ≜ letx ⊗ y = x in LPM
(!R) L!z(x).PM ≜ !LPM (!L) LP{u/x}M ≜ let !u = x in LPM
(∀R) Lz(X ).PM ≜ ΛX .LPM (∀L) Lx ⟨B⟩.PM ≜ LPM{(x[B])/x}
(∃R) Lz⟨B⟩.PM ≜ packBwith LPM (∃L) Lx(Y ).PM ≜ let (Y ,x) = x in LPM
(cut) L(νx)(P | Q)M ≜ LQM{LPM/x} (cut!) L(νu)(!u(x).P | Q)M ≜ LQM{LPM/u}

For instance, the encoding of a process z(x).P :: z:A ⊸ B, typed by rule ⊸R, results in the

corresponding⊸ I introduction rule in the λ-calculus and thus is λx :A.LPM. To encode the process

(νy)x ⟨y⟩.(P | Q), typed by rule⊸L, we make use of substitution: Given that the sub-process Q is

typed as Ω; Γ;∆′,x :B ⊢ Q :: z:C , the encoding of the full process is given by LQM{(x LPM)/x}. The
term x LPM consists of the application of x (of function type) to the argument LPM, thus ensuring
that the term resulting from the substitution is of the appropriate type. We note that, for instance,

the encoding of rule ⊗L does not need to appeal to substitution – the λ-calculus let style rules can
be mapped directly. Similarly, rule ∀R is mapped to type abstraction, whereas rule ∀L which types

a process of the form x ⟨B⟩.P maps to a substitution of the type application x[B] for x in LPM. The
encoding of existentials is simpler due to the let-style elimination. We also highlight the encoding

of the cut rule which embodies parallel composition of two processes sharing a linear name, which

clarifies the use/offer duality of the intuitionistic calculus – the process that offers P is encoded

and substituted into the encoded user Q .

Theorem 3.7. If Ω; Γ;∆ ⊢ P :: z:A then LΩM; LΓM; L∆M ⊢ LPM : A.

Proof. Straightforward induction. The proof follows from the typing derivations of Figures 5

and 6. □

Example 3.8 (Encoding of Polyπ ). Consider the following processes

P ≜ z(X ).z(Y ).z(x).z(y).z⟨w⟩.([x ↔ w] | [y ↔ z]) Q ≜ z⟨1⟩.z⟨1⟩.z⟨x⟩.z⟨y⟩.z(w).[w ↔ r ]

with ⊢ P :: z:∀X .∀Y .X ⊸ Y ⊸ X ⊗ Y and z:∀X .∀Y .X ⊸ Y ⊸ X ⊗ Y ⊢ Q :: r :1, derivable as
follows:

X ,Y ; ·;x :X ⊢ [x ↔ w] :: w :X X ,Y ; ·;y:Y ⊢ [y ↔ z] :: z:Y

X ,Y ; ·;x :X ,y:Y ⊢ z⟨w⟩.([x ↔ w] | [y ↔ z]) :: z:X ⊗ Y

X ,Y ; ·;x :X ⊢ z(y).z⟨w⟩.([x ↔ w] | [y ↔ z]) :: z:Y ⊸ X ⊗ Y

X ,Y ; ·; · ⊢ z(x).z(y).z⟨w⟩.([x ↔ w] | [y ↔ z]) :: z:X ⊸ Y ⊸ X ⊗ Y

X ; ·; · ⊢ z(Y ).z(x).z(y).z⟨w⟩.([x ↔ w] | [y ↔ z]) :: z:∀Y .X ⊸ Y ⊸ X ⊗ Y

·; ·; · ⊢ z(X ).z(Y ).z(x).z(y).z⟨w⟩.([x ↔ w] | [y ↔ z]) :: z:∀X .∀Y .X ⊸ Y ⊸ X ⊗ Y

The derivation (read bottom-up) consists of two applications of rule ∀R, two instances of rule⊸R
and one instance of rule ⊗R followed by two uses of the identity rule.
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L(1R)Ω; Γ; · ⊢ 0 :: z :1 M ≜ (1I )Ω; Γ; · ⊢ ⟨⟩ : 1

L(1L)Ω; Γ;∆ ⊢ P :: z :C

Ω; Γ;∆, x :1 ⊢ P :: z :C
M ≜ (1E)Ω; Γ; x :1 ⊢ x : 1 Ω; Γ;∆ ⊢ LPMΩ;Γ;∆⊢z :C : C

Ω; Γ;∆, x :1 ⊢ let 1 = x in LPMΩ;Γ;∆⊢z :C : C

L(id)Ω; Γ; x :A ⊢ [x ↔ z] :: z :A M ≜ (var)Ω; Γ; x :A ⊢ x :A

L(!R)Ω; Γ; · ⊢ P :: x :A

Ω; Γ; · ⊢ !z(x ).P :: z :!A
M ≜ (!I )Ω; Γ; · ⊢ LPMΩ;Γ;·⊢x :A : A

Ω; Γ; · ⊢ !LPMΩ;Γ;·⊢z :!A :!A

L(⊸R)
Ω; Γ;∆, x :A ⊢ P :: z :B

Ω; Γ;∆ ⊢ z(x ).P :: z :A ⊸ B M ≜ (⊸ I )
Ω; Γ;∆, x :A ⊢ LPMΩ,Γ;∆,x :A⊢z :B : B

Ω; Γ;∆ ⊢ λx :A.LPMΩ,Γ;∆,x :A⊢z :B : A ⊸ B

L(⊸L)
Ω; Γ;∆1 ⊢ P :: y :A Ω; Γ;∆2, x :B ⊢ Q :: z :C

Ω; Γ;∆1, ∆2, x :A ⊸ B ⊢ (νy)x ⟨y ⟩.(P | Q ) :: z :C
M ≜

(subst)

Ω; Γ;∆2, x :B ⊢ LQMΩ;Γ;∆2,x :B⊢z :C : C

(⊸ E)
Ω; Γ; x :A ⊸ B ⊢ x :A ⊸ B Ω; Γ;∆1 ⊢ LPMΩ;Γ;∆1⊢y :A : A

Ω; Γ;∆1, x :A ⊸ B ⊢ x LPMΩ;Γ;∆1⊢y :A : B

Ω; Γ;∆1, ∆2, x :A ⊸ B ⊢ LQMΩ;Γ;∆2,x :B⊢z :C {(x LPMΩ;Γ;∆1⊢y :A)/x } : C

L(⊗R)Ω; Γ;∆1 ⊢ P :: x :A Ω; Γ;∆2 ⊢ Q :: z :B

Ω; Γ;∆1, ∆2 ⊢ (νx )z ⟨x ⟩.(P | Q ) :: z :A ⊗ B
M ≜ (⊗I )Ω; Γ;∆1 ⊢ LPMΩ;Γ;∆1⊢x :A : A Ω; Γ;∆2 ⊢ LQMΩ;Γ;∆2⊢z :B : B

Ω; Γ;∆1, ∆2 ⊢ ⟨LPMΩ;Γ;∆1⊢x :A⊗LQMΩ;Γ;∆2⊢z :B ⟩ : A ⊗ B

L(⊗L)Ω; Γ;∆, y :A.x :B ⊢ P :: z :C

Ω; Γ;∆, x :A ⊗ B ⊢ x (y).P :: z :C
M ≜ (⊗E)Ω; Γ; x :A ⊗ B ⊢ x : A ⊗ B Ω; Γ;∆, y :A, x :B ⊢ LPMΩ;Γ;∆,y :A.x :B⊢z :C : C

Ω; Γ;∆, x :A ⊗ B ⊢ let x ⊗ y = x in LPMΩ;Γ;∆,y :A.x :B⊢z :C : C

Fig. 5. Translation on Typing Derivations from Polyπ to Linear-F (Part 1)
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L(!L) Ω; Γ, u :A;∆ ⊢ P :: z :C

Ω; Γ;∆, x :!A ⊢ P {x/u } :: z :C M ≜ (!E) Ω; Γ; x :!A ⊢ x :!A Ω; Γ, u :A;∆ ⊢ LPMΩ;Γ,u :A;∆⊢z :C : C

Ω; Γ;∆, x :!A ⊢ let !u = x in LPMΩ;Γ,u :A;∆⊢z :C : C

L(copy) Ω; Γ, u :A;∆, x :A ⊢ P :: z :C

Ω; Γ, u :A;∆ ⊢ (νx )u ⟨x ⟩.P :: z :C M ≜
(subst)

Ω; Γ, u :A;∆, x :A ⊢ LPMΩ;Γ,u :A;∆,x :A⊢z :C : C Ω; Γ, u :A; · ⊢ u :A

Ω; Γ, u :A;∆ ⊢ LPMΩ;Γ,u :A;∆,x :A⊢z :C {u/x } : C

L(∀R) Ω, X ; Γ;∆ ⊢ P :: z :A

Ω; Γ;∆ ⊢ z(X ).P :: z :∀X .A M ≜ (∀I ) Ω, X ; Γ;∆ ⊢ LPMΩ,X ;Γ;∆⊢z :A : A

Ω; Γ;∆ ⊢ ΛX .LPMΩ,X ;Γ;∆⊢z :A : ∀X .A

L(∀L) Ω ⊢ B type Ω; Γ;∆, x :A{B/X } ⊢ P :: z :C

Ω; Γ;∆, x :∀X .A ⊢ x ⟨B ⟩.P :: z :C M ≜
(subst)

Ω; Γ;∆, x :A{B/X } ⊢ LPMΩ;Γ;∆,x :A{B/X }⊢z :C : C
(∀E) Ω; Γ, x :∀X .A ⊢ x :∀X .A Ω ⊢ B type

Ω; Γ; x :∀X .A ⊢ x [B] : A{B/X }

Ω; Γ;∆, x :∀X .A ⊢ LPMΩ;Γ;∆,x :A{B/X }⊢z :C {(x [B]/x )} : C

L(∃R) Ω ⊢ B type Ω; Γ;∆ ⊢ P :: z :A{B/X }

Ω; Γ;∆ ⊢ z ⟨B ⟩.P :: z :∃X .A M ≜ (∃I ) Ω ⊢ B type Ω; Γ;∆ ⊢ LPMΩ;Γ;∆⊢z :A{B/X } : A{B/X }

Ω; Γ;∆ ⊢ pack B with LPMΩ;Γ;∆⊢z :A{B/X } : ∃X .A

L(∃L) Ω, Y ; Γ;∆, x :A ⊢ P :: z :C

Ω; Γ;∆, x :∃X .A ⊢ x (Y ).P :: z :C M ≜
(∃E) Ω; Γ; x :∃Y .A ⊢ x :∃Y .A Ω, Y ; Γ;∆, x :A ⊢ LPMΩ,Y ;Γ;∆,x :A⊢z :C : C

Ω; Γ;∆, x :∃Y .A ⊢ let (Y , x ) = x in LPMΩ,Y ;Γ;∆,x :A⊢z :C : C

L(cut)Ω; Γ;∆1 ⊢ P :: x :A Ω; Γ;∆2, x :A ⊢ Q :: z :C

Ω; Γ;∆1, ∆2 ⊢ (νx )(P | Q ) :: z :C
M ≜

(subst)

Ω; Γ;∆2, x :A ⊢ LQMΩ;Γ;∆2,x :A⊢z :C : C Ω; Γ;∆1 ⊢ LPMΩ;Γ;∆1⊢x :A : A

Ω; Γ;∆1, ∆2 ⊢ LQMΩ;Γ;∆2,x :A⊢z :C {LPMΩ;Γ;∆1⊢x :A/x } : C

L(cut!)Ω; Γ; · ⊢ P :: x :A Ω; Γ, u :A;∆ ⊢ Q :: z :C

Ω; Γ;∆ ⊢ (νu)(!u(x ).P | Q ) :: z :C
M ≜ (subst!)Ω; Γ, u :A;∆ ⊢ LQMΩ;Γ,u :A;∆⊢z :C : C Ω; Γ; · ⊢ LPMΩ;Γ;∆1⊢x :A : A

Ω; Γ;∆ ⊢ LQMΩ;Γ,u :A;∆⊢z :C {LPMΩ;Γ;·⊢x :A/u }

Fig. 6. Translation on Typing Derivations from Polyπ to Linear-F (Part 2)
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· ⊢ 1 type

· ⊢ 1 type

·; ·;w :1 ⊢ [w ↔ r ] :: r :1

·; ·;w :1, z:1 ⊢ [w ↔ r ] :: r :1

·; ·; z:1 ⊗ 1 ⊢ z(w).[w ↔ r ] :: r :1

·; ·; z:1 ⊸ 1 ⊗ 1 ⊢ z⟨y⟩.z(w).[w ↔ r ] :: r :1

·; ·; z:1 ⊸ 1 ⊸ 1 ⊗ 1 ⊢ z⟨x⟩.z⟨y⟩.z(w).[w ↔ r ] :: r :1

·; ·; z:∀Y .1 ⊸ Y ⊸ 1 ⊗ Y ⊢ z⟨1⟩.z⟨x⟩.z⟨y⟩.z(w).[w ↔ r ] :: r :1

·; ·; z:∀X .∀Y .X ⊸ Y ⊸ X ⊗ Y ⊢ z⟨1⟩.z⟨1⟩.z⟨x⟩.z⟨y⟩.z(w).[w ↔ r ] :: r :1

The typing derivation forQ above is dual to that of P : two instances of ∀L, followed by two instances
of⊸L, followed by an instance of ⊗L, 1L and the identity rule.

Then: LPM = ΛX .ΛY .λx :X .λy:Y .⟨x ⊗ y⟩ LQM = letx ⊗ y = z[1][1] ⟨⟩ ⟨⟩ in let 1 = y inx
L(νz)(P | Q)M = letx ⊗ y = (ΛX .ΛY .λx :X .λy:Y .⟨x ⊗ y⟩)[1][1] ⟨⟩ ⟨⟩ in let 1 = y inx

By the behaviour of (νz)(P | Q), which consists of a sequence of cuts, and its encoding, we have

that L(νz)(P | Q)M→+ ⟨⟩ and (νz)(P | Q) →+ 0 = L⟨⟩M.

The reader may at this point be wondering what reasonable properties can a translation from

(typed) π -calculus processes to polymorphic λ-terms have, given that the π -calculus exhibits non-
determinism that is absent from the λ-calculus. However, as is made clear by our developments

in Section 3.3, our type-preserving translation from Polyπ to Linear-F is only possible precisely

because the session discipline effectively erases all forms of non-determinism (in the sense of non-

confluent computations) from the π -calculus. While the operational semantics of Polyπ processes

does contain forms of non-determinism (sometimes dubbed don’t care non-determinism, as opposed

to don’t know non-determinism), the session typing ensures nonetheless confluence and strong

normalisation [51], as is the case with parallel reduction in typed λ-calculus.
Note that typing of Polyπ is implicitly modulo structural equivalence, as in previous work

[12, 13].

In general, the translation of Def. 3.6 can introduce some distance between the immediate
operational behaviour of a process and its corresponding λ-term, insofar as the translations of

cuts (and left rules to non let-form elimination rules) make use of substitutions that can take

place deep within the resulting term. Consider the process at the root of the following typing

judgment ∆1,∆2,∆3 ⊢ (νx)(x(y).P1 | (νy)x ⟨y⟩.(P2 | w(z).0)) :: w :1 ⊸ 1, derivable through a cut
on session x between instances of ⊸R and ⊸L, where the continuation process w(z).0 offers

a session w :1 ⊸ 1 (and so must use rule 1L on x). We have that: (νx)(x(y).P1 | (νy)x ⟨y⟩.(P2 |
w(z).0)) → (νx ,y)(P1 | P2 | w(z).0). However, the translation of the process above results in

the term λz:1.let 1 = ((λy:A.LP1M) LP2M) in let 1 = z in ⟨⟩, where the redex that corresponds to the

process reduction is present but hidden under the binder for z (corresponding to the input alongw).

In this sense, the encoding of parallel composition through a (meta-level) substitution can indeed

hide some of the computational behaviour of a process under a binder in the corresponding λ-term,

(albeit the encoding L(νx ,y)(P1 | P2 | w(z).0)M is β-equivalent to the λ-term above). This is justified

proof theoretically by the commuting conversions of sequent calculus and therefore by contextual

equivalence. An alternative would be to consider a let-binder in the λ-calculus that would act as the
translation target of all substitution-style rules (the cuts, copy,⊸L and ∀L rules). In this alternate

formulation, the process above would be translated as letx = λy:A.LP1M in letx ′ = x LP2M in let 1 =
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x ′ in λz:1.let 1 = z in ⟨⟩, which mirrors the process reduction order more explicitly, at the cost of an

extra-logical construct in the λ-calculus.
Thus, to establish a more precise form of operational completeness, without adding extra-logical

constructs to the λ-calculus, we consider full β-reduction, denoted by→β , i.e. enabling β-reductions
under binders (such an extension is easily obtained by including evaluation context clauses under

all binding sites in the language). We note that, as argued above, operational correspondence

does not require full β-reduction, but the results can be established more naturally and precisely

(i.e., without an appeal to contextual equivalence and/or by adding extra-logical features to the

λ-calculus).

Theorem 3.9 (Operational Completeness). Let Ω; Γ;∆ ⊢ P :: z:A. If P → Q then LPM→∗β LQM.

In order to study the soundness direction it is instructive to consider typed process x :1 ⊸ 1 ⊢
x ⟨y⟩.(νz)(z(w).0 | z⟨w⟩.0) :: v :1 and its translation:

Lx ⟨y⟩.(νz)(z(w).0 | z⟨w⟩.0)M = L(νz)(z(w).0 | z⟨w⟩.0)M{(x ⟨⟩)/x}
= let 1 = (λw :1.let 1 = w in ⟨⟩) ⟨⟩ in let 1 = x ⟨⟩ in ⟨⟩

The process above cannot reduce due to the output prefix on x , which cannot synchronise with a

corresponding input action since there is no provider for x (i.e. the channel is in the left-hand side

context). However, its encoding can exhibit the β-redex corresponding to the synchronisation along

z, hidden by the prefix on x . The corresponding reductions hidden under prefixes in the encoding

can be soundly exposed in the session calculus by appealing to the commuting conversions of linear

logic (e.g. in the process above, the instance of rule⊸L corresponding to the output on x can be

commuted with the cut on z).
As shown in [50], commuting conversions are sound wrt observational equivalence, and thus we

formulate operational soundness through a notion of extended process reduction, which extends

process reduction with the reductions that are induced by commuting conversions. Such a relation

was also used for similar purposes in [8] and in [37], in a classical linear logic setting. For conciseness,

we define extended reduction as a relation on typed processes modulo ≡.

Definition 3.10 (Extended Reduction [8]). We define 7→ as the type preserving relations on typed

processes modulo ≡ generated by:

(1) C[(νy)x ⟨y⟩.P] | x(y).Q 7→ C[(νy)(P | Q)];
(2) C[(νy)x ⟨y⟩.P] | !x(y).Q 7→ C[(νy)(P | Q)] | !x(y).Q ; and (3) (νx)(!x(y).Q) 7→ 0

where C is a (typed) process context which does not capture the bound name y.

We highlight that clause (3) above is exactly the reduction of a cut between promotion and

weakening in linear logic.

Theorem 3.11 (Operational Soundness). Let Ω; Γ;∆ ⊢ P :: z:A and LPM → M , there exists Q
such that P 7→∗ Q and LQM =α M .

Before addressing the more semantic properties that are detailed in the following sections, it

is important to consider the general landscape of our encodings: Both Polyπ and Linear-F are

extremely proof-theoretically well-behaved, satisfying confluence and strong normalization. In

this sense, our encodings are greatly simplified and inherit significant intrinsic correctness from

typing alone, seeing as the main differences between the two calculi lie in those between natural

deduction and sequent calculi style systems themselves. This is made manifest in our encodings

by the accounting of commutting conversions via behavioural equivalence or full β-reduction
(alternatively, as discussed above, by considering an extension of the λ-calculus with a general

let-binder).
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Any extensions of either system that would weaken their proof-theoretic robustness, e.g. diver-

gence or other forms of effects, would require careful revision of the encodings and their operational

properties. In terms of divergence, a revision of the encoding along the lines detailed above with a

let-binder (and the appropriate recursive constructs) would likely suffice. To consider more general

effects, a framework along the lines of the work [47] would need to be considered, likely foregoing

the logical correspondence. In such a setting, operational correctness can be reestablished although

the status of the semantic properties of Section 3.3 (and subsequent sections) is unclear.

3.3 Inversion and Full Abstraction
Having established the operational preciseness of the encodings to-and-from Polyπ and Linear-F,

we establish our main results for the encodings. Specifically, we show that the encodings are

mutually inverse up-to behavioural equivalence (with fullness as its corollary), which then enables

us to establish full abstraction for both encodings.

Theorem 3.12 (Inverse).

• If Ω; Γ;∆ ⊢ M : A then Ω; Γ;∆ ⊢ LJMKzM � M : A
• If Ω; Γ;∆ ⊢ P :: z:A then Ω; Γ;∆ ⊢ JLPMKz ≈L P :: z:A

Corollary 3.13 (Fullness).

• Given Ω; Γ;∆ ⊢ P :: z:A, there existsM such that Ω; Γ;∆ ⊢ M : A and Ω; Γ;∆ ⊢ JMKz ≈L P :: z:A.
• Given Ω; Γ;∆ ⊢ M : A, there exists P such that Ω; Γ;∆ ⊢ P :: z:A and Ω; Γ;∆ ⊢ LPM � M : A.

We now state our full abstraction results. Given two Linear-F terms of the same type, equivalence

in the image of the J−Kz translation can be used as a proof technique for contextual equivalence in

Linear-F. This is called the soundness direction of full abstraction in the literature [26] and proved

by showing the relation generated by JMKz ≈L JN Kz forms �; we then establish the completeness
direction by contradiction, using fullness (see Appendix A.2).

Lemma 3.14. Let · ⊢ M : 2.M ⇓ T iff JMKz ≈L JTKz :: z:J2K

Proof. By operational correspondence. □

Theorem 3.15 (Full Abstraction). Ω; Γ;∆ ⊢ M � N : A iff Ω; Γ;∆ ⊢ JMKz ≈L JN Kz :: z:A.

Proof. (Soundness, ⇐) Since � is the largest consistent congruence compatible with the

booleans, letMRN iff JMKz ≈L JN Kz . We show that R is one such relation.

(1) (Congruence) Since ≈L is a congruence, R is a congruence.

(2) (Reduction-closed) LetM → M ′ and JMKz ≈L JN Kz . Then we have by operational correspon-

dence (Theorem 3.5) that JMKz →∗ P such that P ≈L JM ′Kz hence JM ′Kz ≈L JN Kz , thus R is

reduction closed.

(3) (Compatible with the booleans) Follows from Lemma 3.14.

(Completeness,⇒) Assume to the contrary thatM � N : A and JMKz ̸≈L JN Kz :: z:A.
This means we can find a distinguishing context R such that (νz, x̃)(JMKz | R) ≈L JTKy :: y:J2K and
(νz, x̃)(JN Kz | R) ≈L JFKy :: y:J2K. By Fullness (Theorem 3.13), we have that there exists some L such

that JLKy ≈L R, thus: (νz, x̃)(JMKz | JLKy ) ≈L JTKy :: y:J2K and (νz, x̃)(JN Kz | JLKy ) ≈L JFKy :: y:J2K.
By Theorem 3.15 (Soundness), we have that L[M] � T and L[N ] � F and thus L[M] � L[N ] which
contradictsM � N : A. □

We can straightforwardly combine the above full abstraction with Theorem 3.12 to obtain full

abstraction of the L−M translation.
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Theorem 3.16 (Full Abstraction). Ω; Γ;∆ ⊢ P ≈L Q :: z:A iff Ω; Γ;∆ ⊢ LPM � LQM : A.

Proof. (Soundness,⇐) LetM = LPM and N = LQM. By Theorem 3.15 (Completeness) we have

JMKz ≈L JN Kz . Thus by Theorem 3.12 we have: JMKz = JLPMKz ≈L P and JN Kz = JLQMKz ≈L Q . By
compatibility with observational equivalence we have P ≈L Q :: z:A.
(Completeness, ⇒) From P ≈L Q :: z:A, Theorem 3.12 and compatibility with observational

equivalence we have JLPMKz ≈L JLQMKz :: z:A. Let LPM = M and LQM = N . We have by Theorem 3.15

(Soundness) thatM � N : A and thus LPM ≈L LQM : A. □

4 INDUCTIVE AND COINDUCTIVE SESSION TYPES
In this section we study inductive and coinductive sessions, arising through encodings of initial

F -algebras and final F -coalgebras in the polymorphic λ-calculus.
The study of polymorphism in the λ-calculus [2, 10, 27, 58] has shown that parametric polymor-

phism is expressive enough to encode both inductive and coinductive types in a precise way, through

a faithful representation of initial and final (co)algebras [40], without extending the language of

terms nor the semantics of the calculus, giving a logical justification to the Church encodings of

inductive datatypes such as lists and natural numbers.

The polymorphic session typing framework of the previous sections allows us to express fairly

intricate communication behaviours, being able to specify generic protocols through both existential

and universal polymorphism (i.e. protocols that are parametric in their sub-protocols). However, it

is often the case that protocols are expressed in terms of recursive behaviours (e.g., a client iterates

over a buy list with a server, a server that repeats a sequence of interactions with a client an arbitrary

number of times until the client chooses to terminate, etc) which are seemingly unavailable in

the framework of Section 2. The introduction of recursive behaviours in the logical-based session

typing framework has been addressed through the introduction of explicit inductive and coinductive

session types [37, 72] and the corresponding process constructs, preserving the good properties of

the framework such as strong normalisation and absence of deadlocks.

However, the study of polymorphism in the λ-calculus [2, 10, 27, 58] has shown that parametric

polymorphism is expressive enough to encode both inductive and coinductive types in a precise

way, through a faithful representation of initial and final (co)algebras [40], without extending the

language of terms nor the semantics of the calculus.

Given the logical foundation of the polymorphic session calculus it is natural to wonder if such a

result holds for inductive and coinductive sessions. In this section we answer this question positively
by using our fully abstract encodings of (linear) polymorphic λ-calculus to show that session

polymorphism is expressive enough to encode inductive and coinductive sessions, “importing” the

results for the λ-calculus through the encodings. The development of this section is a particular

instance of the benefits of our encodings which enable us to import non-trivial results from the

λ-calculus to our process setting for free. We first provide a brief recap of the representation of

inductive and coinductive types using polymorphism in System F.

Inductive and Coinductive Types in System F. Exploring an algebraic interpretation of

polymorphism where types are interpreted as functors, it can be shown that given a type F with a

free variable X that occurs only positively (i.e., occurrences of X are on the left-hand side of an

even number of function arrows), the polymorphic type ∀X .((F (X ) → X ) → X ) forms an initial

F -algebra [2, 60] (we write F (X ) to denote that X may occur in F ). This enables the representation
of inductively defined structures using an algebraic or categorical justification. For instance, the

natural numbers can be seen as the initial F -algebra of F (X ) = 1 + X (where 1 is the unit type

and + is the coproduct), and are thus already present in System F, in a precise sense, as the type

∀X .((1 + X ) → X ) → X (noting that both 1 and + can also be encoded in System F). A similar
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F (Ti )
F (fold[A](f ))- F (A)
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unfold[A](f )- Tf

F (A)

f
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?
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Fig. 7. Diagrams for Initial F -algebras and Final F -coalgebras

story can be told for coinductively defined structures, which correspond to final F -coalgebras and
are representable with the polymorphic type ∃X .(X → F (X )) × X , where × is a product type. In
the remainder of this section we assume the positivity requirement on F mentioned above.

While the complete formal development of the representation of inductive and coinductive types

in System F would lead us too far astray, we summarise here the key concepts as they apply to the

λ-calculus (the interested reader can refer to [27] for the full categorical details).

To show that the polymorphic type Ti ≜ ∀X .((F (X ) → X ) → X ) is an initial F -algebra, one
exhibits a pair of λ-terms, often dubbed fold and in, such that the diagram in Fig. 7(a) commutes

(for any A, where F (f ), where f is a λ-term, denotes the functorial action of F applied to f ), and,
crucially, that fold is unique. When these conditions hold, we are justified in saying thatTi is a least
fixed point of F . Through a fairly simple calculation, we have that:

fold ≜ ΛX .λf :F (X ) → X .λt :Ti .t[X ](f )
in ≜ λx :F (Ti ).ΛX .λf :F (X ) → X . f (F (fold[X ](x))(x))

satisfy the necessary equalities. To show uniqueness one appeals to parametricity, which allows

us to prove that any function of the appropriate type is equivalent to fold. This property is often

dubbed initiality or universality.

The construction of final F -coalgebras and their justification as greatest fixed points is dual.

Assuming products in the calculus and taking Tf ≜ ∃X .(X → F (X )) × X , we produce the λ-terms

unfold ≜ ΛX .λf :X → F (X ).λx :Tf .packX with (f ,x)
out ≜ λt : Tf .let (X , (f ,x)) = t in F (unfold[X ](f )) (f (x))

such that the diagram in Fig. 7(b) commutes and unfold is unique (again, up to parametricity).

While the argument above applies to System F, a similar development can be made in Linear-F

[10] by considering Ti ≜ ∀X .!(F (X ) ⊸ X ) ⊸ X and Tf ≜ ∃X .!(X ⊸ F (X )) ⊗ X . Reusing the same

names for the sake of conciseness, the associated linear λ-terms are:

fold ≜ ΛX .λu:!(F (X ) ⊸ X ).λy:Ti .(y[X ]u) : ∀X .!(F (X ) ⊸ X ) ⊸ Ti ⊸ X
in ≜ λx :F (Ti ).ΛX .λy:!(F (X ) ⊸ X ).let !u = y ink (F (fold[X ](!u))(x)) : F (Ti ) ⊸ Ti

unfold ≜ ΛX .λu:!(X ⊸ F (X )).λx :X .packX with ⟨u ⊗ x⟩ : ∀X .!(X ⊸ F (X )) ⊸ X ⊸ Tf
out ≜ λt : Tf .let (X , (u,x)) = t in let !f = u in F (unfold[X ](!f )) (f (x)) : Tf ⊸ F (Tf )

Inductive and Coinductive Sessions for Free. As a consequence of full abstraction we may

appeal to the J−Kz encoding to derive representations of fold and unfold that satisfy the necessary

algebraic properties. The derived processes are (recall that we write x ⟨y⟩.P for (νy)x ⟨y⟩.P ):

JfoldKz ≜ z(X ).z(u).z(y).(νw)((νx)([y ↔ x] | x ⟨X ⟩.[x ↔ w]) | w ⟨v⟩.([u ↔ v] | [w ↔ z]))
JunfoldKz ≜ z(X ).z(u).z(x).z⟨X ⟩.z⟨y⟩.([u ↔ y] | [x ↔ z])
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We can then show universality of the two constructions. We write Pux,y to single out that x and y
and u are free in P and Pvz,w to denote the result of employing capture-avoiding substitution on P ,
substituting x ,y,u by z,w,v , respectively. Let:

foldP(A)uy1,y2 ≜ (νx)(JfoldKx | x ⟨A⟩.x ⟨v⟩.(u⟨y⟩.[y ↔ v] | x ⟨z⟩.([z ↔ y1] | [x ↔ y2])))

unfoldP(A)uy1,y2 ≜ (νx)(JunfoldKx | x ⟨A⟩.x ⟨v⟩.(u⟨y⟩.[y ↔ v] | x ⟨z⟩.([z ↔ y1] | [x ↔ y2])))

where foldP(A)uy1,y2 corresponds to the application of fold to an F -algebra A with the associated

morphism F (A) ⊸ A available on the shared channel u, consuming an ambient session y1:Ti and
offering y2:A. Similarly, unfoldP(A)uy1,y2 corresponds to the application of unfold to an F -coalgebra
A with the associated morphism A ⊸ F (A) available on the shared channel u, consuming an

ambient session y1:A and offering y2:Tf .

Theorem 4.1 (Universality of foldP). Let Q be a well-typed process such that

X ;u:F (X ) ⊸ X ;y1:Ti ⊢ Q :: y2:X

for some functor F and channels y1,y2. We have that:

X ;u:F (X ) ⊸ X ;y1:Ti ⊢ Q ≈L foldP(X )uy1,y2 :: y2:X

Proof. By universality of fold we have that fold[X ](u) � M where u :!(F (X ) ⊸ X ), for anyM
of the appropriate type. In particular we have that fold[X ](u) � LfoldP(X )y1,y2M. By full abstraction

(Theorem 3.15) and transitivity we have that Jfold[X ](u)Ky2 ≈L JLfoldP(X )uy1,y2MKy2 ≈L JMKy2 . By
the inverse theorem (Theorem 3.12) it follows that foldP(X )uy1,y2 ≈L JMKy2 . Since the reasoning
holds for any suchM we can conclude by Fullness of the encoding (Corollary 3.13). □

Theorem 4.2 (Universality of unfoldP). Let Q be a well-typed process A an F -coalgebra such
that:

·; ·;y1:A ⊢ Q :: y2:Tf

we have that
·;u:A ⊸ F (A);y1:A ⊢ Q ≈L unfoldP(A)uy1,y2 :: y2 :: Tf

Proof. By universality of unfoldwe have that unfold[A](u) � M whereu:!(A ⊸ F (A)), for anyM
of the appropriate type.We thus have that unfold[A](u) � LunfoldP(A)uy1,y2M, since LunfoldP(A)uy1,y2M
is one suchM . By full abstraction (Theorem 3.15) and transitivity we have that Junfold[A](u)Ky2 ≈L
JLunfoldP(A)uy1,y2MKy2 ≈L JMKy2 . By the inverse theorem (Theorem 3.12) it then follows that

unfoldP(A)uy1,y2 ≈L JMKy2 . Since the reasoning holds for any such M we can conclude by Full-

ness of the encoding (Corollary 3.13). □

Example 4.3 (Natural Numbers). We show how to represent the natural numbers as an inductive

session type using F (X ) = 1 ⊕ X , making use of in:

zerox ≜ (νz)(z.inl; 0 | Jin(z)Kx ) succy,x ≜ (νs)(s .inr; [y ↔ s] | Jin(s)Kx )

with Nat ≜ ∀X .!((1 ⊕ X ) ⊸ X ) ⊸ X where ⊢ zerox :: x :Nat and y:Nat ⊢ succy,x :: x :Nat encode
the representation of 0 and successor, respectively. The natural 1 would thus be represented by

onex ≜ (νy)(zeroy | succy,x ). The behaviour of type Nat can be seen as a that of a sequence of

internal choices of arbitrary (but finite) length. We can then observe that the foldP process acts as

a recursor. For instance consider:

stepDecd ≜ d(n).n.case(zerod , [n ↔ d]) decx,z ≜ (νu)(!u(d).stepDecd | foldP(Nat)
u
x,z )
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with stepDecd :: d :(1 ⊕ Nat) ⊸ Nat and x :Nat ⊢ decx,z :: z:Nat, where dec decrements a given

natural number session on channel x . We have that:

(νx)(onex | decx,z ) ≡ (νx ,y,u)(zeroy | succy,x !u(d).stepDecd | foldP(Nat)
u
x,z ) ≈L zeroz

We note that the resulting encoding is reminiscent of the encoding of lists of [43] (where zero
is the empty list and succ the cons cell). The main differences in the encodings arise due to our

primitive notions of labels and forwarding, as well as due to the generic nature of in and fold.

Example 4.4 (Streams). We build on Example 4.3 by representing streams of natural numbers

as a coinductive session type. We encode infinite streams of naturals with F (X ) = Nat ⊗ X . Thus:

NatStream ≜ ∃X .!(X ⊸ (Nat⊗X )) ⊗X . The behaviour of a session of type NatStream amounts to

an infinite sequence of outputs of channels of type Nat. Such an encoding enables us to construct

the stream of all naturals nats (and the stream of all non-zero naturals oneNats):

genHdNextz ≜ z(n).z⟨y⟩.(n⟨n′⟩.[n′↔ y] | !z(w).n⟨n′⟩.succn′,w )
natsy ≜ (νx ,u)(zerox | !u(z).genHdNextz | unfoldP(!Nat)

u
x,y )

oneNatsy ≜ (νx ,u)(onex | !u(z).genHdNextz | unfoldP(!Nat)
u
x,y )

with genHdNextz :: z:!Nat ⊸ Nat⊗!Nat and both natsy and oneNats :: y:NatStream. genHdNextz
consists of a helper that generates the current head of a stream and the next element. As expected,

the following process implements a session that “unrolls” the stream once, providing the head of

the stream and then behaving as the rest of the stream (recall that out : Tf ⊸ F (Tf )).

(νx)(natsx | Jout(x)Ky ) :: y:Nat ⊗ NatStream

We note a peculiarity of the interaction of linearity with the stream encoding: a process that

begins to deconstruct a stream has no way of “bottoming out” and stopping. One cannot, for

instance, extract the first element of a stream of naturals and stop unrolling the stream in a well-

typed way. We can, however, easily encode a “terminating” stream of all natural numbers via

F (X ) = (Nat⊗!X ) by replacing the genHdNextz with the generator given as:

genHdNextTerz ≜ z(n).z⟨y⟩.(n⟨n′⟩.[n′↔ y] | !z(w).!w(w ′).n⟨n′⟩.succn′,w ′)

It is then easy to see that a usage of Jout(x)Ky results in a session of typeNat⊗!NatStream, enabling

us to discard the stream as needed. One can replay this argumentwith the operator F (X ) = (!Nat⊗X )
to enable discarding of stream elements. Assuming such modifications, we can then show:

(νy)((νx)(natsx | Jout(x)Ky ) | y(n).[y ↔ z]) ≈L oneNatsz :: z:NatStream

5 COMMUNICATING VALUES
We now study encodings for an extension of the core session calculus with term passing (i.e.,

sending and receiving typed λ-terms). The core calculus drops polymorphism from Polyπ .
Using the development of term passing (Section 5.1) as a stepping stone, we generalise the

encodings to a higher-order session calculus (Section 5.2), where processes can send, receive and

execute other processes. To obtain such a calculus process passing, you extend the term-passing

fragment with a monadic embedding of processes [71]. Proof theoretically, this calculus is inspired

by Benton’s LNL [6]. We show full abstraction and mutual inversion theorems for the encodings

from higher-order to first-order. As a consequence, we can straightforwardly derive a strong

normalisation property for the higher-order process-passing calculus.
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5.1 Session Processes with Term Passing – Sessπλ
We consider a session calculus extended with a data layer obtained from a λ-calculus (whose terms

are ranged over byM,N and types by τ ,σ ). We dub this calculus Sessπλ.

P ,Q ::= · · · | x ⟨M⟩.P | x(y).P
M,N ::= λx :τ .M | M N | x

A,B ::= · · · | τ ∧A | τ ⊃ A
τ ,σ ::= · · · | τ → σ

Without loss of generality, we consider the data layer to be simply-typed, with a call-by-name

semantics, satisfying the usual type safety properties. The typing judgment for this calculus is

Ψ ⊢ M : τ . We omit session polymorphism for the sake of conciseness, restricting processes to

communication of data and (session) channels. The typing judgment for processes is thus modified

to Ψ; Γ;∆ ⊢ P :: z:A, where Ψ is an intuitionistic context that accounts for variables in the data layer.

The rules for the relevant process constructs are (all other rules simply propagate the Ψ context

from conclusion to premises):

Ψ ⊢ M : τ Ψ; Γ;∆ ⊢ P :: z:A

Ψ; Γ;∆ ⊢ z⟨M⟩.P :: z:τ ∧A
(∧R)

Ψ,y:τ ; Γ;∆,x :A ⊢ Q :: z:C

Ψ; Γ;∆,x :τ ∧A ⊢ x(y).Q :: z:C
(∧L)

Ψ,x :τ ; Γ;∆ ⊢ P :: z:A

Ψ; Γ;∆ ⊢ z(x).P :: z:τ ⊃ A
(⊃R)

Ψ ⊢ M : τ Ψ; Γ;∆,x :A ⊢ Q :: z:C

Ψ; Γ;∆,x :τ ⊃ A ⊢ x ⟨M⟩.Q :: z:C
(⊃L)

With the reduction rule given by:
1 x ⟨M⟩.P | x(y).Q → P | Q{M/y}. With a simple extension to

our encodings we may eliminate the data layer by encoding the data objects as processes, showing

that from an expressiveness point of view, data communication is orthogonal to the framework.

We note that the data language we are considering is not linear, and the usage discipline of data in

processes is itself also not linear. For instance, the following is a valid typing derivation:

x :τ ⊢ x : τ

x :τ ,y:σ ⊢ x :τ

x :τ ⊢ λy:σ .x : σ → τ x :τ ; ·; · ⊢ 0 :: z:1 1R

x :τ ; ·; · ⊢ z⟨(λy:σ .x)⟩.0 :: z:(σ → τ ) ∧ 1 ∧R

x :τ ; ·; · ⊢ z⟨x⟩.z⟨(λy:σ .x)⟩.0 :: z:τ ∧ ((σ → τ ) ∧ 1) ∧R

·; ·; · ⊢ z(x).z⟨x⟩.z⟨(λy:σ .x)⟩.0 :: z:τ ⊃ (τ ∧ ((σ → τ ) ∧ 1)) ⊃R (1)

The process at the root of the typing derivation above receives a data element of type τ bound to x
and uses it in the two subsequent outputs. The first is a simple forwarding of the received term,

whereas the second is that of a non-linear function that discards its argument and returns x .

To First-Order Processes. We now introduce our encoding from Sessπλ to Sessπ (the core

calculus without value passing) via an encoding from Linλ (the simply-typed linear lambda-calculus)

to Sessπ . The encodings are defined inductively on session types, processes, types and λ-terms (we

omit the purely inductive cases on session types and processes for conciseness).

The encoding on processes J−K from Sessπλ to Sessπ , is defined on typing derivations, where
we indicate the typing rule at the root of the typing derivation. The encoding J−Kz , from Linλ to

Sessπ , follows the same pattern of Section 3.1.

Jτ ∧AK ≜!Jτ K ⊗ JAK Jτ ⊃ AK ≜!Jτ K ⊸ JAK Jτ → σK ≜!Jτ K ⊸ JσK

(∧R) Jz⟨M⟩.PK ≜ z⟨x⟩.(!x(y).JMKy | JPK) (∧L) Jx(y).PK ≜ x(y).JPK
(⊃R) Jz(x).PK ≜ z(x).JPK (⊃L) Jx ⟨M⟩.PK ≜ x ⟨y⟩.(!y(w).JMKw | JPK)

JxKz ≜ x ⟨y⟩.[y ↔ z] Jλx :τ .MKz ≜ z(x).JMKz
JM N Kz ≜ (νy)(JMKy | y⟨x⟩.(!x(w).JN Kw | [y ↔ z]))

1
For simplicity, in this section, we define the process semantics through a reduction relation.
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The encoding addresses the non-linear usage of data elements in processes by encoding the types

τ ∧A and τ ⊃ A as !Jτ K ⊗ JAK and !Jτ K ⊸ JAK, respectively. Thus, sending and receiving of data is

codified as the sending and receiving of channels of type !, which therefore can be used non-linearly.

Moreover, since data terms are themselves non-linear, the τ → σ type is encoded as !Jτ K ⊸ JσK,
following Girard’s embedding of intuitionistic logic in linear logic [23].

At the level of processes, offering a session of type τ ∧A (i.e. a process of the form z⟨M⟩.P ) is
encoded according to the translation of the type: we first send a fresh name x which will be used

to access the encoding of the term M . Since M can be used an arbitrary number of times by the

receiver, we guard the encoding ofM with a replicated input, proceeding with the encoding of P
accordingly. Using a session of type τ ⊃ A follows the same principle. The input cases (and the rest

of the process constructs) are completely homomorphic.

The encoding of λ-terms follows Girard’s decomposition of the intuitionistic function space [70].

The λ-abstraction is translated as input. Since variables in a λ-abstraction may be used non-linearly,

the case for variables and application is slightly more intricate: to encode the application M N
we composeM in parallel with a process that will send the “reference” to the function argument

N which will be encoded using replication, in order to handle the potential for 0 or more usages

of variables in a function body. Respectively, a variable is encoded by performing an output to

trigger the replication and forwarding accordingly. Without loss of generality, we assume variable

names and their corresponding replicated counterparts match, which can be achieved through

α-conversion before applying the translation. We exemplify our encoding as follows:

Jz(x).z⟨x⟩.z⟨(λy:σ .x)⟩.0K = z(x).z⟨w⟩.(!w(u).JxKu | z⟨v⟩.(!v(i).Jλy:σ .xKi | 0))
= z(x).z⟨w⟩.(!w(u).x ⟨y⟩.[y ↔ u] | z⟨v⟩.(!v(i).i(y).x ⟨t⟩.[t ↔ i] | 0))

Properties of the Encoding. We discuss the correctness of our encoding. We can straightfor-

wardly establish that the encoding preserves typing.

Lemma 5.1 (Type Soundness of J−Kz Encoding).
(1) If Ψ ⊢ M : τ then JΨK; · ⊢ JMKz :: z:Jτ K
(2) If Ψ; Γ;∆ ⊢ P :: z:A then JΨK, JΓK; J∆K ⊢ JPK :: z:JAK

Proof. Straightforward induction on the given typing derivations. □

To show that our encoding is operationally sound and complete, we capture the interaction

between substitution on λ-terms and the encoding into processes through logical equivalence.

Consider the following reduction of a process:

(νz)(z(x).z⟨x⟩.z⟨(λy:σ .x)⟩.0 | z⟨λw :τ0.w⟩.P)

→ (νz)(z⟨λw :τ0.w⟩.z⟨(λy:σ .λw :τ0.w)⟩.0 | P) (2)

Given that substitution in the target session π -calculus amounts to renaming, whereas in the

λ-calculus we replace a variable for a term, the relationship between the encoding of a substitution

M{N /x} and the encodings ofM and N corresponds to the composition of the encoding ofM with

that of N , but where the encoding of N is guarded by a replication, codifying a form of explicit

non-linear substitution. We note the contrast with the notions of compositionality for the linear

setting (Lemma 3.4), where we separate shared variable usage, which requires replication, from

linear variable usage, which does not.

Lemma 5.2 (Compositionality). Let Ψ,x :τ ⊢ M : σ and Ψ ⊢ N : τ . We have that JM{N /x}Kz ≈L
(νx)(JMKz |!x(y).JN Ky )

Proof. See Appendix A.3.1. □
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Revisiting the process to the left of the arrow in Equation 2 we have:

J(νz)(z(x).z⟨x⟩.z⟨(λy:σ .x)⟩.0 | z⟨λw :τ0.w⟩.P)K
= (νz)(Jz(x).z⟨x⟩.z⟨(λy:σ .x)⟩.0Kz | z⟨x⟩.(!x(b).Jλw :τ0.wKb | JPK))
→ (νz,x)(z⟨w⟩.(!w(u).x ⟨y⟩.[y ↔ u] | z⟨v⟩.(!v(i).Jλy:σ .xKi | 0) | !x(b).Jλw :τ0.wKb | JPK))

whereas the process to the right of the arrow is encoded as:

J(νz)(z⟨λw :τ0.w⟩.z⟨(λy:σ .λw :τ0.w)⟩.0 | P)K
= (νz)(z⟨w⟩.(!w(u).Jλw :τ0.wKu | z⟨v⟩.(!v(i).Jλy:σ .λw :τ0.wKi | JPK)))

While the reduction of the encoded process and the encoding of the reduct differ syntactically, they

are observationally equivalent – the latter inlines the replicated process behaviour that is accessible

in the former on x . Having characterised substitution, we can establish operational soundness and

completeness for the encoding (see Appendix A.3.1 for proofs of Theorems 5.3 and 5.4 below).

Theorem 5.3 (Operational Soundness – J−Kz ).
(1) If Ψ ⊢ M : τ and JMKz → Q thenM →+ N such that JN Kz ≈L Q
(2) If Ψ; Γ;∆ ⊢ P :: z:A and JPK→ Q then P →+ P ′ such that JP ′K ≈L Q

Theorem 5.4 (Operational Completeness – J−Kz ).
(1) If Ψ ⊢ M : τ andM → N then JMKz =⇒ P such that P ≈L JN Kz
(2) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then JPK→+ R with R ≈L JQK

The process equivalence in Theorems 5.3 and 5.4 above need not be extended to account for data

(although it would be relatively simple to do so), since the processes in the image of the encoding

are fully erased of any data elements.

Back to λ-Terms. We extend our encoding of processes to λ-terms to Sessπλ. Our extended
translation maps Sessπλ processes to Linλ-terms, with the session type τ ∧A interpreted as a pair

type where the first component is replicated. Dually, τ ⊃ A is interpreted as a function type where

the domain type is replicated. The remaining session constructs are translated as in Section 3.2. By

a slight abuse of notation, the translation L−M is overloaded, taking Sessπλ processes and types to

Linλ-terms and types, respectively, but also translating the simply-typed λ-calculus fragment of

Sessπλ to Linλ.

Lτ ∧AM ≜ !Lτ M ⊗ LAM Lτ ⊃ AM ≜ !Lτ M ⊸ LAM Lτ → σM ≜ !Lτ M ⊸ LσM

(∧L) Lx(y).PM ≜ lety ⊗ x = x in let !y = y in LPM (∧R) Lz⟨M⟩.PM ≜ ⟨!LMM ⊗ LPM⟩
(⊃R) Lx(y).PM ≜ λx :!Lτ M.let !x = x in LPM (⊃L) Lx ⟨M⟩.PM ≜ LPM{(x !LMM)/x}

Lλx :τ .MM ≜ λx :!Lτ M.let !x = x in LMM LM N M ≜ LMM !LN M LxM ≜ x

The treatment of non-linear components of processes is identical to our previous encoding:

non-linear functions τ → σ are translated to linear functions of type !τ ⊸ σ ; a process offering a

session of type τ ∧A (i.e. a process of the form z⟨M⟩.P , typed by rule ∧R) is translated to a pair

where the first component is the encoding ofM prefixed with ! so that it may be used non-linearly,

and the second is the encoding of P . Non-linear variables are handled at the respective binding

sites: a process using a session of type τ ∧A is encoded using the elimination form for the pair and

the elimination form for the exponential; similarly, a process offering a session of type τ ⊃ A is

encoded as a λ-abstraction where the bound variable is of type !Lτ M. Thus, we use the elimination

form for the exponential, ensuring that the typing is correct. We illustrate our encoding:

Lz(x).z⟨x⟩.z⟨(λy:σ .x)⟩.0M = λx :!Lτ M.let !x = x in ⟨!x ⊗ ⟨!Lλy:σ .xM ⊗ ⟨⟩⟩⟩
= λx :!Lτ M.let !x = x in ⟨!x ⊗ ⟨!(λy:!LσM.let !y = y inx) ⊗ ⟨⟩⟩⟩
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Properties of the Encoding. Unsurprisingly due to the logical correspondence between natural
deduction and sequent calculus presentations of logic, our encoding satisfies both type soundness

and operational correspondence (c.f. Theorems 3.7, 3.9, and 3.11).

Lemma 5.5 (Type Soundness of L−M Encoding).
(1) If Ψ; Γ;∆ ⊢ P :: z:A then LΨM, LΓM; L∆M ⊢ LPM : LAM
(2) If Ψ ⊢ M : τ then LΨM; · ⊢ LMM : Lτ M

Proof. Straightforward induction on the given typing derivation. □

As before, we establish operational soundness and completeness of the encoding by appealing to

a notion of compositionality wrt substitution.

Lemma 5.6 (Compositionality).

(1) If Ψ,x :τ ; Γ;∆ ⊢ P :: z:B and and Ψ ⊢ M : τ then LP{M/x}M =α LPM{LMM/x}
(2) If Ψ,x :τ ⊢ M : σ and Ψ ⊢ N : τ then LM{N /x}M =α LMM{LN M/x}

Proof. By induction on the structure of the given process and term with free variable x . □

Mirroring the development of Section 3.2, we make use of extended reduction 7→ for processes

and full β-reduction→β for λ-terms (see Appendix A.3.2 for proofs of Theorems 5.7 and 5.8).

Theorem 5.7 (Operational Soundness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and LPM→ M then P 7→∗ Q such thatM =α LQM
(2) If Ψ ⊢ M : τ and LMM→ N thenM →+β M ′ such that N =α LM ′M

Theorem 5.8 (Operational Completeness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then LPM→∗β LQM
(2) If Ψ ⊢ M : τ andM → N then LMM→+ LN M.
Relating the Two Encodings. We prove the two encodings are mutually inverse and preserve

the full abstraction properties (we write =β and =βη for β- and βη-equivalence, respectively).

Theorem 5.9 (Inverse). If Ψ; Γ;∆ ⊢ P :: z:A then JLPMKz ≈L JPK. If Ψ ⊢ M : τ then LJMKzM =β LMM.

Proof. We prove the two statements separately in Appendix A.3.3 (Theorems A.3 and A.4,

respectively). □

The equivalences above are formulated between the composition of the encodings applied to P
(resp.M) and the process (resp. λ-term) after applying the translation embedding the non-linear

components into their linear counterparts. This formulation matches more closely that of § 3.3,

which applies to linear calculi for which the target languages of this section are a strict subset

(and avoids the formalisation of process equivalence with terms). We also note that in this setting,

observational equivalence and βη-equivalence coincide [5, 45]. Moreover, the extensional flavour

of ≈L includes η-like principles at the process level.

Lemma 5.10. Let · ⊢ M : τ and · ⊢ V : τ with V ̸→. JMKz ≈L JV Kz iff LMM→∗βη LV M

Theorem 5.11 (Full Abstraction).

Let:
(a) · ⊢ M : τ and · ⊢ N : τ ;
(b) · ⊢ P :: z:A and · ⊢ Q :: z:A.

We have that LMM =βη LN M iff JMKz ≈L JN Kz and JPK ≈L JQK iff LPM =βη LQM.
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Proof. Following the development of previous sections, we prove the two statements separately

in Theorems A.5 and A.6, respectively, in Appendix A.3.3. The proof of Theorem A.5 relies on

Lemma 5.10. □

We establish full abstraction for the encoding of λ-terms into processes (Theorem 5.11 (1)) in two

steps: The completeness direction (i.e. from left-to-right) follows from operational completeness

and strong normalisation of the λ-calculus. The soundness direction uses operational soundness.

The proof of Theorem 5.11(2) uses the same strategy of Theorem 3.16, appealing to the inverse

theorems.

5.2 Higher-Order Session Processes – Sessπλ+

We extend the value-passing framework of the previous section, accounting for process-passing

(i.e. the higher-order) in a session-typed setting. As shown in previous work [71], we achieve this

by adding to the data layer a contextual monad that encapsulates (open) session-typed processes

as data values, with a corresponding elimination form in the process layer. We dub this calculus

Sessπλ+.

P ,Q ::= · · · | x ← M ← yi ;Q M .N ::= · · · | {x ← P ← yi :Ai }

τ ,σ ::= · · · | {x j :Aj ⊢ z:A}

The type {x j :Aj ⊢ z:A} is the type of a term which encapsulates an open process that uses the linear

channels x j :Aj and offers A along channel z. This formulation has the added benefit of formalising

the integration of session-typed processes in a functional language and forms the basis for the

concurrent programming language SILL [53, 71]. The typing rules for the new constructs are (for

simplicity we assume no shared channels in process monads):

Ψ; ·;xi :Ai ⊢ P :: z:A

Ψ ⊢ {z ← P ← xi :Ai } : {xi :Ai ⊢ z:A}
{}I

Ψ ⊢ M : {xi :Ai ⊢ x :A} ∆1 = yi :Ai Ψ; Γ;∆2,x :A ⊢ Q :: z:C

Ψ; Γ;∆1,∆2 ⊢ x ← M ← yi ;Q :: z:C
{}E

Rule {}I embeds processes in the term language by essentially quoting an open process that

is well-typed according to the type specification in the monadic type. Dually, rule {}E allows

for processes to use monadic values through composition that consumes some of the ambient

channels in order to provide the monadic term with the necessary context (according to its type).

These constructs are discussed in substantial detail in [71]. The reduction semantics of the process

construct is given by (we tacitly assume that the names y and c do not occur in P and omit the

congruence case):

(c ← {z ← P ← xi :Ai } ← yi ;Q) → (νc)(P{y/xi {c/z}} | Q)

The semantics allows for the underlying monadic termM to evaluate to a (quoted) process P . The
process P is then executed in parallel with the continuation Q , sharing the linear channel c for
subsequent interactions. We illustrate the higher-order extension with following typed process (we

write {x ← P} when P does not depend on any linear channels and assume ⊢ Q :: d :Nat ∧ 1):

P ≜ (νc)(c ⟨{d ← Q}⟩.c(x).0 | c(y).d ← y;d(n).c ⟨n⟩.0) (3)

Process P above gives an abstract view of a communication idiom where a process (the left-hand

side of the parallel composition) sends another process Q which potentially encapsulates some
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complex computation. The receiver then spawns the execution of the received process and inputs

from it a result value that is sent back to the original sender. An execution of P is given by:

P → (νc)(c(x).0 | d ← {d ← Q};d(n).c ⟨n⟩.0) → (νc)(c(x).0 | (νd)(Q | d(n).c ⟨n⟩.0))
→
+
(νc)(c(x).0 | c ⟨42⟩.0) → 0

Given the seminal work of Sangiorgi [65], such a representation naturally begs the question of

whether or not we can develop a typed encoding of higher-order processes into the first-order

setting. Indeed, we can achieve such an encoding with a fairly simple extension of the encoding of

§ 5 to Sessπλ+ by observing that monadic values are processes that need to be potentially provided

with extra sessions in order to be executed correctly. For instance, a term of type {x :A ⊢ y:B}
denotes a process that given a session x of typeAwill then offer y:B. Exploiting this observation we

encode this type as the session A ⊸ B, ensuring subsequent usages of such a term are consistent

with this interpretation.

J{x j :Aj ⊢ z:A}K ≜ JAjK ⊸ JAK

J{x ← P ← yi }Kz ≜ z(y0). . . . .z(yn).JP{z/x}K (z < fn(P))

Jx ← M ← yi ;QK ≜ (νx)(JMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JQK) . . . ))

To encode the monadic type {x j :Aj ⊢ z:A}, denoting the type of process P that is typed by

x j :Aj ⊢ P :: z:A, we require that the session in the image of the translation specifies a sequence of

channel inputs with behaviours Aj that make up the linear context. After the contextual aspects of

the type are encoded, the session will then offer the (encoded) behaviour of A. Thus, the encoding

of the monadic type is JA0K ⊸ . . . ⊸ JAnK ⊸ JAK, which we write as JAjK ⊸ JAK. The encoding
of monadic expressions adheres to this behaviour, first performing the necessary sequence of

inputs and then proceeding inductively. Finally, the encoding of the elimination form for monadic

expressions behaves dually, composing the encoding of the monadic expression with a sequence

of outputs that instantiate the consumed names accordingly (via forwarding). The encoding of

process P from Equation 3 is thus:

JPK = (νc)(Jc ⟨{d ← Q}⟩.c(x).0K | Jc(y).d ← y;d(n).c ⟨n⟩.0K)
= (νc)(c ⟨w⟩.(!w(d).JQK | c(x).0)c(y).(νd)(y⟨b⟩.[b ↔ d] | d(n).c ⟨m⟩.(n⟨e⟩.[e ↔m] | 0)))

Properties of the Encoding. As in our previous development, we can show that our encoding

for Sessπλ+ is type sound and satisfies operational correspondence (c.f. Appendix A.4.1).

Lemma 5.12 (Type Soundness – J−Kz ).
(1) If Ψ ⊢ M : τ then JΨK; · ⊢ JMKz :: z:Jτ K
(2) If Ψ; Γ;∆ ⊢ P :: z:A then JΨK, JΓK; J∆K ⊢ JPK :: z:JAK

Proof. By induction on the given typing derivation. □

Theorem 5.13 (Operational Soundness – J−Kz ).
(1) If Ψ ⊢ M : τ and JMKz → Q thenM →+ N such that JN Kz ≈L Q
(2) If Ψ; Γ;∆ ⊢ P :: z:A and JPK→ Q then P →+ P ′ such that JP ′K ≈L Q

Theorem 5.14 (Operational Completeness – J−Kz ).
(1) If Ψ ⊢ M : τ andM → N then JMKz =⇒ P such that P ≈L JN Kz
(2) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then JPK→+ R with R ≈L JQK
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Back to λ-Terms. We encode Sessπλ+ into λ-terms, extending § 5 with:

L{xi :Ai ⊢ z:A}M ≜ LAi M ⊸ LAM
Lx ← M ← yi ;QM ≜ LQM{(LMMyi )/x} L{x ← P ← wi }M ≜ λw0. . . . .λwn .LPM

The encoding translates the monadic type {xi :Ai ⊢ z:A} as a linear function LAi M ⊸ LAM, which
captures the fact that the underlying value must be provided with terms satisfying the requirements

of the linear context. At the level of terms, the encoding for the monadic term constructor follows

its type specification, generating a nesting of λ-abstractions that closes the term and proceeding

inductively. For the process encoding, we translate the monadic application construct analogously

to the translation of a linear cut, but applying the appropriate variables to the translated monadic

term (which is of function type). We remark the similarity between our encoding and that of the

previous section, where monadic terms are translated to a sequence of inputs (here a nesting of

λ-abstractions). Our encoding satisfies type soundness and operational correspondence, as usual.

Lemma 5.15 (Type Soundness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A then LΨM, LΓM; L∆M ⊢ LPM : LAM
(2) If Ψ ⊢ M : τ then LΨM; · ⊢ LMM : Lτ M

Proof. By induction on the give typing derivation. □

The proofs of operational soundness and completeness are given in Appendix A.4.2. As in the

corresponding encoding from Polyπ to Linear-F, we use full β-reduction to make the results more

precise and without needing to appeal to extra-logical features such as a general let-binder.

Theorem 5.16 (Operational Soundness – L−M ).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and LPM→ M then P 7→∗ Q such thatM =α LQM
(2) If Ψ ⊢ M : τ and LMM→ N thenM →+β M ′ such that N =α LM ′M

Theorem 5.17 (Operational Completeness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then LPM→∗β LQM
(2) If Ψ ⊢ M : τ andM → N then LMM→+ LN M

As before, we establish that the two encodings are mutually inverse and fully abstract (see

Appendix A.4.3).

Theorem 5.18 (Inverse Encodings). If Ψ; Γ;∆ ⊢ P :: z:A then JLPMKz ≈L JPK. Also, if Ψ ⊢ M : τ
then LJMKzM =β LMM.

Theorem 5.19 (Full Abstraction – Terms). Let · ⊢ M : τ and · ⊢ N : τ . LMM =βη LN M iff
JMKz ≈L JN Kz .

Theorem 5.20 (Full Abstraction – Processes). Let · ⊢ P :: z:A and · ⊢ Q :: z:A. JPK ≈L JQK iff
LPM =βη LQM.

Further showcasing the applications of our development, we obtain a novel strong normalisation

result for this higher-order session-calculus “for free”, through encoding to the λ-calculus.
To achieve this, we rely on a slight modification of the encoding from processes to λ-terms by

considering the encoding of derivations ending with the copy rule as follows (we write L−M+ for
this revised encoding):

L(νx)u⟨x⟩.PM+ ≜ let 1 = ⟨⟩ in LPM+{u/x}
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All other cases of the encoding are as before. We now show that the revised encoding preserves all

the desirable properties of the previous sections and then show how we can use it to prove strong

normalisation.

It is immediate that the revised encoding preserves typing. The revised encoding allows us to

formulate a tighter version of operational completeness, where process moves are matched by one

or more β-reduction steps (as opposed to zero or more):

Theorem 5.21 (Operational Completeness). If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then LPM+ →+β
LQM+

Proof. See Appendix A.5. □

We remark that with this revised encoding, operational soundness becomes:

Theorem 5.22 (Operational Soundness). If Ψ; Γ;∆ ⊢ P :: z:A and LPM+ → M then P 7→∗ Q such
that LQM→∗ M .

Proof. See Appendix A.5. □

The revised encoding remains mutually inverse with the J−Kz encoding.

Theorem 5.23 (Inverse). If Ψ; Γ;∆ ⊢ P :: z:A then JLPM+Kz ≈L JPK

Having established the key properties of the encoding, we now show strong normalisation.

Theorem 5.24 (Strong Normalisation). Let Ψ; Γ;∆ ⊢ P :: z:A. There is no infinite reduction
sequence starting from P .

Proof. The result follows from the operational completeness result above (Lemma 5.21), which

requires every process reduction to be matched with one or more reductions in the λ-calculus. We

can thus prove our result via strong normalisation of→β : Assume an infinite reduction sequence

P → P ′ → P ′′ → . . . , by completeness this implies that there must exist an infinite sequence

LPM→+β LP ′M→+β LP ′′M→+β . . . , deriving a contradiction. □

6 RELATEDWORK
Process Encodings of Functions. Toninho et al. [70] study encodings of the simply-typed

λ-calculus in a logically motivated session π -calculus, via encodings to the linear λ-calculus, as
a means to explicate various operational semantics. Our work differs since they do not study

polymorphism nor encodings of processes as functions. Moreover, we provide deeper insights

through our applications of the encodings. Full abstraction or inverse properties are not studied.

Sangiorgi [62] uses a fully abstract compilation from the higher-order π -calculus (HOπ ) to the

π -calculus to study full abstraction for Milner’s encodings of the λ-calculus. The work shows that

Milner’s encoding of the lazy λ-calculus can be recovered by restricting the semantic domain of

processes (the so-called restrictive approach) or by enriching the λ-calculus with suitable constants.

This work was later refined in [64], which does not use HOπ and considers an operational equiva-

lence on λ-terms called open applicative bisimulationwhich coincides with Lévy-Longo tree equality.
The work [66] studies general conditions under which encodings of the λ-calculus in the π -calculus
are fully abstract wrt Lévy-Longo and Böhm Trees, which are then applied to several encodings of

(call-by-name) λ-calculus. The works above deal with untyped calculi, and so reverse encodings are

unfeasible. In a broader sense, our approach takes the restrictive approach using linear logic-based

session typing and the induced observational equivalence. We use a λ-calculus with booleans as

observables and reason with a Morris-style equivalence instead of tree equalities. It would be an

interesting future work to apply the conditions in [66] in our typed setting.
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Recently, Balzer et al. [4] study the problem of encoding untyped asynchronous communication

in a session-typed π -calculus based on intuitionistic linear logic with manifest sharing by means of

a universal (recursive) session type, akin to that used to encode the untyped λ-calculus in typed

λ-calculus with recursive types. Their work considers properties of the encoding up-to contextual

closure but does not develop typed behavioral equivalences as we do, leaving open the problems of

full abstraction or completeness. Their work does not develop encodings to or from λ-calculi. It
would be interesting to study notions of typed behavioural equivalences in settings with sharing

and recursive types and see the status of their encoding up-to behavioural equivalence. A natural

follow-up of their work would be to study what substructural λ-calculus [54, Chapter 1] can
faithfully encode their session typed language.

Wadler [76] shows a correspondence between a linear functional language with session types

GV and a session-typed process calculus with polymorphism based on classical linear logic CP.

Along the lines of this work, Lindley and Morris [37], in an exploration of inductive and coinductive

session types through the addition of least and greatest fixed points to CP and GV, develop an

encoding from a linear λ-calculus with session primitives (Concurrent µGV) to a pure linear λ-
calculus (Functional µGV) via a CPS transformation. They also develop translations between µCP
and Concurrent µGV, extending [36]. Mapping to the terminology used in our work [25], their

encodings are shown to be operationally complete, but no results are shown for the operational

soundness directions and neither full abstraction nor inverse properties are studied. In addition,

their operational characterisations do not compose across encodings. For instance, while strong

normalisation of Functional µGV implies the same property for Concurrent µGV through their

operationally complete encoding, the encoding from µCP to µGV does not necessarily preserve

this property.

Types for π -calculi delineate sequential behaviours by restricting composition and name usages,

limiting the contexts in which processes can interact. Therefore typed equivalences offer a coarser
semantics than untyped semantics. Pierce and Sangiorgi [56] first observed semantic consequences

of typed equivalences, demonstrating that the observational congruence under the IO-subtyping

can prove correctness of the optimal version of Milner’s λ-encoding. This was impossible in the

π -calculus without controlling IO channel usages by types. After [56], many works on typed π -
calculi have investigated correctness of Milner’s encodings in order to examine powers of proposed

typing systems.

As an alternative approach, Berger et al. [7] study an affine typing system of the π -calculus and
examine its expressiveness, showing encodings of call-by-value/name PCFs to be fully abstract. This

work was extended to encode the λ-calculus with sum and product types into linear causal types

[78]. Berger et al. [8] further study an encoding of System F in a polymorphic linear π -calculus,
showing it to be fully abstract. Their typing systems and proofs are much more complex due to

the fine-grained constraints from game semantics. Moreover, none of their work studies a reverse

encoding.

Orchard and Yoshida [47] develop embeddings to-and-from PCF with parallel effects and a

session-typed π -calculus, but only develop operational correspondence and semantic soundness

results, leaving the full abstraction problem open.

Polymorphism and Typed Behavioural Semantics. The work of [11] studies parametric

session polymorphism for the intuitionistic setting, developing a behavioural equivalence that

captures parametricity, which is used (denoted as ≈L) in our paper. Their work does not address

inductive or coinductive types, which we obtain for free by virtue of our mutually inverse encodings.

The work [56] introduces a typed bisimilarity for polymorphism in the π -calculus. Their bisimilarity

is of an intensional flavour, whereas the one used in our work follows the extensional style of
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Reynolds [59]. Their typing discipline (originally from [75], which also develops type-preserving

encodings of polymorphic λ-calculus into polymorphic π -calculus) differs significantly from the

linear logic-based session typing of our work (e.g. theirs does not ensure deadlock-freedom). A

key observation in their work is the coarser nature of typed equivalences with polymorphism (in

analogy to those for IO-subtyping [55]) and their interaction with channel aliasing, suggesting

a use of typed semantics and encodings of the π -calculus for fine-grained analyses of program

behaviour.

In the higher-order process setting, Sangiorgi [61] was the first to propose encodings of process-

passing as channel-passing. Higher-order session calculi and their encodings have been studied in

[35]. Termination for higher-order processes has been studied in [17, 18].

F-Algebras and Linear-F. The use of initial and final (co)algebras to give a semantics to induc-

tive and coinductive types dates back to Mendler [40], with their strong definability in System F

appearing in [2] and [27] (for the parametric PER model of System F in the former and classes

of models in the latter). The definability of inductive and coinductive types using parametricity

also appears in [58] in the context of a logic for parametric polymorphism and later in [10] in a

linear variant of such a logic. The work of [79] studies parametricity for the polymorphic linear

λ-calculus of this work, developing encodings of a few inductive types but not the initial (or final)

algebraic encodings in their full generality. Inductive and coinductive session types in a logical

process setting appear in [72] and [37]. Both works consider a calculus with built-in recursion – the

former in an intuitionistic setting where a process that offers a (co)inductive protocol is composed

with another that consumes the (co)inductive protocol and the latter in a classical framework where

composed recursive session types are dual each other.

Recently, Toninho and Yoshida [74] developed a direct encoding of inductive and coinductive

session types in the polymorphic session calculus, justified using the theory of initial algebras and

final co-algebras in a processes-as-morphisms viewpoint. Their work is an alternative formulation

of the development of § 4, where instead of deriving inductive and coinductive session types and

their associated combinators from encodings from System F, inductive and coinductive sessions are

constructed directly in the process language using an algebraic approach, with the construction

being validated through semantic reasoning.

Encoding-Based Programming Language Implementations of Session Types. Encodings
of session types or session π -calculi have been used to implement session primitives in mainstream

programming languages. See a recent survey in Haskell [46].

In the area of linear logic-based session calculi, we highlight the work [70], which employs

Girard’s original encodings of intuitionistic logic in linear logic to study evaluation strategies in

the λ-calculus, giving a logically motivated account of futures. We also highlight the encodings

of Lindley and Morris [36] between a functional language with session primitives (Wadler’s GV)

and a process algebra with sessions, effectively providing a semantics to Wadler’s GV through

the encoding. This, combined with the subsequent encodings of fixed-points [37], can be seen as

the semantic foundation for the works extending the web-based programming language Links

with session types [19, 20, 38]. We further note the addition of session-based concurrency to the

language C0 [69, 77], drawing upon the semantic foundation provided by the encodings for the

intuitionistic setting [70, 73].

In a wider context of session types, Scalas and Yoshida [68] use an encoding of the binary session

calculus into the linear π -calculus [16] to implement binary session types in Scala. This work is

extended by Scalas et al. [67] to implement multiparty session types in Scala based on the encoding

of the multiparty session π -calculus into the linear π -calculus. The encoding of binary session types

in an effect system is used to design a session-typed library in Haskell [47]. In OCaml, Padovani
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[48] implements context free session types providing two kinds of encodings from context free

session types into functional data structures. A different approach is taken in the work of Imai

et al. [34] where session types are encoded leveraging parametric polymorphism in OCaml to

statically ensure linear usage of channels. Extending this approach, Imai et al. [32] propose a library

for global combinators, which are a set of functions for writing and verifying multiparty protocols

in OCaml. By encoding a set of local types to a data structure called a channel vector, local types
are automatically inferred from a global combinator, statically providing linear channel usage in

end-point processes.

7 CONCLUSION AND FUTUREWORK
This work answers the question of what kind of type discipline of the π -calculus can exactly capture
and is captured by λ-calculus behaviours, dating back to Milner [42] who asks “how to exactlymatch

the behavioural semantics induced upon the encodings of the λ-calculus with that of the λ-calculus”.
Our answer is given by showing the first mutually inverse and fully abstract encodings between two

calculi with polymorphism, one being the Polyπ session calculus based on intuitionistic linear logic,

and the other (a linear) System F. This further demonstrates that the original linear logic-based

articulation of sessions [12] (and subsequent studies e.g. [11, 13, 36, 50, 71, 72, 76]) provides a clear

and applicable tool for a wide range of session-based interactions. By exploiting the proof theoretic

equivalences between natural deduction and sequent calculus we develop mutually inverse and

fully abstract encodings, which naturally extend to more intricate settings such as process passing

(in the sense of HOπ ). Our encodings also enable us to derive properties of the π -calculi “for
free”. Specifically, we show how to obtain adequate representations of least and greatest fixed

points in Polyπ through the encoding of initial and final (co)algebras in the λ-calculus. We also

straightforwardly derive a strong normalisation result for the higher-order session calculus, which

otherwise involves non-trivial proof techniques [8, 11, 17, 18, 50]. Future work includes extensions

to the classical linear logic-based framework, including multiparty session types [14, 15].

Our work thus shows that the session-based interpretation of linear logic is fully compatible with

the standard semantics of (typed) lambda-calculus, allowing us to uniformly represent value passing

and even higher-order process passing. Such results can be seen has both positive and negative: on

one hand, session types in this logically-grounded sense can be seen to be fundamentally not about

non-determinism (in the sense of non-confluent computation) but rather about the well-structuring

of confluent interactive programs, as made clear by full abstraction; on the other hand, our results

show that a functional language with session types based on the session interpretation of linear

logic, e.g. SILL [53, 71]) can include higher-order processes either as primitive or through encoding,

and remain semantically well-behaved.

Following the line of work on shallow embeddings of session types [32–34, 46, 48, 67, 68], we

plan to develop encoding-based implementations of this work as embedded DSLs. This would

potentially enable an exploration of algebraic constructs beyond initial and final co-algebras in a

session programming setting. Exploring a processes-as-morphisms viewpoint, recent work [74]

investigates a direct encodinging of inductive and coinductive session types, justified via the theory

of initial algebras and final co-algebras. The correctness of the encoding (i.e. universality) relies

crucially on parametricity and the associated relational lifting of sessions. We plan to further study

the meaning of functors, natural transformations and related constructions [9] in a session-typed

setting, both from a more fundamental viewpoint but also in terms of programming patterns.
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A APPENDIX
A.1 Proofs for § 3.2 – Encoding from Polyπ to Linear-F

Theorem 3.9 (Operational Completeness). Let Ω; Γ;∆ ⊢ P :: z:A. If P → Q then LPM→∗β LQM.

Proof. Induction on typing and case analysis on the possibility of reduction.

Case:

(cut)
Ω; Γ;∆1 ⊢ P1 :: x :A Ω; Γ;∆2,x :A ⊢ P2 :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)(P1 | P2) :: z:C

where P1 → P ′
1
or P2 → P ′

2
.

L(νx)(P1 | P2)M = LP2M{LP1M/x} by definition

Subcase: P1 → P ′
1

(νx)(P1 | P2) → (νx)(P
′
1
| P2)

LP1M→∗β LP ′
1
M by i.h.

LP2M{LP1M/x} →∗β LP2M{LP ′1M/x} by definition

L(νx)(P ′
1
| P2)M = LP2M{LP ′1M/x} by definition

Subcase: P2 → P ′
2

(νx)(P1 | P2) → (νx)(P1 | P
′
2
)

LP2M→∗β LP ′
2
M by i.h.

LP2M{LP1M/x} →∗β LP ′
2
M{LP1M/x} by definition

L(νx)(P1 | P ′2)M = LP ′
2
M{LP1M/x} by definition

Case:

(cut)
Ω; Γ;∆1 ⊢ x(y).P1 :: x :A ⊸ B Ω; Γ;∆2,x :A ⊸ B ⊢ (νy)x ⟨y⟩.(Q1 | Q2) :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)(x(y).P1 | (νy)x ⟨y⟩.(Q1 | Q2)) :: z:C

(νx)(x(y).P1 | (νy)x ⟨y⟩.(Q1 | Q2)) → (νx)((νy)(Q1 | P1) | Q2) by reduction

L(νx)(x(y).P1 | (νy)x ⟨y⟩.(Q1 | Q2))M = (LQ2M{(x LQ1M)/x}){(λy.LP1M)/x} by definition

(LQ2M{(x LQ1M)/x}){(λy.LP1M)/x} = LQ2M{((λy.LP1M) LQ1M)/x}
L(νx)((νy)(Q1 | P1) | Q2)M = LQ2M{(LP1M{LQ1M/y})/x} by definition

LQ2M{((λy.LP1M) LQ1M)/x} →β LQ2M{(LP1M{LQ1M/y})/x} redex

L(νx)((νy)(Q1 | P1) | Q2) →
∗
β LQ2M{(LP1M{LQ1M/y})/x} by definition

Case:

(cut)
Ω; Γ;∆1 ⊢ (νy)x ⟨y⟩.(P1 | P2) :: x :A ⊗ B Ω; Γ;∆2,x :A ⊗ B ⊢ x(y).Q1 :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)((νy)x ⟨y⟩.(P1 | P2) | x(y).Q1) :: z:C

(νx)((νy)x ⟨y⟩.(P1 | P2) | x(y).Q1) → (νx)(P2 | (νy)(P1 | Q1)) by reduction

L(νx)((νy)x ⟨y⟩.(P1 | P2) | x(y).Q1)M = letx ⊗ y = ⟨LP2M ⊗ LP1M⟩ in LQ1M
L(νx)(P2 | (νy)(P1 | Q1))M = LQ1M{LP2M/x}{LP1M/y} by def.

letx ⊗ y = ⟨LP2M ⊗ LP1M⟩ in LQ1M→ LQ1M{LP2M/x}{LP1M/y}

Case:

(cut!)
Ω; Γ; · ⊢ P1 :: x :A Ω; Γ,u:A;∆ ⊢ (νx)u⟨x⟩.Q1 :: z:C

Ω; Γ;∆ ⊢ (νu)(!u(x).P1 | (νx)u⟨x⟩.Q1) :: z:C

(νu)(!u(x).P1 | (νx)u⟨x⟩.Q1) → (νu)(!u(x).P1 | (νx)(P1 | Q1)) by reduction

L(νu)(!u(x).P1 | (νx)u⟨x⟩.Q1)M = LQ1M{u/x}{LP1M/u}
= LQ1M{LP1M/x , LP1M/u} by def.
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L(νu)(!u(x).P1 | (νx)(P1 | Q1))M = (LQ1M{LP1M/x}){LP1M/u}

Case:

(cut)
Ω; Γ;∆1 ⊢ x(Y ).P1 :: x :∀Y .A Ω; Γ;∆2,x :∀Y .A ⊢ x ⟨B⟩.Q1 :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)(x(Y ).P1 | x ⟨B⟩.Q1) :: z:C

(νx)(x(Y ).P1 | x ⟨B⟩.Q1) → (νx)(P1{B1/Y } | Q1) by reduction

L(νx)(x(Y ).P1 | x ⟨B⟩.Q1)M = (LQ1M{x[B]/x}){(ΛY .LP1M)/x}
= LQ1M{(ΛY .LP1M[B])/x} →β LQ1M{LP1M{B1/Y }/x} by definition

L(νx)(P1{B1/Y } | Q1)M = LQ1M{LP1M{B1/Y }/x}

Case:

(cut)
Ω; Γ;∆1 ⊢ x ⟨B⟩.P1 :: x :∃Y .A Ω; Γ;∆2,x :∃Y .A ⊢ x(Y ).Q1 :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)(x ⟨B⟩.P1 | x(Y ).Q1) :: z:C

(νx)(x ⟨B⟩.P1 | x(Y ).Q1) → (νx)(P1 | Q1{B/Y }) by reduction

L(νx)(x ⟨B⟩.P1 | x(Y ).Q1)M = let (Y ,x) = packBwith LP1M in LQ1M by def.

(packBwith LP1MLQ1M→β LQ1M{LP1M/x ,B/Y }
L(νx)(P1 | Q1{B/Y })M = LQ1M{B/Y }){LP1M/x}

□

Theorem 3.11 (Operational Soundness). Let Ω; Γ;∆ ⊢ P :: z:A and LPM → M , there exists Q
such that P 7→∗ Q and LQM =α M .

Proof. By induction on typing.

Case:

(⊸L)
Ω; Γ;∆1 ⊢ P1 :: y:A Ω; Γ;∆2,x :B ⊢ P2 :: z:C

Ω; Γ;∆1,∆2,x :A ⊸ B ⊢ (νy)x ⟨y⟩.(P1 | P2) :: z:C

L(νy)x ⟨y⟩.(P1 | P2)M = LP2M{(x LP1M)/x} with LP2M{(x LP1M)/x} = M → M ′

by assumption

Subcase:M → M ′ due to redex in LP1M
LP1M→ M0 by assumption

∃Q0 such that P1 7→
∗ Q0 and LQ0M ≡α M0 by i.h.

(νy)x ⟨y⟩.(P1 | P2) 7→
∗ (νy)x ⟨y⟩.(Q0 | P2) by compatibility of 7→

L(νy)x ⟨y⟩.(Q0 | P2)M = LP2M{(x LQ0M)/x} = LP2M{(x M0)/x}
Subcase:M → M ′ due to redex in LP2M
LP2M→ M0 by assumption

∃Q0 such that P2 7→
∗ Q0 and LQ0M = M0 by i.h

(νy)x ⟨y⟩.(P1 | P2) 7→
∗ (νy)x ⟨y⟩.(P1 | Q0) by compatibility of 7→

L(νy)x ⟨y⟩.(P1 | Q0)M = LQ0M{(x LP1M)/x} = M0{x LP1M)/x}

Case:

(copy)
Ω; Γ,u:A;∆,x :A ⊢ P1 :: z:C

Ω; Γ,u:A;∆ ⊢ (νx)u⟨x⟩.P1 :: z:C

L(νx)u⟨x⟩.P1M = LP1M{u/x} = M → M ′ by assumption

LP1M→ M0 by inversion on→

∃Q0 such that P1 7→
∗ Q0 and LQ0M =α M0 by i.h.

(νx)u⟨x⟩.P1 7→
∗ (νx)u⟨x⟩.Q0 by compatibility

L(νx)u⟨x⟩.Q0M = LQ0M{u/x} = M0{u/x}
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Case:

(∀L) Ω ⊢ B type Ω; Γ;∆,x :A{B/X } ⊢ P1 :: z:C

Ω; Γ;∆,x :∀X .A ⊢ x ⟨B⟩.P1 :: z:C
Lx ⟨B⟩.P1M = LP1M{x[B]/x} with LP1M{x[B]/x} → M by assumption

LP1M→ M0 by inversion

∃Q0 such that P1 7→
∗ Q0 and LQ0M =α M0 by i.h.

x ⟨B⟩.P1 7→
∗ x ⟨B⟩.Q0 by compatibility

Lx ⟨B⟩.Q0M = LQ0M{x[B]/x} = M0{x[B]/x}

Case:

(cut)
Ω; Γ;∆1 ⊢ P1 :: x :A Ω; Γ;∆2,x :A ⊢ P2 :: z:C

Ω; Γ;∆1,∆2 ⊢ (νx)(P1 | P2) :: z:C

L(νx)(P1 | P2)M = LP2M{LP1M/x} with LP2M{LP1M/x} = M → M ′ by assumption

Subcase:M → M ′ due to redex in LP1M
LP1M→ M0 by assumption

∃Q0 such that P1 7→
∗ Q0 and LQ0M =α M0 by i.h.

(νx)(P1 | P2) 7→
∗ (νx)(Q0 | P2) by reduction

L(νx)(Q0 | P2)M = LP2M{LQ0M/x} = LP2M{M0/x}
Subcase:M → M ′ due to redex in LP2M
LP2M→ M0 by assumption

∃Q0 such that P2 7→
∗ Q0 and LQ0M = M0 by i.h.

(νx)(P1 | P2) 7→
∗ (νx)(Q0 | P2) by compatibility

L(νx)(P1 | Q0)M = LQ0M{LP1M/x} = M0{LP1M/x}
Subcase:M → M ′ where the redex arises due to the substitution of LP1M for x
Subsubcase: Last rule of deriv. of P2 is a left rule on x :
In all cases except !L, a top-level process reduction is exposed (viz. Theorem 3.9).

If last rule is !L, then either x does not occur in P2 and we conclude by 7→.

Subsubcase: Last rule of deriv. of P2 is not a left rule on x :
For rule (id) we have a process reduction immediately. In all other cases either

there is no possible β-redex or we can conclude via compatibility of 7→.

Case:

(cut!)
Ω; Γ; · ⊢ P1 :: x :A Ω; Γ,u:A;∆ ⊢ P2 :: z:C

Ω; Γ;∆ ⊢ (νu)(!u(x).P1 | P2) :: z:C

L(νu)(!u(x).P1 | P2)M = LP2M{LP1M/u} with LP2M{LP1M/u} → M by assumption

Subcase:M → M ′ due to redex in LP1M
LP1M→ M0 by assumption

∃Q0 such that P1 7→
∗ Q0 and LQ0M =α M0 by i.h.

(νu)(!u(x).P1 | P2) 7→
∗ (νu)(!u(x).Q0 | P2) by compatibility

L(νu)(!u(x).Q0 | P2)M = LP2M{LQ0M/u} = LP2M{M0/u}
Subcase:M → M ′ due to redex in LP2M
LP2M→ M0 by assumption

∃Q0 such that P2 7→
∗ Q0 and LQ0M = M0 by i.h.

(νu)(!u(x).P1 | P2) 7→
∗ (νu)(!u(x).P1 | Q0) by compatibility

L(νu)(!u(x).P1 | Q0)M = LQ0M{LP1M/u} = M0{LP1M/u}
Subcase:M → M ′ where the redex arises due to the substitution of LP1M for u
If last rule in deriv. of P2 is copy then we have = terms in 0 process reductions.

Otherwise, the result follows by compatibility of 7→.
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In all other cases the λ-term in the image of the translation does not reduce.

□

A.2 Proofs for § 3.3 – Inversion and Full Abstraction
The proofs below rely on the fact that all commuting conversions of linear logic are sound observa-

tional equivalences in the sense of ≈L.

Theorem 3.12 (Inverse).

• If Ω; Γ;∆ ⊢ M : A then Ω; Γ;∆ ⊢ LJMKzM � M : A
• If Ω; Γ;∆ ⊢ P :: z:A then Ω; Γ;∆ ⊢ JLPMKz ≈L P :: z:A

We prove (1) and (2) above separately.

Theorem A.1. If Ω; Γ;∆ ⊢ M : A then Ω; Γ;∆ ⊢ LJMKzM � M : A

Proof. By induction on the given typing derivation.

Case: Linear variable
LJxKzM = x � x

Case: Unrestricted variable

JuKz = (νx)u⟨x⟩.[x ↔ z] by def.

L(νx)(u⟨x⟩.[x ↔ z])M = u � u

Case: λ-abstraction
Jλx .MKz = z(x).JMKz by def.

Lz(x).JMKzM = λx .LJMKzM � λx .M by i.h. and congruence

Case: Application
JM N Kz = (νx)(JMKx | (νy)x ⟨y⟩.(JN Ky | [x ↔ z])) by def.

L(νx)(JMKx | (νy)x ⟨y⟩.(JN Ky | [x ↔ z]))M = LJMKx M LJN KyM by def.

LJMKx M LJN KyM � M N by i.h. and congruence

Case: Exponential
J!MKz =!z(x).JMKx by def.

L!z(x).JMKx M =!LJMKx M � LJ!MKzM by def, i.h. and congruence

Case: Exponential elim.

Jlet !u = M inN Kz = (νx)(JMKx | JN Kz {x/u}) by def.

L(νx)(JMKx | JN Kz {x/u})M = let !u = LJMKx M in LJN KzM by def.

let !u = LJMKx M in LJN KzM � let !u = M inN by congruence and i.h.

Case: Multiplicative Pairing

J⟨M ⊗ N ⟩Kz = (νy)z⟨y⟩.(JMKy | JN Kz ) by def.

L(νy)z⟨y⟩.(JMKy | JN Kz )M = ⟨LJMKyM ⊗ LJN KzM⟩ by def.

⟨LJMKyM ⊗ LJN KzM⟩ � ⟨M ⊗ N ⟩ by i.h. and congruence

Case: Mult. Pairing Elimination
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Jletx ⊗ y = M inN Kz = (νy)(JMKx | x(y).JN Kz ) by def.

L(νy)(JMKx | x(y).JN Kz )M = letx ⊗ y = LJMKx M in LJN KzM by def.

letx ⊗ y = LJMKx M in LJN KzM � letx ⊗ y = M inN by i.h. and congruence

Case: Λ-abstraction
LJΛX .MKzM = ΛX .LJMKzM � ΛX .M by i.h. and congruence

Case: Type application
LJM[A]KzM = LJMKzM[A] � M[A] by i.h. and congruence

Case: Existential Intro.
LJpackAwithMKzM = packAwith LJMKzM � packAwithM by i.h. and congruence

Case: Existential Elim.

LJlet (X ,y) = M inN KzM = let (X ,y) = LJMKx M in LJN KzM � let (X ,y) = M inN
by i.h. and congruence

□

Theorem A.2. If Ω; Γ;∆ ⊢ P :: z:A then Ω; Γ;∆ ⊢ JLPMKz ≈L P :: z:A

Proof. By induction on the given typing derivation.

Case: (id) or any right rule

Immediate by definition in the case of (id) and by i.h. and congruence in all other cases.

Case: ⊸L
L(νy)x ⟨y⟩.(P | Q)M = LQM{(x LPM)/x} by def.

JLQM{(x LPM))/x}Kz ≈L (νa)(J(x LPM)Ka | JLQMKz {a/x}) by Lemma 3.4, with a fresh

= (νa)((νw)([x ↔ w] | (νy)w ⟨y⟩.(JLPMKy | [w ↔ a])) | JLQMKz {a/x}) by def.

→ (νa)((νy)x ⟨y⟩.(JLPMKy | [x ↔ a]) | JLQMKz {a/x}) by reduction

≈L (νy)x ⟨y⟩.(JLPMKy | JLQMKz ) commuting conversion + reduction

≈L (νy)x ⟨y⟩.(P | Q) by i.h. + congruence

Case: ⊗L
Lx(y).PM = letx ⊗ y = x in LPM by def.

Jletx ⊗ y = x in LPMKz = (νw)([x ↔ w] | w(y).JLPMKz ) by def.

→ x(y).JLPMKz ≈L x(y).P by i.h. and congruence

Case: !L
LP{x/u}M = let !u = x in LPM by def.

Jlet !u = x in LPMKz = (νw)([x ↔ w] | JLPMKz {w/u}) by def.

→ JLPMKz {x/u} ≈L P{x/u} by i.h.

Case: copy
L(νx)u⟨x⟩.PM = LPM{u/x} by def.

JLPM{u/x}Kz ≈L (νx)(u⟨w⟩.[w ↔ x] | JLPMKz ) by Lemma 3.4

≈L (νx)(u⟨w⟩.[w ↔ x] | P) by i.h. and congruence

≈L (νx)u⟨x⟩.P by definition of ≈L for open processes

(i.e. closing for u:A and observing that no actions on z are blocked)
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Case: ∀L
Lx ⟨B⟩.PM = LPM{(x[B])/x} by def.

JLPM{(x[B])/x}Kz ≈L (νa)(Jx[B]Ka | JLPMKz {a/x}) by Lemma 3.4, with a fresh

(νa)((νw)([x ↔ w] | w ⟨B⟩.[w ↔ a]) | JLPMKz {a/x}) by def.

→ (νa)(x ⟨B⟩.[x ↔ a] | JLPMKz {a/x})
≈L x ⟨B⟩.JLPMKz commuting conversion + reduction

≈L x ⟨B⟩.P by i.h. + congruence

Case: ∃L
Lx(Y ).PM = let (Y ,x) = x in LPM by def.

Jlet (Y ,x) = x in LPMKz = (νy)([x ↔ y] | y(Y ).JLPMKz ) by def.

→ x(Y ).JLPMKz {y/x}) by reduction

≈L x(Y ).P by i.h. + congruence

Case: cut
L(νx)(P | Q)M = LQM{LPM/x} by definition

JLQM{LPM/x}Kz ≈L (νy)(JLPMKy | JLQMKz {y/x}) by Lemma 3.4, with y fresh

≡ (νx)(P | Q) by i.h. + congruence and ≡α

Case: cut!

L((νu)(!u(x).P | Q))M = LQM{LPM/u} by definition

JLQM{LPM/u}Kz ≈L (νu)(!u(x).JLPMKx | JLQMKz {v/u}) by Lemma 3.4

≈L (νu)(!u(x).P | Q) by i.h. + congruence and ≡α

□

A.3 Proofs for § 5 – Communicating Values
A.3.1 Proofs of Encoding from λ to Sessπλ.

Lemma 5.2 (Compositionality). Let Ψ,x :τ ⊢ M : σ and Ψ ⊢ N : τ . We have that JM{N /x}Kz ≈L
(νx)(JMKz |!x(y).JN Ky )

Proof. By induction on the typing forM . We make use of the fact that ≈L includes ≡!.

Case: M = y with y = x

JM{N /x}Kz = JN Kz
(νx)(JMKz |!x(y).JN Ky ) = (νx)(x ⟨y⟩.[y ↔ z] |!x(y).JN Ky ) by definition

→
+
(νx)(JN Kz |!x(y).JN Ky ) by the reduction semantics

≈L JN Kz by ≡!, since x < fn(JN Kz )
Case: M = y with y , x

JM{N /x}Kz = JyKz = y⟨w⟩.[w ↔ z]
(νx)(JMK |!x(y).JN Ky ) = (νx)(y⟨w⟩.[w ↔ z] |!x(y).JN Ky ) by definition

≈L y⟨w⟩.[w ↔ z] by ≡!

Case: M = M1M2

JM1M2{N /x}Kz = JM1{N /x}M2{N /x}Kz =
(νy)(JM1{N /x}Ky | y⟨u⟩.(!u(w).JM2{N /x}Kw | [y ↔ z]) by definition

(νx)(JM1M2Kz |!x(y).JN Ky ) = (νx)((νy)(JM1Ky | y⟨u⟩.(!u(w).JM2Kw | [y ↔ z]) |!x(y).JN Ky ))
by definition

JM1{N /x}Ky ≈L (νx)(JM1Ky |!x(a).JN Ka) by i.h.

JM2{N /x}Kw ≈L (νx)(JM2Kw |!x(a).JN Ka) by i.h.

JM1M2{N /x}Kz ≈L (νy)((νx)(JM1Ky |!x(a).JN Ka) | y⟨u⟩.(!u(w).JM2{N /x}Kw | [y ↔ z]))
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by congruence

≈L (νy)((νx)(JM1Ky |!x(a).JN Ka) | y⟨u⟩.(!u(w).(νx)(JM2Kw |!x(a).JN Ka) | [y ↔ z]))
by congruence

≈L (νx)(νy)(JM1Ky | y⟨u⟩.(!u(w).JMKw | [y ↔ z] |!x(a).JN Ka)) by ≡!

Case: M = λy:τ0.M
′

Jλy:τ0.M ′{N /x}Kz = z(y).JM ′{N /x}Kz
(νx)(JMKz |!x(y).JN Ky ) = (νx)(z(y).JM ′Kz |!x(y).JN Ky ) by definition

JM ′{N /x}Kz ≈L (νx)(JMKz |!x(w).JN Kw ) by i.h.

Jλy:τ0.M ′{N /x}Kz ≈L z(y).(νx)(JM ′Kz |!x(w).JN Kw ) by congruence

≈L (νx)(z(y).JM ′Kz |!x(w).JN Kw ) by commuting conversion

□

Theorem 5.3 (Operational Soundness – J−Kz ).
(1) If Ψ ⊢ M : τ and JMKz → Q thenM →+ N such that JN Kz ≈L Q
(2) If Ψ; Γ;∆ ⊢ P :: z:A and JPK→ Q then P →+ P ′ such that JP ′K ≈L Q

Proof. By induction on the given derivation and case analysis on the reduction step.

Case: M = M1M2 with JM1Ky → R

JM1M2Kz = (νy)(JM1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z])) by definition

→ (νy)(R | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z])) by reduction semantics

M1 →
+ M ′

1
with JM ′

1
Ky ≈L R by i.h.

M1M2 →
+ M ′

1
M2 by the operational semantics

JM ′
1
M2Kz = (νy)(JM ′1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z])) by definition

≈L (νy)(R | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z])) by congruence

Case: M = M1M2 with (νy)(JM1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z])) → (νy,x)(R |!x(w).JM2Kw |
[y ↔ z])

JM1Ky ≡ (νa)(y(x).R1 | R2) by the reduction semantics, for some R1,R2 and a
Ψ ⊢ M1 : τ0 → τ1 by inversion

Subcase:M1 = y, for some y ∈ Ψ
Impossible reduction.

Subcase:M1 = λx :τ0.M
′
1

(λx :τ0.M
′
1
)M2 → M ′

1
{M2/x} by operational semantics

JM ′
1
{M2/x}Kz ≈L (νx)(JM ′1Kz |!x(w).JM2Kw ) by Lemma 5.2

J(λx :τ0.M ′1)M2Kz = (νy)(y(x).JM ′1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z])) by definition

R = JM ′
1
Ky by inversion

(νy,x)(R |!x(w).JM2Kw | [y ↔ z]) ≈L (νx)(JM ′1Kz |!x(w).JM2Kw ) by reduction closure

Subcase:M1 = N1 N2, for some N1 and N2

JN1 N2Ky = (νa)(JN1Ka | a⟨b⟩.(!b(d).JN2Kd | [a ↔ y])) by definition

Impossible reduction.

Case: P = (νx)(x ⟨M⟩.P1 | x(y).P2)
JPK = (νx)(x ⟨y⟩.(!y(w).JMKw | JP1K) | x(y).JP2K) by definition

JPK→ (νx ,y)(!y(w).JMKw | JP1K | JP2K) by reduction semantics

P → (νx)(P1 | P2{M/y}) by reduction semantics

J(νx)(P1 | P2{M/y})K ≈L (νx ,y)(JP1K | JP2K |!y(w).JMKw ) by Lemma 5.2 and congruence

Case: P = (νx)(x ⟨M⟩.P1 | P2)
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JPK = (νx)(x ⟨y⟩.(!y(w).JMKw | JP1K) | JP2K) by definition

JPK→ (νx)(x ⟨y⟩.(!y(w).JMKw | JP1K) | R) assumption, with JP2K→ R
P2 →

+ P ′
2
with JP ′

2
K ≈L R by i.h.

P →+ (νx)(x ⟨M⟩.P1 | P
′
2
) by reduction semantics

J(νx)(x ⟨M⟩.P1 | P ′2)K = (νx)(x ⟨y⟩.(!y(w).JMKw | JP1K) | JP ′2K) by definition

≈L (νx)(x ⟨y⟩.(!y(w).JMKw | JP1K) | R) by congruence

All other process reductions follow straightforwardly from the inductive hypothesis.

□

Theorem 5.4 (Operational Completeness – J−Kz ).
(1) If Ψ ⊢ M : τ andM → N then JMKz =⇒ P such that P ≈L JN Kz
(2) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then JPK→+ R with R ≈L JQK

Proof. We proceed by induction on the given derivation and case analysis on the reduction.

Case: M = (λx :τ .M ′)N ′ withM → M ′{N ′/x}

JMKz = (νy)(Jλx :τ .M ′Ky | y⟨x⟩.(!x(w).JN ′Kw | [y ↔ z]) =
(νy)(y(x).JM ′Ky | y⟨x⟩.(!x(w).JN ′Kw | [y ↔ z]) by definition of J−K
→
+
(νx)(JM ′Kz | !x(w).JN ′Kw ) by the reduction semantics

≈L JM ′{N ′/x}Kz by Lemma 5.2

Case: M = M1M2 withM → M ′
1
M2 byM1 → M ′

1

JM1M2Kz = (νy)(JM1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z]) by definition

JM ′
1
M2Kz = (νy)(JM ′1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z]) by definition

JM1Ky =⇒ P ′
1
such that P ′

1
≈L JM ′

1
Ky by i.h.

JM1M2Kz =⇒ (νy)(P ′1 | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z]) by reduction semantics

≈L (νy)(JM ′1Ky | y⟨x⟩.(!x(w).JM2Kw | [y ↔ z]) by congruence

Case: P = (νx)(x ⟨M⟩.P ′ | x(y).Q ′) with P → (νx)(P ′ | Q ′{M/y})

JPK = (νx)(x ⟨y⟩.(!y(w).JMKw | JP ′K) | x(y).JQ ′K) by definition

JPK→ (νx ,y)(!y(w).JMKw | JP ′K | JQ ′K) by the reduction semantics

J(νx)(P ′ | Q ′{M/y})K = (νx)(JP ′K | JQ ′{M/y}K) by definition

≈L (νx ,y)(JP ′K | JQ ′K |!y(w).JMKw ) by Lemma 5.2 and congruence

All remaining cases follow straightforwardly by induction.

□

A.3.2 Proofs of Encoding from Sessπλto λ.

Theorem 5.7 (Operational Soundness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and LPM→ M then P 7→∗ Q such thatM =α LQM
(2) If Ψ ⊢ M : τ and LMM→ N thenM →+β M ′ such that N =α LM ′M

Proof. We proceed by induction on the given reduction and case analysis on typing.

Case: LP0M{(x !LM0M)/x} → M

LP0M{(x !LM0M)/x} → M ′{(x !LM0M)/x} by operational semantics

P0 7→ P ′
0
with P ′

0
=β M ′ by i.h.

x ⟨M0⟩.P0 7→ x ⟨M0⟩.P
′
0

by extended reduction

Lx ⟨M0⟩.P
′
0
M = LP ′

0
M{(x !LM0M)/x} by definition

=α M ′{(x !LM0M)/x} by congruence

The other cases are covered by our previous result for the reverse encoding of processes.
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Case: LM0M !LM1M→ M ′
0
!LM1M

LM0M→ M ′
0

by inversion

M0 →
+
β M ′′

0
such thatM ′

0
=α LM ′′

0
M by i.h.

M0M1 →
+
β M ′′

0
M1 by operational semantics

LM ′′
0
M1M = LM ′′

0
M !LM1M =α M ′

0
!LM1M by definition and by congruence

Case: (λx :!Lτ0M.let !x = x in LM0M) !LM1M→ let !x =!LM1M in LM0M
(λx :τ0.M0)M1 → M0{M1/x} by inversion and operational semantics

let !x =!LM1M in LM0M→ LM0M{LM1M/x} by operational semantics

=α LM0{M1/x}M by Lemma 5.6

□

Theorem 5.8 (Operational Completeness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then LPM→∗β LQM
(2) If Ψ ⊢ M : τ andM → N then LMM→+ LN M.

Proof. We proceed by induction on the given reduction.

Case: (νx)(x ⟨M⟩.P1 | x(y).P2) → (νx)(P1 | P2{M/x}) with P typed via cut of ∧R and ∧L
LPM = lety ⊗ x = ⟨!LMM ⊗ LP1M⟩ in let !y = y in LP2M by definition

→ let !y =!LMM in LP2M{LP1M/x} by operational semantics

→ LP2M{LP1M/x}{LMM/x} by operational semantics

L(νx)(P1 | P2{M/x})M = LP2{M/x}M{LP1M/x} by definition

=α LP2M{LP1M/x}{LMM/x} by Lemma 5.6

Case: (νx)(x(y).P1 | x ⟨M⟩.P2) → (νx)(P1{M/x} | P2) with P typed via cut of ⊃R and ⊃L
LPM = LP2M{(λx :!Lτ0M.let !x = x in LP1M) !LMM/x} by definition

→
+
β LP2M{(LP1M{LMM/x})/x} by β conversion

L(νx)(P1{M/x} | P2)M = LP2M{LP1{M/x}M/x} by definition

=α LP2M{(LP1M{LMM/x})/x} by Lemma 5.6

The remaining process cases follow by induction.

Case: (λx :τ0.M0)M1 → M0{M1/x}

LMM = (λx :!Lτ0M.let !x = x in LM0M) !LM1M by definition

→
+ LM0M{LM1M/x} =α LM0{M1/x}M by operational semantics and Lemma 5.6

Case: M0M1 → M ′
0
M1 byM0 → M ′

0

LM0M1M = LM0M !LM1M by definition

LM ′
0
M1M = LM ′

0
M !LM1M by definition

LM0 →
+ LM ′

0
M by i.h.

LM0M !LM1M→+ LM ′
0
M !LM1M by operational semantics

□

A.3.3 Proofs of Inverse Theorem and Full Abstraction in Sessπλ.

Theorem 5.9 (Inverse). If Ψ; Γ;∆ ⊢ P :: z:A then JLPMKz ≈L JPK. If Ψ ⊢ M : τ then LJMKzM =β LMM.

We establish the proofs of the two statements separately:

Theorem A.3 (Inverse – Processes). If Ψ; Γ;∆ ⊢ P :: z:A then JLPMKz ≈L JPK

Proof. By induction on typing.
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Case: ∧R
P = z⟨M⟩.P0 by assumption

LPM = ⟨!LMM ⊗ LP0M⟩ by definition

J⟨!LMM ⊗ LP0M⟩Kz = z⟨x⟩.(!x(u).JLMMKu | JLP0MKz ) by definition

Jz⟨M⟩.P0K = z⟨x⟩.(!x(u).JMKu | JP0K) by definition

≈L z⟨x⟩.(!x(u).JLMMKu | JLP0MKz ) by i.h. and congruence

Case: ∧L
P = x(y).P0 by assumption

LPM = lety ⊗ x = x in let !y = y in LP0M by definition

Jlety ⊗ x = x in let !y = y in LP0MKz = x(y).JLP0MKz by definition

Jx(y).P0K = x(y).JP0K by definition

≈L x(y).JLP0MKz by i.h. and congruence

Case: ⊃R
P = x(y).P0 by assumption

LPM = λx :!Lτ M.let !x = x in LP0M by definition

Jλx :!Lτ M.let !x = x in LP0MKz = x(y).JLP0MKz by definition

Jx(y).P0K = x(y).JP0K by definition

≈L x(y).JLP0MKz by i.h. and congruence

Case: ⊃L
P = x ⟨M⟩.P0 by assumption

LPM = LP0M{(x !LMM)/x} by definition

JLP0M{(x !LMM)/x}Kz = (νa)(Jx !LMMKa | JLP0MKz {a/x}) by Lemma 3.4

= (νa)((νb)(JxKb | b⟨c⟩.(J!LMMKc | [b ↔ a]) | JLP0MKz {a/x}) by definition

= (νa)((νb)([x ↔ b] | b⟨c⟩.(!c(w).JLMMKw | [b ↔ a]) | JLP0MKz {a/x})) by definition

→ (νa)(x ⟨c⟩.(!c(w).JLMMKw | [x ↔ a]) | JLP0MKz {a/x}) by reduction semantics

≈L x ⟨c⟩.(!c(w).JLMMKw | JLP0MKz ) by commuting conversion and reduction

≈L JPK = x ⟨y⟩.(!y(u).JMKu | JP0K) by i.h. and congruence

□

Theorem A.4 (Inverse Encodings – λ-terms). If Ψ ⊢ M : τ then LJMKzM =β LMM

Proof. By induction on typing.

Case: Variable
JMKz = x ⟨y⟩.[y ↔ z] by definition

Lx ⟨y⟩.[y ↔ z]M = x by definition

Case: λ-abstraction
Jλx :τ0.M0Kz = z(x).JM0Kz by definition

Lz(x).JM0KzM = λx :!Lτ0M.let !x = x in LJM0KzM by definition

=β Lλx :τ0.M0M = λx :!Lτ0M.let !x = x in LM0M by i.h. and congruence

Case: Application
JM0M1Kz = (νy)(JM0Ky | y⟨x⟩.(!x(w).JM1Kw | [y ↔ z]) by definition

L(νy)(JM0Ky | y⟨x⟩.(!x(w).JM1Kw | [y ↔ z])M = Ly⟨x⟩.(!x(w).JM1Kw | [y ↔ z])M{LJM0KyM/y}
by definition

= LJM0KyM !LKM1Kw M by definition
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=β LM0M1M = LM0M !LM1M by i.h. and congruence

□

Lemma 5.10. Let · ⊢ M : τ and · ⊢ V : τ with V ̸→. JMKz ≈L JV Kz iff LMM→∗βη LV M
Proof.

(⇐)

LMM→∗βη LV M by assumption

If LMM = LV M then JV Kz ≈L JV Kz by reflexivity

If LMM→+βη LV M then JMKz =⇒ P ≈L JV Kz by Lemma 5.4

JMKz ≈L JV Kz by closure under reduction

(⇒)

V =α λx :τ0.V0 by inversion

LV M = λx :!Lτ0M.let !x = x in LV0M by definition

JV Kz = z(x).JV0Kz by definition

M : τ0 → τ1 by inversion

LMM→∗βη V ′ ̸→ by strong normalisation

We proceed by induction on the length n of the (strong) reduction:

Subcase: n = 0

LMM = λx :τ0.M0 by inversion

M0 = V0 by uniqueness of normal forms

Subcase: n = n′ + 1
LMM→βη M ′ by assumption

JMKz =⇒ P ≈L JM ′Kz by Lemma 5.4

JM ′Kz ≈L JV Kz by closure under reduction

LM ′M→∗βη LV M by i.h.

LMM→∗βη LV M by transitive closure

□

Theorem 5.11 (Full Abstraction).

Let:
(a) · ⊢ M : τ and · ⊢ N : τ ;
(b) · ⊢ P :: z:A and · ⊢ Q :: z:A.

We have that LMM =βη LN M iff JMKz ≈L JN Kz and JPK ≈L JQK iff LPM =βη LQM.

We establish the proof of the two statements separately.

Theorem A.5. Let · ⊢ M : τ and · ⊢ N : τ . We have that LMM =βη LN M iff JMKz ≈L JN Kz
Proof.

Completeness (⇒)
LMM =βη LN M iff ∃S .LMM→∗βη S and LN M→∗βη S

Assume→
∗
is of length 0, then: LMM =α LN M, JMKz ≡ JN Kz and thus JMK ≈L JN Kz

Assume→
+
is of some length > 0:

LMM→+βη S and LN M→+βη S , for some S by assumption

JMKz →+ P ≈L JSKz and JN Kz →+ Q ≈L JSKz by Theorem 5.4

JMKz ≈L JSKz and JN Kz ≈L JSKz by closure under reduction

JMKz ≈L JN Kz by transitivity

Soundness (⇐)
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JMKz ≈L JN Kz by assumption

Suffices to show: ∃S .LMM→∗βη S and LN M→∗βη S

LN M→∗βη S ′ ̸→ by strong normalisation

We proceed by induction on the length n of the reduction:

Subcase: n = 0

JMKz ≈L JS ′Kz by assumption

LMM→∗βη LN M by Lemma 5.10

Subcase: n = n′ + 1
LN M→βη S ′ by assumption

JN Kz → P ≈L JS ′Kz by Theorem 5.4

JMKz ≈L JS ′Kz by closure under reduction

LMM =βη LS ′M by i.h.

LMM =βη LN M by transitivity

□

Theorem A.6. Let · ⊢ P :: z:A and · ⊢ Q :: z:A. We have that JPK ≈L JQK iff LPM =βη LQM
Proof.

(⇐)

LetM = LPM and N = LQM:
JMKz ≈L JN Kz by Theorem A.5 (⇒)

JMKz = JLPMKz ≈L JPK and JN Kz = JLQMKz ≈L JQK by Theorem 5.9

JPK ≈L JQK by compatibility of logical equivalence

(⇒)

JLPMKz ≈L JLQMKz by Theorem 3.12 and compatibility of logical equivalence

LPM =βη LQM by Theorem A.5 (⇐)

□

A.4 Proofs of § 5.2 – Higher-Order Session Processes
A.4.1 Proofs for Encoding of λ into Sessπλ+.

Theorem 5.13 (Operational Soundness – J−Kz ).
(1) If Ψ ⊢ M : τ and JMKz → Q thenM →+ N such that JN Kz ≈L Q
(2) If Ψ; Γ;∆ ⊢ P :: z:A and JPK→ Q then P →+ P ′ such that JP ′K ≈L Q

Proof. By induction on the given reduction.

Case: (νx)(P0 | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | P1) . . . )) → (νx)(P
′
0
| x ⟨a0⟩.([a0 ↔

y0] | · · · | x ⟨an⟩.([an ↔ yn] | P1) . . . ))

P = x ← M0 ← yi ; P2 with JM0Kx = P0 and JP1K = P2 by inversion

M0 →
+ M ′

0
with JM ′

0
Kx ≈L P ′0 by i.h.

(x ← M0 ← yi ; P2) →
+
(x ← M ′

0
← yi ; P2) by reduction semantics

Jx ← M ′
0
← y; P2K = (νx)(JM0Kx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | P1) . . . ))

by definition

≈L (νx)(P
′
0
| x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | P1) by congruence

Case: (νx)(x(a0). . . . .x(an).P0 | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | P1) →
(νx ,a0)(x(a1). . . . .x(an).P0 | [a0 ↔ y0] | x ⟨a1⟩.([a1 ↔ y1] | · · · | x ⟨an⟩.([an ↔ yn] | P1) =
Q
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P = x ← {x ← P2 ← ai } ← yi ; P3 with JP3K = P1 and JP2K = P0 by inversion

x ← {x ← P2 ← ai } ← yi ; P3 → (νx)(P2{yi/ai } | P3) by reduction semantics

Q →+ (νx)(P0{yi/ai } | P1) = (νx)(JP2K{yi/ai } | JP3K) by reduction semantics and definition

□

Theorem 5.14 (Operational Completeness – J−Kz ).
(1) If Ψ ⊢ M : τ andM → N then JMKz =⇒ P such that P ≈L JN Kz
(2) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then JPK→+ R with R ≈L JQK

Proof. By induction on the reduction semantics.

Case: x ← M ← yi ;Q → x ← M ′← yi ;Q fromM → M ′

Jx ← M ← yi ;QK = (νx)(JMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JQK) . . . ))
by definition

JMKx =⇒ R0 with R0 ≈L JM ′Kx by i.h.

Jx ← M ← yi ;QK =⇒ (νx)(R0 | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JQK) . . . ))
by reduction semantics

≈L Jx ← M ← yi ;QK = (νx)(JMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JQK) . . . ))
by congruence

Case: x ← {x ← P0 ← wi } ← yi ;Q → (νx)(P0{yi/wi } | Q)

Jx ← {x ← P0 ← wi } ← yi ;QK =
(νx)(x(w0). . . . .x(wn).JP0K | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JQK) . . . ))

by definition

→
+
(νx)(JP0K{yi/wi } | JQK) by reduction semantics

≈L (νx)(JP0{yi/wi }K | JQK)
□

A.4.2 Proofs for Encoding of Sessπλ+ into λ.

Theorem 5.16 (Operational Soundness – L−M ).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and LPM→ M then P 7→∗ Q such thatM =α LQM
(2) If Ψ ⊢ M : τ and LMM→ N thenM →+β M ′ such that N =α LM ′M

Proof. By induction on the given reduction.

Case: LP0M{(LMMyi )/x} → N {(LMMyi )/x}
P = x ← M ← yi ; P0 by inversion

P0 7→
∗ R with N =α LRM by i.h.

P 7→∗ x ← M ← yi ;R by definition of 7→

Lx ← M ← yi ;RM = LRM{(LMMyi )/x} by definition

=α N {(LMMyi )/x} by congruence

Case: LP0M{(LMMyi )/x} → LP0M{M ′/x}
P = x ← M ← yi ; P0 by inversion

Subcase: LMMyi → N yi
M →+β M ′′ with N =α LM ′′M by i.h.

P 7→+ x ← M ′′← yi ; P0 by reduction semantics

Lx ← M ′′← yi ; P0M = LP0M{(LM ′′Myi )/x} by definition

=α LP0M{M ′/x} by congruence

Subcase: LMMyi → (λy1. . . . .yn .M0)y1 . . . yn
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M = {x ← Q ← yi } with LQM = M0 by inversion

P = x ← {x ← Q ← yi } ← yi ; P0 by inversion

P → (νx)(Q | P0) by reduction semantics

L(νx)(Q | P0)M = LP0M{LQM/x} by definition

(λy1. . . . .yn .M0)y1 . . . yn →
+ M0 by operational semantics

□

Theorem 5.17 (Operational Completeness – L−M).
(1) If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then LPM→∗β LQM
(2) If Ψ ⊢ M : τ andM → N then LMM→+ LN M

Proof. By induction on the given reduction

Case: (x ← M ← yi ; P0) → (x ← M ′← yi ; P0) withM → M ′

Lx ← M ← yi ; P0M = LP0M{LMMyi/x} by definition

LMM→∗ LM ′M by i.h.

Lx ← M ′← yi ; P0M = LP0M{LM ′Myi/x} by definition

LP0M{LMMyi/x} →∗β LP0M{LM ′Myi/x} by congruence

Case: (x ← {x ← Q ← yi } ← yi ; P0) → (νx)(Q | P0)

Lx ← {x ← Q ← yi } ← yi ; P0M = LP0M{((λy0. . . . .λyn .LQM)y0 . . .yn)/x} by definition

→
+
β LP0M{LQM/x} by congruence and transitivity

L(νx)(Q | P0)M = LP0M{LQM/x} by definition

□

A.4.3 Proofs of Inverse Theorem and Full Abstraction for Sessπλ+.

Theorem 5.18 (Inverse Encodings). If Ψ; Γ;∆ ⊢ P :: z:A then JLPMKz ≈L JPK. Also, if Ψ ⊢ M : τ
then LJMKzM =β LMM.

We prove each case as a separate theorem.

Theorem A.7 (Inverse Encodings – Processes). If Ψ; Γ;∆ ⊢ P :: z:A then JLPMKz ≈L JPK

Proof. By induction on the given typing derivation. We show the new cases.

Case: Rule {}E
P = x ← M ← y;Q by inversion

LPM = LQM{(LMMy)/x} by definition

JLQM{(LMMy)/x}Kz = (νa)(JLMMyKa | JLQMKz {a/x}) by Lemma 5.2

= (νa,x)(JLMMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JLQMK{a/x}) . . . )) by definition

≡ (νx)(JLMMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JLQMK) . . . ))
JPK = (νx)(JMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JQK) . . . )) by definition

≈L (νx)(JLMMKx | x ⟨a0⟩.([a0 ↔ y0] | · · · | x ⟨an⟩.([an ↔ yn] | JLQMK) . . . )) by i.h.

□

Theorem A.8 (Inverse Encodings – λ-terms). If Ψ ⊢ M : τ then LJMKzM =β LMM

Proof. By induction on the given typing derivation. We show the new cases.

Case: Rule {}I

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article . Publication date: March 2021.



On Polymorphic Sessions and Functions 55

M = {x ← P ← yi } by inversion

JMKz = z(y0). . . . .z(yn).JP{z/x}K by definition

Lz(y0). . . . .z(yn).JP{z/x}KM = λy0. . . . .λyn .LJP{z/x}KM by definition

JMK = λy0. . . . .λyn .LPM by definition

=β λy0. . . . .λyn .LJP{z/x}KM by i.h.

□

A.5 Strong Normalisation for Higher-Order Sessions
Theorem 5.21 (Operational Completeness). If Ψ; Γ;∆ ⊢ P :: z:A and P → Q then LPM+ →+β

LQM+
Proof.

Case: (νu)(!u(x).P0 | u⟨x⟩.P1) → (νu)(!u(x).P0 | (νx)(P0 | P1))
L(νu)(!u(x).P0 | u⟨x⟩.P1)M+ = let 1 = ⟨⟩ in LP1M+{u/x}{LP0M+/u}
= let 1 = ⟨⟩ in LP1M+{LP0M+/x}{LP0M+/u} by definition

→ LP1M+{LP0M+/x}{LP0M+/u} by operational semantics

L(νu)(!u(x).P0 | (νx)(P0 | P1))M+ = LP1M+{LP0M+/x}{LP0M+/u} by definition

Other cases are unchanged.

□

Theorem 5.22 (Operational Soundness). If Ψ; Γ;∆ ⊢ P :: z:A and LPM+ → M then P 7→∗ Q such
that LQM→∗ M .

Proof.

Case: LPM+ = let 1 = ⟨⟩ in LP0M+{u/x} with LPM+ → LP0M+{u/x}
LPM+ = let 1 = ⟨⟩ in LP0M+{u/x} → LP0M+{u/x} by operational semantics, as needed.

Remaining cases are fundamentally unchanged.

□

Theorem 5.23 (Inverse). If Ψ; Γ;∆ ⊢ P :: z:A then JLPM+Kz ≈L JPK
Proof.

Case: copy rule

LPM+ = let 1 = ⟨⟩ in LP0M+{u/x} by definition

Jlet 1 = ⟨⟩ in LP0M+{u/x}Kz = (νy)(0 | JLP0M+{u/x}Kz ) by definition

≡ JLP0M+{u/x}Kz by structural congruence

≈L (νx)(u⟨w⟩.[w ↔ x] | JLP0M+Kz ) by compositionality

≈L JPK by i.h. + congruence + definition of ≈L for open processes

□

Lemma A.9. If Ψ ⊢ M : τ then LJMKzM+ =β LMM+
Proof.

Case: uvar rule
JuKz = (νx)u⟨x⟩.[x ↔ z] by definition

L(νx)u⟨x⟩.[x ↔ z]M+ = let 1 = ⟨⟩ inu =β u

□
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