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Abstract

Modern commercial software is often framed under the umbrella of data-centric ap-

plications. Data-centric applications define data as the main and permanent asset. These

applications use a single data model for application functionality, data management, and

analytical activities, which is built before the applications.

Moreover, since applications are temporary, in contrast to data, there is the need to

continuously evolve and change the data schema to accommodate new functionality. In

this sense, the continuously evolving (rich) feature set that is expected of state-of-the-art

applications is intrinsically bound by not only the amount of available data but also by

its structure, its internal dependencies and by the ability to transparently and uniformly

grow and evolve data representations and their properties on-the-fly.

The GOLEM project aims to produce new methods of program automation integrated

in the development of data-centric applications in low-code frameworks. In this context,

one of the key targets for automation is the data-layer itself, encompassing the data layout

and its integrity constraints, as well as validation and access control rules. This work,

which is integrated in GOLEM, will focus on the challenge of defining and evolving a

rich data layer component by means of high-level operations, and investigate the ability

to synthesize both database scripts and/or code for a data layer access component that

correctly implements integrity constraints, business logic validation, and access control

rules.

The output of the tool we intend to design and develop will synthesize database scripts

and code for the data access layer that correctly transforms the system and its data. The

prototype will be illustrated and integrated in the context of a product of the OutSys-

tems company, interacting with other components that generate interface components, or

dialog-based interfaces that build the synthesis specification.

Keywords: Program Synthesis, Type-driven Synthesis, Refinement Types, Data Models,

APIs, Data Schema Evolution
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1
Introduction

Computer science has long evolved from the setbacks experienced at the beginning of its

history, having to face new challenges now. When computing machines appeared, the

focus was mainly on the actual construction of the machines rather than its software,

these earlier computers were mostly built for military/government purposes [38]. At the

beginning of the 1950s, computers started being produced commercially, even though not

on a large scale and for a narrow audience. These computers had to be programmed using

low-level machine-depend code, resulting from the fact that hardware capacity was very

limited, the code had to be very efficient to use the resources wisely and computers were

costly [38]. The difference between software and hardware was not clear, since producing

software was basically writing machine code.

In the later years, advances in hardware technology [10, 19, 33, 38] permitted the con-

struction of more powerful, reliable, and cheaper computers which resulted in an increase

in computer’s production. The availability of more computers propelled a growing com-

munity of programmers and the birth of many programming languages (e.g. FORTRAN,

ALGOL, and LISP), which enabled to write code at a high-level of abstraction, that after

would be translated into machine code [38]. At this time, programming did not consist

of writing machine code directly but relied on the use of programming languages, which

allowed for the production of software to become a separate activity than the production

of hardware. The focus passed on to the design of languages and their compilers.

The increase in hardware capacity promoted the development of programming and

the ability to do large scale software projects, but it also put some strain on the software

community that could not match this evolution and it would later originate the so-called

software crisis [8, 10, 19, 33, 38]. This crisis was characterized [8, 10, 19, 33, 38] by large

software projects constantly being late and over budget, the code was complex and of a

large size, which in turn resulted in a large number of bugs. Since software started to be
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CHAPTER 1. INTRODUCTION

used for critical activities, bugs represented a high risk. There was also a lack of skilled

programmers which did not permit to build complex, and correct software systems. The

widely used testing techniques could not assure the total correctness of software. There

was a duality between trying to reduce production/cost of software and reduce bugs,

decreasing one would probably increase the other. The state of the situation, in the

sixties, reached a point where projects were failing, manifested bugs, and producing

code did not mean producing correct code. The software crisis needed to be addressed.

The NATO Conference [10, 33, 38] in 1968 became a pivotal moment, which reunited

professionals with different backgrounds to discuss possible solutions to the software

crisis, there was a common understanding that there was a problem to be addressed.

Software correctness was among the issues discussed, since computers were starting to be

used for critical activities, it could even present risk to human lives. On this matter, there

were two lines of reasoning [33, 38]: the academics (such as Dijkstra and Hoare) that

agreed that, to prove program’s correctness, its construction had to be treated as a science

by applying mathematical reasoning and that testing techniques could not show that the

software did not have errors, just that it conformed to its purpose; the practitioners who

were interested in producing software that worked which then used testing techniques to

prove that the software met its purpose.

As a form of incorporating rigorous mathematical reasoning into software, a new

field emerged, program verification [33]. Program verification incorporates a body of

techniques that prove properties, on programs, defined as formal specifications by ap-

plying mathematical reasoning. These techniques are used to prove program correctness.

Hoare [20] claimed that program properties and execution results could be analyzed from

the code itself with the application of deduction techniques, and so introduced an axiom-

atization, a logic, that enables us to reason about the correctness of statements through

its pre-conditions and post-conditions. Dijkstra, that also believed that one should reason

about program correctness through a mathematical perspective [10, 38], took this notion

a bit further. While noting that formal specifications were being used to prove program

correctness after they are built, presented an idea that these specifications can also be

used to produce a correct program by construction that would not need to be proved

correct afterwards. Which revealed to be a foundational work to the field of automatic

programming/program synthesis.

Since Dijkstra’s work had a considerable contribution to program synthesis, we decided to

apply the reasoning explained in [11], to derive correct programs from specifications, to

an example of our own so that we can get a better grasp of the mindset. In [11], Dijkstra

presents a calculus for the derivation of programs from specifications. He introduces

two examples in the paper. The first is based on a conditional statement and the sec-

ond comprises an iterative program. Both are defined using guarded commands. The

semantics is presented by means of weakest pre-conditions (predicate transformers) and

a group of rules that, if applied correctly, allow the derivation of a correct program and
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the awareness of having reached the goal [11].

Consider a very simple example from [11] to demonstrate the general idea. This

consists of deriving a conditional statement from a specification. The program to derive,

computes the maximum between two numbers, x and y, and performs m := max(x,y).

With fixed x and y, the output m of the program will either be x or y and will be greater

or equal than both, which forms the specification (R) in Equation (1.1)

R: (m = x or m = y) and m ≥ x and m ≥ y (1.1)

The general mechanism consists in analyzing the specification in Equation (1.1) and

selecting statements such that R holds. The procedure follows the general form of guarded

commands, the operator wp is then applied to each selected statement so that we can

derive the guard that should hold when the statement is executed, leading to an execution

that terminates in a final state where R holds. If all the guards are obtained by the wp
operator and these guards cover every possible input (so that abortion does not happen),

the conditional statement will terminate in a final state where R holds. Following this

reasoning, the author first tries the statement m := x which makes R hold and uses wp to

obtain its guard:

wp(“m := x′′ ,R) = (x = x or x = y) and x ≥ x and x ≥ y

= x ≥ y

With this first statement and the corresponding guard, the first draft of the program is

the following:

if x ≥ y −→m := x fi

The process is only concluded when any initial value of x and y makes a guard hold. For

example, if the initial value of y is greater than x the program will abort, which means

this is not the final program and there needs to be at least an extra guarded command.

Repeating the same process for the statement m := y produces the following program

if x ≥ y −→m := x

� y ≥ x −→m := y

fi

The program is considered the final one, since for any value of the inputs there is always

a guard that holds, so the program does not abort.

Concluded the explanation of the example above, now we can have a look at our own

example solved by applying Dijkstra’s reasoning, which shows that deriving an iterative

program is slightly more challenging. Given that the paper describes a declarative system

rather than an algorithm, it is instructive to illustrate the derivation of an iterative pro-

gram, for a different example (than the one in the paper) to make the transitions between

every step clearer. Thus, by analogy with the gdc example (which will be explained in Sec-

tion 2.1.1), we now derive a program that computes the sum of all natural numbers from
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0 to N . According to Dijkstra [11], to derive the iterative program regarding the sum, we

must first establish an invariant relation and a variant function. The invariant property is

a condition that must hold before and after every iteration. The variant function consists

of a measure that decreases with each iteration, in order to achieve termination.

We begin by defining an auxiliary predicate, Sum(r,n), that holds whenever r is the

correct value of the sum of all natural numbers up to n. The inductive definition of the

predicate Sum(r,n) is thus defined by the two cases:

Sum(0,0)

Sum(r + (n+ 1),n+ 1) if Sum(r,n) with r > 0∧n > 0

This predicate will help defining the invariant relation P, while several formulations of P

are possible, we choose to represent P as:

P : Sum(r,n)∧ 0 ≤ n ≤N ∧ r ≥ 0

Since the final goal is to compute the sum of all natural numbers from 0 to N , for a fixed

N , when the program terminates, Sum(r,N ) should hold and r will contain the final result.

The general structure of this class of derived programs is:

“initialization of local variables”

do “guarded command set” od.

The general structure of the commands is r,n := E1,E2, since there are two variables in

the invariant (r and n).

Firstly, regarding the initialization of the program variables, r and n are the variable

names referenced in the invariant and should be given appropriate initial values. Consid-

ering our definition of the predicate and that Sum(r,N ) should hold when the program

terminates, the variables r and n will both start at 0. This initialization guarantees that

P holds before the first iteration. Therefore, the first statement of the program will look

like r,n := 0,0;

Secondly, the process of generating guarded commands is an iterative one. Deriving

guarded commands until the final result can be calculated from P ∧¬BB is the disjunction

of all the guards of the program), meaning that the result can be calculated from the

available guards since the iterative program ends in a state where none of the guards is

true but the invariant is always maintained true. If the guards in the program cover the

variable values defined in the invariant, then the result can be fully calculated. If some

valid variable values are not considered by the guards, in some cases the result cannot

be calculated, so the process of generating guarded commands for the program must

continue.

To obtain the first guarded command, we must indicate that the values of r and n are

placeholders, replacing r and n with E1 and E2 (r,n := E1,E2). The interesting guard
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(B) will be the weakest pre-condition such that “r,n := E1,E2” can be executed while

preserving P.

(P and B) =⇒ wp(“r,n := E1,E2′′ , P )

= (Sum(E1,E2)∧ 0 ≤ E2 ≤N ∧E1 ≥ 0).

The expressions E1 and E2 have to be chosen so that the guard is expressed in terms of

the program variables, and the expressions preserve the truth of P after the iteration. To

achieve this, we will manipulate Sum(r,n). Inspecting the second step of the inductive

definition of the predicate, we observe that Sum(r,n) is equivalent to Sum(r+(n+1), (n+1)).

Previously we had that (P and B) =⇒ (Sum(E1,E2) ∧ 0 ≤ E2 ≤ N ∧ E1 ≥ 0) and P =

Sum(r,n)∧0 ≤ n ≤N∧r ≥ 0 so substituting Sum(r,n) with Sum(r+(n+1), (n+1)) will express

the following (Sum(r + (n+ 1), (n+ 1)) ∧ 0 ≤ n ≤N ∧ r ≥ 0 and B) =⇒ (Sum(E1,E2) ∧ 0 ≤
E2 ≤N ∧E1 ≥ 0).

From the predicates equivalence, we obtain that r,n := r + (n+ 1), (n+ 1) and since r,n :=

E1,E2, that means that E1 = r+(n+1) and E2 = n+1. Applying the weakest pre-condition

operator (wp) with r,n := r + (n+ 1), (n+ 1) will express the following wp(“r,n := r + (n+

1), (n+1)′′ , P ) = (Sum(r+(n+1), (n+1))∧0 ≤ n+1 ≤N ∧r+(n+1) ≥ 0). Extracting n+1 ≤N
from the expression, we will get the guard n < N .

The previous guard was found regarding the invariance of P, but it also has to guarantee

the decrease of the variant function. A variant function t should be selected such that it

decreases throughout the iterations. Considering the initial values of the variables, for

example, n varies between the values 0 and N (starting at 0) so a measure for t could be

t =N −n. Since n is increased on every iteration until it reaches the value N , t will always

decrease.

Using t =N −n, we will get:

wp(“r,n := r + (n+ 1), (n+ 1)′′ , t ≤ t0) =

wp(“r,n := r + (n+ 1), (n+ 1)′′ ,N −n ≤ t0) = (N −n− 1 ≤ t0)

The smallest solution for the unknown t0 is defined as tmin. This means that tmin =

N − n − 1 and we can use the following definition of wdec: wdec(S,t) = (tmin(X) < t(X))

(more details about the relationship between wp and wdec in [11]). Applying the wdec

predicate transformer (that denotes the weakest pre-condition so that executing the state-

ment will leave the system in a final state that decreases t by at least 1), the condition is

obtained by wdec(“r,n := r + (n+ 1), (n+ 1)′′ , t) = (N −n−1 < N −n) = (N −N −n−1 < −n) =

(−n − 1 < −n) = (n + 1 > n). This condition always holds, so this means that no further

restriction will be imposed on the guard.
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The first attempt at deriving the program can be expressed as the program below:

r,n = 0,0;

do n < N −→ r,n := r + (n+ 1), (n+ 1) od.

Since non BB is equal to n ≥ N then (P and non BB) =⇒ Sum(r,N ) and r will be the

final result. The final result can be calculated from the generated guard since the guard

covers all values of n less than N . The value of N is also added to the sum, even though

the guard does not cover it, because the statement r := r+(n+1) always adds the successor

of n to the result. Which results in the sum of all values from 0 up to N . Non BB is

equal to n ≥N , which is a range of numbers the program does not need to consider in the

calculation. Once the final result can be calculated from the available guards, no further

guard command search is needed, the above program is the final one.

As illustrated above, Dijkstra’s work [11] presented the reasoning that an expert can fol-

low to construct a correct program from a specification. The following years brought

major improvements into the process, in terms of allowing non-experts to have alterna-

tive ways of defining the specification and automation of the process. Alternative forms

of specification appeared such as input-output examples, natural language, partial pro-

grams, among others. Since then, many synthesizers [14, 27, 29] have been built that

automate the process.

Nowadays, a widespread population has access to computers. A reality that before

did not seem possible, when just a few computers existed. Personal computers uses now

range from personal use to education/workplace purposes. Most of these end-users are

not programmers or have little programming experience and may need to produce scripts

to execute certain tasks. Programming is not an easy or fast activity for them to master,

which creates the need to develop tools that enable the average end-user to be able to

accomplish the desired tasks within little time. In addition to that, programming still

has a major component of repetitive tasks that do not permit developers to focus on

more important activities such as design or context related problems. Both the end-user

and developers can benefit from automation. Automating programming can also help

in decreasing programming errors as far as the synthesized code is concerned. In order

to increase the automation in programming, program synthesis is an active research

area that is concerned with generating a program from a high-level specification. The

specification has various forms that are better suited depending on the problem and

domain. Pairing the specification with effective program search techniques, program

synthesis has the potential to make great changes in programming tasks. The range of

applications varies from producing small complex programs, data manipulation tasks,

program optimization/repair, among others.
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1.1. PROBLEM STATEMENT

1.1 Problem statement

Modern commercial software is often framed under the umbrella of data-centric appli-

cations. Data-centric applications define data as the main and permanent asset. Its

data model is built before the applications, which drive the construction of applications

around data and provide a single data model for application functionality, data manage-

ment, and analytical activities. In contrast to traditional application-centric software,

which produces data as a consequence of business activity. Moreover, since applications

are temporary, in contrast to data, there is the need to continuously evolve and change

the data schema to accommodate new functionality.

In this sense, the continuously evolving (rich) feature set that is expected of state-of-

the-art applications is intrinsically bound by not only the amount of available data but

also by its structure, its internal dependencies and by the ability to transparently and

uniformly grow and evolve data representations and their properties on-the-fly.

The GOLEM project aims to produce new methods of program automation integrated

in the development of data-centric applications in low-code frameworks. One of the fun-

damental goals of GOLEM is to reduce the need for programmers to explicitly write code

where automation is possible. In the context of data-centric applications and program-

ming, one of the key targets for automation is the data-layer itself, encompassing the data

layout and its integrity constraints, as well as validation and access control rules.

This work, which is integrated in GOLEM, will focus on the challenge of defining

and evolving a rich data layer component by means of high-level operations, and inves-

tigate the ability to synthesize both database scripts and/or code for a data layer access

component that correctly implements integrity constraints, business logic validation, and

access control rules. The information needed to generate the correct code for the data

layer component can be digested from a rich type-based specification, using dependent

and refinement types, and from the data stored in the data layer. For instance, a rich

type specification for a data component can include various integrity and validation con-

straints (e.g. the type of a table field can enforce that it must be a positive integer or that

the field can only be modified by users with a certain access permission). Moreover, a

modification of a data schema that introduces a new data restriction may be deemed in-

valid due to some data that already exists in the database that violates the constraint (e.g.

modifying an existing table field from integer to positive integer type will not be possible

if the table contains an element with negative integers). The need for some adaptation

function arises, one that corrects the data items that make the new schema invalid.

The output of this work will then integrate with other components that generate inter-

face components, or dialog-based interfaces that interactively try to build the specification

used here as input.

7



CHAPTER 1. INTRODUCTION

1.1.1 Contributions

Our work will make the following contributions:

• Definition of a core language for the specification of data schemas that captures

integrity, business/logic, and security constraints. The language is used in the

specification of the synthesis problem.

• Definition of a core language for data schema modifications, which is the target of

our synthesis procedure.

• Implementation of a type-directed synthesis tool for creation/modification of data

schemas, which also considers integrity, business/logic, and security constraints.

1.2 Document Structure

The following sections on the document start with a review of the main the concepts,

techniques and applications in program synthesis (Section 2). Sequent sections, first

introduce a summary of the key related work (Section 3), next a more detailed descrip-

tion of the proposed approach to the problem stated (Section 4) and conclude with the

expected phases of the work plan (Section 5).
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2
Literature Review

We now introduce a short roadmap of the chapter. Program synthesis is the automatic

or semi-automatic generation of a program from a high-level specification. Jha et al.

mention that “Automatic synthesis has long been one of the holy grails of software en-

gineering” [21]. Many communities have contributed to this research area throughout

the years, such as programming languages, artificial intelligence, machine learning, and

program verification.

The classical view of program synthesis has been the deductive approach, using log-

ical specifications as the expression of user intent [1, 21, 30]. Early approaches to the

derivation of programs used theorem-proving as a constructive procedure to build proofs

and extract programs from those proofs [24]. These approaches were followed by tech-

niques that perform synthesis by transforming specifications into correct-by-construction

programs without the need of proofs [24]. All these approaches require complete specifi-

cations (e.g. logical formulas) which can prove difficult to express. This originated work

that used partial specifications such as examples [18]. Recent advances in SAT and SMT

solvers [1] stimulated further improvements of synthesizers, allowing the specification

of synthesis constraints that can be passed to this solvers for verification. Current synthe-

sizers often receive as input an implicit restriction (e.g. grammar) of the search space in

addition to the specification to make the synthesis problem more tractable [1].

Abstracting from specific details, to find a program consistent with a specification, a

program synthesizer has to search the program space using a certain search technique.

Gulwani et al. characterized the program synthesis task in three dimensions: user intent,

search space, and search technique [18].

These dimensions can be summarized as follows [18]:

1. The user intent is considered to be the high-level specification that expresses the

desired program and can be specified in several ways such as logical formulas,
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examples, traces, natural language, partial programs or even related programs.

2. The search space/program space defines all possible programs and can be over im-

perative or functional programs, regular or context-free grammars, succinct logical

representations. To restrict the program space, a subset of a general-purpose or

domain-specific programming language can be used or alternatively a specifically

designed domain-specific language.

3. The search technique is used to navigate the search space to find a program that

satisfies the specification. Many techniques can be employed such as deduction,

enumeration, constraint solving, among others.

The key challenges in program synthesis are expressing user intent properly and the

large search spaces which a synthesizer has to search to find a program that satisfies the

specification [18].

Regarding user intent, there is a trade-off between the imprecision of using examples

and the challenges of producing correct, complete specifications, as well as doing an ade-

quate specification language. The specification used will also depend on the application

in question.

Considering the search space, if it is insufficiently restricted, it may end up being too

large for a synthesizer to be able to search it effectively. This is why many synthesizers in

recent years have used several strategies (e.g using domain-specific languages (DSLs) or a

subset of operators in a language) as a way of restricting the search space. This originated

the so-called syntax-guided synthesis problem (SyGuS) [1], which is a community effort

to formalize the core ideas behind these approaches as the SyGuS problem. In [1], they for-

mulated and compared three previous approaches using enumerative, constraint-based

and stochastic algorithms. The input is a background theory, a specification in the form of

a logical formula and a grammar that restricts the possible candidates. The goal is to find

a candidate program, constructed from the input grammar, that satisfies the specification

according to the theory. In this work, several benchmarks with synthesis problems for

different domains as well as an annually run synthesis competition were created. This

competition has stimulated the appearance of new and better synthesizers [2].

The next sections will present the general approaches to program synthesis, being

inductive synthesis 2.1 and deductive synthesis 2.2. We are aware that not all approaches

fall exactly into the buckets of synthesis that generalizes from incomplete examples or

synthesis that apply deductive reasoning to complete specifications. The same happens

with synthesis techniques, a synthesizer may use one technique or apply a combination

of techniques. For example, there are inductive synthesizers that apply deductive tech-

niques. The following structure facilitates the presentation of the literature and presents

an exploration through both paths, presenting synthesis techniques and applications.
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2.1. INDUCTIVE SYNTHESIS

2.1 Inductive Synthesis

Inductive Synthesis is generally characterized as the synthesis approach that receives ex-

amples as a specification [1, 30, 35]. These examples can be expressed in multiple forms

such as input-output examples, tests, partial programs, etc. On one hand, examples have

the advantage of being easier to express than, for example, complete logical specifications.

On the other hand, they can be quite ambiguous, and so there is the possibility of having

multiple semantically different candidate programs consistent with the specification [17].

In Section 2.1.1 we will see techniques used by inductive synthesizers to obtain a solution

consistent with the specification and in Section 2.1.2 the resulting applications.

2.1.1 Synthesis Methods

In this section we present the main synthesis techniques: Enumerative, Constraint Solving

and Stochastic Search. We will also mention a few other existing techniques.

Before going into the details of each approach, we highlight the key challenges. The

following techniques may have to deal with concepts such as defining (and possibly

restricting) the program space, dealing with ambiguity and involving the user in the

synthesis process.

To mitigate the problem of large search spaces, many inductive synthesizers employ

techniques such as restricting their program spaces by using DSLs, supplying a partial

program (sketch) so that only unspecified parts have to be synthesized [35], or generate

a program from a library of components [14, 21]. Restricting the program space to a DSL

enables the incorporation of domain-specific knowledge into the synthesis process, even

though the candidate programs will be restricted by the set of operators in the DSL.

Component-based Synthesis leverages a library of program components and formu-

lates the synthesis problem as a composition/orchestration of a subset of the component

library as a program. Approaches such as [21] start from a small set of components and,

if they are insufficient, allow the developer to iteratively augment the component library

until the synthesis is successful.

The partial program approach restricts the search space in the sense that the synthe-

sizer only has to produce code for the unspecified parts (holes). In SKETCH [35], the holes

are also restricted in the values they can take, which further reduces the possibilities.

These different methods of program space restriction inspired the SyGuS formula-

tion [1]. In the competition for syntax-guided solvers, in 2016, a specific track was

created for syntax-guided approaches that receive examples as the semantic specification

instead of the original formulation with the logical formula [2].

In order to deal with the inherent ambiguity of the problem, there are synthesizers

that apply ranking techniques to the set of programs consistent with the specification,

ordering them according to some measure [17]. Since selecting a random program that

is consistent with the examples may not be the best solution. These ranking functions
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are of two general types: manual ranking functions which employ heuristics or learned

ranking functions.

A simpler ranking technique is to enforce preferences over candidate programs. For

instance in [39], candidate queries are ranked higher if they have a more natural structure,

use predicates that are more common and cover many different constants.

Learned ranking functions use a large amount of training data to learn how to rank

programs. MORPHEUS [14] uses around 15,000 code snippets from Stackoverflow to

train a 2-gram model that allows to order program candidates based on the score from

this model. FlashFill [34] applies a gradient descent method to learn a function that

classifies programs as positive or negative, and ranks the positive higher.

Finally, with the increasing development of programming-by-example frameworks

that are used by the general public [16, 34], there is the need to involve users in the

synthesis process, to increase user’s confidence in the results and resolve ambiguities

together with ranking functions. Techniques that involve user interaction may help in

that sense, such as querying the user during the synthesis process. For instance, the work

in [26], introduced two user interaction models. The first allows the user to search over

all DSL synthesized programs which are translated to natural language so that the user

can pick the right one. The second asks questions to the user based on the synthesized

programs that are consistent with the examples in order to refine the initial specification

and repeat the process.

2.1.1.1 Enumerative

Enumerative Search works by enumerating all programs in the search space according to

a certain order such as program size, complexity, etc [18]. A common strategy is to enu-

merate programs by size. The procedure iteratively synthesizes programs of increasing

size, by applying generation rules to programs from previous iterations. We illustrate

this approach with an example from [28], where the program space is defined by the

grammar in (2.1).

Start→ String

Int→ 0 | 3

| (+ Int Int)

| (str.indexof String String)

String→“ ” | input

| (str.substr String Int Int)

(2.1)

The expressions generated by the grammar will be enumerated by height. The goal

is to maintain a net of enumerated expressions, that is initially empty and grows with

every iteration. In the example, with height 0, the first enumerated elements are literals

and variables, being 0, 3,“ ” and input. To generate programs of height 1, the production

rules from the grammar are applied to the previous elements of the net. For example
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Int→ (+ Int Int) is applied to all pairs of values Int and the programs (+ 0 0), (+ 0 3),

(+ 3 0) and (+ 3 3) are added to the net. The iterative process continues in a similar manner,

increasing the height and exploring all possibilities. The grammar used in this example

is very simple, which results in a small amount of enumerated programs. However, with

larger program spaces the number of enumerated programs will grow very large.

As listed above, this technique has the tendency to produce a large number of pro-

grams even if the program space is restricted in some way. In order to address this prob-

lem, several synthesizers apply pruning techniques, so that fewer programs are stored.

One such pruning technique consists in the use of equivalence classes [28, 39]. At each

phase, enumerated programs are grouped based on an equivalence metric, these groups

are called equivalence classes. Each subsequent phase enumerates programs that can

be constructed from the representative of each equivalent class. This technique effec-

tively partitions the search space, avoiding the enumeration of different programs that

are functionally equivalent.

Another approach that also considers program equivalence is observational equiva-

lence (OE) [28]. This approach prunes programs that have the same output on all exam-

ples and is considered a more aggressive version of the previously described approach.

Unlike with equivalence class pruning, which requires grouping of generated programs

and computing representatives, OE pruning evaluates programs on the input examples

and produces a set of outputs. If two programs at any stage of the procedure produce

the same set of outputs, the latter one is discarded since it is deemed observationally

equivalent. A disadvantage, in this case, is that a program that was discovered later and

has the same output net of a program that was discovered earlier, will not be kept, in

spite of potentially being a better fit to the problem [28].

There are alternative forms of pruning the search space that use deductive techniques,

which mix enumeration and deduction. In [3], a divide and conquer strategy is used.

Terms that are correct on some subset of the input are enumerated until the enumerated

terms cover all the input. At this stage, predicates are enumerated until a conditional

expression using the terms is found. An algorithm for decision tree learning is leveraged

to find a decision tree that joins the terms and predicates into a tree consistent with

the examples. This enables a faster enumeration process, considering fewer candidates.

Other works such as [14] use SMT solvers for pruning the candidates. Components from

a library are enumerated so that they form a sketch, similar to the one of the SKETCH

system [35], representing multiple candidates, depending on how program holes are

filled. Each component has a specification that is combined to find the specification of

the sketch, which is then encoded into an SMT formula. The SMT solver discovers if the

sketch satisfies the input-output examples. Note that pruning sketches results in pruning

many possible candidates.

In summary, enumeration is a technique commonly used to find candidate programs
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consistent with a specification. Pruning techniques help to greatly decrease the complex-

ity of the enumeration process. Multiple approaches that do not uniquely use enumera-

tion still have an enumeration step [3, 29].

2.1.1.2 Constraint Solving

Program verification is a research area that has close connections with program synthesis.

While the former tries to prove a specification in a program, the latter tries to build a

program from a specification. In this research area, the use of SMT (Satisfiability Modulo

theories) solvers is recurrent across different verification tools [1].

SAT solvers determine the satisfiability of a formula but they cannot take into con-

sideration background theories (that give an interpretation of predicates and functions)

[5]. SMT solvers, are able to deal with the satisfiability of formulas given a background

theory [5]. Advances in SAT solving [1, 5] allowed to build better SMT solvers.

As in program verification, program synthesis also takes advantage of SMT solvers.

The use of such solvers allows to delegate the complexity of traditional techniques that

search through all possible programs to the solver, which can often deal with the com-

plexity of the task effectively [21]. The program space and specification are encoded into

SMT formulas that are leveraged to the solver.

The SKETCH system [35], besides introducing the idea of sketches, also introduced

the notion of a counterexample-guided inductive synthesis algorithm (CEGIS). This al-

gorithm separates the synthesis and validation of programs into different stops. Using

an SAT-based inductive synthesizer to produce candidate implementations from a set of

inputs and a bounded model-checker to validate the candidates and produce counterex-

amples. The main idea behind this algorithm is that a small set of inputs can represent

the correct program, using inputs that represent specific situations (which the author

calls “corner cases”). Thus, only a few iterations will be necessary to produce the correct

program if it exists. The algorithm starts with a random input from which it synthesizes

a candidate implementation that is submitted to the validation procedure. If the program

is the desired one it is accepted, otherwise a counterexample is produced. Each coun-

terexample is added to the inputs in order to synthesize a new candidate and start a new

iteration until the validation procedure accepts the output. By separating the synthesis

and the validation process, newer or more adequate validation procedures can be used in

other instantiations of the algorithm.

This work inspired another approach that, like CEGIS, separates these concerns. The

so-called Oracle-guided synthesis [21] uses an SMT solver to synthesize a program from

a library of components and two oracles, an I/O oracle and a validation oracle. The I/O

oracle substitutes the need for a complete specification, since it does not require a large

set of input-output examples. When queried on any input, it returns the output on the

desired program. What differentiates this approach from the previous one is that besides

not needing counterexamples, it attributes a higher cost to querying the validation oracle
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so that it only allows to query it once [21], and so avoids querying the validation oracle on

every iteration like CEGIS. This is possible by defining two types of constraints: one that

enables the synthesizer to produce a well-formed candidate and another that checks that,

given a candidate program, there is not another program respecting the given examples

that produces a different output on any given input. This allows the algorithm to only

query the validation oracle when the program is specific enough that it would not return

a different answer from another candidate program. The iterative process starts with a

random input and queries the I/O oracle to get the output. If it can generate a candidate

from the set of components, it checks if it is specific enough, if it cannot, the procedure

terminates. If the program is not specific enough it obtains an input for which two

non-equivalent programs generate different outputs, requests the correct output from

the I/O oracle, starting a new iteration to synthesize a new candidate with this added

example. When a program that returns always the same output as other candidates is

found, the query oracle is queried and decides if it is the correct program or if there is

no solution. The general architecture of the syntax-guided synthesis problem (SyGuS)

[1] was also instantiated using the CEGIS algorithm. Synthesizing candidates not just

through constraint solving but also using techniques such as enumerative and stochastic

approaches.

Regarding the encoding of SMT formulas for program synthesis [18], the specifica-

tion and program space restrictions are encoded into one formula (SMT formula). The

SMT solver finds an instantiation of the variables that makes the formula true. Each

instantiation that makes the formula true corresponds to a correct program. There are

approaches [21] that encode the constraints directly, which is a complex task and then

they have to map the solution back to a program [37]. Solver-aided languages [35, 37]

help in this task by providing high-level programming languages with constructs that

are then encoded into the SAT/SMT formula by the framework. SKETCH [35] provides a

language for specifying sketches leaving holes in the sketch for the synthesizer to fill. The

sketches are later encoded into SAT formulas by the language compiler. ROSETTE [37] is

a solver-aided language, used as an extension of the Racket language, adding to the lan-

guage four query constructors. The constructors can be used to verify an implementation,

synthesize code, localize bugs and to call an oracle. When used in an application, they

are compiled directly into the constraints and developers don’t have to do it themselves.

2.1.1.3 Stochastic Search

Stochastic techniques sample programs from the program space according to defined

metrics to guide the search [1, 18, 32]. The use of a Markov Chain Monte Carlo (MCMC)

sampler together with a cost function over the program space is an example [32] of an

application of the technique. A cost function is defined according to the desired prop-

erties of the program. In the case of program optimization in [32], the cost function

considers the similarity of the program by comparing to the program to be optimized and
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the performance improvement. The goal is to guide the search with the cost function and

minimize the cost of the obtained program. MCMC samplers obtain samples from proba-

bility density functions and sample programs with a higher probability more often [32].

The MCMC sampler in the case of [32] uses the cost function and returns programs

with a low cost. In the formulation in [1], with a different metric, a score is attributed to

each expression and measures how much the expression satisfies the specification. If the

expressions have a higher score, they have a higher probability of being sampled.

Genetic programming [22] is also considered a stochastic technique that begins with

an initial population (of programs) and applies operations inspired by biological evolu-

tion such as mutation and crossover that continuously alter these programs until they

satisfy a given fitness function. This fitness function may be defined by tests, input-output

examples, or other properties [18].

2.1.1.4 Other techniques

We now mention other techniques related to the use of machine learning and neural

networks.

There are several possible uses of machine learning in the program synthesis task.

Earlier we mentioned the use of learned ranking functions to rank candidate programs.

Considering the search technique part, we will mention examples such as decision tree

learning [3] and guiding the search with learned probabilistic models [23]. When we

discussed the enumerative technique and the combination with deduction, we mentioned

the divide and conquer strategy. The divide and conquer strategy [3] enumerates terms

and predicates to construct a decision tree that represents the program. To build this

decision tree it uses a decision tree learning algorithm. The algorithm [3] first determines

if there is a term that applies to all examples which could represent a tree with only one

node. If it does not find such a term, it tries to find a predicate to split the terms with

respect to the examples, based on an information gain heuristic. It continuously tries to

build a tree that will cover all the examples and represent the final program.

On another note, machine learning techniques can also be used to guide the search

procedure. Many search approaches do not consider certain programs more likely than

others, which results in searching for several candidates that will not satisfy the goal. One

possible approach [23] is to formulate the problem as a syntax-guided synthesis problem

which is restricted by a grammar and extend the grammar with a probabilistic model.

The model is trained on previously solved program synthesis tasks. The solution is found

by performing a weighted enumeration on the model through the A* algorithm. The

enumeration is ordered by probability, starting with higher probability.

When using neural networks for automatic program learning, the categories are di-

vided into program synthesis and program induction [9]. The approaches in the first

category use a neural network that given the input-output examples builds an actual

program. The ones on the second category, learn how to map the inputs to outputs from
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the set of input-output examples and then are able to provide the correct outputs given

new inputs. Neural network techniques can handle errors (or noise) in the examples

specification, in contrast to methods using traditional synthesis techniques which is an

advantage [9].

Approaches such as guiding the search with a learned probabilistic model and the

use of neural networks need a large amount of training data which is not the case in

the traditional programming by examples techniques that need only a few input-output

examples [9, 23] . That may complicate the task of using machine learning and neural net-

works if such amount of training data is not available. This can be solved by synthesizing

training data, such as in [18].

2.1.2 Applications

The spectrum of synthesis tools that inductive synthesis is able to produce is very wide.

We mention a few applications, such as: bit manipulation, data manipulation, queries

and program deobfuscation, optimization and repair.

The main use of inductive synthesis is to be able to produce a program from a set of

examples or partial programs. In low-level programming and other areas that require the

direct manipulation of bits, producing efficient bit manipulation programs is not an easy

task even for expert developers [21]. This is the reason why the synthesis community has

provided solutions to tackle this problem. For example, if the developers have a general

idea of the solution but not of the exact details, they may provide a program with the

general structure and the synthesizer will produce those low-level details [35]. Another

example is to provide a set of input-output examples of the expected behavior of the

program and the main bit manipulation operators [21]. Within the work of formalizing

the syntax-guided problem [1], the authors created several benchmarks with synthesis

problems, within these there were bit manipulation and bit-vector problems. These

benchmarks inspired the appearance of more synthesizers for these kinds of tasks.

Programming-by-example has had a major influence in the field of data wrangling.

Nowadays large amounts of data that have to be manipulated, stored, and analyzed are

produced and available. Data scientists have to analyze all of this data and draw con-

clusions from it. However, data preparation can often take 80% of their time [14]. Data

wrangling concerns activities of data manipulation, such as data extraction and trans-

formation. FlashFill [34] is a feature incorporated in Excel 2013 that automates string

transformations. From one example of a transformation, the system suggests how to

transform other inputs. WREX [12] is an extension for the Jupyter Notebook that gen-

erates code for data transformations such as string/number/date transformations. In

contrast to FlashFill, WREX generates the code for data scientists to analyze and FlashFill

only shows the possible solution. Considering table manipulations, both FlashExtract

[16] and FlashRelate [4] are tools that extract structured data from semi-structured data.
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FlashExtract extracts structured data from text/log files and webpages. FlashRelate ex-

tracts relational data from spreadsheets. Since data is being stored and transmitted in

several formats that are often unstructured, these tools help to automatize that task.

While the works above focus on manipulating data from spreadsheets, there are also

tools that synthesize general table manipulations such as MORPHEUS [14]. With the

input and output table information, MORPHEUS synthesizes the program that does the

transformation on the table. It is capable of doing operations such as table reshaping and

table consolidation.

Another kind of table manipulation programs that can be synthesized are queries [13,

39, 41]. Queries consult/insert/delete data on database tables. Specifying the query in-

tent through examples enables non-expert users to be able to query database information.

Some synthesizers focus explicitly on SQL queries [39, 41].

Synthesis is not only used to produce programs from scratch, but it also can take a

complete program as specification and perform tasks such as program deobfuscation,

optimization or repair. Obfuscated programs are programs that perform malicious ac-

tions, namely malware [21]. Since it is hard to understand deobfuscated code and many

approaches deobfuscate the program manually, the work in [21] permitted to automatize

this task. From the obfuscated initial program, the synthesizer produces a deobfuscated

and much simpler program. Starting from an inefficient program, synthesis is also used

for program optimization [32]. Performance constraints enable the synthesizer to return

an optimized program. The repair of programs [22] is also possible, for example, starting

with a program that has a bug and a group of tests, it is possible to synthesize a program

that will pass those tests.

2.2 Deductive Synthesis

Deductive synthesis is the net of approaches that take logical formulas as a specification of

the desired program [24, 25]. Providing logical formulas as a specification is often viewed

as a challenging task, which can often be out of reach of the average end-user [18]. The

advantage that these complete specifications have is that they fully specify the constraints

on input and output, unlike examples that only specify a portion of the functionality. In

Section 2.2.1 we will see deductive synthesis methods and in Section 2.2.2 refer to some

applications.

2.2.1 Synthesis Methods

The main lines of work in deductive synthesis span over derivation from specifications,

extracting programs from proofs and type-directed approaches. Initial approaches to pro-

gram synthesis applied deductive theorem-proving techniques to obtain programs [24].

A program could be extracted from the deductive proof of a theorem. Later, newer tech-

niques involving specification transformation or rewriting appeared [24]. More recently,
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specific type-directed [27, 29] reasoning has been used for when the specification defines

the types of input and output. In addition, using solvers has permitted to automate

previously intricate tasks [36].

2.2.1.1 Derivation from specifications

Deriving programs from specifications consists of applying systematic rules to the logi-

cal specification of the desired program in order to produce a program that satisfies the

specification. The construction of correct programs is based on rules that preserve correct-

ness. Dijkstra’s seminal work [11] was foundational in this area. A non-automated way of

thinking about the derivation of programs from specifications. In the work, Dijkstra [11]

presented a syntax of programs using guarded commands, with semantics given by weak-

est pre-conditions. The concept of weakest pre-conditions was inspired by Hoare [11, 20],

which reasons about statement correctness through pre-conditions and post-conditions.

If before executing the statement, the pre-conditions are true, it means that if the state-

ment terminates it will terminate in a state where the post-condition holds. It is not

guaranteed that the statement execution terminates. Dijkstra introduced the concept of

weakest pre-conditions, weakening the restrictions on the pre-conditions, but still guar-

anteeing the correctness of the result. The operator used is wp(S,P ), denoting the weakest

pre-condition for the statement S with the post-condition P. The weakest pre-condition

is the necessary pre-condition that should hold so that when the statement is executed,

it terminates in a state that verifies the post-condition. Considering that the goal was to

derive alternative and iterative programs from specifications, the work presented rules

to derive these using weakest pre-conditions and how to prove termination.

Let us consider an example [11] from Dijkstra’s work that requires the establishment

of a invariant relation and a variant function so that an iterative statement can be derived.

The invariant relation states that on every iteration a certain relation between the program

variables holds. The variant function guarantees the termination of the loop. The aim

of the program is to calculate the greatest common divisor (gcd) between two positive

numbers. The final relation for a fixed X and Y (the inputs) is established as x = gcd(X,Y ).

This is the specification of the problem. The invariant chosen in the example that is used

to derive the iterative program that calculates the gcd is the following

P: gcd(X,Y ) = gcd(x,y) and x > 0 and y > 0

The author doesn’t mention how to choose the invariant, just that this was the one chosen

and not necessarily unique. This invariant defines the program variables x and y, such

that they will always be positive and the gcd of these variables will always be equal to the

gcd of the variables received as input.

The reasoning behind the construction of the iterative program is to inspect the invari-

ant and extract program statements from it. The statements chosen have to preserve the

validity of the invariant. This is not an automated process, requiring domain knowledge
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to conduct the derivation. The weakest pre-condition operator (wp) is applied to each

statement to find its guard. It discovers the weakest pre-condition that must be satisfied

so that, if the statement is executed, it will terminate and the post-condition will hold. To

the guard obtained by applying wp, another operator wdec is also applied to make sure

that the guard guarantees the termination and the decrease of a measure t by at least

1. This allows for the construction of an iterative program that is guaranteed to termi-

nate if none of the guards are true or, if any guard is true, guarantees that the statement

will be executed and terminate verifying the post-condition. This reasoning allows us to

construct a correct terminating program from a specification.

The first step is to define the initial values of the program variables. From the invari-

ant, it is possible to understand that they should start with the values of the input X and

Y . Obtaining the initial statement x := X;y := Y ; for the program.

The second step considers the main structure of the iterative program. A general

statement is to indicate that x and y are placeholders by the statement x,y := E1,E2 and

apply wp.

(P and B) =⇒ wp(“x,y := E1,E2′′ , P )

= (gcd(X,Y ) = gcd(E1,E2) and E1 > 0 and E2 > 0).

As explained previously, applying wp to the statement should give the guard of that

statement, however the guard obtained here is not computable. Since there is no gcd
function available that allows the computation of this guard. Thus we are required

to mathematically manipulate the gcd function in a way that maintains the relation

gcd(X,Y ) = gcd(E1,E2).

Using knowledge from the gcd function [11], it is known that gcd(x,y) = gcd(x − y,y),

so the statement x := x − y could be derived from this equivalence.

From this statement, applying wp(“x := x−y′′ , P ) = (gcd(X,Y ) = gcd(x−y,y) and x−y >
0 and y > 0), the guard x > y is obtained, which guarantees the invariance of P. The

measure chosen as the variant in this case is t = x+y and, applying the wdec operator, the

condition y > 0 is obtained. This guarantees that the process terminates decreasing the

measure t by at least 1. The condition y > 0 is guaranteed by P so no further restriction

on the guard is needed.

A first draft of the desired program is

x := X;y := Y ;

do x > y −→ x := x − y od.

This iterative program contains the initial program statements, the loop, the statement

and the guard that was derived. We now reason about the correct termination of the

derived program. Dijkstra defined that the iterative statement ends in a state where none

of the guards are true and the invariant is true, so in that state the program must be able

to calculate the final result x such that x = gcd(X,Y ). However, the program constructed

until now does not account for the case when y is bigger than x, it cannot calculate the

result.
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Considering that gcd(x,y) = gcd(x,y−x), the same procedure explained previously can

be refined considering the statement y := y − x which will generate the guard y > x. Thus

results in the program

x := X;y := Y ;

do x > y −→ x := x − y od.

� y > x −→ y := y − x od.

The reasoning about correct termination is repeated. Considering BB as the disjunction

of the guards, if the program is in a terminal state where P and non BB holds, we must

check if the result can be calculated. Since non BB is x = y and gcd(x,x) = x, the result

can be fully calculated given that the variable x takes as initial value X which would be

the result for equal values of input. Thus, the program can calculate the gcd for every

positive number of x and y. The construction of the program is considered complete.

After this example, we have shown the complex reasoning required to manually de-

rive a simple iterative program from a total specification. This is why it is compelling to

mention a more recent approach that shares the same mindset of obtaining programs that

are correct by construction but takes advantage of the current advances in technology to

automate the process. The work developed in [36] formulates program synthesis from the

program verification perspective leveraging solvers to discharge constraints. The input to

the problem is a logical specification, a description of the domain of expressions/guards,

and restrictions on the resources the program can use. The algorithm uses these data to

create a program where the statements, guards, invariants, and ranking function are not

specified. The ranking function here has the same goal of the variant function previously

explained, as does the invariant. The synthesis consists of defining verifiable constraints

on the program that when given to a verification tool, can discover the missing parts. The

authors mention that the insight [36] behind the approach is that when trying to prove

partial correctness of a loop, program verification tools synthesize an invariant. If the

tools can synthesize the invariant, guards and statements can also be synthesized. To

synthesize the program and the proofs of partial correctness and termination (invariant

and ranking function), three constraints are defined on the program: a safety constraint

to prove that the program produces correct results; a well-formedness constraint so that

guards and statements inferred correspond to an actual valid program; and, a progress

constraint to ensure termination. Proving these constraints with a verification tool will

produce the guards, statements, invariant, and ranking function. The synthesizer does

not only consider a logical formula as specification but also other restrictions on expres-

sions/guards and resources. Thus, the process of producing a program with a loop, that

had so many steps and was not automated in Dijkstra’s work [11] was reduced to verifying

three constraints using a verification tool. Before, specifying an invariant and a variant

was not an easy task but also analyzing the invariant to extract program statements was

not straightforward. This shows a major improvement in synthesis techniques.
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2.2.1.2 Extracting programs from proofs

Theorem-proving synthesis techniques are based on extracting the desired program from

the proof of theorems extracted from the correctness specification. In the early stages

of program synthesis, these techniques were broadly used [24, 25]. Programs would not

need debugging or verification since they were guaranteed to already satisfy a given spec-

ification. Early work that used resolution-based theorem proving had difficulties using

mathematical induction, resulting in not being able to represent iterative or recursive

loops [24]. In the early ’70s, Manna et al. [25] demonstrated in a general manner how to

use theorem-proving techniques to extract recursive and iterative programs. To introduce

loops in the program, the principle of mathematical induction has to be used in the proof.

They pointed out that the induction principle used greatly affects the form of the obtained

program and that mechanical theorem proving at the time probably could not solve many

of the simple proofs explained in their work. At this time, a few synthesizers that use

theorem-proving already existed. Theorem-proving systems used axioms or rules of infer-

ence to store information, each with advantages and disadvantages. In [25], the authors

mention that the use of both in a system could be useful. Even though newer techniques

appeared that involve transforming the program’s specification instead of proving a theo-

rem, there was still work [24] on theorem-proving methodologies. This work was backed

by the idea that approaches that do not use theorem-proving directly, still involve some

part of it, as for example to prove termination of the constructed program and so there is

no point in doubling the work.

To illustrate the theorem-proving method, we consider a simple example from [25]

that does not have loops: the goal is to construct a program that returns the maximum

between two numbers. We omit an example with loops for the sake of simplicity.

Firstly, the authors outline the general structure of the problem. The specification of

the desired program is given by input and output conditions defined by the predicates

ϕ(x) and ψ(x,z), respectively. The program constructed receives the input x satisfying the

input condition ϕ(x) and calculates the output z such that the output condition ψ(x,z)

holds. The process of constructing the program is done through the proof of the theorem

(∀x)[ϕ(x) ⊃ (∃z)ψ(x,z)] extracted from the specification. Which in practice states that

for every input that satisfies the input condition there exists an output that satisfies the

output condition. Proving this theorem is proving that an output satisfying the previous

specification exists and the program can be extracted from this proof. When the input

condition is true, the theorem is defined by (∀x)(∃z)ψ(x,z), just stating that there exists

an output for every possible input.

Secondly, the authors point out how this example is specified and proved. In this case

the input condition is true. There is no constraint on the inputs considered. Any two

numbers can be considered. The program receives the inputs x1 and x2 and returns the

output z. The output condition is ψ(x1,x2, z) : (z = x1∨z = x2)∧z ≥ x1∧z ≥ x2. This output

condition specifies the goal of the program to be produced: the maximum between two
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numbers will be one of the inputs received and it is larger or equal to both inputs. So z

takes either the value of x1 or x2.

Consequently, the program that satisfies this specification will be extracted from the

constructive proof of the following theorem

(∀x1)(∀x2)(∃z)[(z = x1 ∨ z = x2)∧ z ≥ x1 ∧ z ≥ x2]

Which states that for any input x1 and x2, there exists an output which is equal to one of

the inputs received and it is the maximum value between them. If this output exists, it

means that the desired program can be constructed. The first step in the example is to

turn the theorem into Disjunctive Normal Form (DNF).

(∀x1)(∀x2)(∃z)[(z = x1 ∧ z ≥ x1 ∧ z ≥ x2)∨ (z = x2 ∧ z ≥ x1 ∧ z ≥ x2)]

Then, having (u = v) ⊃ (u ≥ v) as an axiom, the formula can be simplified. In the first

disjunct there is z = x1 and z ≥ x1. Applying the axiom, this is reduced to z = x1. If z is

equal to x1, it is also bigger or equal to x1. The same goes for the second disjunct. The

resulting formula is

(∀x1)(∀x2)(∃z)[(z = x1 ∧ z ≥ x2)∨ (z = x2 ∧ z ≥ x1)]

The proof is made by case analysis. If x1 ≥ x2, then z is substituted by x1 and the first

disjunct holds. If x2 < x1, the opposite happens. In both cases the theorem holds. The

program extraction is described as: the substitution of the output variable results in an

assignment statement and case analysis results in conditional statements, with a branch

per option. This means that the resulting program can be expressed by an if-then-else, If

x1 ≥ x2 then z = x1 else z = x2.

As exemplified, theorem-proving techniques prove a theorem extracted from the

specification of the desired program. In these proofs we can find the desired program.

To automate this process, the theorems should be passed into automatic theorem-provers

instead of proved manually.

2.2.1.3 Type-directed Synthesis

In cases where the specification is defined by the types of inputs and outputs, type-

directed approaches are used. When we define a program by the types of inputs and

outputs that our program should have, we are imposing input and output conditions. One

way to approach this could be to enumerate all program candidates and check if their type

matches the specification [29]. In this way, candidates that do not typecheck are rejected,

but still a lot of combinations are considered. Current type-directed techniques [27, 29]

usually work by decomposing the problem into subproblems, where each subproblem is

considered individually and then the solutions are combined. The type information of

the problem is passed into the subproblems so that each subproblem finds a solution that

will agree with the general specification and considers fewer combinations.
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Simple types are inhabited by a large number of programs, even though many do not

exactly fulfill the intent that the developer wished for the program. Given this, many ap-

proaches use extra information in their synthesis process such as input-output examples

[27] or add predicates to types (refinement types) [29], allowing to better constrain the

program. Independently of using examples or refinements, these are propagated to the

subproblems as a way of restricting the possible solutions for each.

We examine an example (Eqs. (2.2) to (2.5)) from [29] and explain how SYNQUID,

the tool developed by Polikarpova et.al, finds the desired function. The program is a

function that receives a number n and a value x, and returns a list with n copies of x. The

specification is shown in Equation (2.2):

replicate :: n :Nat→ x : α→ {List α | len v = n} (2.2)

The name of the function is replicate, the type signature specifies the types of the

two inputs and the type of the output. As mentioned by the authors, Nat is defined by

the refinement type {v : Int|v ≥ 0} which expresses all integers larger or equal to 0. Both

the input n and the output have refined types. Refinement types are types restricted

by a predicate. From a synthesis perspective, a predicate on the input type acts as an

input condition: the accepted values of n have to be positive. On the other hand, the

refinement on the output acts as an output condition: the goal is to return a List that

has a length equal to n. This specification also makes use of richer types: the parametric

polymorphic type in input x, and the dependent, function type, allowing the type of the

result to mention the inputs. Crucially, the elements in the output list, List α, must be

the value x because the system must produce a polymorphic replicate function α [29].

Without looking at the details yet, lets examine how could a function with this type

signature be built. This is a function that outputs a list defined by the algebraic datatype

shown in (2.3).

termination measure len :: List β→Nat

data List β where

Nil :: {List β | len v = 0}

Cons :: β→ xs : List β→ {List β | len v = len xs+ 1}

(2.3)

The list composite type defines two possible constructors for a list, Nil or Cons. The

function will basically have two possibilities to build a list. It either constructs a list with

size 0 or bigger. In the specification, n defines the length of the desired list. So a natural

way to decompose this problem would be in two subproblems depending on the value

of n. The specification of the original problem could be refined into considering n equal

to 0 and n larger than 0 in each subproblem, respectively. After solving the solution of

both subproblems independently, the solutions would be combined into a solution of the

general problem. On a final note, since the constructor Cons receives a value and adds it

to a list and the goal is to create n values in the list, this indicates that this constructor

will be called several times.
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Now we can see how SYNQUID synthesizes the replicate function. To solve this

problem, besides the function types, it also needs a collection of components that are

used during the synthesis process. SYNQUID [29] works by either by decomposing the

problem and trying to find a solution for each part or by picking components from the

collection. The initial set of components has the functions 0, inc, dec mentioned in

(2.4) and the list datatype mentioned above in (2.3). The list datatype has a termination

measure to ensure that recursion on lists terminates, which resembles the approach used

by Dijkstra with the variant function in the example mentioned previously in deriving

from specifications. With loops or recursion, termination must be guaranteed.

0 :: {Int | v = 0}

inc :: x : Int→ {Int | v = x+ 1}

dec :: x : Int→ {Int | v = x − 1}

(2.4)

The specification in (2.2) is decomposed into subproblems. In this case, only the

subproblem of the type of output will be considered, because this specifies precisely the

solution to the problem [29]. The variables n : Nat and x : α, and the function replicate

are added as components (the function name is added because of recursion). To ensure

termination, the version of replicate in the group of components has the input n restricted

to natural numbers strictly smaller than n instead of being just a positive number, so n

works as the variant function in this case. Considering the subproblem, we mentioned

that we could observe two options: Nil would satisfy the initial specification with n

equal to 0 and Cons with n larger than 0. Here, the synthesizer does not assume these

options, instead adding an unknown predicate to the set of components and searching

for a component that satisfies the original specification under this predicate. In a general

manner, it resorts to a solver to discharge a constraint problem and assign a value to

the predicate. If this value is true, the candidate solves the specification in its hole. If

not, it solves under a refinement of the specification (and searches for another solution

to complement). The solver may also indicate that the enumerated candidate is not the

right one. At the end, SYNQUID finds that Nil satisfies the specification under n ≤ 0 and

finds that for n > 0 Cons is the solution. The procedure continues originating the solution

in (2.5).

replicate =λn.λx.if n ≤ 0

then Nil

else Cons x (replicate (dec n) x)

(2.5)

To consider the situation of having simple types together with examples to define

the goal type instead of the refinement types, we take an example from [27]. The goal

is also to construct a list. The goal function is defined with types and input-output

examples. Since none of the list constructors agreed with all examples, the problem

ended up being decomposed into two subproblems. The group of examples that originally

defined the problem was divided into the subproblems in order to define their behavior.
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The same happened with the refinements in the example above that turned into n ≤ 0 for

a subproblem and n > 0 for another.

To summarize, type-directed approaches start with a specification in terms of types.

These approaches do not try to solve the whole problem at once, instead they decom-

pose it into parts and leverage type information (and possibly other useful information

such as examples or refinements) into each part to prune candidates. Once every part is

solved, the solution is put together. This results in a decrease of the amount of candidates

considered.

2.2.2 Applications

We have realized that deductive work emphasizes more the type of programs that are

synthesized rather than the functionality of the program itself. In contrast to inductive

synthesis that it is more goal-oriented, it focuses more on the concrete applications as

mentioned above in Section 2.1.2. Deductive synthesis has applications such as pro-

ducing imperative, iterative, recursive and functional programs. Loop-free programs

are simpler to produce than recursive or iterative programs. Recursive/iterative pro-

grams require using mathematical induction in theorem-proving [24, 25]. In Dijkstra’s

work [11], to build an iterative program, there was the need to define a variant function to

prove termination and a invariant relation that holds on every iteration. Demonstrating

that recursion/iteration terminates brings an extra difficulty into the problem. A great

number of type-direct approaches synthesize functional programs. For example, sorting

algorithms, manipulations on trees and lists [29].
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3
Summary of Key Related Work

As mentioned in Section 1.1.1, this work will encompass three key conceptual develop-

ments (a core, type-driven specification language for data schemas and their evolution

that is amenable to effective automated synthesis techniques) and their subsequent im-

plementation. We now summarize the most significant pieces of work from the literature

that relate to data-oriented specifications, program evolution and synthesis.

3.1 Specifying Data Schemas

The work on nested relational calculus (NRC) [6] allows the development of database

query languages with typeful operations. Traditional query languages do not permit

queries on structures such as nested relations or collections such as bags and lists, which

are allowed in NRC [6]. Considering a database as a collection of records, NRC provides

operations for sets and records separately, while providing a language where these may be

freely combined in structures (nested relations). The operations on sets can be generalized

to collection types such as bags and lists. Moreover, the authors present a language for

iterating over collections and consider the well-defined fragments of the language. To

reason about well-defined fragments, the authors introduce collection constructs and use

the paradigm of structural recursion and operations for constructing sets, in order to have

a language that manipulates collections of records. The work also presents a calculus and

functional algebra for the language.

Our core, type-driven specification language for data schemas will be heavily inspired

by the work on nested relation calculus, leveraging the existing technology on reasoning

about databases as collections of records from a programming language perspective.

Our work will likely consist of extending existing approaches with forms of (potentially

stateful) type refinement [15] that allow us to specify rich constraints on data schemas.
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3.2 Program Synthesis and Data-centric Synthesis

As mentioned above, our aim is to use type-directed synthesis techniques. Current type-

directed approaches often use type information jointly with additional data, such as

examples [27] or predicates added to the types [29], to further restrict the search space.

In the context of functional programming, in [29] the synthesis goal is specified using

polymorphic refinement types, from the type information the synthesizer will produce

a recursive function that provably satisfies the specification. They use predicates from a

decidable logic that permit automatic verification (synthesis). The synthesis procedure

works by either choosing a component from a library of components or by decomposing

the problem into subproblems, and then merging the solutions into a final one. When

decomposing the problems into subproblems, type information is propagated into the

subproblem. To solve the subproblems, the synthesizer relies on picking components

from a defined library which then uses to perform refinement type checking and refine-

ment inference by resorting to an SMT Solver. To perform refinement type checking there

is the need to solve a subtyping constraint with an unknown refinement type. Every enu-

merated component is submitted to refinement type checking which in turn concludes

if the component does or does not satisfy the specification, or if it satisfies the specifica-

tion under a refinement, this makes the algorithm generate a conditional and look for a

solution with the negated refinement. Crucially, the work [29] reports that its synthesis

procedure is better suited to synthesize programs that manipulate list/trees and data

structures, which may be suited for our goals when we consider database tables as lists

of records.

Using input-output examples instead of predicates as additional information, the

type-directed approach in [27] also is inserted in the context of functional synthesis. The

work [27] defines the desired function by its type and input-output examples, it works

either by diving the problem into subproblems refining the goal type and examples or by

enumerating well-typed terms and using type-checking to verify the candidate. Using

the input-output examples enables the construction of a refinement tree that represents

all possible refinement of the examples and constraints the generated code. Even though

both approaches are type-directed, our approach is closest to [29] since it uses refinement

types to specify the synthesis goal. Propagating refinement types top-down allows to

better restrict the possible candidates than propagating examples, since examples do not

fully specify the behavior (while easier to provide at times). Both works [27, 29] allow

to greatly prune candidates dividing the problem of finding a solution in subproblems

propagating type and other information top-down, this allows to solve each subproblem

only considering this restricted information and find/evaluate candidates at this level,

instead of enumerating all possibilities and then evaluating. Our goal will be to synthesize

code for data schema transformations, which the works do not directly address.
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3.3 Synthesis and Program Evolution

Some work focus on synthesizing evolutions/changes [31, 40]. In the context of data-

driven applications. The work [40] addresses the problem of database schema refactoring

over the software life cycle under the lens of program synthesis.

As applications evolve over time, various changes to the original database schema

design are required, either for performance reasons or simply to support new features.

Moreover, changes to the DB schema typically also require changing various parts of

the application layer, and both the schema and the application changes must necessarily

preserve the previous semantics in order to maintain the original functionality. These

aspects combined make this a particularly challenging and error-prone task, especially

when changes in the schema involve splitting and merging relations or moving attributes

across different tables.

The work [40] aims to simplify this process by considering a synthesis procedure that

given a so-called database program (i.e. a set of SQL DB transactions), the source schema

and a target schema, synthesizes a new database program over the new schema that is

semantically equivalent to the original program, ensuring no behavior is lost as the DB

schema evolves. At a high-level of abstraction, their approach first attempts to produce

a value correspondence that maps attributes in the original schema to the new one (e.g.

based on attribute names). Given such a correspondence, a program sketch is generated

(i.e., database program where some of the tables, attributes, or boolean constants are

unknown), representing the space of all programs that may be equivalent to the original

program, respecting the value correspondence. Finally, an instantiation of the sketch that

is equivalent to the original program is computed via enumerative search, using a novel

notion of minimum failing inputs to dramatically prune the search space.

On one hand, the approach has advantages such as no need for user input, being

sound since the output is provably equivalent to the original and guarantees that it finds

an equivalent program if it exists. On another hand, it can only handle schema changes

that are expressible in terms of value correspondence (e.g. merging two columns into a

single column and using operations to extract original values in a query would not be

possible), extending the system to account for richer changes is hard due to very strong

guarantees of program equivalence and it does not support database programs with if

statements or loops. Given this, the search techniques may be useful, though this is

slightly limited compared to what we want to do that is closer to type-driven synthesis,

even if they are not traditionally applied to this context.

The work [31] addresses the problem of program synthesis for program evolution in

the context of class replacement in object oriented (i.e. Java) programs. Throughout the

software life cycle, there is often a need to refactor applications to use updated versions

of libraries or to migrate to different libraries with a similar feature set. In this setting,

ensuring that the application behavior is undisturbed by the library change is both non-

trivial, since libraries are not necessarily backwards compatible, and error-prone, since
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the chosen replacement class can differ in terms of internal data representation, interface

signature or even underlying functionality. The work aims to automate this error-prone

library replacement in applications by synthesizing an adapter class for a given replace-

ment class, producing a class that is equivalent to the original.

The synthesis procedure, dubbed MASK, takes as input the original class and a replace-

ment class, producing methods that implement the interface of the original class using the

replacement. In order to ensure that the behavior of the original class is preserved, their

framework symbolically executes all methods of both classes to construct equivalence

predicates that relate equivalent states in the original and replacement classes, subse-

quently requiring synthesized methods and constructors to return equivalent values and

leave objects in equivalent internal states. This allows for methods to be synthesized in

isolation but guaranteeing that any sequence of invocations produces equivalent behavior.

Given such equivalence predicates, MASK synthesizes an adapter sketch [35] of the origi-

nal class, containing sketches for each class method. Finally, a so-called sketch harness is

generated, which contains correctness checks that ensure the behavioral equivalence of

the original and generated classes.

This work is the first of its kind, requires little to no user input and gives semantic

correctness guarantees. The approach has drawbacks such as using symbolic execution

to generate the predicates makes use of array fields or recursive data structures unsound.

Similarly, methods with loops that depend on symbolic conditions or recursive calls are

unrolled only up to some constant, limiting the correctness of the approach. Generics

are severely limited and programs may only use instantiated generics (i.e. cannot adapt a

generic class, only classes that use instantiated generic classes).
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4
Approach

Our technical approach will define all aspects of the program synthesis problem. We

must elucidate how the specification is expressed, how the program space is defined and

the synthesis technique. The proposed approach was already introduced and now we will

give a more detailed description.

We will begin by defining a core language for the specification of data schemas that

can also capture integrity, business/logic, and security constraints. The language will

enable us to define rich type-based specifications, using dependent and refinement types,

the refinement types are used to enforce constraints which are defined by predicates. The

specification language will work at a meta-level, defining, not only new types, but also

stateful modifications to existing stores, meaning that the existing values of that type

stored in a database must be modified accordingly. For instance, the refinement type

{x : int | key(x)} uses the predicate key(x), which may specify that x is a key (i.e. it is a

unique value). This can be used to specify the production of a database table with the

following (incomplete) specification:

inputTypes→ {col1 : {x : int | key(x)},col2 : {y : int | refTable(y)}}

The above specification, where the input types are not specified for the sake of simplicity,

can be a specification that creates a table with two columns (col1 and col2). The type for

col1 enforces that the values of the column must be keys (i.e. unique), whereas the type

for col2, through predicate refTable(y), explicates that the values must be driven from

some other table in the data schema.

With a different choice of predicates, other kinds of constraints can be defined. In

order to investigate which predicates are more useful in our synthesis context, we will go

through a requirement elicitation phase. When defining stateful modifications, not just
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introducing new types, the specification also needs to take into consideration the current

state of the data schema that is about to be modified.

We then plan to define the transformation on the types of the data schema by the con-

struction of a core language of modifications, which will be used as the target language

for our synthesis procedure. The language will be inspired in languages like nested rela-

tional calculus [6], which define language operations regarding types, where a relational

database consists of sets of records, allowing to define operations for records and sets. The

language may be defined separately or integrated in the specification language through

the use of specialized meta-programming primitives in the style of refinement kinds [7].

Refinement kinds [7] enable to provide a specification with predicates over the domain

of types, similarly to refinement types that use predicates over the domain of values of

a type. The resulting system is amenable to type-directed meta-programming, since it

introduces primitives to manipulate types as data, while also being able to express data

constraints. Meta-programming techniques make it possible for a program to receive

programs and types as input data, which makes it useful for our approach since for doing

modifications we will need the types of modifications and the data stored in the data

layer.

Given a rich type-based specification using dependent and refinement types, and data

stored in the data layer, our tool will apply a type-directed approach to synthesize both

database scripts and/or code for a data layer access component that correctly implements

integrity constraints, business logic validation, and access control rules. Our tool will

integrate with other components that generate interface components or dialog-based

interfaces for an easier expression of user intent, these components will interactively try

to build the specification (expressed in the defined specification language) used as input

for the synthesis procedure. The procedure will use the specification expressed as input

and output types of the data schema, and produce code in the modification language

(target of the synthesis). The synthesis process will follow in a similar way as current type-

directed approaches such as [29], decomposing the specification into subproblems while

propagating type information and recurring to SMT solvers [5] to do refinement type

checking of possible solutions. Composing the solution to all subproblems, originates the

final solution.

The output of the tool we intend to design and develop will synthesize database scripts

and code for the data access layer that correctly transforms the system and its data. The

prototype will be illustrated and integrated in the context of a product of the OutSystems

company.
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5
Work Plan

The literature review, elaboration of the dissertation plan, and the work plan for the next

phase is described chronologically in the gantt chart in Figure 5.1. In order to accomplish

the proposed work, the work plan is as follows:

• Our first goal is to design a specification language for data schemas (structured

or semi-structured) with refinement types. To achieve that, we have to start by a

requirements elicitation phase to understand which refinements are better suited

in this context. Once the requirements are established, we may start the design of

the typed specification language (Task 2).

• We will design a modification language that establishes the available transforma-

tions on the types of the data schema. This may be a separate language or integrated

in the specification language through the use of specialized meta-programming

primitives within the style of refinement kinds [7] (Task 3).

• Once we can specify the synthesis problem specification (specification language)

and the synthesis target (modification language), we will apply a type-directed

synthesis technique to produce the specified transformations (Tasks 4 and 5).

A first phase on this process may be to synthesize code from a specification with

simple types, ensuring that the process is indeed generating transformation code

from the specification.

A second phase would take the basic mechanism of synthesis with simple types

and further improve the procedure to start from specifications with properties (e.g.

security) defined by refinement types, and synthesize code that guarantees the sat-

isfaction of those properties (statically or dynamically).
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Figure 5.1: Gantt Chart
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