
DEPARTMENT OF
COMPUTER SCIENCE

LENINO MANUEL LIMA DIAS

Bachelor in Computer Science

OUTSYSTEMS LOGIC PREVIEWER

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

DEPARTMENT OF
COMPUTER SCIENCE

OUTSYSTEMS LOGIC PREVIEWER

LENINO MANUEL LIMA DIAS

Bachelor in Computer Science

Adviser: Bernardo Parente Coutinho Fernandes Toninho
Assistant Professor, NOVA University of Lisbon

Co-adviser: Vasco Andrade e Silva
Product Designer, OutSystems

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

OutSystems Logic Previewer

Copyright © Lenino Manuel Lima Dias, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.7.1) [17].

https://github.com/joaomlourenco/novathesis

To my family.

Acknowledgements

I would first like to thank my advisers, Vasco Silva, from OutSystems and Bernardo

Toninho, from Nova School of Science and Technology. Thank you, Vasco, for always

being available to answer all my questions and for pushing me to produce a great work.

Also, for all your advice and patience during the development of this dissertation. Thank

you so much, Professor Bernardo, for your support during the writing of this dissertation,

for your patience to review this entire report and for all your orientation to help develop

this work. To both of you, I appreciated the weekly follow up that was crucial to achieve

the goals of this work.

Furthermore, a special thanks to Nova School of Science and Technology - Nova Uni-

versity of Lisbon, especially to the Computer Science Department for all the knowledge

that I acquired for the last six years, preparing me with the fundamental tools that will

allow me to start my professional career.

I would like to acknowledge OutSystems for providing me a scholarship for this

dissertation and for the great environment where I was inserted to produce this work.

A thank you to everyone at OutSystems for all the support and help, especially to the

model service team. I am so grateful for the time spent at OutSystems, for the connections

established with the amazing people that work in this company and for the opportunity

to experience this great environment.

In addiction, I would like to thank my friends and colleagues, especially my colleague

Christophe Cruz for all the support and help during this course, for all projects we de-

veloped together and for the snacks we shared. A special thank you to Laura Dantas for

helping review this report and for all the support.

Finally, and most important, I want to thank my parents. Thank you so much for

the efforts you made to give me the opportunity to study abroad. You made all of this

possible and I will be forever grateful for everything you have done for me. Thank you

for all your help, support, inspiration, and for building the person that I am today. Your

lessons will never be forgotten. Thank you so much to my brothers for all the support

and for taking care of our parents while I am away.

iv

“You cannot teach a man anything; you can only help him
discover it in himself.” (Galileo)

Abstract

Low-Code Platforms have been increasingly adopted by companies to develop their soft-

ware products, since visual programming languages provide a faster development process

by removing various user concerns about implementation details. OutSystems allows its

users to create software in an agile form in order to improve their productivity, as it is

one of the key aspects to fast software delivery.

OutSystems development processes are very fast and allow the creation of state-of-

the-art products in a very short time when compared to more traditional approaches.

However, the feedback loop received by users at OutSystems during development is very

long because the existing methods for checking application behavior, such as using the

application UI (or a dummy one) to test its behavior, or even using testing tools (such as

BDDFramework), do not have an immediate feedback. Using tests to check application

behavior in OutSystems is also a time-consuming process because of the required publishes
(compilation and deployment to server) of the tests and the code. This problem in the

OutSystems development significantly decreases users productivity.

Therefore, the main goal of this work is to transform the OutSystems applications

logic to allow developers at OutSystems to preview the effects/side-effects of the logic

being built. We also aim to provide to developers all the information related to the logic

dependencies to the database (during development), to help them control and visualize

the dependencies. The final goal is to reach a logic previewer that represents a visualiza-

tion of the logic effects/side-effects in a fast feedback loop. By achieving this, we aim to

increase developer productivity in the OutSystems development process.

Because logic previewing is a very large feature, we will focus this work on transform-

ing all Server Actions within an application Modules being built, with the purpose of

making them return all their side-effects to the database. Along with this, we will also

provide to the developer all the possible reads and writes that each Server action can

perform to the database (direct and indirectly).

Keywords: OutSystems, Logic Preview, Software Testing, Feedback Time, Visual Pro-

gramming Language, OutSystems Development Process, Side-effects to Database.

vi

Resumo

OutSystems é uma plataforma Low-Code que permite aos seus utilizadores criar as suas

aplicações seguindo o desenvolvimento agile de forma a melhorar a produtividade, sendo

que permite uma rápida produção de software.

Os processos de desenvolvimento em OutSystems são muito rápidos e permitem a cri-

ação de aplicações modernas num curto período de tempo. No entanto, o ciclo de feedback
recebido pelos utilizadores durante o processo de desenvolvimento em OutSystems (na

criação ou alteração de código) é muito longo, porque os métodos existentes para testar

o comportamento das aplicações, tais como testar a aplicação com a sua interface (ou

uma fictícia) ou mesmo usar frameworks de testes como o BDDFramework, não têm um

feedback imediato. O uso de testes para verificar a lógica das aplicações em OutSystems é

um processo que gasta muito tempo, uma vez que requer que ambos os testes e o código

sejam compilados, publicados, executados e que os efeitos/efeitos secundários da lógica

sejam manualmente e indiretamente verificados (ir à base de dados ver os registos, por

exemplo). Este processo faz com que a produtividade dos utilizadores em OutSystems

diminua consideravelmente.

Portanto, o objetivo final é construir uma ferramenta que permita pré-visualizar os

efeitos/efeitos secundários da lógica, permitindo um ciclo de feedback mais rápido. Uma

vez que esta funcionalidade é bastante ampla, o foco deste trabalho consiste em trans-

formar todas as Server Actions dentro dos módulos da aplicação sendo desenvolvida, de

forma a fazê-los retornar todas as suas leituras e escritas à base de dados. Para além

disso, pretendemos permitir ao desenvolvedor visualizar todas as possíveis leituras e es-

critas que podem ser feitas à base de dados por parte de cada Server Action (direto e

indiretamente), para os ajudar a visualizar e controlar as dependências. Cumprindo es-

tes objetivos, espera-se que a produtividade durante o processo de desenvolvimento em

OutSystems aumente consideravelmente.

Palavras-chave: OutSystems, Visualização de Lógica, Testagem de Software, Tempo de

feedback, Linguagens de Programação Visual, Operações à Base de Dados.

vii

Contents

List of Figures x

List of Tables xiii

Acronyms xiv

1 Introduction 1

1.1 Motivation . 1

1.2 Goals . 2

1.3 Key Contributions . 2

1.4 Document Structure . 3

2 Background 4

2.1 OutSystems Platform . 4

2.1.1 Architecture . 4

2.1.2 OutSystems Language - A visual language 7

2.2 Software Testing: Overview . 10

2.2.1 Software Testing Techniques . 11

2.2.2 Test Classification . 12

2.2.3 Test Design Techniques . 14

2.2.4 Testing in OutSystems Platform 14

3 Related Work 18

3.1 Logic Visualization . 18

3.1.1 Exploratory Testing . 18

3.1.2 Logging and Monitoring . 21

3.1.3 Testing Support for the OutSystems Agile Platform 21

3.2 Summary . 22

4 Proposed Work 24

4.1 The Problem: Overview . 24

viii

4.2 The problem: Data Analysis . 25

4.2.1 Datasets . 26

4.2.2 Tools and Processes . 26

4.2.3 Results . 27

4.3 Proposed Approach . 32

5 Implementation 34

5.1 Overview . 34

5.1.1 The Server Actions Input/Output Parameters 34

5.1.2 The Model API . 35

5.1.3 Introductory Example . 36

5.2 Implementation Details . 38

5.2.1 Cloning the Source Module . 38

5.2.2 Analysing Each Server Action . 38

5.2.3 Server Actions With Side-effects to the Database 40

5.2.4 Server Actions Without Side-effects to the Database 54

5.2.5 Possible Reads and Writes . 55

5.3 Example of Transformations Performed by the OLP Tool 56

6 Evaluation 60

6.1 Analysis Overview . 60

6.2 The OLP Tool Evaluation . 61

6.2.1 Performance Results . 61

6.3 Discussion . 64

7 Conclusions 66

7.1 Outcomes . 67

7.2 Future Work . 67

Bibliography 69

ix

List of Figures

2.1 OutSystems platform: the Architecture Overview [41]. 5

2.2 Service Studio Workspace [44]. 5

2.3 Service Studio: Example of the 4 Different Layers. 6

2.4 Service Studio: Create a New Screen [42]. 8

2.5 Service Studio: Representation of Actions [23]. 8

2.6 Service Studio: Nodes in an Action Flow [24]. 10

2.7 Unit Testing Sketching [12]. 13

2.8 Integration Testing Sketching [8]. 13

2.9 Gherkin Scenario Example [53]. 16

2.10 Service Studio: Web Blocks in BDDFramework [53]. 16

4.1 Distribution of nodes in OutSystems applications (obtained from actionsCount.csv

dataset). 28

4.2 Server Actions input types (obtained from actionsCount.csv dataset). 29

4.3 Server Actions output types (obtained from actionsCount.csv dataset). . . . 29

4.4 Server Actions complexity - number of nodes (obtained from actionsCount.csv

dataset). 30

4.5 Server Actions module dependencies (obtained from moduleDeps.csv dataset). 31

4.6 Server Actions reads and writes to the database (obtained from moduleDeps.csv

dataset) . 31

5.1 Service Studio: Example of a Server Action (AddNewEmployee). It inserts an

employee (received as input) into the database (Employee entity), and returns

the tuple Id where it was inserted. 35

5.2 Service Studio: Example of a Server Action (AddNewEmployee, presented in

Figure 5.1) after the transformations performed by the OLP tool. 37

5.3 Data structure produced by the OLP tool, applied to a module containing just

the AddNewEmployee Server Action (presented in Figure 5.1). 37

x

5.4 JSONs produced (boxes 1 and 2) by the execution of the AddNewEmployee
Server Action (using a REST API call with the input shown in box 3) after the

transformations performed by the OLP tool (presented in Figure 5.2). . . . 39

5.5 Service Studio: Example of Execute Server Action nodes (box 1). A kind of

OutSystems node that executes an OutSystems Server Action contained in its

property Action (box 3). 40

5.6 Service Studio: Example of an Execute Server Action node (box 1) that has an

Entity Action signature. Entity Action is a kind of OutSystems Action that is

a child of (belongs to) an OutSystems Entity (box 2). 41

5.7 Service Studio: Example of the Ret_lp output parameter. This parameter has a

Structure datatype and all its attributes can be seen in this image. 42

5.8 Example of the transformations performed on an Execute Server Action node

by the OLP tool, by changing the Entity Action held on the node’s Action

(box 1) to its wrapper (box 2). The CreateEmployee Entity Action, receives an

employee as input and inserts it into the database (Employee entity). 44

5.9 Service Studio: The parameters of the CreateEmployee wrapper (CreateEm-
ployee_lp). 45

5.10 Service Studio: The wrapper (CreateEmployee_lp) for the Entity Action Cre-
ateEmployee. 46

5.11 Service Studio: The wrapper for the DeleteEmployee Entity Action (box 2). The

DeleteEmployee receives an employee Id and deletes it from the Employee entity. 47

5.12 Service Studio: Example of a Server Action (AddNewEmployee, presented in

Figure 5.1) after the transformations performed by the OLP tool. 48

5.13 Service Studio: Example of the ListAppendAll Action to add all side-effects

received from the execution of the AddNewEmploye Server Action (presented

in Figure 5.1) to a transformed Action (AddAnother) by the OLP tool. 50

5.14 Service Studio: Exception flow inside the wrapper of the DeleteEmployee Entity

Action. 51

5.15 Example of changing an existing Exception flow (box 3) in the AddNewEm-
ployee Server Action after the transformations performed by the OLP tool. In

this example, the AddNewEmployee (before the transformations) does not just

throw a User Exception (box 1), but also handles the Exception (box 2). . . 52

5.16 Example of creating a new Exception flow (box 2) in the AddNewEmployee
Server Action after the transformations performed by the OLP tool. In this

example, the AddNewEmployee (before the transformations) throws a User

Exception (EmployeeValidationError) if the name of the received employee has

less than 3 characters. 53

5.17 Example of changing an existing Database Exception flow in the AddNewEm-
ployee Server Action after the transformations performed by the OLP tool. . 53

5.18 Service Studio: Example of an Entity Action (GetEmployee) that receives an em-
ployee identifier and fetches the employee from the database (Employee entity). 54

xi

5.19 Service Studio: Example of a Server Action, the GetAnEmployee. 57

5.20 Service Studio: Example of the transformations performed to the AddNewEm-
ployee by the OLP tool. 58

5.21 Service Studio: Example of the transformations performed to the GetThenAdd
by the OLP tool. 58

5.22 Data structure produced by the OLP tool, applied to the module with the three

Server Actions. 59

6.1 Distribution of Server Actions per module in OutSystems applications (ob-

tained from actionsCount.csv). 61

xii

List of Tables

6.1 The modules used to evaluate the OLP tool performance. 62

6.2 Detailed execution time of the OLP tool applied to the modules presented in

Table 6.1. 62

6.3 Detailed execution time of the OLP tool applied to the modules presented in

Table 6.1, with only Server Actions within each module. 64

xiii

Acronyms

AI Artificial Intelligence

CRUD Create, Read, Update and Delete

DLL Dynamic Link Library

IDE Integrated Development Environment

JIT Just-in-time

OLP OutSystems Logic Previewer

PoC Proof of Concept

REPL Read-Eval-Print-Loop

SBE Specification By Example

TDD Test-Driven Development

UI User Interface

VPL Visual Programming Language

xiv

1

Introduction

OutSystems is a software company that is the leader in the Magic Quadrant1 for Low-

Code Application Platforms (LCAP) 2019 [37]. The OutSystems Platform is a powerful,

feature-packed low-code development platform for large enterprises or developers look-

ing to publish straight to consumer application stores [18]. By using visual, model-driven

development and AI-powered tools, the OutSystems platform improves the entire appli-

cation lifecycle; which combine with a cloud-native platform so that users can quickly

build, deploy and manage their software [49]. The Visual Programming Languages (VPL)

allow users to create software products by focusing on the intended functionality without

stressing with implementation details.

One of OutSystems goals is to get people to produce state-of-the-art applications in

a very short period of time. The fast development process in OutSystems environment

is due to the efficiency provided by the usage of a VPL by the platform, the excellent

architecture, among other important aspects.

1.1 Motivation

OutSystems users, while developing their application, put together the components (wid-
gets, screens, actions, etc.) and make the necessary modifications that are needed to obtain

the expected functionalities of the application. During this development process, which

is generally faster than more traditional approaches, users are continuously writing the

application logic in order to obtain the desired application behavior.

However, there is no way to visualize the effects/behavior of the defined logic without

a complete application. During the development process of writing and changing the ap-

plication logic, users have no feedback about what they are implementing. Nevertheless,

users need to know the effects of their code and its behavior, and to accomplish this they

usually follow some approaches such as: testing the application using its UI or a dummy

UI (for testing purposes), testing the application using testing frameworks, or checking

application misbehavior with the debugger of the platform.

1https://www.gartner.com/en/research/magic-quadrant

1

https://www.gartner.com/en/research/magic-quadrant

CHAPTER 1. INTRODUCTION

These approaches are not suitable to interactively visualize application logic, since

the feedback loop they provide to users (developer at OutSystems) is very long, causing

losses of productivity (these approaches have their own limitations that are covered in

more detail in the chapter 2).

1.2 Goals

The final (OutSystems) goal is to enable the preview of logic in OutSystems development

processes. By doing this, we aim to reduce the feedback loop that developers experience

during the development process (creating and changing code) in OutSystems environ-

ment.

Because this is a very large feature, we focused our work in previewing the applica-

tions logic side-effects (reads and writes) to the database. We aim to allow the OutSys-

tems developers to preview all the reads and writes that are performed to the database

by the logic being built and all the possible reads and writes that can be performed to the

database.

This work introduces a new concept in OutSystems development processes: Logic

Previewer. We want to allow the developers to create/change their code and be able to

preview its effects/side-effects (as soon as possible), thus improving the feedback cycle

that they have about the code logic being developed and, consequently, their productivity.

With this work we aim to built a solution that transforms the logic being written

within an application to enable the developers to visualize its effects (or part of the

effects) while it is being written. That allows the developers to preview and control the

side-effects, as well as the dependencies existing between the application logic and the

database.

1.3 Key Contributions

Reaching the goals of this work, we get a running prototype tool capable of transforming

the application logic, with the main purpose of providing the developer a preview of the

logic effects and the dependencies between them. That improves the developing process

at OutSystems, as our solution allows the logic visualization of the application being

developed.

We provide developers at OutSystems with a PoC tool designed with an API capable

of manipulating the OutSystems model (the Model API) and thus, can be added into the

OutSystems development process (Service Studio). This tool can also be used aside with

other testing techniques to reinforce the confidence level of the applications logic.

This work brings another great contribution that are the analyses performed to the

real-world OutSystems code. These analyses allow us to understand several information

about the OutSystems applications code, such as the distribution of the Actions, logic,

2

1.4. DOCUMENT STRUCTURE

aspects related to the application modules, among several others that help to understand

many development patterns and project improvements.

These performed analyses are very important for the OutSystems product managers

to analyse and improve their product, based on the obtained results.

1.4 Document Structure

This dissertation is organized as follows:

• Chapter 1 - Introduction: this chapter gives an overview of OutSystems enterprise

and its platform. It also introduces the problem to address and the goals to achieve

with this work.

• Chapter 2 - Background: describes the OutSystems Platform, the theoretical con-

cepts related with this dissertation such as Testing, and how this concepts apply to

the OutSystems environment.

• Chapter 3 - Related Work: this chapter presents some techniques and approaches

related to the context of this work, essentially the logic visualization.

• Chapter 4 - Proposed Work: presents an overview of the problem addressed in

the context of this dissertation, along with some data analyses used to refine the

problem and the proposed approach to be followed to build a solution.

• Chapter 5 - Implementation: this chapter explains all the details of the prototype

implementation and its use.

• Chapter 6 - Evaluation: describes the evaluation performed to the implemented

tool and the results that we achieved.

• Chapter 7 - Conclusions: concludes all the work done, highlights the main contri-

bution of this dissertation, as well as the future work that needs to be done.

3

2

Background

The OutSystems platform consists of several tools and cloud solutions for developers,

administrators, and operators, allowing rapid application development with advanced

capabilities for enterprise mobile and web applications [39].

2.1 OutSystems Platform

The OutSystems platform allows its users to create both web and mobile applications sup-

ported by a visual language, focusing mainly on assembling visual components to obtain

the desired products, by reducing significantly the users concerns about implementation

details. This makes the development experience in OutSystems very fast and scalable.

All these approaches combined make the OutSystems platform much faster than more

traditional development, with more quality and requiring less coding efforts from its

developers.

The platform empowers its users (developers) with high-productivity, connected, AI-

assisted tools for faster development of a full range of applications [49]. The following

sections will explain in more detail the main concepts of the OutSystems platform archi-

tecture, run-time and development experience.

2.1.1 Architecture

The OutSystems platform architecture can be visualized in Figure 2.1, that demonstrates

the main components that together compose the platform. It can be divided into these

main components: Service Studio, Integration Studio and Code Generator and Optimizer
(Platform Server) [41].

2.1.1.1 Service studio

Service Studio is the environment available to developers to create all parts of the appli-

cation stack: the data model, application logic, UI, business process flows, integrations, and

security policies [38]. This IDE allows the user to drag and drop visual elements to create

UIs, business processes, business logic and data models for their application [38]. After

4

2.1. OUTSYSTEMS PLATFORM

Figure 2.1: OutSystems platform: the Architecture Overview [41].

Figure 2.2: Service Studio Workspace [44].

opening Service Studio and connecting to the OutSystems environment in the cloud (or

an on-premise server in user’s data) the user is able to see the list of applications held

on the server or, additionally, create a new one [44]. Figure 2.2 shows the Service Studio

interface.

During the development of an application, the IDE will present the users with four

main development areas: the Interface tab, the Data tab, the Logic tab and the Processes
tab, as shown in Figure 2.3.

Interface tab: This layer is used to define the UI flows of the applications. It is

composed by a group of widgets (building blocks of a screen) that can be dragged and

dropped to the canvas to compose the desired screen interface. Also, in this layer, it can

5

CHAPTER 2. BACKGROUND

Figure 2.3: Service Studio: Example of the 4 Different Layers.

be applied different styles to the components as desired. It is also available a widget tree

to help the developers with the complexity of the widgets numbers [45].

Logic tab: Similar to the UI, this layer has a canvas in the middle of the workspace

with visual representation of the application logic. There is also a toolbox, identical to

the UI, but instead of showing widgets, it shows the elements that can be used inside the

logic flows [45]. The Logic layer is divided into Client Actions (that runs on the device)

and Server Actions (that runs on the server) [26]. It also has logic elements that allow the

user to integrate with external systems, such as SOAP Web Services, RESTful Services and

SAP.

Data tab: This is the layer where the user is able to define all the entities in the

database or in the local storage [45]. There is the possibility for users to create entity

diagrams to see the visual representation of the data (the data model). In the Data layer

it is also held Structures (in-memory representation of the data), Client Variables (user-

specific data in the client side), Site Properties (cross application data on the server) and

Resources (other types of data) [26].

2.1.1.2 Integration Studio

Integration Studio is the OutSystems environment where the users can create components

that extend the OutSystems platform and integrate with third-party systems [38]. One of

the key-points of the OutSystems platform is that once the components are deployed, they

can be reused by all applications built with OutSystems. Integration Studio allows the

creation of Extensions, which are sets of actions, structures and entities that increment

OutSystems and allows the integration with external systems [32].

6

2.1. OUTSYSTEMS PLATFORM

2.1.1.3 Platform Server

The platform Server is the server component and the core of OutSystems platform. It

encompasses all the steps required to generate, build, package and deploy applications.

These steps are more detailed below [40]:

• Code Generator: The code generator service is responsible for receiving the applica-

tion model and generate all the native application components, ready to be deployed

to an application server. This process includes checking for external dependencies,

applying optimizations, generating native code for all layers, among other key tasks.

• Deployment Services: These services deploy the generated application components

to an application server and ensure that the application is consistently installed on

each front-end server of an organization’s server farm (factory that uses OutSystems

developing technologies). The deployment service deploys a .NET [19] application

on a specific front-end server.

• Application Services: These are services for managing the applications at runtime. It

can be divided into Scheduler Service (the Scheduler Service manages the execution

of scheduled tasks) and Log Service (applications are automatically instrumented to

create error, audit, and performance logs).

2.1.2 OutSystems Language - A visual language

The aim of this section is to explain in more detail how the OutSystems language works

and what are the key elements of the language. As mentioned before, OutSystems is

a VPL dedicated to answer the challenges of digital transformation, mobile and faster

delivery cycles [52].

OutSystems uses a notion of modular programming when developing applications,

called OutSystems Modules [36]. Modules encapsulate everything to execute one particu-

lar aspect of functionality. In OutSystems a module is where a UI and business logic code

are developed. To have a complete overview of the language it is important to briefly de-

scribe the most important elements/components of the language such as Screens, Actions,
Entities, Nodes and some others that are relevant for the scope of this dissertation.

2.1.2.1 Screens

A screen is an interface element composed by other elements that the user can interact

with. Screens can be used to create web pages and mobile screens in the user’s applications

[42]. During the development, when users want to create a new Screen, they can create

an empty screen or use a Screen Template [43]. By creating an empty screen, the user has

to choose the layout, widgets, components, styles and logic. Unlike the empty screen, screen
templates have predefined values that can increase productivity. An example of how

screens can be created in OutSystems is shown in Figure 2.4

7

CHAPTER 2. BACKGROUND

Figure 2.4: Service Studio: Create a New Screen [42].

Figure 2.5: Service Studio: Representation of Actions [23].

2.1.2.2 Actions

In OutSystems, Actions are logic that runs on the server and logic that runs on the client

device (like tablet or smartphone). The user can create the following Actions: Data

Actions, Client Actions and Server Actions [23]:

Data Actions: are actions that run on the server. The user can create Data Actions to

fetch complex data from a database, when the retrieval cannot be achieved using a single

server aggregate [25] or to fetch data from an external system, such as REST API1.

Client Actions: The user can set a Client Action as a function and use it directly in

expressions (Action flow) of the client-side logic [23]. Client Actions run logic on the user

1https://restfulapi.net/

8

https://restfulapi.net/

2.1. OUTSYSTEMS PLATFORM

device. The user is able to create Client Actions in two different scopes: The Screen and

the Client. The difference is that in the scope of a Screen the user is allowed to run logic

when the user interacts with the Screen, whereas in the client logic the user is allowed

to encapsulate logic to reuse in several Screens. On the right side of Figure 2.5, it can be

seen how the client logic is represented in the Service Studio.

Server Action: The users also have the ability to create Server Actions in the applica-

tion to encapsulate the logic and be able to reuse it in other Actions, such as other Server

Actions, Data Actions or Client Actions. These kinds of Actions run logic in the server

and are represented in Service Studio on the left side of Figure 2.5.

2.1.2.3 Data Model - Entities

Entities are elements that allow the user to persist information in the database and to

implement the database model [31]. Entities are similar to tables or views in a relational

database2. Entities are composed by:

• Primary key: In OutSystems, a primary key is called Entity Identifier. It is created

automatically as an attribute called Id and added to the Entity.

• Sequential Attributes: are normally useful for Entity Identifier attributes. It is an

easy way to ensure that each record has a unique primary key.

• Indexes: Similar to relational databases, OutSystems provides indexes for faster

access to data in the entity.

Apart from that, in OutSystems, the user can employ Aggregates to fetch data using

optimized queries. Aggregates can load data from the server of the local database, and

they support the combination of several Entities and advanced filtering [25]. Aggregates

can be divided into Client-side aggregates - run in the client logic; and Server-side aggregates
- the ones that are in the logic flows.

2.1.2.4 Nodes

Figure 2.6 shows an Action Flow built in Service Studio, where different types of nodes

such as Start, Aggregate and End can be seen. The nodes are combined in a graph repre-

sentation of functions, procedures, methods, etc. We now detail some of the OutSystems

platform nodes that are relevant for this work:

• Aggregates: as already mentioned, aggregates are used to fetch data using an op-

timized query. They can load data from the server of the local database, and they

support several Entities and advanced filtering [25].

• Assign: used to assign values to variables in OutSystems [27].

2https://aws.amazon.com/relational-database/

9

https://aws.amazon.com/relational-database/

CHAPTER 2. BACKGROUND

Figure 2.6: Service Studio: Nodes in an Action Flow [24].

• If: the user can use the If Tool to execute a branch of the action flow if the condition

is evaluated as True, and another branch if the condition is evaluated to False [35].

• For Each: repeats the execution of an action path for each entry in the Record List

[33].

• Switch: the Switch Tool splits the action flow into two or more paths, where the

first action path whose connector evaluated as true will run [47].

• End: used when designing the process flow of the user process, the user must end

the flow paths [30].

• Start: this node indicates where a flow starts executing [46].

These are just some of the components (nodes) that exist in the OutSystems platform

environment. There are several others that are used by the the developers to achieve

their goals when developing applications with OutSystems platform, such as Refresh
Data, Attach File, Download, Destination, etc. A complete description can be found in the

OutSystems platform Documentation [51].

2.2 Software Testing: Overview

Testing plays an important role on the software life cycle and it is required from the early

stages of software development, such as requirements specification. Testing refers to

many different approaches that intend to validate a piece of software. It is a challenging

activity involving demanding tasks, such as deriving adequate suite of tests, according to

10

2.2. SOFTWARE TESTING: OVERVIEW

a feasible and cost/effective selection technique, the ability to run tests (the environment),

deciding if the tests outcome are acceptable or not, judging whether testing is enough or

not, among others. These tasks provide significant challenges to developers and testers,

where skills and expertise remain of high importance [3].

2.2.1 Software Testing Techniques

Testing refers to a full range of techniques that are split into two categories: Static Tech-
niques and Dynamic Techniques [3]:

• Static Techniques: Static techniques are based solely on the examination of the

software code, documentation or information about requirements specifications and

design. This characteristic allows the static techniques to be employed at any stage

during the development, despite being highly desired at the early stages. Traditional

static techniques include:

– Software inspection: the analysis of the software documents produced, consid-

ering a compiled checklist of common and historical defects.

– Software reviews: in this process, all the aspects related to the software product

are presented to managers, users, customers or other different stakeholder for

approval and comment.

– Code reading: the analysis of the code (on a screen) to discover typing errors

not related to style or syntax.

– Algorithm analysis and tracing: the analysis of employed algorithms to study

their worst-case, average-case and other probabilistic analyses evaluations.

All these techniques are error-prone, time-consuming and done manually. To mini-

mize these issues, there are some static analyses techniques proposed by researchers

relying on the use of formal methods. The goal is also to automate as much as pos-

sible the verification of the properties of the requirements and design.

• Dynamic Techniques: the main difference between these techniques and the static

ones depend whether the code is executed or not. These techniques obtain infor-

mation of the software by observing some executions. Testing in a literal sense is

a dynamic technique, based on the execution of the code on specific input values.

The amount of inputs to be tested are infinite, meaning that the testers/developers

must wisely choose interesting ones that can coverage the software at most and

run at a reasonable time. In other words, the programs are tested to observe some

samples of the program’s behavior. Therefore, tests strategies must be adopted to

find a trade-off between number of inputs chosen and effort dedicated to testing

purposes.

11

CHAPTER 2. BACKGROUND

2.2.2 Test Classification

Many people classify tests into different categories based on their purposes and scope.

Martin Fowler [10] classifies test into the following categories:

• Unit Tests: There are several definitions of unit testing. Despite the variations, there

are some common elements, such as the notion that unit tests are low-level (focusing

on small parts of the systems). Unit tests are nowadays written by programmers

themselves using their regular tools (sometimes the difference being the framework)

and they are expected to be much faster than other kinds of tests. Besides the

common elements, there are also differences among the concepts, for example, what

people consider to be a unit (Figure 2.7). Object-oriented designs usually treat a

class as a unit, while functional or procedural approaches consider a single function

as a unit. It is actually a matter of situation, depending on what makes sense for

a given system and its testing. The unit tests can be Sociable Tests, meaning they

interact with other units to fulfill their behavior, or Solitary Tests, meaning that the

tested unit is isolated. The key quality of the unit tests is their speed, allowing the

programmers to join them into a compile suite (a suite of unit tests that programmers

run whenever they think of compiling), and a commit suite (a suite of unit tests

that programmers run before committing new versions of software). To have a

good coverage of their code, programmers must build complete test suites, but they

should keep in mind that the test suites should run fast enough that they are not

discouraged from running them frequently enough [12].

• Integration Tests: determine if independently developed software units work cor-

rectly when they are connected to each other. Unit testing should be the first one

to be performed to test a module on its own. Once that is complete, we can now

do integration testing to test the connections among the various modules into the

entire system or even sub-systems. The point of this kind of testing is essentially to

test if independent modules (developed separately) work together correctly. In inte-

gration testing, it is usual to use Test Doubles3 to test interaction behavior without

activate a third full component instance. If the third component is another service,

then this technique brings many advantages as the external service requires its own

build tools, environments, and network connections (Figure 2.8). Contract Tests4

can be used to check if doubles are truly faithful [8].

• Broad Stack Tests: are the tests that exercise the most parts of a large application.

They are also know as end-to-end tests or full-stack tests and they contrast with

Component Tests, which only exercise a part of the system. Broad-stack tests often

manipulate the entire systems, going through the UI to the lower levels of the

system. On this kind of tests it is often a good idea to use test doubles, as calling

3https://martinfowler.com/bliki/TestDouble.html
4https://martinfowler.com/bliki/ContractTest.html

12

https://martinfowler.com/bliki/TestDouble.html
https://martinfowler.com/bliki/ContractTest.html

2.2. SOFTWARE TESTING: OVERVIEW

Figure 2.7: Unit Testing Sketching [12].

Figure 2.8: Integration Testing Sketching [8].

13

CHAPTER 2. BACKGROUND

remote systems is unnecessarily slow and brittle. Although the broad-stack tests

exercise the whole system, we should use fewer of these as they are hard to maintain

and much slower than component tests [5].

Listed above, there are some tests classifications that are relevant for the context of

this dissertation, but there are many others, such Story Tests, Contract Tests, Components
Tests, described by Martin Fowler [10].

2.2.3 Test Design Techniques

There are two main techniques frequently used to find errors, and the main difference

between them stands on the working (source) code [22]:

• Black-box testing: is a testing technique employed without any knowledge of the

application source code. It uses the main aspects or functionalities of the system

for examination, not having any relevance with the internal logical structure of the

software. The system under test will be treated as a "black box", but the tester must

know the software architecture and its behavior (no source code details).

• White-box testing: it investigates the internal logic and the structure of the source

code. This technique requires the testers to have complete knowledge of the source

code, allowing them to find out a lot of implementation errors. One of the most

significant advantages of this technique is to provide a maximum coverage of the

system.

For large code segments, Black-box testing is much more efficient than White-box

testing, however, Black-box testing provides a limited coverage of the system’s behaviors

and it requires clear specifications to be employed.

2.2.4 Testing in OutSystems Platform

Given the abstraction provided by visual languages like OutSystems, in association with

continuous integrity validation that is built into the OutSystems platform, users will

notice that the number of bugs introduced into code is much lower compared to other

technologies, requiring fewer testing and fix cycles [48]. This accelerates the development

and application delivery.

However, testing is still a necessary step during the application development. The

OutSystems approach is to keep the OutSystems environment open so it is compatible

with tools typically used such as Ghost Inspector, Katalon, JMeter, among others [28]. This

way, testing is integrated in the continuous delivery cycle so there are no losses in pro-

ductivity [34]. Another important aspect to highlight is the OutSystems Impact analysis
and self-healing. OutSystems tracks global dependencies and pinpoints the impacts of

a change on all layers of an application, assuring nothing breaks when the application

14

2.2. SOFTWARE TESTING: OVERVIEW

goes live, even if major changes are made on the application (data model, APIs and archi-

tecture). These capabilities automatically correct problems or inform developers of any

corrections they must handle. At a broader level, OutSystems does Impact analysis even

for multi-applications, for example, preventing deployment from the test environment

if it is missing a dependency in production [34]. The following tools are available to test

applications in OutSystems [28]:

• Unit Testing Framework: Unit Testing Framework allows the user to develop and

run unit tests for OutSystems platform projects. This tool can be applied in a

number of ways, depending on the scale and the complexity of the applications and

its architecture. Unit Testing can be particularly effective for calculation engines

and for business service components. Having a good set of unit tests for the system

can help greatly when the user comes to change or refactor a system [50].

• Behavior Driven Development Framework: the primary purpose of Behavior

Driven Development framework (BDD framework) is to support Behavior-Driven

Development, where all technical (e.g., developers) and non-technical (e.g., busi-

ness analyst) participants in a software project collaborate to define a common

understanding of how the software should behave.

The BDD framework is a component that facilitates test automation where tests

are specified using Gherkin5 syntax. Gherkin is a human-readable language for

structuring and describing application’s expected behaviors. This scenario can be

used to build BDD test automation for user’s applications [53]. The main focus is

testing the logic of user’s modules, by exercising the critical actions that support the

application’s use cases. It also provides a set of tools for easily creating BDD/TDD

(Test Driven Development) styles tests for OutSystems applications. This compo-

nent creates test scenarios and steps that are conformant to the principles of BDD,

Enables TDD, enhance test maintenance among other key-points [29]. Figure 2.9

shows an example of a Gherkin scenario:

– Scenario: describes the specific scenario that illustrates a business rule.

– Given: describes the initial context of the scenario. All the required pre-

conditions that needs to hold before conducting the action or event to be tested.

– When: describes the specific action or event. In many scenarios there should

only be one such step. If more is needed, the user should consider to break up

the scenario into two or more.

– Then: describes the expected outcomes of conducting the action or event in

the system. These steps commonly contain various assertions that verify every-

thing we want to check as a result of this test.

5https://cucumber.io/docs/gherkin/

15

https://cucumber.io/docs/gherkin/

CHAPTER 2. BACKGROUND

Figure 2.9: Gherkin Scenario Example [53].

Figure 2.10: Service Studio: Web Blocks in BDDFramework [53].

This syntax requires the scenario to be clear to anyone who reads it, whether they

are technical or non-technical participants. After the creation of the scenario, the

user can start creating an automated BDD test using BDDFramework. The BDD

testing framework includes four web blocks (Figure 2.10) that can be used to built

tests [53]:

– BDDScenario: each scenario is represented by a BDDScenario web block.

– BDDStep: each group of steps is represented by a BDDStep web block.

– FinalResult: returns stats about all scenarios run on the web screen. It should

always be included at the end.

– SetupOrTeardownStep: is a special kind of step that can be included in scenar-

ios to perform setup or cleanup operations of data that is outside of the scope

16

2.2. SOFTWARE TESTING: OVERVIEW

of the scenario from a functional or business perspective.

Finally, this framework can be used for Traditional Web and Service Applications,

the server component of Reactive Web or Mobile Applications, and REST and SOAP

APIs [53].

All industry testing practices can be used for testing OutSystems projects/applications,

although some approaches produce better results than others. That is why OutSystems

has a set of guidelines available for its users to follow:

• Component or Unit Testing: allows customers to independently validate small parts

of an application. This is particularly effective for business service components.

• Integration and API Testing: focus on validating parts of an application that work

together. This approach is particularly effective for complex systems.

• Functional Testing: is the practice of validating all components included in an ap-

plication against its functional requirements, most frequently captured inside user

stories6.

Although it is very useful tool for OutSystems platform environment, BDDFrame-

work has its own limitations, for example, it does not support the creation of tests using

Reactive Web or Mobile module, it does neither support tests being run in parallel over

the same OutSystems environment, among other limitations [29].

These limitations are barriers against the use of BDDFramework as a logic visualiza-

tion tool, because the feedback that the developer needs must be acceptable (as little as

possible), which is not the outcome of this framework. With BDDFramework we have to

write the logic, then switch to BDDFramework environment, write some tests and run,

and finally see the result of our logic. That is why it is not a suitable solution for the

context of logic visualization.

6https://www.atlassian.com/agile/project-management/user-stories

17

https://www.atlassian.com/agile/project-management/user-stories

3

Related Work

This chapter aims to present some works and techniques used to address the generic prob-

lem of logic previewing as well as the specific one at OutSystems development process.

The goal of this section is to present some mechanisms introduced by some authors that

are related to the topics of this work along with a summary of the mentioned techniques.

3.1 Logic Visualization

During the development of any application, the developers need feedback over the work

that has been done. Developers aim for this feedback to be as immediate as possible, so

they can visualize the effect of what they have been building and also to check if it is

exactly as intended. When the subject to visualize is, for example, graphic components (UI

components, Widgets), the OutSystems Platform has available a preview of the layout so

the developers can check if the layout is exactly as expected.

On the other hand, the subject to visualize could be the logic, which is exactly what

this section addresses. In order to visualize logic, most of the programmers use some

approaches that are strongly related to Software Testing. Software Testing allows program-

mers and users to be confident about the software developed. Not only to be confident

about the software being developed, but also to spot unexpected behavior from the soft-

ware or to find out bugs, the developers use the Quality Assurance aspect of the tests.

The following subsections cover some testing methods that are used by the developers

in order to obtain feedback of the logic while developing an application [10].

3.1.1 Exploratory Testing

Exploratory testing explores the characteristics of the software, raising discoveries that

are classified depending on the behavior that can be considered either reasonable or

a failure. Exploratory testing is a style that emphasizes a rapid cycle of learning, test

design and execution, rather than trying to verify if the software conforms to a pre-

written test script. Exploratory testing is the opposite of scripted testing, since as in

scripted testing, test designers create a script of tests that are executed everytime the

18

3.1. LOGIC VISUALIZATION

developing code is manipulated. These scripts can be executed by different users (not

necessarily the person who wrote them) and if any test shows different behavior from

what is expected, it is considered a failure. Before the influence of Extreme Programming1,

the scripted test was executed by testers, following the script and checking the result.

Extreme Programming allowed the automation of the previous method, delivering a

faster execution and elimination of the human error involved in evaluating expected

behavior. However, even the most exhaustive automated test suite has its own limitations.

Scripted testing can only verify what is in the script, referring only the conditions that

are known about. It is a very good technique to spot bugs that try to go through it, but

there is no guaranty that it covers all it should.

Exploratory testing emerges as a technique that seeks to test the boundaries of the

scripted test suite, finding new behaviors not covered by the script. The failures found by

this technique can often be added to the scripts. Although Exploratory testing is a much

more informal process than the scripted testing, it still requires a very disciplined way to

be done well. A very good way to do it is in time-boxed sessions, where the sessions focus

on a particular aspect of the software. Exploratory testing involves trying things, learning

more about what the software does and using the learning to generate questions and

hypotheses, so it can be generated new tests in the moment to gather new information.

This a technique that requires skilled and curious testers, who are comfortable with

learning about the software and generating new test designs during the session. It also

requires for the testers to be observant, and to look up to any behavior that might seem

odd. It also is an activity to be done regularly during the software development [7].

There are some particular ways of Exploratory Testing that are used by developers in

order to visualize logic while developing software:

• Debugger: is a tool that offers a closer look into the execution as it allows the pro-

grammer to work through the code line-by-line to find out what is going wrong or

unexpected, where and why. With the debugger the programmer is able to interact

with the flow of the execution, changing the code flow whilst running, stopping

whenever needed and controlling all the execution. Some debuggers require that

the code to be debugged must be compiled with the debugging information inserted.

This information is provided by debugging symbols included by the compiler in the

binaries and they describe where functions and variables are stored in memory.

These symbols normally make the executable run a bit slower, but still runs as a

normal program.

Debuggers have an important feature which is the possibility to set breakpoints
that allow the developer to stop the program execution on demand: the program

runs normally until the execution is at the same point as the breakpoint address.

After the breakpoint is reached, the execution drops into the debugger to look at

the variables or even to continue the execution. The breakpoints can be set to

1https://martinfowler.com/bliki/ExtremeProgramming.html

19

https://martinfowler.com/bliki/ExtremeProgramming.html

CHAPTER 3. RELATED WORK

beginning of functions, at specific addresses or specific lines numbers. After the

execution stops as consequence from a breakpoint, the debugger can execute the

next program line stepping over any functions calls in the line as a single instruction.

On the opposite side, the debugger can step into a function call and execute all

its code, line-by-line. There is also available in the debuggers the possibility to

set watchpoints, which are a particular type of breakpoint that stop the execution

whenever a variable changes (even if the current line does not refer to the variable

explicitly). Differently from breakpoints, watchpoints look at the memory address

and notify the programmer if something is written to it [1].

Errors that are made during the implementation of algorithms are reasonably easy

to track with debuggers, and that is one of the key points for the use of debugger

to visualize logic. Programmers use debugger to spot bugs and wrong behavior

on their software which also allows them to visualize part of the software logic.

Although debuggers are normally used to find out bugs in algorithms it is unusual

to use them to certify that some logic is correct. Also, debugging is a process that

can be very exhaustive because it requires human involvement and a large amount

of time and resources [21].

• Manual UI Testing: Real Application: when the application is already finished or

it has one of its first versions implemented, including the UI, there is something

that is usually done by its developers: use the brand new application functionalities

in order to look at the behavior and check if it is exactly as expected. This seems to

be a very simple task, but it can actually be a good technique to verify if the product

meets its goals. If done very carefully and by experienced testers it can be very

useful to spot errors. Experienced testers hold a lot of knowledge acquired from past

projects that can be used to test critical aspects of the applications. This technique

is a kind of high level testing method that allows the developers to visualize the

logic behind their application.

However, this is a method that requires the software to be finished or having one

implemented version (including the UI) in order for the developer to use the ap-

plication to test the behavior. This aspect discourages the developers to adopt this

method as the main technique to visualize the application logic as it requires the

application to be implemented. The required time to get feedback of the logic is too

big, not allowing this technique to succeed as one of the main approach.

• Manual UI Testing: Dummy UI: this method is very similar to the previous one.

The key point of this approach is also to test the application functionalities to check

if they are in conformance with the expected. Nevertheless it has a significant

difference: this method does not require the application to be fully implemented,

neither to have a version of the application with the UI implemented. The developer

20

3.1. LOGIC VISUALIZATION

can create a dummy UI just for the purpose of testing the functionalities. This

notably reduces the feedback time in comparison with the real application testing.

These properties bring good advantages in terms of time and productivity as it

allows the developers to have an early feedback of the logic, but it is not the best

solution because the feedback still takes some time. The developer needs to spend

time creating a dummy component to visualize the logic/behavior of the application,

and sometimes even the dummy component requires some aspects that are not

related to the logic that the developer wants to visualize.

3.1.2 Logging and Monitoring

Logging is a concept that refers to the printing of messages that normally is an aid to

debugging. Logging is the automatic recording of information messages or events, with

the intent of monitoring the status of a program and to diagnose problems. Some systems

use this approach because the failure can affect the correctness of the whole system. It is

also used to evaluate products about their reliability [1].

Logging brings a concept of "Observability", that is, for example, the tracking of things

like memory, CPU utilization, network and disk I/O, thread counts. It can also track

things related to business or domain, as session duration and payment failure rate, for

example. Besides, product-oriented metrics are more valuable to observe because they

closely reflect that the systems is performing in conformance to its business goals [6].

Logging is a very powerful way of gathering data about a system. They are no longer just

text files to look up in case something goes wrong. As mentioned, it is not restricted to

technical data, it can also log valuable data. There are some tools available like Splunk2

that can build indexes based on the kind of logs (ERROR, WARN and INFO) and offer

optimised search, aggregation and visualisations. When the developers look at the log

files, they should be able to filter the results to see just errors, for example, in order to

ensure that nothing has gone wrong [59].

During the development of a software product, developers take advantage of this

approach to visualize software logic and to identify the errors that were made. This

technique, if well used, allows the access to precious and structured information in case

of error or even information about the business logic. Despite very useful, Observability

requires hand-rolled instrumentation logic and the instrumentation code can be very

noisy, easily leading to a distracting mess [6]. These characteristics make this method an

unreasonable strategy to visualize logic in OutSystems Platform.

3.1.3 Testing Support for the OutSystems Agile Platform

The Testing support for the OutSystems Agile Platform is a Master of Science dissertation

work which main goal is to add automated testing capabilities to OutSystems Platform,

2https://www.splunk.com/

21

https://www.splunk.com/

CHAPTER 3. RELATED WORK

in order to make testing a reality for the majority of developers that use this platform

[13]. With this new feature, the developers would feel more confident on doing heavy

refactoring on their code, and it would ensure that the produced application had a high

degree of quality.

The Testing support for the OutSystems Agile Platform started by introducing a series

of new elements in the OutSystems language to allow the creation of tests: Test Case Flow,

Assert tool, Data Assert tool, Execute Query and Execute Advanced Query tools [13].

This approach was created in such a way that each ESpace3 acts as test suite, where

it could be chosen to execute one, a selection (manually selected), or all the tests of the

module. The tests are executed at the server in the user’s personal area, one by one. When

the execution is finished, the user receives a visual notification of the tests results in the

development environment (in Service Studio).

The work also includes a feature that is the most relevant aspect for the logic previewer,

the Test Action. The Test Action works by updating the personal area at the server,

without deploying it, in order to be faster. The values of input used to test the actions are

not stored in the module, but in the user’s settings, to avoid updating the personal area.

Test Action had to stub a few ASP.NET [19] objects because the Actions code is expected

to run under a web request [13].

Although very promising, the results of this work can not be well measured as the

proposed solution was not integrated into the OutSystems development environment

(Service Studio).

3.2 Summary

The related works presented above, despite the fact that they are not completely appli-

cable to the problem, represented the closest existing solutions prior to our work. The

tests solutions are important approaches to ensure a good level of software correctness,

along with quality assurance. However, the tests solutions are not the best approaches to

preview logic, either because the approach is not perfectly suitable for the OutSystems

development processes or they are not enough by themselves. In some of the testing

approaches, the cycle of feedback is still way longer than the desired, and that is because

most of those techniques are used for ensuring software correctness and others are per-

formed at the end of the development process. Others are just not commonly adopted by

the developers, either because of the extra time required (during development phase) or

because of their complexities.

Others presented techniques include Manual UI Testing that is suitable to be per-

formed at the end of an application development with the purpose of final testing, but

not as main choice for previewing logic. It is not suitable because, as mentioned previ-

ously, it takes to much time to test the application using its UI and this also requires an

3a module where an application is developed. Where the data, logic, screens, among other things relevant
to an application are created.

22

3.2. SUMMARY

existing UI. Belonging to the same approach as the Manual UI Testing, another technique

presented was the Debugger. As seen in Section 3.1.1, it is a good solution for tracking

execution details and to spot bugs on algorithms, but not so applicable for previewing

logic because of its excessive use of time and resources.

There are some other techniques that can be used to check and ensure applications

logic correctness, but are not strongly related with logic visualization itself, such as Spec-

ification by Example [11], Test-Driven Development [2, 9, 56], Read-Eval-Print-Loop [58,

55], among others.

Several of the mechanisms presented above in this section can be used to partially

preview the effects of logic in OutSystems. However, they require too much time and

resources, and therefore they are not the best or the obvious option. Also, most of these

related techniques that try to preview the logic in OutSystems, even the ones that get

closer to the goal, do not fulfill the requirements as they are not as immediate as desired

or they do not preview the main effects of the applications logic. Nevertheless, these

related works and approaches are extremely important for our solution projection, as we

can learn from their best aspects and their own limitations.

23

4

Proposed Work

This chapter presents the details of the problem to address, the methods thought to

address it and also the goals of this work.

As software development increases day by day, the goal of the companies that build

software products is to increase productivity as much as possible in order to respond to

high demand. OutSystems is improving everyday its methods to satisfy its clients with

excellent products and short delivery time, greatly due to improvement of the software

development environment. VPLs accelerate the development process by reducing the

concerns of the users with implementation details, consequently improving their pro-

ductivity. Despite the software development process in OutSystems Platform being fast,

there is an important problem that needs to be solved: The feedback loop of logic visual-
ization. How can we improve the cycle of feedback received by developers when writing

their logic in OutSystems Platform? This is the question that we tried to answer during

the implementation of this work.

4.1 The Problem: Overview

Each amount of time that can be reduced during software development is a significant

asset for productivity, even small reductions may present significant value. Therefore,

all processes (during development process and not only) should be carefully and con-

tinuously analysed in order to obtain some improvements. Developers in OutSystems,

when writing their code (such as OutSystems Action logic) do not have an immediate nor

short-term feedback of the logic’s behavior. This is the key problem to address in this

work: During development, developers do not know immediately, what are the effects of

the logic being written, which can significantly impact the user’s productivity.

But how can logic be visualized in OutSystems? Developers in OutSystems have some

approaches to visualize the behavior of the logic they are writing, which can be shown

below:

• By testing: developers in OutSystems (and not only) use testing properties to check

24

4.2. THE PROBLEM: DATA ANALYSIS

the behavior of applications and to be able to spot bugs introduced during develop-

ment. Section 3.1 presented different strategies to visualize logic and developers use

many of them in OutSystems. Starting by Manual UI testing using real application,

which is an approach used to check the application behavior by using the finished

(or a released version) of the product UI. Although with this strategy the developer

is able to spot some misbehavior and have a clear notion of the functionalities usage,

it is not a suitable approach to visualize logic during development, as it requires the

software product to be implemented or at least have a released version. Similarly,

we have the Manual UI testing with a dummy application which concept is almost

the same as the real app testing but it does not require a finished version of the

UI, hence reducing some feedback time. However, this approach also requires the

implementation of a dummy UI for testing proposes, delaying the feedback time

to the developer. In addition, both approaches mentioned are within Exploratory

Testing and, as mentioned, it is a technique that requires high levels of experience

and expertise from application developers.

Still on testing, developers in OutSystems also use testing frameworks to test their

software and to check the application’s behavior. BDDFramework and Unit Testing

Framework (presented in Section 2.2.4) are the most used in OutSystems platform

for testing applications. We saw that both are good tools within the testing context,

but when it comes to visualizing the logic they are nowhere near a reasonable

solution because of their previously mentioned limitations (in Section 2.2.4), such

as the incompatibility of using BDDFramework with the OutSystems environment

at the same time, not allowing the developer to visualize the effects of the logic

being developed.

• With the debugger: the debugger is a very useful tool in the OutSystems platform

as it allows to have closer look into the applications execution, which is used to

spot misbehavior and bugs in the software. Nonetheless, debugging requires the

software to be published, then a browser or a mobile device to check the execution

flow. Also, as mentioned in the previous chapter, debugging is a process that re-

quires large amount of time and resources and its not suitable for checking software

correctness.

In summary, all the approaches used in OutSystems for visualizing logic described

above have their particular limitation and all of them have one main problem in the

context of logic visualization: The feedback cycle to visualize logic during development

is extremely long.

4.2 The problem: Data Analysis

Throughout this section we aim to analyse the problem explained previously in Section

4.1, and retrieve information and insights that help to understand where to focus our

25

CHAPTER 4. PROPOSED WORK

approach and how we can solve it. With these analyses, we aim to retrieve information

concerning the OutSystems applications logic, to understand which are the most used

logic components in the applications, how they are composed, what are their dependen-

cies to the database and to each other, among several other information related to the

applications logic. Along with this information, we intend to gather knowledge about the

applications modules, such as the distribution of logic within them, the dependencies

between its logic components, among other important details. The point of these analyses

is to gather the data required to understand the problem and to help us design a solution

for it.

In order to obtain the intended results, we used two datasets of real-world Outsystems

code obtained from several farms1. Along with these two datasets, we used tools like

Microsoft PowerBI [20] so we could extract relevant information in order to clarify and

refine the problem. All the information gathered by analysing these data were directly

used to choose the most suitable solution that brings more value for the OutSystems

customers (anyone who develops code using the OutSystems platform).

4.2.1 Datasets

The first dataset is called actionflows and holds information about several Outsystems fac-

tories, containing 5.74GB of data. The data is split into 933 compacted JSON.gz [14] files

(one per farm), and each one has fields like: omlKeyGUID, flowKey, flowPath, flowName,

isPublic, inputVars, localVars, graph, flowKind, among others. Each line of the JSON.gz
represents an OutSystems action[23] and contains the information specified by the fields

just mentioned above.

The second dataset, named moduleDependencies, is a larger one containing 27.7GB of

data, distributed into 1054 .jsonlines files. Each file represents one factory and it contains

information about the dependencies between all of its modules. The .jsonlines files have

fields like: Key, Name, Path, ActivationCode, RuntimeKind, among others.

4.2.2 Tools and Processes

The OutSystems tool named Query Grabber2 was used in order to built the datasets men-

tioned above. By creating a query (specificaly for Query Grabber) and running it in the

farms, it was possible to create the datasets, using OutSystems real-world code.

After putting together all the needed data, we had to process it in a way that we could

gather relevant information and insides related to this project. To accomplish that, we

used the Python language [54] to process the data (.jsonlines files) and produce more

precise (related to the project’s scope) datasets. Regarding the first dataset, the process

consisted in going through all the files (.jsonlines) and capture all the relevant data about

1factories that use Outsystems developing technologies.
2An OutSystems tool that retrieves applications information from OutSystems factories given some

queries.

26

4.2. THE PROBLEM: DATA ANALYSIS

the actions. A .csv file was created to save the metrics gathered from the dataset. The

.csv file had all the important information about each triple <activationCode, moduleId,
actionId>, such as: Name, Kind, IsPublic, Number of Inputs and Outputs of each type, Number
of OutSystems Nodes of each type and others.

The .csv file produced, named actionsCount.csv, had slightly more than 1GB and

it was more suitable to obtain the desired information about the applications (about

their modules, logic, among others), as this dataset was built including only the relevant

information for this work. In addition, the structure of this new dataset was created to

facilitate the search for information relate to applications logic, as each line represents

an OutSystems Action and its related data.

Similar to the process used in the first dataset (actionflows), the second dataset (module-

Dependencies) was also used as source to produce another dataset in the format of a .csv
file. This .csv file named moduleDeps.csv also had the triple <activationCode, moduleId,
actionId> followed by fields such as actionKind, ImpactedModuleId, ImpactedActionId and

others. All the .csv files created using both datasets were built with the main goal of cre-

ating simpler and yet more precise datasets, mainly by adding the relevant fields for this

work and simple counts.

After creating the two new datasets (.csv files), the following step was to get our in-

tended metrics. To achieve that, we had to take advantage of a powerful tool mentioned

above, the Microsoft PowerBI. So, the new challenge is now to load the amount of data

into PowerBI and starting creating our first queries. After loading the actionsCount.csv

we had to clean the data, create some queries and some new tables in order to obtain

more insides about the OutSystems actions. The same process was applied to the mod-

uleDeps.csv, but this time we had some limitations caused by the size of this dataset, that

was 49.3GB. In the next section, we present some of the data and metrics that were col-

lected during this process, that was extremely important to precisely target our solution.

4.2.3 Results

As seen in Section 2.1.2.2, Actions are logic that runs in the server and on the client device,

meaning that logic in OutSystems appears in the form of Data Action, Client Action and

Server Action[23]. As the main goal of this work is to preview the effects of logic in

OutSystems, we must search where the biggest slices of logic in OutSystems applications

are located. To do so, the first question that we must answer is: what are the Actions that

appear more frequently in the OutSystems applications? By answering this question,

it is possible to know where is located the greatest amount of logic on OutSystems appli-

cations and therefore what are the most used Actions during OutSystems applications

development. By using our first built dataset, the actionsCount.csv, and with the help of

Microsoft PowerBI, the desired answer was obtained, as seen in Figure 4.1.

By analysing Figure 4.1, it was clear that Server Actions represents the majority of

the flow nodes in OutSystems Applications, 65.5% of all nodes in the dataset. This first

27

CHAPTER 4. PROPOSED WORK

Figure 4.1: Distribution of nodes in OutSystems applications (obtained from action-
sCount.csv dataset).

indicator was very important to refine the problem, as well as the solution. At this point,

it is known that the Server Actions are the main target for the logic previewer, directing

the second step of the analyses to them. After acquiring this knowledge from the data,

it was necessary to extract more information about the flow nodes, but now putting the

Server Actions as the base of the analyses.

Knowing that the Server Actions are the first/main target to attack the problem, the

next steps of the analyses focused exactly on them. Therefore, some metrics related to

the Server Actions number of nodes, inputs, outputs, among some others were also

collected. The metrics related to inputs and outputs are very useful to address aspects

related to the integration of the solution in Service Studio. Figure 4.2 shows that a solution

(logic previewer) integrated in Service Studio starting with only simple data types3 would

encompass 38% of the Server Actions used on the OutSystems applications and 88% of

the Server Actions if types such as Entities and Entities Identifiers were added. Finally, the

Server Actions would be complete when the Structures and the Lists were added to the

remaining data types. Similar to the inputs, Figure 4.3 shows how the increment would

be in relation to the outputs.

Several metrics were collected to precisely highlight the problem, as well as the solu-

tion. Along with the presented data above, we also did an analysis about the complexity

of the Server Actions, in order to understand the complexity-to-be of the solution. Figure

4.4 shows the results obtained around the Server Actions complexity. It shows that about

95% of the Server Actions contain less than 20 nodes, and this metric is very important

to help us analyse the performance of the solution implemented in the next chapter.

The data and the metrics presented above were all gathered from the actionsCount.csv

dataset and they had a very important role in the refinement of the problem, together

3Types such as Text, Integer, Email, Boolean, among others.

28

4.2. THE PROBLEM: DATA ANALYSIS

Figure 4.2: Server Actions input types (obtained from actionsCount.csv dataset).

Figure 4.3: Server Actions output types (obtained from actionsCount.csv dataset).

29

CHAPTER 4. PROPOSED WORK

Figure 4.4: Server Actions complexity - number of nodes (obtained from actionsCount.csv
dataset).

with the projection of the solution. Nevertheless, we needed more information about

the problem, more precisely about the Server Actions. To extract more metrics from

the OutSystems applications code, we used the second dataset, the moduleDeps.csv. At

this point, it was known that the Server Actions were the holders of most of the logic

present in OutSystems applications code, and now it was necessary to understand their

dependencies (between modules). Figure 4.5 reveals the dependencies of the Server

Actions in relation to the number of modules required to achieve their purposes. It is also

clear that most of the Server Actions (65% of all Server Actions from the moduleDeps.csv

dataset) requires just one module for their definitions. This metric was one of the key

points of our analyses, as so far we knew that the Server Actions hold the majority of

the logic in the OutSystems applications, and they mostly depend on one single module

(meaning that everything they need is in the same module as they are defined).

Up to now, after the analyses that were performed and presented above, the problem

had been well defined and it was known what was the main/starting point to address the

problem: Server Actions that depend only on the module itself. Thus, after the data

that was gathered from the datasets, we turn to the following question: How to preview

the effects of the Server Actions that depends only on the module itself? In order to

answer this question, we performed some analyses on the moduleDeps.csv dataset. We

highlight an extremely important metric about the Server Actions Side-effects, as shown

in Figure 4.6, which demonstrates that almost 60% of all Server Actions in OutSystems

applications code (presented in the datasets) read and/or write to the database.

In summary, the first key point of the whole analysis was established: Server Actions

are the main holder of logic in OutSystems applications. The second key point of this

study is that most Server Actions depend only on the module they are defined in. Finally,

another important aspect was about the preview of the effects of logic itself: almost

30

4.2. THE PROBLEM: DATA ANALYSIS

Figure 4.5: Server Actions module dependencies (obtained from moduleDeps.csv dataset).

Figure 4.6: Server Actions reads and writes to the database (obtained from mod-
uleDeps.csv dataset)

31

CHAPTER 4. PROPOSED WORK

60% of the Server Actions read and/or write to the application database. The summary

presented above was crucial to better understand and narrow down the problem, enabling

the solution explained in the next chapter.

4.3 Proposed Approach

This section presents a description of the approach developed in this work, in order to

address the problems highlighted above. This approach aims to improve the experience

of OutSystems users when developing software, by allowing them to visualize part of

their application behavior and reducing the feedback loop they have while creating and

changing code. The process of creating software, compiling it, publishing into OutSys-

tems server, and finally testing to check its behavior is time-consuming and hampers

users productivity.

Currently in OutSystems, when users want to test an application behavior, they need

to follow some approaches described previously in this document, such as testing the

application directly with its UI, testing with a dummy UI, among others. In case of using

testing frameworks (which is one of the fastest approaches among the existing ones), one

of their limitations is that they require the code (being developed by user) and the tests

to be published (compiled and deployed). Most of the time, even when using the best

available testing techniques, the OutSystems developers do not have a clear visualization

of the logic being written, especially when it comes to side-effects to the database.

After performing the deep analysis presented in the previous section, this work fo-

cuses on tackling what the data showed to be the main problem of previewing logic in

OutSystems applications development: preview and control the Server Actions4 side-

effects (reads and writes to the database).

Therefore, this proposed work aims to change the status quo of logic visualization, by

putting together the following stages:

1. Transform the Server Actions to make them return all of their side-effects to the

database.

2. Show to the OutSystems developers all possible direct/indirect, reads and writes

to the database.

The first stage of the proposed work (stage 1) begins by tackling the question about

the writes to the database performed by the Server Actions. As said before, it is very

useful for the OutSystems developer to visualize the effects of the logic being developed.

Enabling a preview of the applications logic, especially during implementation, would

be a game changer in the OutSystems development environment as it would allow the

developers to have an almost immediate feedback of the logic being written. This idea

of previewing logic in OutSystems development environment (and others programming

4Server Actions that depend only on the module where they are defined.

32

4.3. PROPOSED APPROACH

environments) is usually achieved via some approaches mentioned in Section 3.1. These

approaches have limitations, and even the ones that present better results are not enough

for visualizing logic, especially during development and when the applications produce

side-effects to database.

For that reason, at this first stage, our solution aims to address the writes to the

database that are performed by all the Server Actions within a module. To accomplish

that, we had to analyse all the Server Actions in the module (where the application is being

built) and apply some transformations, with the main purpose of making them collect

and return all their side-effects to the database. By doing that, we allow the developer to

preview the side-effects to the database of his logic during the development.

In stage 2, after transforming the Server Actions to make them return all their side-

effects to the database, we also aim to enable the OutSystems developer, not just to

visualize the side-effects to the database, but also to control the possible, direct and

indirect, reads and writes of each Server Action being built in the application. To do

that, we intend to analyse all Server Action within the module, and for each one of them,

present to the developer its possible reads/writes directly and indirectly.

All the decisions made to narrow down the problem, such as addressing the Server

Actions and their Reads and Writes to the database, are strongly driven by the data

analyses presented in Section 4.2.3.

33

5

Implementation

In this chapter, we detail the implementation of our prototype, the algorithms used to

produce a prototype tool, along with the challenges faced during this work. We start by

presenting an overview of the implemented solution to address the problem and high-

lighting the desired goals. Following this overview, we also present the implementation

details, the choices that were made, and the results achieved from this implemented

work.

5.1 Overview

Aiming to solve the problem explained in Section 4.1, this section gives an overview of

the implemented solution. This work tackled a sub-problem of the exposed problem,

driven by the knowledge gathered from the performed analysis to the real-world OutSys-

tems applications code, as explained in Section 4.2. After narrowing down the problem

(Section 4), the goal of the solution was to find a way of previewing and controlling the

Server Actions side-effects (reads and writes to application database), in order to reduce

the feedback cycle that developers have during OutSystems application development.

To accomplish the desired goal, we implemented a PoC tool, that receives an Out-

Systems program (.oml file) as input, creates a cloned file from the input program and

transforms all its Server Actions in order to preview and control all of their side-effects

(writes) to the application database. In addition, the tool tracks all the possible reads of

each Server Action of the OutSystems program received as input that can be used for de-

pendencies control and visualization. Therefore, this allows to preview all side-effects to

the database (along with the reads) and anticipates the visualization of the Server Actions

logic (behavior).

5.1.1 The Server Actions Input/Output Parameters

The Server Actions in the OutSystems language may contain two types of parameters: In-

put Parameter and Output Parameter. Along with the parameters, a Server Action may

34

5.1. OVERVIEW

Figure 5.1: Service Studio: Example of a Server Action (AddNewEmployee). It inserts an
employee (received as input) into the database (Employee entity), and returns the tuple Id
where it was inserted.

also contain local variables. Figure 5.1 (box 1) gives an example of an action (AddNewEm-
ployee) that has an input parameter (InputData), output parameter (OutputData) and a

local variable (LocalVar).

Our tool takes the Server Actions of the .oml file received as input/source (an Out-

Systems program) and makes several transformations to them, with the main purpose

of enabling them to return all of their side-effects to the application database. In order

to accomplish that, an extra output parameter is added to each Server Action to track

their side-effects. Along with the database writes, the tool produces a data structure (a

file) with all entity names that each Server Action reads and/or writes directly and/or

indirectly. All these transformations performed on the Server Actions allow the develop-

ers to preview their effects/side-effects during development phase and thus reducing the

feedback loop they have when creating and changing them.

5.1.2 The Model API

An OutSystems model is represented in memory as an object graph whose entry-point

(the main object) is an instance of class ESpace, and is persisted as binary XML file. A

model’s XML representation is a serialization of the objects graph [15].

35

CHAPTER 5. IMPLEMENTATION

OutSystems’s costumers use Service Studio, the platform IDE, to design in a single

place all the aspects of their applications, including the user interfaces, business logic,

database models, and integration with external systems [16].

The Model API is an API (internal to OutSystems) used to manipulate the OutSystems

Model. It consists of a set of .Net Framework DLLs that provide a low level API to read,

create and change OutSystems Solutions, Applications and modules. The Model API

allows the automation of several operations that would otherwise be manually performed

in Service Studio and to manipulate an existing OutSystems applications code. This was

one of the reasons we chose the Model API to develop our tool.

Besides, the model API is a stable approach to develop the OLP tool1, as it works for

all versions of the Outsystems product. Other approaches that could be chosen to achieve

the goals of this work would involve interpretation or compilation techniques, by trying

to make the compilation/interpretation of the applications logic faster that it is actually.

However, choosing an interpretation or compilation approach would have its own

limitations, such as the dependency on the OutSystems product version, meaning that

the solution would have to change whenever modification were made to the OutSystems

interpreter/compiler.

5.1.3 Introductory Example

As explained above, the goal of this PoC tool (prototype) is to transform all Server Actions

of a given OutSystems module (.oml file), in order to preview and control their side-

effects2 and possible reads to the database3, by making them produce an extra output

parameter containing all the related information (about the side-effects). Along with the

extra parameter (per Server Action), a data structure is also created (per module) and it

lists all Server Actions of the module, in addition with the possible reads and writes that

they perform, directly and indirectly to the database.

As example, Figure 5.2 shows the result of transforming a Server Action, shown in

Figure 5.1. By looking at Figure 5.2, it shows how the nodes of the original Server Action

are changed (box 1) in order to capture its side-effects to the database and the addition of

the extra output parameter (box 2), named Ret_lp (Ret is short for Return and lp is short

for logic previewer), to propagate the Server Action’s side-effects to the database. Figure

5.3 shows the generated data structure (JSON format) to capture the possible direct and

indirect reads/writes to the database for all Server Actions present in the source module.

To better understand our solution, Figure 5.4 shows an example of the output resulting

from the AddNewEmployee call with the input shown in box 3 from Figure 5.4, after it is

transformed by our prototype. In case the execution of the AddNewEmployee ends with

no exceptions, Figure 5.4 (box 1) shows an example of the Server Action output, while

1The name we refer to our prototype tool.
2All Server Action’s side-effects performed directly on the database and calls to other Server Actions.
3All Server Action’s possible reads performed directly on the database and calls to other Server Actions.

36

5.1. OVERVIEW

Figure 5.2: Service Studio: Example of a Server Action (AddNewEmployee, presented in
Figure 5.1) after the transformations performed by the OLP tool.

Figure 5.3: Data structure produced by the OLP tool, applied to a module containing just
the AddNewEmployee Server Action (presented in Figure 5.1).

37

CHAPTER 5. IMPLEMENTATION

the box 2 shows us what would be a possible output if, for example, an exception like a

Database Exception happens. A very important aspect of our solution is that, in case of

exception, all the side-effects and reads to the application database that took place before

the exception are returned, along with the exception message and the exception type.

Notice that, if we execute the original AddNewEmployee with the same input as shown in

Figure 5.4 (box 3), the result would only be the tuple Id where the employee was inserted.

We now describe all the details of the implementation in the next sections of this chapter.

5.2 Implementation Details

Throughout this section, we aim to accurately describe the implementation details of the

PoC tool, the OutSystems Logic Previewer (OLP).

5.2.1 Cloning the Source Module

The process starts by cloning the module (.oml file) received as input. The cloning module

method (CloneESpace) is offered by the Model API and it creates a new module that is an

exact copy of the one received. Since this operation copies everything from the source .oml
file, this makes the operation to be one of the heaviest of the entire process4. All the next

operations of the process are performed on the new module created by the CloneESpace
operation.

All elements in the source module are copied to the new module (including UI ele-

ments, Client Actions, etc) to enable the developer to test all the functionalities provided

by the module, along with the ones provided by our tool.

5.2.2 Analysing Each Server Action

After cloning the module and thus creating the new one (a copy of the input .oml file),

we start transforming the Server Actions of the new module (all next operations, are

performed in the new created/cloned module).

Having available the new module, we start by analysing each Server Action contained

in the module. For each Server Action, we first see if the Server Action has any side-

effects to the application database (writes to database). To know if a Server Action writes

to database, all its nodes with datatype IExecuteServerActionNode (see Figure 5.5) must

be analysed until it is found one that writes directly or indirectly to the database. If the

Server Action does not contain any of these nodes, it does not write to the database. If

it is the case that the Server Action has any of these nodes, the first thing we have to ask

is: is this node’s Action a Server Action? In case it is, this process is applied recursively.

If the node’s Action is not a Server Action, then we have to see if it has an Entity Action

signature. If it has an Entity Action signature, we have to confirm if the name of the

4Some optimizations are presented later on this work.

38

5.2. IMPLEMENTATION DETAILS

Figure 5.4: JSONs produced (boxes 1 and 2) by the execution of the AddNewEmployee
Server Action (using a REST API call with the input shown in box 3) after the transforma-
tions performed by the OLP tool (presented in Figure 5.2).

39

CHAPTER 5. IMPLEMENTATION

Figure 5.5: Service Studio: Example of Execute Server Action nodes (box 1). A kind of
OutSystems node that executes an OutSystems Server Action contained in its property
Action (box 3).

node’s Action starts with Delete/Create/Update. If the node’s Action does not start with

any of these words or if it has not an Entity Action signature (Figure 5.6 shows an example

of an Entity Action), it means the node does not write to the database. Finally, if no Server

Action nodes write to the database, the Server Action does not have side-effects to the

database.

Continuing the process of transforming each Server Action in the module, as seen

above, we have to see if the Server Action has side-effects to the database. Our solution

takes two different approaches depending on whether the Server Action writes to database

or not.

5.2.3 Server Actions With Side-effects to the Database

If the Server Action performs any write to the database, we have to apply several trans-

formations to it, in order to make it return all its direct or indirect side-effects to the

database.

40

5.2. IMPLEMENTATION DETAILS

Figure 5.6: Service Studio: Example of an Execute Server Action node (box 1) that has an
Entity Action signature. Entity Action is a kind of OutSystems Action that is a child of
(belongs to) an OutSystems Entity (box 2).

5.2.3.1 Extra Output Parameter

The process starts by adding an extra output parameter named Ret_lp to the Server Action,

as seen before. The Ret_lp is an OutSystems Structure (is a custom datatype that can be

used in a module) containing the following attributes (Figure 5.7):

• Success - a Boolean datatype attribute that returns true if the Server Action finished

its execution without errors (Exceptions) or false if any Exception is raised by the

Server Action.

• ExceptionMessage - a Text datatype attribute that in case any Exception is thrown,

it returns the Exception message. If no Exception occurs, this attribute is empty.

• ExceptionType - a Text datatype attribute and it is used to return the Exception

type (as text) in case any Exception is thrown. If no Exception occurs then it is

empty.

• SideEffects - a Record List datatype attribute that is responsible for returning all

side-effects to the database of the Server Action. The Record contains the following

attributes:

41

CHAPTER 5. IMPLEMENTATION

Figure 5.7: Service Studio: Example of the Ret_lp output parameter. This parameter has
a Structure datatype and all its attributes can be seen in this image.

– EntityName - a Text datatype attribute containing the name of the entity used

by the Server Action operation (that writes to database).

– OperationKind - a Text datatype attribute that returns the kind of operation

performed on the database, which can be: Create, Update or Delete.

– TupleId - a Long Integer datatype that stores the tuple id in the entity (database)

used by the Server Action operation.

– ChangedAttributes - a Record List attribute responsible for returning all the

attributes changed (inserted or updated) by the Insert and Update operations

to the database. For each changed attribute, this list contains:

∗ Name - a Text datatype attribute containing the name of the changed

attribute.

∗ Type - a Text datatype attribute containing the type of the changed at-

tribute (as text).

∗ Value - it is also a Text datatype attribute that contains the value of the

changed attribute (after the insertion or update).

42

5.2. IMPLEMENTATION DETAILS

Instead of creating the Ret_lp Structure everytime, we first see if it already exists in the

new module, thus avoiding the repeated creation every and each time this process runs.

5.2.3.2 Execute Server Action Nodes

After adding the Ret_lp output parameter, we have to deal with the Server Action nodes.

The first kind of nodes that this solution starts tackling are the Execute Server Action

nodes. As seen in Figure 5.5, the Execute Server Action nodes are a kind of OutSystems

node that execute a Server Action specified in their properties Action. To track all the

Server Action side-effects to the database, all its Execute Server Action nodes must be

properly handled. Therefore, this brings us to one of the main aspects of the prototype

implementation: the transformations of the Actions held by the Execute Server Action

nodes within the Server Action.

For each Action held by these nodes inside the Server Action being transformed, we

must see if this Action has side-effects to the database. At this point, we already have

the information about whether an Action has side-effects or not (using the algorithm

explained in Section 5.2.2) and we just have to query the structure to obtain the result.

Two different approaches take place, depending on whether the node writes to database

or not.

Thus, if the Execute Server Action node (its Action) has side-effects to the database,

then we have to check if the Action held by the node (in its property named Action) is

an Entity Action or a Server Action (these are the only two types of OutSystems Actions

that can simultaneously be held on the Action property of the Execute Server Action node

and write to the database). In case the Action held by the node is a Server Action, then

this algorithm is applied recursively and it returns the transformed Server Action. When

this algorithm returns, the transformed Server Action becomes the new Action held on

the property Action of the node (meaning that the node will now call the transformed

Action).

On other hand, if the Action held by the node is an Entity Action, we have to create a

new Server Action that is a wrapper5 of the Entity Action.

5.2.3.3 Wrapper Creation

As seen above, if the Action held by the Execute Server Action node has side-effects to the

database and it is an Entity Action, we then have to create a new Server Action in order

to get and return all the side-effects that the Action performs to the database. In case of

insert or update operations to the database, if it is, for example, the Employee entity, the

Entity Actions may be: CreateEmployee, UpdateEmployee, CreateOrUpdateEmployee, and

others which names start with Create or Update.

5Is the name that we call a Server Action (in this process) created for addressing the side-effects to the
database of an Entity Action.

43

CHAPTER 5. IMPLEMENTATION

Figure 5.8: Example of the transformations performed on an Execute Server Action node
by the OLP tool, by changing the Entity Action held on the node’s Action (box 1) to its
wrapper (box 2). The CreateEmployee Entity Action, receives an employee as input and
inserts it into the database (Employee entity).

To better understand this transformation, Figure 5.8 presents an example of the

change of the node’s Action from Entity Action (box 1) to its wrapper. To create the

Entity Action wrapper, we first create a Server Action with the same name as the Entity

Action and add the word _lp to the end of the name (as also seen in Figure 5.8).

Figure 5.9 shows the created parameters, in the particular case of the example of the

CreateEmployee Entity Action. All the existing inputs in the Entity Action are also created

in the wrapper. The CreateEmployee receives an employee and adds it to the database

(Employee entity). Therefore, the employee is also received as input by the wrapper (box 1).

Next, the same applies to the outputs, as can also be seen in box 2 of Figure. CreateEm-
ployee returns the Id where it inserted the employee, so, the wrapper also produce an Id as

output parameter.

The next parameter is very similar to one that we discussed above in this chapter, and

it has the same name, the Ret_lp (box 3). It has the same goals as the one used in the

transformed Server Action, but instead of having a Record list (SideEffects) to return the

side-effects to the database, it has a single Record also named SideEffects. This is because

an Entity Action can only write to a single entity. The final one is a local variable named

ChangeSingleAttr (box 4) that is used to address the aspects of the changed attributes in

the insert and update operations.

44

5.2. IMPLEMENTATION DETAILS

Figure 5.9: Service Studio: The parameters of the CreateEmployee wrapper (CreateEm-
ployee_lp).

5.2.3.4 Wrapper Logic

Once the wrapper and all its parameters are created, we have to build its logic by adding

the necessary nodes. Figure 5.10 shows an example of how the content of the wrapper is

created for the Entity Action CreateEmployee. First, a Start node is added to the wrapper

to initialize the process as shown in box 1 of Figure 5.10. Connected to the Start node, an

Execute Server Action node is also created. The property Action of the node is set to the

same Entity Action being wrapped (the Entity Action that the wrapper is being built for)

as shown in box 2 of Figure 5.10. Then, connected to the Execute Server Action node, an

Assign node (box 3) is created to assign:

• The outputs of the Entity Action to the outputs of the wrapper.

• The value of Success (within the Ret_lp parameter) to True.

• The EntityName to the name of the entity being written. (Employee, in the particular

example shown in Figure 5.10)

• The OperationKind to the kind of the operation being performed on the Entity Action

(Create, also in the particular example shown in Figure 5.10).

• The TupleId to the Id returned by the Entity Action (shown in box 2 of Figure 5.10).

After the Creation of the Assign node above, this process might add more nodes to the

wrapper, depending on the operation being performed by the wrapped Entity Action. In

45

CHAPTER 5. IMPLEMENTATION

Figure 5.10: Service Studio: The wrapper (CreateEmployee_lp) for the Entity Action Cre-
ateEmployee.

case of a Delete operation, there is no need of adding more nodes to the wrapper but the

End node (see example in box 5 of Figure 5.10).

Thus, in case of the example presented in Figure 5.10, if it was the DeleteEmployee
Entity Action instead of the one shown in box 2, then this process of creating a wrapper

for the Entity Action would be finished (by connecting the node in box 3 to the one in box

5 and not adding the nodes between these two boxes). For better understanding, Figure

5.11 shows a wrapper for the DeleteEmployee Entity Action (box 2).

Nonetheless, if the operation performed by the Entity Action is an insert or an Update,

that are some aspects related to the inputs to address. As said before, in case of the

insert and update operations, we have to return the changed attributes resulting from

the operation performed by the Entity Action to the database. That is why, in these cases,

we also have to assign to the ChangedAttributes Record List (in Ret_lp.Side-effects), the

46

5.2. IMPLEMENTATION DETAILS

Figure 5.11: Service Studio: The wrapper for the DeleteEmployee Entity Action (box 2).
The DeleteEmployee receives an employee Id and deletes it from the Employee entity.

properties of each attribute belonging to the input of the Entity Action being wrapped.

For each attribute, the following properties must be assigned:

• The name of the attribute.

• The runtime type of the attribute.

• The value of the attribute (received as input).

If we see the example shown in Figure 5.10, we notice that there are five pairs of <Assign,

ListAppend> (the first one in box 4 of the figure). Each pair represents the addition of

the properties of each attribute to the ChangedAttributes Record List (five pairs for five

attributes: box 1 of Figure 5.1 presents the attributes).

Therefore, this concludes the process of transforming an Action held by an Execute

Server Action node. This process, is applied to each Execute Server Action node within

the Server Action being processed. In the whole process of transforming each Server

Action of the module, we are at the stage where we already treated all the Execute Server

Action nodes of the Server Action (being transformed).

47

CHAPTER 5. IMPLEMENTATION

Figure 5.12: Service Studio: Example of a Server Action (AddNewEmployee, presented in
Figure 5.1) after the transformations performed by the OLP tool.

5.2.3.5 Adding Extra Nodes

Continuing the process, when the algorithm that deals with the Execute Server Action

nodes is applied, for each node it returns its transformed one. In case the Action held by

the Execute Server Action node is a Server Action, then the whole algorithm is applied

recursively and it returns the transformed Server Action. If it is an Entity Action, the

algorithm returns its wrapper. The property Action of each Execute Server Action node

within the Server Action being processed is set to its transformed one (an example is

shown in box 5 of Figure 5.12, where the Action is changed from the CreateEmployee Entity

Action to its wrapper). To propagate the side-effects to the database of each transformed

Action (Inside the Execute Server Action nodes), this solution makes other additional

changes to the original Server Action logic as seen in the example shown in Figure 5.12.

After changing the Action of each Execute Server Action node (the ones that have side-

effects to the database) to the corresponding transformed one, an extra Execute Server

Action node is created and connected to each node (box 1). The Action of this new node

depends on the new transformed Action held by the previous Execute Server Action node.

48

5.2. IMPLEMENTATION DETAILS

If the new Action executed by the Execute Server Action node (after the transformations)

is a wrapper (meaning that the previous Action was an Entity Action) then the Action of

this new Execute Server Action node is a ListAppend6. It is used by this process to add

the side-effects (a Record) received from the transformed Entity Action (an example in

boxes 5 and 1, Figure 5.12) to the list of side-effects of the current Server Action being

transformed. Now, if the new Action (after the transformations) is a transformed Server

Action, then the Action of the new Execute Server Action is a ListAppendAll7. It is used

to add all side-effects (a Record List) received from the transformed Action to the Server

Action being transformed (see box 1 in the example shown in Figure 5.13).

After transforming the Actions of the Execute Server Action nodes that has side-effects

to the database and adding the received side-effects from their executions to the Server

Action being processed, the next step is to assign the information about the success of

each executed Action to the Server Action (see example in box 2 of Figure 5.12).

Next, the process creates an If node to check the success of the executed Action (box

3 of Figure 5.12). If the executed Action successfully finished, then the flow continues as

is in the original logic of the Server Action. If an Exception occurred, then we terminate

the execution by adding an End node. All side-effects to the databases performed before

the Exception are returned. The Server Action also returns the Exception message and

type, in case it occurred in the executed Action.

5.2.3.6 Handling Exceptions in the Wrappers

One of the key points of this solution is that, in case of Exceptions during the execution

of the transformed Server Actions, the execution is not interrupted with an error, and

all side-effects performed on the application database until the Exception is thrown are

returned.

The approach we followed to handle Exceptions in Server Actions is heavily inspired

by functional error handling, more precisely the Either type. Either captures details

about the outcome that has taken place, in the context of an operation with two possible

outcomes. By convention, the two possible outcomes are indicated as Left and Right. The

most common use of Either is to represent the outcome of an operation that may fail, in

which case Left is used to indicate failure and Right to indicate success [4].

By looking at box 3 of Figure 5.12, we notice that the value of Success is being checked.

If it is true (Right in the Either type) then the flow continues normally and if it is false (Left
in the Either type) the flow is ended. The values associated with the possible outcomes

of the CreateEmployee_lp are received by the AddNewEmployee Server Action in box 2 of

the same figure. To accomplish this, some transformations must be applied to the logic

of the Server Actions (only the ones that write to the database).

Starting by the wrapper for the Entity Actions, Figure 5.14 shows an example of the

6An OutSystems Server Action that is used to add an element to a list of that element type.
7An OutSystems Server Action that is used to add all elements from a source list to a target list with

49

CHAPTER 5. IMPLEMENTATION

Figure 5.13: Service Studio: Example of the ListAppendAll Action to add all side-effects
received from the execution of the AddNewEmploye Server Action (presented in Figure
5.1) to a transformed Action (AddAnother) by the OLP tool.

created Exception flow for all the wrappers. The flow consists of three nodes:

• The ExceptionHandler node - the Database Exception: this node represents the

handler for the Database Exception. In the wrappers we assume that the relevant

Exception that may be thrown is the Database Exception, because there is always

an Entity Action that is executed. If something goes wrong during the execution of

the Entity Action, the Exception is thrown and this node will certainly catch it.

• The Assign node: If a Database Exception is thrown, then this node is used to

assign:

– The value of Success to false.

– The value of ExceptionType to Database Exception.

– The value of ExceptionMessage to the message returned by the ExceptionHandler
node.

• The End node - this node terminates the flow.

same datatype.

50

5.2. IMPLEMENTATION DETAILS

Figure 5.14: Service Studio: Exception flow inside the wrapper of the DeleteEmployee
Entity Action.

5.2.3.7 Handling Exceptions in Server Actions

To address the aspects related to Exceptions during the execution of Server Actions, we

need to consider two node kinds: the Exception Handler node and the Raise Exception
node8. For each Raise Exception node in the Server Action being processed, this process

searches if there is any Exception Handler node with the same Exception (meaning there

is a Catch for the Exception that might be thrown by the Raise Exception node):

• If there is an Exception Handler node for the same Exception as the one thrown

by the Raise Exception node, then our solution changes the existing Exception flow.

An Assign node is added to the flow in order to make the Ret_lp return the aspects

related to the thrown Exception (Exception name and type). Figure 5.15 shows an

example of the transformations of a Server Action, where it can be seen the changes

performed to its Exception flow (box 3).

• If there is no Exception Handler node for the exact same Exception, our solution

searches for a parent Exception. In case an Exception Handler for a parent Exception

8An OutSystems node that throws an Exception held in its property named Exception.

51

CHAPTER 5. IMPLEMENTATION

Figure 5.15: Example of changing an existing Exception flow (box 3) in the AddNewEm-
ployee Server Action after the transformations performed by the OLP tool. In this example,
the AddNewEmployee (before the transformations) does not just throw a User Exception
(box 1), but also handles the Exception (box 2).

(of the Exception held by the Raise Exception node) exists, the algorithm explained

above is applied. For example, in Figure 5.15, if the Exception handler in box 2 did

not exist and if there was an Exception Handler for a User Exception, then the flow

started by the User Exception would be changed following the algorithm explained

above. This happens because the Exception held by the Exception Handler in box 2

is a child of User Exception.

• If there is neither an Exception Handler node for the exact same Exception nor a

parent Exception Handler, then our solution creates a new Exception flow. This

flow starts with an Exception Handler node for the raised Exception, followed by

an Assign node to make the Ret_lp return the details of the Exception. Finally, an

End node is added to terminate the process, as shown in Figure 5.16.

• If there is a Database Exception on the Server Action being transformed, then a

different approach is followed. Since Entity Actions inside Server Actions are sub-

stituted by their wrappers, if there is a Database Exception inside the Server Action

being transformed, all the wrappers of this Server Action will raise, in case of Ex-

ception, a specific Exception named DatabaseException_lp and the existing Database

52

5.2. IMPLEMENTATION DETAILS

Figure 5.16: Example of creating a new Exception flow (box 2) in the AddNewEmployee
Server Action after the transformations performed by the OLP tool. In this example, the
AddNewEmployee (before the transformations) throws a User Exception (EmployeeValida-
tionError) if the name of the received employee has less than 3 characters.

Figure 5.17: Example of changing an existing Database Exception flow in the AddNewEm-
ployee Server Action after the transformations performed by the OLP tool.

53

CHAPTER 5. IMPLEMENTATION

Figure 5.18: Service Studio: Example of an Entity Action (GetEmployee) that receives an
employee identifier and fetches the employee from the database (Employee entity).

Exception will also be changed to the DatabaseException_lp. Basically, this means

that the Database Exception is propagated to the wrappers. Figure 5.17 shows an

example of the transformations made to an existing Database Exception inside a

Server Action.

• AllException Handler node: If there is a Handler node for general Exceptions, then

our solution modifies the Exception flow (starting by the AllException node) in order

to propagate the side-effects to the database and the properties related to the thrown

Exception (same approach as the first point presented above).

5.2.4 Server Actions Without Side-effects to the Database

If it is the case that the Server Action does not write to the database, then our process

analyses its nodes to check about their possible direct and indirect reads. The algorithm

to address these nodes (explained below), is also applied to the nodes that do not have

side-effects, but are inside the Server Actions with side-effects to the database.

5.2.4.1 Execute Server Action Nodes

The process starts by analysing each Execute Server Action nodes within the Server Action.

For each Action held by each node that does not has side-effects to the database, we must

54

5.2. IMPLEMENTATION DETAILS

see if it is a Server Action or an Entity Action:

• In case it is a Server Action: This algorithm is applied recursively and all reads

performed by the executed/called (Server) Action are added to the indirect reads of

the Server Action being transformed by the OLP tool (are added to the JSON file).

• If it is an Entity Action: we see if the name of the Entity Action starts with Get, and

if it does, we add the name of the entity (parent of the Entity Action) to the direct

reads of the Server Action (see example in box 1 of Figure 5.18).

The same algorithm explained above for the reads is also applied to set the possible direct

and indirect writes to the database for each Server Action.

5.2.4.2 Aggregate Nodes

Finally, to conclude the whole process of transforming the Server Actions in the module,

we have to address Aggregate nodes. Figure 5.18 shows an example of an Aggregate node

(box 2) that fetches some data from the Employee entity. Our solution searches for all the

Aggregate nodes within the Server Actions, and in case any is found, the name of the

entity being used by the node is also added to the direct reads of the Server Action.

5.2.5 Possible Reads and Writes

Besides the transformations of the Server Actions and their nodes, a JSON file is created

to list all Server Actions in the original module and their direct and indirect reads/writes

that might be performed to the database. The file is a JSON list containing JSON objects9

with the following keys (see example in Figure 5.3):

• Name: the name of the Server Action.

• Direct_Writes: A list of entity names that the Server Action can write directly (the

entities that are parents of the Entity Actions within the Server Action). If there

is no Entity Action (that writes to database) in the Server Action, then this list is

empty.

• Indirect_Writes: A list of entity names that the Server Action can write indirectly

(entities written by other Server Actions that are executed inside the Server Action).

If the Server Action does not execute/call any other Server Action (that writes to

database), then this list is empty.

• Direct_Reads: A list of entity names that the Server Action can read directly.

• Indirect_Reads: A list of entity names that the Server Action can read indirectly.

9One JSON object per Server Action.

55

CHAPTER 5. IMPLEMENTATION

During the transformations of each Server Action, our solution adds to the JSON file, the

name of the Server Action and its possible direct and indirect writes. This information

within the JSON file is very important for the OutSystems developer to understand the

dependencies between each Server Action and the database Entities. It also allows a static

analysis of the possible reads and writes to the database that can be very useful when

previewing and testing the Server Actions logic.

This concludes the implementation of the prototype for our solution, the OLP tool. It

is very important to mention that the whole process deals with the relevant nodes just

once (one iteration). Some data structures such as Dictionaries and Hash Sets were used,

so each node is processed just once.

5.3 Example of Transformations Performed by the OLP Tool

To consolidate all aspects of the process explained in Section 5.2, in this section we present

a simple example of the transformation of three Server Actions within a module by our

OLP tool. The only entity in the module database is the Employee entity that has the

following attributes:

• Id: a Long Integer attribute that is the entity primary key.

• Name: a Text attribute that contains the name of the employee.

• Email: a Text attribute to store the employee email.

• JobTitle: a Text attribute containing the job title of the employee.

• IsManager a Boolean attribute to store if the employee is a manager (true) or not

(false).

• CreatedAt: a Time attribute to save the exact time the employee was added to the

database.

Figure 5.19 presents the first Server Action named GetAnEmployee. This Server Action

receives an employee identifier and fetches the corresponding employee in the database.

Box 2 of the image shows the three Server Actions that are considered in this example.

Within the module, we also have the AddNewEmployee, that receives an employee as input.

If the name of the employee has more than 2 characters, then it inserts the employee into

the database, fetches a list of employees from the database and finishes by returning the

tuple id where the employee were inserted. If the name has less than 3 characters, a User

Exception is thrown by the Server Action. At last, we have the GetThenAdd Server Action.

This Server Action executes the GetAnEmployee Server Action, changes the employee re-

turned by the executed Action and finally executes the AddNewEmployee Server Action to

add the changed employee to the database.

56

5.3. EXAMPLE OF TRANSFORMATIONS PERFORMED BY THE OLP TOOL

Figure 5.19: Service Studio: Example of a Server Action, the GetAnEmployee.

At this point, all the Server Actions in the module are presented and their logic are

explained, so now we can see their transformations performed by our tool. The GetAnEm-
ployee Server Action keeps the same (without transformation) as it does not have any

side-effects to the database. The only Execute Server Action node it has is the GetEm-
ployee Entity Action (presented in Figure 5.19, box 1) and it does not write to the database.

Figure 5.20 shows all the transformation performed to the AddNewEmployee Server

Action by our tool: the transformation of the Execute Server Action node (box 2) to its

wrapper (box 4), the extra nodes added to propagate the side-effects to the database

(boxes 5, 7, 8 and 9) and the Exception flow added to the transformed Server Action (box

6) to address the Raise Exception node in the original Server Action (box 1). The Ret_lp is

also added to the transformed Server Action to return all the writes to the database (see

example in box 2 of Figure 5.21). Figure 5.10 shows the wrapper for the CreateEmployee
Entity Action, named CreateEmployee_lp. The figure also shows the created nodes to

address the side-effects to the database (boxes 2 and 3) and the Exception flow created to

handle a Database Exception in case any is thrown (box 6).

To deal with the GetThenAdd Server Action, Figure 5.21 presents the transformations

performed by the OLP tool. We can notice the additional nodes added to the Server

Action to propagate the side-effects to the database (box 1). The Execute Server Action

node named (AddNewEmployee) keeps with the same name after the transformation but

the (Server) Action (within the node) is transformed by our tool. In box 2, it can be seen

57

CHAPTER 5. IMPLEMENTATION

Figure 5.20: Service Studio: Example of the transformations performed to the AddNewEm-
ployee by the OLP tool.

Figure 5.21: Service Studio: Example of the transformations performed to the GetThenAdd
by the OLP tool.

58

5.3. EXAMPLE OF TRANSFORMATIONS PERFORMED BY THE OLP TOOL

Figure 5.22: Data structure produced by the OLP tool, applied to the module with the
three Server Actions.

the Ret_lp added to the Server Action and its structure.

Last but no least, Figure 5.22 presents the data structure (JSON format) produced by

the OLP tool, applied to the module. Box 1 shows that AddNewEmployee reads and writes

the Employee entity directly. By looking at box 2, we see that GetAnEmployee only reads

(directly) the Employee entity and finally, box 3 shows that GetThenAdd Server Action

reads and writes the Employee entity indirectly (because this server Action executes/calls

the other two Server Actions).

59

6

Evaluation

In this chapter, we aim to evaluate our approach considering its performance when ap-

plied to different modules. To better understand the performance of our tool when ap-

plied to real-world OutSystems code, we made some analyses using one of the datasets
introduced in Section 4.2, the actionsCount.csv. The knowledge obtained from these analy-

ses was extremely important to put together the samples used to evaluate the performance

of our solution.

6.1 Analysis Overview

The OLP tool was built using the Model API, therefore, the performance of our tool also

depends on the performance of some features provided by the Model API. For that reason,

we need to perform an evaluation taking into account the features provided by the Model

API, meaning that they also need to be evaluated.

Throughout this chapter, we analyse the results of a performance evaluation applied to

the OLP tool, using some samples, precisely built after the knowledge obtained from the

actionsCount.csv datasets analysis. At this point, it is known that the OLP tool transforms

the Server Actions within an module, to make them return all their side-effects to the

database and also analyse them to produce all their possible direct/indirect reads and

writes.

However, before the transformations of the Server Actions, the module (that contains

the Server Actions) must be cloned by the Model API, and all transformations are applied

to the clone. Hence, we must evaluate several operations that compose the solution, to

understand which parts are suitable for an excellent solution and which ones could be

enhanced. In this chapter we present all the details of the execution applied to some

samples, where we can compare the different parts of the process.

60

6.2. THE OLP TOOL EVALUATION

Figure 6.1: Distribution of Server Actions per module in OutSystems applications (ob-
tained from actionsCount.csv).

6.2 The OLP Tool Evaluation

Before evaluating the performance of our solution, we first did some analyses using the

actionsCount.csv dataset with the main purpose of understanding how the Server Actions

are distributed in the OutSystems applications code. Knowing this, it would be very

important when putting together the samples (modules) that are going to be used to

evaluate the OLP tool.

Figure 6.1 shows the distribution of the Server Actions in the OutSystems application,

according to the data in the actionCount.csv dataset. We can see that 60% of the Out-

Systems modules have less than 7 Server Actions, 88% have less than 31 Server Actions

and only 12% have more than 30 Server Actions. We used the knowledge gathered by

these data to built our samples and to test the performance of our solution. We also used

the information gathered in Section 4.2, mainly the information about the Server Action

nodes presented in Figure 4.4. These analyses were done with the main goal of creating

samples that could represent real-word OutSystems code, therefore evaluating the OLP

tool using these samples.

6.2.1 Performance Results

In this section we present and discuss the performance results of our tool. The results

were obtained using a computer running Windows 10 operating system, equipped with

an Intel(R) Core(TM) i5-8350U - 1.70GHz and 16GB of RAM.

61

CHAPTER 6. EVALUATION

Module Size
(KB)

Number of
Server Actions

Number of
Execution

Server Action
Nodes

Number of
Exception

Nodes

Module1 123 1 2 0
Module2 145 4 6 1
Module3 174 6 18 3
Module4 221 15 54 40
Module5 524 31 124 80

Table 6.1: The modules used to evaluate the OLP tool performance.

Table 6.1 presents a description of the modules used to test the OLP tool. Five different

samples were used to benchmark the solution. All the modules are different in size,

in the number of containing Server Actions and in the number of relevant nodes for

our approach (such as Execute Server Action nodes, Exception Handler nodes and Raise

Exception nodes). The modules also differ in the quantity of screens, Client Actions, among

others, that help to justify the different sizes. They were added to the samples with the

main goal of evaluating the Clone operation. All the samples were built taking into

consideration the analysis performed to the datasets mentioned before.

6.2.1.1 Benchmarks

Table 6.2 shows the results obtained by executing our tool with the modules presented in

Table 6.1. To obtain each execution time presented in this table, we calculated the average

of thirty execution time values (and their corresponding standard deviations). Therefore,

by looking at the average execution time of the model service loading (column 3), we

notice that it is one of the longest process in our solution (the longest in these samples).

The Model API needs, each time we run our solution, to load a service (model service),

which gives us access to the OutSystems model. But it is a long process, that takes in

average 5.38 seconds to get ready for use.

Module Size
Increase (%)

Service Load
Execution

Time (seconds)

Module
Cloning

Execution
Time (seconds)

Transformation
Execution

Time (seconds)

Module1 3.25 5.38 (σ = 0.22) 1.72 (σ = 0.33) 0.78 (σ = 0.18)
Module2 6.90 5.38 (σ = 0.22) 2.09 (σ = 0.10) 0.80 (σ = 0.07)
Module3 16.67 5.38 (σ = 0.22) 2.33 (σ = 0.13) 1.23 (σ = 0.06)
Module4 23.53 5.38 (σ = 0.22) 2.51 (σ = 0.15) 2.20 (σ = 0.11)
Module5 12.21 5.38 (σ = 0.22) 4.12 (σ = 0.27) 2.80 (σ = 0.16)

Table 6.2: Detailed execution time of the OLP tool applied to the modules presented in
Table 6.1.

Analysing the process of cloning each module (column 4), we see that, for modules

62

6.2. THE OLP TOOL EVALUATION

that do not have much data to clone, the process can have a good average performance,

such as the module 1. The average execution time for this module is not so high, but

in order to add our solution to the OutSystems development environment, this process

of cloning a module would have to be enhanced (or replaced). We also notice that, as

the size of the modules get bigger, the average cloning time significantly increases. The

average cloning time strongly depends on the size of the module being cloned, and for

wide modules, this process would need optimization.

After cloning the module, we must analyse the most important part of our solution:

the Server Actions transformations (column 5). By looking to the average time of the

Server Actions transformations, we notice that, for modules with up to 7 Server Actions,

the process is fast (maximum of 1.23 seconds on average). For modules with about 30

Server Actions, the time increases to an average of 2.80 seconds.

Nonetheless, as presented by Figure 6.1, 60% of the OutSystems modules have less

than 7 Server Actions, meaning that, in 60% of cases the average execution time of the

transformations is close to values between 0.78 and 1.23 seconds. In approximately 28%

of cases (modules that have between 7 and 30 Server Actions) the average execution time

of the transformations is close to values between 1.23 and 2.8 seconds.

These results show that this part of the solution has the best performance in the whole

process. If we take a closer look to the average execution time of the transformations

applied to the module 4 and 5 (column 5 of Table 6.2), we see that the difference between

their execution times is only 0.6 seconds, but the difference in the number of Server

Actions is 16. This is accomplished because our solution, not only does not make any

alteration to the Server Actions with no side-effects to the database, but also evaluates

each Server Action once and the wrappers are reused for the same Entity Actions.

The publishing time has to be added to the total execution time of each module to

allow developers to test their code. When the modules are transformed by the OLP tool,

their sizes are increased, as can be seen in the second column of Table 6.2. We noticed that,

in most cases, the increase is very small, meaning that the publish time of the transformed

module is very similar to the original one, as it depends mainly on the module size.

Still on the growth rate of the modules (presented in Table 6.2), we can notice that

module 4 has a larger growth rate than module 5, despite the latter having a larger size.

This happens for two reasons:

• Our solution reuses wrappers that are already created for the same Entity Actions

within the module.

• New Exceptions flows are only created into the transformed Server Actions if there

are no Exception handlers already in the Server Actions (that match the raised

Exceptions).

63

CHAPTER 6. EVALUATION

Module Size
Increase (%)

Service Load
Execution

Time (seconds)

Module
Cloning

Execution
Time (seconds)

Transformation
Execution

Time (seconds)

Module1 3.57 5.38 (σ = 0.22) 1.52 (σ = 0.07) 0.66 (σ = 0.02)
Module2 6.09 5.38 (σ = 0.22) 1.55 (σ = 0.03) 0.79 (σ = 0.04)
Module3 23.20 5.38 (σ = 0.22) 1.73 (σ = 0.03) 1.31 (σ = 0.05)
Module4 35.29 5.38 (σ = 0.22) 1.77 (σ = 0.03) 2.22 (σ = 0.05)
Module5 35.27 5.38 (σ = 0.22) 1.98 (σ = 0.13) 2.63 (σ = 0.05)

Table 6.3: Detailed execution time of the OLP tool applied to the modules presented in
Table 6.1, with only Server Actions within each module.

6.2.1.2 Modules With Only Server Actions

To understand the performance results of our tool when applied to modules containing

only Server Actions, we put together five new samples resulting from deleting everything

from the modules presented in 6.1 but their Server Actions. The new modules has the

following sizes: Module1: 112 KB, Module2: 115 KB, Module3: 125 KB, Module4: 153

KB, Module5: 207 KB.

Table 6.3 shows the execution times obtained after running our tool using the new

modules above. The size growth rate is now higher in the bigger modules (3, 4 and 5)

because they have more Server Actions. However, the sizes of these modules are much

smaller in comparison to the modules in Table 6.2.

The execution time of the Server Action transformations within these new modules

(column 5) are very similar to the previous modules, as the Server Actions are targets

for our tool. Therefore, we notice that the size of the modules does not affect these

transformations.

In relation to the module cloning (column 4), we see that these values are much lower

when comparing with the values from Table 6.2. This is because the modules used for

this new analysis are much smaller as they only contain Server Actions. For that reason,

if OutSystems developers use our tool on the early stages of the modules building or if

they decide to first build the applications logic, they can preview their applications logic

much faster, because the modules cloning will be faster.

All the performed analyses had great value to understand, not just the performance of

our tool, but also to have better knowledge of how OutSystems applications code is built.

Knowing the patterns of the real-world OutSystems code helped us design this solution

and understand which parts are well designed and which could be enhanced.

6.3 Discussion

As seen in the Section 6.2.1, our solution has some processes that could be enhanced in

order to present a much optimized version of the OLP tool and make the feedback loop

64

6.3. DISCUSSION

during development even shorter. We aim to highlight some improvements that could be

made to the solution, and were not implemented due to time constraints.

The first part identified was the model service, which takes an average of 5.38 sec-

onds each time the process clones and transforms a module. This cost can be (almost)

eliminated if, during the OutSystems development, this service remains active, instead of

loading everytime. If this improvement was made, the developer would wait 5.38 seconds

(on average) only when the process was run for the first time.

Regarding the module cloning, some improvements could also be made. To enhance

this part of the process, we could take into account that, usually during the development

process, developers are constantly making minor code changes and they want to preview

the effects of the logic. This means that, in case the developer does not change anything in

module but the Server Actions, we could just clone the Server Actions that were changed

and use the previously cloned module. Thus, we would have to clone the whole module

only at the first time we run the OLP tool and whenever the developer makes any changes

to the other parts of the module apart from the Server Actions.

We can see the that the values for the module cloning shown in Table 6.3 are much

lower when compared with the ones of Table 6.2. That happens because our tool is

cloning modules containing only Server Actions. If we copied to the already cloned

module (cloned initially) only Server Actions that were modified by the developer, we

could save more time than shown in Table 6.3.

65

7

Conclusions

In this dissertation we presented the logic visualization in the OutSystems environment.

They were explained in detail and their key points and flaws were highlighted. We

saw that many approaches used during the OutSystems development phase to visualize

logic are strongly related with testing techniques, but we also saw that they have several

limitations that make the feedback loop that developers have when writing their logic too

long.

To better understand and refine the problem, we used some datasets containing code

used by the OutSystems factories, to understand how the logic is distributed through their

applications. To accomplish that, we made some analyses to narrow down the problem

and to project our solution.

Knowing where the problem was concentrated and what were the key aspects, we

started projecting our PoC prototype, the OLP tool. Our solution was built with the

main goal of allowing the developers at OutSystems to preview the effect/side-effects of

their logic during development. To accomplish that, we implemented a prototype that

is capable of transforming all Server Actions within a module to make them return all

their side-effects to the database. Besides that, our tool gives the developer access to all

possible reads and writes (directly and indirectly) that each Server Action in the module

being built performs to the database. By building this tool, we implemented the bases

to preview and control all the side-effects performed to the database, along with the

database dependencies between Server Actions.

Finally, the implemented tool was submitted to an evaluation, aiming to obtain the

results of its performance when applied to real-world application code. To achieve these

results, some samples (modules) were built driven by the data obtained during the analy-

ses performed to the datasets. This evaluation was crucial to understand the performance

of the prototype and to spot some aspects that can be enhanced. The goals of this dis-

sertation were achieved, as we enable the OutSystems developers to preview and control

the side-effects to the database of the logic, thus reducing, most of the time, the feedback

loop they have during development.

66

7.1. OUTCOMES

7.1 Outcomes

One of the key contributions produced by this work are the bases provided to preview

and control the side-effects of most of the logic (the Server Actions) within the application

being developed. This is achieved by the PoC tool implemented that is able to transform

all the Server Actions within a module, making them return all their side-effects to the

database and produce all the reads and writes dependencies to database of each Server

Action.

A key aspect of the implemented solution is that it can also be used aside with other

techniques to have clearer preview of the applications logic. For example, a testing

technique can transform a module and then test it using its own approach. The advantage

would be that, by testing the transformed module, the developer could visualize all side-

effects of the logic being tested. This would reduce the number of required tests and

would increase the confidence level of the logic correctness.

Another great contribution provided by this work is a broad and detailed analysis

of the OutSystems applications code. The analyses were not only important to narrow

down the problem and to project the solution, but they were also essential to understand

several aspects of the OutSystems applications code, such as development patterns, logic

distributions, application architecture, among others. These analyses were actively used

during the first three quarters of 2021 by the R&D teams (OutSystems engineering team).

7.2 Future Work

Despite the fact that the main goal of this work was achieved, there are still aspects that

need to be improved. We have the following points for a future work, that were not

implemented due to the time allocated for this work:

• Integration in OutSystems development process (Service Studio): we consider this

as the main aspect to accomplish in a future work. By adding our solution to

Service Studio, we can for example, provide a feature where the developer inserts

some inputs and the logic being written would be tested using the given inputs,

and finally the results would be shown to the developer somewhere in the Service

Studio. This would improve and finalize the use of our work during the Outsystems

development phase.

• Server Actions depending on more than one module: as seen before, the solution

was implemented to deal with Server Actions that only depend on a single module.

Despite the fact that our solution represents most of the cases in the OutSystems

application, it can be extended by dealing with the rest of the Server Actions.

• The Advanced SQL nodes: The Server Actions can have another type of node that

can read or write to the database: the Advanced SQL nodes. This kind of OutSystems

67

CHAPTER 7. CONCLUSIONS

node performs an SQL [57] query to the application database. Although the CRUD

operations are more often executed by the Entity Actions and Aggregates nodes,

adding this node helps with the solution completeness.

• Enhance the model service loading and Clone operation: Loading the model service

each time the Server Actions are about to be transformed is a heavy process, so this

can be improved by keeping the model service active during development. Also,

the cloning operation can take too much time, especially when the modules being

cloned are relatively large.

• Support for Server Actions with database writes inside OutSystems Expressions.

• Wrappers for services, such as REST endpoints, SOAP, etc.

• Usability tests: After integrating the solution into Service Studio, it would be very

important to evaluate the solution with some users, to check the details of the UI

design, development process, among other relevant aspects.

68

Bibliography

[1] P. Adragna. “Software debugging techniques”. In: Inverted CERN School of Com-
puting, iCSC 2005 and iCSC 2006 - Proceedings (2008), pp. 71–86 (cit. on pp. 20,

21).

[2] K. Beck. Test Driven Development: By Example. USA: Addison-Wesley Longman

Publishing Co., Inc., 2002. isbn: 0321146530 (cit. on p. 23).

[3] A. Bertolino and E. Marchetti. “A Brief Essay on Software Testing”. In: Area (2003),

pp. 1–14 (cit. on p. 11).

[4] E. Buonanno. Functional Programming in C#: How to write better C# code. Manning

Publications Co., 2018. Chap. 6. isbn: 9781617293955 (cit. on p. 49).

[5] M. Fowler. BroadStackTest. https://martinfowler.com/bliki/BroadStackTest.
html. (Accessed on 02/18/2021) (cit. on p. 14).

[6] M. Fowler. Domain-Oriented Observability. https://martinfowler.com/articles/

domain-oriented-observability.html. (Accessed on 02/12/2021) (cit. on p. 21).

[7] M. Fowler. Exploratory Testing. https://martinfowler.com/bliki/ExploratoryTesting.

html. (Accessed on 02/11/2021) (cit. on p. 19).

[8] M. Fowler. Integration Test. https://martinfowler.com/bliki/IntegrationTest.
html. (Accessed on 02/17/2021) (cit. on pp. 12, 13).

[9] M. Fowler. Test Driven Development. https : / / martinfowler . com / bliki /

TestDrivenDevelopment.html. (Accessed on 02/19/2021) (cit. on p. 23).

[10] M. Fowler. Testing Guide. https://martinfowler.com/testing/. (Accessed on

02/11/2021). Dec. 2019 (cit. on pp. 12, 14, 18).

[11] M. Fowler. The Practical Test Pyramid. https://martinfowler.com/articles/

practical-test-pyramid.html?ref=hackernoon.com. (Accessed on 02/16/2021)

(cit. on p. 23).

[12] M. Fowler. UnitTest. https://martinfowler.com/bliki/UnitTest.html. (Ac-

cessed on 02/17/2021) (cit. on pp. 12, 13).

69

https://martinfowler.com/bliki/BroadStackTest.html
https://martinfowler.com/bliki/BroadStackTest.html
https://martinfowler.com/articles/domain-oriented-observability.html
https://martinfowler.com/articles/domain-oriented-observability.html
https://martinfowler.com/bliki/ExploratoryTesting.html
https://martinfowler.com/bliki/ExploratoryTesting.html
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/IntegrationTest.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/bliki/TestDrivenDevelopment.html
https://martinfowler.com/testing/
https://martinfowler.com/articles/practical-test-pyramid.html?ref=hackernoon.com
https://martinfowler.com/articles/practical-test-pyramid.html?ref=hackernoon.com
https://martinfowler.com/bliki/UnitTest.html

BIBLIOGRAPHY

[13] G. Guerra. “Testing support for the OutSystems Agile Platform”. In: (2010) (cit. on

p. 22).

[14] JSON. JSON. https://www.json.org/json-en.html. (Accessed on 10/20/2021)

(cit. on p. 26).

[15] H. Lourenço and R. Eugénio. “TrueChange ™ under the hood : how we check the

consistency of large models (almost) instantly”. In: (2019) (cit. on p. 35).

[16] H. Lourenço et al. “LUV is not the answer : Continuous delivery of a model driven

development platform”. In: (2020) (cit. on p. 36).

[17] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University

Lisbon. 2021. url: https://github.com/joaomlourenco/novathesis/raw/

master/template.pdf (cit. on p. ii).

[18] R. Marvin. OutSystems Review | PCMag. https://www.pcmag.com/reviews/

outsystems. (Accessed on 02/22/2021) (cit. on p. 1).

[19] Microsoft. ASP.NET | Open-source web framework for .NET. https://dotnet.

microsoft.com/apps/aspnet. (Accessed on 20/02/2021) (cit. on pp. 7, 22).

[20] Microsoft. Data Visualisation | Microsoft Power BI. https://powerbi.microsoft.
com/en-au/. (Accessed on 10/20/2021) (cit. on p. 26).

[21] Minigranth. Software Debugging | Software Testing Tutorial | Minigranth. https://

minigranth.in/software-testing-tutorial/software-debugging. (Accessed

on 02/12/2021) (cit. on p. 20).

[22] K. Mohd. Ehmer and K. Farmeena. “A Comparative Study of White Box , Black Box

and Grey Box Testing Techniques”. In: International Journal of Advanced Computer
Science and Applications 3.6 (2012), pp. 12–15. issn: 1098-6596. arXiv: arXiv:101

1.1669v3 (cit. on p. 14).

[23] OutSystems. Actions in Reactive Web and Mobile Apps. https://success.outsystems.
com/Documentation/11/Developing_an_Application/Implement_Application_

Logic/Actions_in_Reactive_Web_and_Mobile_Apps. (Accessed on 02/05/2021)

(cit. on pp. 8, 26, 27).

[24] OutSystems. Actions in Web Applications. https://success.outsystems.com/

Documentation/11/Developing_an_Application/Implement_Application_

Logic/Actions_in_Web_Applications. (Accessed on 02/08/2021) (cit. on p. 10).

[25] OutSystems. Aggregate. https://success.outsystems.com/Documentation/11

/Reference/OutSystems_Language/Data/Handling_Data/Queries/Aggregate.

(Accessed on 02/05/2021) (cit. on pp. 8, 9).

[26] OutSystems. Application Layers < Service Studio Overview - Training. https://www.

outsystems.com/training/lesson/2186/application-layers. (Accessed on

02/04/2021) (cit. on p. 6).

70

https://www.json.org/json-en.html
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf
https://www.pcmag.com/reviews/outsystems
https://www.pcmag.com/reviews/outsystems
https://dotnet.microsoft.com/apps/aspnet
https://dotnet.microsoft.com/apps/aspnet
https://powerbi.microsoft.com/en-au/
https://powerbi.microsoft.com/en-au/
https://minigranth.in/software-testing-tutorial/software-debugging
https://minigranth.in/software-testing-tutorial/software-debugging
https://arxiv.org/abs/arXiv:1011.1669v3
https://arxiv.org/abs/arXiv:1011.1669v3
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Reactive_Web_and_Mobile_Apps
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Reactive_Web_and_Mobile_Apps
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Reactive_Web_and_Mobile_Apps
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Developing_an_Application/Implement_Application_Logic/Actions_in_Web_Applications
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data/Handling_Data/Queries/Aggregate
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Data/Handling_Data/Queries/Aggregate
https://www.outsystems.com/training/lesson/2186/application-layers
https://www.outsystems.com/training/lesson/2186/application-layers

BIBLIOGRAPHY

[27] OutSystems. Assign. https://success.outsystems.com/Documentation/11/

Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Assign.

(Accessed on 02/08/2021) (cit. on p. 9).

[28] OutSystems. Automated Testing Tools. https : / / success . outsystems . com /

Documentation/Best_Practices/OutSystems_Testing_Guidelines/Automated_

Testing_Tools?_gl=1*tch51t*_ga*MTAxOTI4Mjg0MC4xNjA2NTg2NTgy*_ga_ZD4

DTMHWR2*MTYxMjg4NDMwMy4zMi4xLjE2MTI4ODg5MzMuMjY.. (Accessed on 02/09/2021)

(cit. on pp. 14, 15).

[29] OutSystems. BDDFramework - Overview. https://www.outsystems.com/forge/

component-overview/1201/bddframework. (Accessed on 02/09/2021) (cit. on

pp. 15, 17).

[30] OutSystems. End. https://success.outsystems.com/Documentation/11/

Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/End.

(Accessed on 02/08/2021) (cit. on p. 10).

[31] OutSystems. Entities. https://success.outsystems.com/Documentation/11

/Developing_an_Application/Use_Data/Data_Modeling/Entities. (Accessed

on 02/08/2021) (cit. on p. 9).

[32] OutSystems. Extensions. https://success.outsystems.com/Documentation/1
1/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/

Extensions. (Accessed on 02/04/2021) (cit. on p. 6).

[33] OutSystems. For Each. https://success.outsystems.com/Documentation/11

/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/For_

Each. (Accessed on 02/08/2021) (cit. on p. 10).

[34] OutSystems. How does OutSystems support testing and quality assurance? | Eval-
uation Guide. https://www.outsystems.com/evaluation-guide/how-does-

outsystems-support-testing-and-quality-assurance/?origin=d. (Accessed

on 02/09/2021) (cit. on pp. 14, 15).

[35] OutSystems. If. https : / / success . outsystems . com / Documentation / 11 /

Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/If.

(Accessed on 02/08/2021) (cit. on p. 10).

[36] OutSystems. Modular Programming < Intro to OutSystems Development - Training.

https://www.outsystems.com/training/lesson/2159/modular-programming.

(Accessed on 02/04/2021) (cit. on p. 7).

[37] OutSystems. OutSystems Again Named a Leader in Gartner’s 2018 Magic Quadrant
for Enterprise High-Productivity Application Platform as a Service. https://www.

outsystems.com/News/high- productivity- apaas- gartner- leader/. (Ac-

cessed on 02/03/2021) (cit. on p. 1).

71

https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Assign
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Assign
https://success.outsystems.com/Documentation/Best_Practices/OutSystems_Testing_Guidelines/Automated_Testing_Tools?_gl=1*tch51t*_ga*MTAxOTI4Mjg0MC4xNjA2NTg2NTgy*_ga_ZD4DTMHWR2*MTYxMjg4NDMwMy4zMi4xLjE2MTI4ODg5MzMuMjY.
https://success.outsystems.com/Documentation/Best_Practices/OutSystems_Testing_Guidelines/Automated_Testing_Tools?_gl=1*tch51t*_ga*MTAxOTI4Mjg0MC4xNjA2NTg2NTgy*_ga_ZD4DTMHWR2*MTYxMjg4NDMwMy4zMi4xLjE2MTI4ODg5MzMuMjY.
https://success.outsystems.com/Documentation/Best_Practices/OutSystems_Testing_Guidelines/Automated_Testing_Tools?_gl=1*tch51t*_ga*MTAxOTI4Mjg0MC4xNjA2NTg2NTgy*_ga_ZD4DTMHWR2*MTYxMjg4NDMwMy4zMi4xLjE2MTI4ODg5MzMuMjY.
https://success.outsystems.com/Documentation/Best_Practices/OutSystems_Testing_Guidelines/Automated_Testing_Tools?_gl=1*tch51t*_ga*MTAxOTI4Mjg0MC4xNjA2NTg2NTgy*_ga_ZD4DTMHWR2*MTYxMjg4NDMwMy4zMi4xLjE2MTI4ODg5MzMuMjY.
https://www.outsystems.com/forge/component-overview/1201/bddframework
https://www.outsystems.com/forge/component-overview/1201/bddframework
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/End
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/End
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Data_Modeling/Entities
https://success.outsystems.com/Documentation/11/Developing_an_Application/Use_Data/Data_Modeling/Entities
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/Extensions
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/Extensions
https://success.outsystems.com/Documentation/11/Extensibility_and_Integration/Extend_Logic_with_Your_Own_Code/Extensions
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/For_Each
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/For_Each
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/For_Each
https://www.outsystems.com/evaluation-guide/how-does-outsystems-support-testing-and-quality-assurance/?origin=d
https://www.outsystems.com/evaluation-guide/how-does-outsystems-support-testing-and-quality-assurance/?origin=d
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/If
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/If
https://www.outsystems.com/training/lesson/2159/modular-programming
https://www.outsystems.com/News/high-productivity-apaas-gartner-leader/
https://www.outsystems.com/News/high-productivity-apaas-gartner-leader/

BIBLIOGRAPHY

[38] OutSystems. OutSystems development and management tools | Evaluation Guide.

https://www.outsystems.com/evaluation-guide/development-and-management-

tools/. (Accessed on 02/03/2021) (cit. on pp. 4, 6).

[39] OutSystems. OutSystems Evaluation Guide. https : / / www . outsystems . com /

evaluation-guide/. (Accessed on 02/03/2021) (cit. on p. 4).

[40] OutSystems. OutSystems Platform Services | Evaluation Guide. (Accessed on 02/05/2021).

url: https://www.outsystems.com/evaluation-guide/platform-services/

#1 (cit. on p. 7).

[41] OutSystems. Platform Runtime | Evaluation Guide. https://www.outsystems.com/

evaluation-guide/platform-runtime/. (Accessed on 02/03/2021) (cit. on pp. 4,

5).

[42] OutSystems. Screen. https://success.outsystems.com/Documentation/11

/Developing_an_Application/Design_UI/Screen. (Accessed on 02/05/2021)

(cit. on pp. 7, 8).

[43] OutSystems. Screen Templates. https://success.outsystems.com/Documentation/
11/Developing_an_Application/Design_UI/Screen_Templates. (Accessed on

02/05/2021) (cit. on p. 7).

[44] OutSystems. Service Studio Overview. https : / / success . outsystems . com /

Documentation/11/Getting_started/Service_Studio_Overview. (Accessed

on 02/03/2021) (cit. on p. 5).

[45] OutSystems. Service Studio Walkthrough < Service Studio Overview - Training. https:

//www.outsystems.com/training/lesson/2185/service-studio-walkthrough.

(Accessed on 02/04/2021) (cit. on p. 6).

[46] OutSystems. Start. https://success.outsystems.com/Documentation/11

/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Start.

(Accessed on 02/08/2021) (cit. on p. 10).

[47] OutSystems. Switch. https://success.outsystems.com/Documentation/11/

Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Switch.

(Accessed on 02/08/2021) (cit. on p. 10).

[48] OutSystems. Testing OutSystems Applications | Evaluation Guide. https://www.

outsystems . com / evaluation - guide / testing - outsystems - applications/.

(Accessed on 02/09/2021) (cit. on p. 14).

[49] OutSystems. The Modern Application Development Platform. https://www.outsystems.

com/platform/. (Accessed on 02/03/2021) (cit. on pp. 1, 4).

[50] OutSystems. Unit Testing Framework - Overview. https://www.outsystems.com/

forge/component- overview/387/Unit+Testing+Framework/. (Accessed on

02/09/2021) (cit. on p. 15).

72

https://www.outsystems.com/evaluation-guide/development-and-management-tools/
https://www.outsystems.com/evaluation-guide/development-and-management-tools/
https://www.outsystems.com/evaluation-guide/
https://www.outsystems.com/evaluation-guide/
https://www.outsystems.com/evaluation-guide/platform-services/#1
https://www.outsystems.com/evaluation-guide/platform-services/#1
https://www.outsystems.com/evaluation-guide/platform-runtime/
https://www.outsystems.com/evaluation-guide/platform-runtime/
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen_Templates
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen_Templates
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://success.outsystems.com/Documentation/11/Getting_started/Service_Studio_Overview
https://www.outsystems.com/training/lesson/2185/service-studio-walkthrough
https://www.outsystems.com/training/lesson/2185/service-studio-walkthrough
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Start
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Start
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Switch
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools/Switch
https://www.outsystems.com/evaluation-guide/testing-outsystems-applications/
https://www.outsystems.com/evaluation-guide/testing-outsystems-applications/
https://www.outsystems.com/platform/
https://www.outsystems.com/platform/
https://www.outsystems.com/forge/component-overview/387/Unit+Testing+Framework/
https://www.outsystems.com/forge/component-overview/387/Unit+Testing+Framework/

BIBLIOGRAPHY

[51] OutSystems. Web Logic Tools. https://success.outsystems.com/Documentation/
11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools. (Ac-

cessed on 02/08/2021) (cit. on p. 10).

[52] OutSystems. Why OutSystems? | Evaluation Guide. https://www.outsystems.

com/evaluation-guide/why-outsystems/. (Accessed on 02/04/2021) (cit. on

p. 7).

[53] J. Proenca. Your Complete Guide To BDD Testing In OutSystems. https://www.

outsystems.com/blog/posts/bdd-testing/. (Accessed on 02/09/2021) (cit. on

pp. 15–17).

[54] Python. Welcome to Python.org. https : / / www . python . org/. (Accessed on

10/20/2021) (cit. on p. 26).

[55] J. C. Seco. “Interpretation and Compilation of Programming Languages Part 1 -

Overview”. In: (2014), pp. 1–11 (cit. on p. 23).

[56] J. Shore. The Art of Agile Development: Test-Driven Development. http://www.

jamesshore.com/v2/books/aoad1/test_driven_development. (Accessed on

02/19/2021) (cit. on p. 23).

[57] W3schools. SQL Tutorial. https://www.w3schools.com/sql/. (Accessed on

11/01/2021) (cit. on p. 68).

[58] M. Wenzel. “READ-EVAL-PRINT in Parallel and Asynchronous Proof-checking”.

In: Electronic Proceedings in Theoretical Computer Science 118 (2013), pp. 57–71.

issn: 2075-2180. doi: 10.4204/eptcs.118.4 (cit. on p. 23).

[59] R. Wilsenach. QA in Production. https://martinfowler.com/articles/qa-in-

production.html. (Accessed on 02/12/2021) (cit. on p. 21).

This document was created with the (pdf/Xe/Lua)LATEX processor and the NOVAthesis template (v6.7.1) [1].

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 73).

73

https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools
https://success.outsystems.com/Documentation/11/Reference/OutSystems_Language/Traditional_Web/Web_Logic_Tools
https://www.outsystems.com/evaluation-guide/why-outsystems/
https://www.outsystems.com/evaluation-guide/why-outsystems/
https://www.outsystems.com/blog/posts/bdd-testing/
https://www.outsystems.com/blog/posts/bdd-testing/
https://www.python.org/
http://www.jamesshore.com/v2/books/aoad1/test_driven_development
http://www.jamesshore.com/v2/books/aoad1/test_driven_development
https://www.w3schools.com/sql/
https://doi.org/10.4204/eptcs.118.4
https://martinfowler.com/articles/qa-in-production.html
https://martinfowler.com/articles/qa-in-production.html
https://github.com/joaomlourenco/novathesis
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Dedicatory
	Acknowledgements
	Quote
	Abstract
	Resumo
	Contents
	List of Figures
	List of Tables
	Acronyms

	1 Introduction
	1.1 Motivation
	1.2 Goals
	1.3 Key Contributions
	1.4 Document Structure

	2 Background
	2.1 OutSystems Platform
	2.1.1 Architecture
	2.1.2 OutSystems Language - A visual language

	2.2 Software Testing: Overview
	2.2.1 Software Testing Techniques
	2.2.2 Test Classification
	2.2.3 Test Design Techniques
	2.2.4 Testing in OutSystems Platform

	3 Related Work
	3.1 Logic Visualization
	3.1.1 Exploratory Testing
	3.1.2 Logging and Monitoring
	3.1.3 Testing Support for the OutSystems Agile Platform

	3.2 Summary

	4 Proposed Work
	4.1 The Problem: Overview
	4.2 The problem: Data Analysis
	4.2.1 Datasets
	4.2.2 Tools and Processes
	4.2.3 Results

	4.3 Proposed Approach

	5 Implementation
	5.1 Overview
	5.1.1 The Server Actions Input/Output Parameters
	5.1.2 The Model API
	5.1.3 Introductory Example

	5.2 Implementation Details
	5.2.1 Cloning the Source Module
	5.2.2 Analysing Each Server Action
	5.2.3 Server Actions With Side-effects to the Database
	5.2.4 Server Actions Without Side-effects to the Database
	5.2.5 Possible Reads and Writes

	5.3 Example of Transformations Performed by the OLP Tool

	6 Evaluation
	6.1 Analysis Overview
	6.2 The OLP Tool Evaluation
	6.2.1 Performance Results

	6.3 Discussion

	7 Conclusions
	7.1 Outcomes
	7.2 Future Work

	Bibliography
	Back Matter
	Back Cover

