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1 Introduction

Program synthesis is an automated or semi-automated process of deriving a pro-
gram, i.e. generating code, from a high-level specification. Synthesis can be seen
as a means to improve programmer productivity and program correctness (e.g.
through suggestion and autocompletion). Specifications can take many forms
such as natural language [11], examples [13] or rich types such as polymorphic
refinement types [25] or graded types [17]. Regardless of the kind of specifica-
tion, program synthesis must deal with two main inherent sources of complexity
– search over the space of valid programs, and interpreting user intent.

Synthesis is said to be type-driven when it uses types as a form of program
specification and produces an expression whose type matches the specification.
Type-driven synthesis frameworks usually leverage rich types as a way to make
specifications more expressive and prune the valid programs search space, while
maintaining a “familiar” specification interface (types) for the user. Richer type
systems allow for more precise types, which can statically eliminate various kinds
of logical errors by making certain invalid program states ill-typed (e.g., a “null
aware” type system will ensure at compile-time that you cannot dereference a
null-pointer). For instance, the type Int→ Int→ Int specifies a (curried) function
that takes two integers and produces an integer. Viewed as a specification, it is
extremely imprecise (there are an infinite number of functions that satisfy this
specification). However, the richer type (x:Int) → (y:Int) → {z:Int | z = x + y}
very precisely specifies a function that takes integer arguments x and y and
returns an integer z that is the sum of x and y.

The focus of our work is on type-driven synthesis where specifications take
the form of linear types. Linear types constrain resource usage in programs by
statically limiting the number of times certain resources can be used during
their lifetime (linear resources must be used exactly once). They can be applied
to resource-aware programming such as concurrent programming (e.g. session
types for message passing concurrency [7]), memory-management (e.g. Rust’s
ownership types), safely updating-in-place mutable structures [5], enforcing pro-
tocols for external apis [5], to name a few.

Contributions and Outline. Despite their long-known potential [28,7,5] and
strong proof-theoretic foundations [4,10,8], synthesis with linear types combined
with other advanced typing features has generally been overlooked in the litera-
ture. In this work we present a framework for synthesis with linear types extended



with recursive algebraic data types, parametric polymorphism and refinements.
We first introduce linear types as specifications and outline the synthesis process,
leveraging linearity, by example (§ 2). We then discuss the formal system driving
the synthesis (§ 3) and describe the architecture of our framework named SILI,
examining technical details and key implementation challenges (§ 4). Finally,
we evaluate our work through expressiveness and performance benchmarks (§ 6)
and discuss related work (§ 5). Appendix A covers background concepts such as
linear logic and sequent calculus. Appendix B presents the final set of inference
rules. Appendix C lists concrete examples of synthesis with SILI.

2 Overview

The SILI synthesizer combines linear types with recursion, parametric polymor-
phism, recursive algebraic data types, and refinement types. The synthesizer is
built on top of a system of proof-search for linear logic. Proof search relates to
program synthesis via the Curry-Howard correspondence [12,16,29], which states
that propositions in a logic are types, and proofs of those propositions are well-
typed programs – finding a proof of a proposition is finding a program with that
type.

Linear types make for more precise specifications than simple types because
information on which resources must necessarily be used is encoded in the type.
For instance the type Int ( Int ( Int denotes a function that must use its two
integer arguments to produce an integer. Their preciseness also affects the search
space: all programs where a linear resource is used non-linearly (i.e. not exactly
once) are ill-typed. With linearity built into the synthesis process, usage of a
linear proposition more than once is not considered, and unused propositions
are identified during synthesis, constraining the space of valid programs.

The core of the synthesis is a sound and complete system consisting of bottom-
up proof-search in propositional linear logic based on focusing []. Our approach,
being grounded by propositions-as-types, ensures that all synthesized programs
(i.e. proofs) are well-typed by construction (i.e. if the synthesis procedure pro-
duces a program, then the program intrinsically satisfies its specification). More-
over, we can leverage the modularity of the proof-search based approach along
two axes: first, since proof search need not construct only closed proofs, we
can effectively synthesize program sub-expressions (i.e. synthesis based on typed
holes); secondly, the framework is amenable to extensions to the core proposi-
tional language, allowing for the introduction of a richer type structure while
preserving the correctness of programs by construction.

The SILI programming language is naturally developed alongside the syn-
thesizer. Synthesis goals are inserted in the program by use of a synth keyword or
mark, indicating a program should be generated for a given type. Additionally,
it opens the possibility of synthesis within a context, that is, with knowledge of
other functions and structures defined in the same program.

Core linear calculus. Initially, we synthesize from specifications that only use
literals and propositional linear types, such as linear logic theorems. Namely,



the specification (A ( B ( C) ( (A ⊗ B) ( C produces the function
\a -> \b -> let c*d = b in a c d, which takes an argument a, a curried
linear function of type A ( B ( C, and an argument b, a linear pair of an A
and a B and produces a value of type C by deconstructing the pair and applying
a to the corresponding elements of the pair (i.e., uncurries the function a).

Beyond propositional logic. To be able to synthesize more interesting pro-
grams – and thus, empirically prove the feasability of more relevant synthesis
in a linear context, we extend the syntax and type system with recursiveness,
parametric polymorphism, algebraic data types (ADTs) and type refinements.

ADTs. We reiterate the expressiveness of linear types: by requiring some types
to be used linearly (consumed), we can assure, e.g., the deconstruction of an
ADT. As such, the specification that identifies a function that takes as argu-
ments an unrestricted (!) linear function1 that converts as in bs, a list of as, and
produces a list of bs, written !(a( b) ( List a( List b, isn’t satisfied by the
program (\x -> \y -> Nil). To synthesize a valid program from it, (List a)

has to be deconstructed, and its constructor arguments used. SILI would output
the following function (map) without relying on any additional information:

map !e d = case d of

Nil -> Nil

| Cons g*h -> Cons (e g, map (!e) h);

Refinements. Refinements are logical predicates which must hold for any term
that inhabits a given type. The SILI language supports simple refinements on
integers with arithmetic expressions in the predicates. They assert the robustness
of our main framework, i.e., how it is amenable to significant additions without
necessarily interfering with the overall approach. As an example, from the spec-
ification x{Int}( y{Int}( z{Int}( k{Int | x+ k = y ∗ z} (a function that
takes three integers and produces an integer that satisfies the given predicate),
the program (\a -> \b -> \c -> ((0 - 1) * a) + (c * b)) is synthesized.

Guiding the Search. Specifications can be additionally augmented with four
keywords: “using”, “depth”, “assert” and “choose”. Through them, we can fine-
tune the synthesis process and, respectively, force certain functions to be present
in the synthesis outcome, allow a deeper search in the valid programs space, re-
quire given predicates to hold true in the program after the synthesis is complete,
and select between alternative results.

Taken directly from the Linear Haskell paper [5], we present a more intricate
example of synthesis: given the linear type signatures for array primitives (new-
MArray passes a new mutable array to a function that uses it linearly, write
takes a mutable array and writes a pair to it, freeze consumes a mutable array
and produces an imutable array, foldl has the default definition) we synthesize a
function “array” that provides an immutable array given a list of pairs to write.
The input program is formulated as follows:

1 might be used non-linearly, but its parameter is used linearly in its body



foldl :: (a -o b -o a) -> a -o (List b) -o a;

newMArray :: Int -> (MArray a -o !b) -o b;

write :: MArray a -o (Int * a) -> MArray a;

freeze :: MArray a -o !(Array a);

synth array :: Int -> List (!(Int * a)) -> Array a

| using (foldl) | depth 3;

Matching the linear definition for array from [5], SILI outputs (in 0.1s):

array !d !e = newMArray (!d) (\j -> freeze (foldl (!write) j e));

3 The SILI Synthesis Framework

Program synthesis from linear types with polymorphism, recursive algebraic data
types, and refinements, is essentially new in the synthesis literature. Despite the
substantial amount of research on linear logic and proof-search upon which we
base our core synthesizer, formal guidelines for richer types and their intrinsic
challenges (such as infinite recursion) must be developed.

In this section we formalize the techniques that guide synthesis from our more
expressive specifications, alongside the already well defined rules that model the
core of the synthesizer, putting together a sound set of inference rules that char-
acterizes our framework for linear synthesis of recursive programs from specifica-
tions with the select richer types, and describes the system in enough detail for
the synthesizer to be reproducible by a theory-driven implementation. We note
that a sound set of rules guarantees we cannot synthesize incorrect programs;
and that the valid programs derivable through them reflect the subjective trade-
offs we committed to. Different choices and approaches outside the core might
lead to completely distinct synths and spaces of valid programs.

Core Rules. The system comprises of proof search in (intuitionistic) linear logic
sequent calculus, based on a system of resource management [8,18] and focusing.

The core language is a simply-typed linear λ-calculus with linear functions
((), additive (&) and multiplicative (⊗) pairs (denoting alternative vs simul-
taneous occurrence of resources), multiplicative unit (1), additive sums (⊕) and
the exponential modality (!) (to internalize unrestricted use of variables). The
syntax of terms (M,N) and types (τ, σ) is given below:

M,N ::= u, v
| λx.M |M N (()
| M &N | fst M | snd M (&)
| M ⊗N | let u⊗ v = M in N (⊗)
| ? | let ? = M in N (1)
| inl M | inr M | (case M of inl u⇒ N1 | inr v ⇒ N2) (⊕)
| !M | let !u = M in N (!)

τ, σ ::= a | τ ( σ | τ & σ | τ ⊗ σ | 1 | τ ⊕ σ | !τ



In intuitionistic sequent calculi, each connective has a so-called left and a
right rule, which effectively define how to decompose an ambient assumption of
a given proposition and how to prove a certain proposition is true, respectively.
Andreoli’s focusing for linear logic [4] is a technique to remove non-essential non-
determinism from proof-search by structuring the application of so-called invert-
ible and non-invertible inference rules. Andreoli observed that the connectives of
linear logic can be divided into two categories, dubbed synchronous and asyn-
chronous. Asynchronous connectives are those whose right rules are invertible,
i.e. they can be applied eagerly during proof search without losing provability
and so the order in which these rules are applied is irrelevant, and whose left
rules are not invertible. Synchronous connectives are dual. The asynchronous
connectives are ( and & and the synchronous are ⊗,1,⊕, !.

Given this separation, focusing divides proof search into two phases: the in-
version phase (⇑), in which we apply all invertible rules eagerly, and the focusing
phase (⇓), in which we decide a proposition to focus on, and then apply non-
invertible rules, staying in focus until we reach an asynchronous (i.e. invertible
proposition), the proof is complete, or no rules are applicable, in which case the
proof must backtrack to the state at which the focusing phase began. As such,
with focusing, the linear sequent calculus judgment Γ ;∆ ` A, meaning that A is
derivable from the linear assumptions in ∆ and unrestricted assumptions in Γ , is
split into four judgments, grouped into the two phases (⇑,⇓). For the invertible
phase, an inversion context Ω holds propositions that result from decompos-
ing connectives. The right inversion and left inversion judgments are written
Γ ;∆;Ω ` A ⇑ and Γ ;∆;Ω ⇑ ` A, respectively, where the ⇑ indicates the con-
nective or context being inverted. For the focusing phase (i.e. all non-invertible
rules can apply), the proposition under focus can be the goal or one in Γ or ∆.
The right focus judgment is written Γ ;∆ ` A ⇓ and the left focus judgment is
written Γ ;∆;B ⇓ ` A, where ⇓ indicates the proposition under focus.

To handle the context splitting required to prove subgoals, we augment
the judgments above using Hodas and Miller’s resource management technique
where a pair of input/output linear contexts is used to propagate the yet un-
used linear resources across subgoals; e.g. the left inversion judment is written
Γ ;∆/∆′;Ω ⇑ ` A where ∆ is the input linear context and ∆′ is the output one.

Putting together linear logic and linear lambda calculus through the Curry-
Howard correspondence, resource management, and focusing, we get the follow-
ing core formal system (inspired by [10,23]) – in which the rule (R is read:
to synthesize a program of type A ( B while inverting right (the ⇑ on the
goal), with unrestricted context Γ , linear context ∆, and inversion context Ω,
synthesize a program of type B with an additional hypothesis of type A named
x in the Ω context, resulting in the program M and output linear context ∆′

that cannot contain the added hypothesis x:A. Finally, the resulting program is
λx.M and the output linear context is ∆′.



We start with right invertible rules, which decompose the goal proposition
until it’s synchronous.

Γ ;∆/∆′;Ω, x:A `M : B ⇑ x /∈ ∆′

Γ ;∆/∆′;Ω ` λx.M : A( B ⇑
(( R)

Γ ;∆/∆′;Ω `M : A ⇑ Γ ;∆/∆′′;Ω ` N : B ⇑ ∆′ = ∆′′

Γ ;∆/∆′;Ω ` (M &N) : A&B ⇑
(&R)

When we reach a non-invertible proposition on the right, we start inverting
the Ω context. The rule to transition to inversion on the left is:

Γ ;∆/∆′;Ω ⇑ ` C C not right asynchronous

Γ ;∆/∆′;Ω ` C ⇑
(⇑R)

We follow with left invertible rules for asynchronous connectives, which de-
compose asynchronous propositions in Ω.

Γ ;∆/∆′;Ω, y:A, z:B ⇑ `M : C y, z /∈ ∆′

Γ ;∆/∆′;Ω, x:A⊗B ⇑ ` let y ⊗ z = x in M : C
(⊗L)

Γ ;∆/∆′;Ω ⇑ `M : C

Γ ;∆/∆′;Ω, x:1 ⇑ ` let ? = x in M : C
(1L)

Γ ;∆/∆′;Ω, y:A ⇑ `M : C y /∈ ∆′
Γ ;∆/∆′′;Ω, z:B ⇑ ` N : C z /∈ ∆′′ ∆′ = ∆′′

Γ ;∆/∆′;Ω, x:A⊕B ⇑ ` case x of inl y →M | inr z → N : C
(⊕L)

Γ, y:A;∆/∆′;Ω ⇑ `M : C

Γ ;∆/∆′;Ω, x:!A ⇑ ` let !y = x in M : C
(!L)

When we find a synchronous (i.e. non-invertible) proposition in Ω, we simply
move it to the linear context ∆, and keep inverting on the left:

Γ ;∆,A/∆′;Ω ⇑ ` C A not left asynchronous

Γ ;∆/∆′;Ω,A ⇑ ` C
(⇑L)

After inverting all the asynchronous propositions in Ω we’ll reach a state
where there are no more propositions to invert (Γ ′;∆′; · ⇑ ` C). At this point,
we want to focus on a proposition. The focus object will be: the proposition on
the right (the goal), a proposition from the linear ∆ context, or a proposition
from the unrestricted Γ context. For these options we have three decision rules:

Γ ;∆/∆′ ` C ⇓ C not atomic

Γ ;∆/∆′; · ⇑ ` C
(decideR)

Γ ;∆/∆′;A ⇓ ` C
Γ ;∆,A/∆′; · ⇑ ` C

(decideL)
Γ,A;∆/∆′;A ⇓ ` C
Γ,A;∆/∆′; · ⇑ ` C

(decideL!)



The decision rules are followed by either left or right focus rules. To illustrate,
consider the (L left focus rule. The rule states that to produce a program of
type C while left focused on the function x of type A ( B, we first check that
we can produce a program of type C by using B. If this succeeds in producing
some program M , this means that we can apply x to solve our goal. We now
synthesize a program N of type A, switching to the right inversion judgment (⇑).
To construct the overall program, we replace in M all occurrences of variable y
with the application xN . The remaining left rules follow a similar pattern. The
right focus rules are read similarly to right inversion ones, albeit the goal and
sub-goals are under focus (except for !R).

Γ ;∆/∆′; y:B ⇓ `M : C Γ ;∆′/∆′′; · ` N : A ⇑
Γ ;∆/∆′′;x:A( B ⇓ `M{(xN)/y} : C

(( L)

Γ ;∆/∆′; y:A ⇓ `M : C

Γ ;∆/∆′;x:A&B ⇓ `M{(fst x)/y} : C
(&L1)

Γ ;∆/∆′; y:B ⇓ `M : C

Γ ;∆/∆′;x:A&B ⇓ `M{(snd x)/y} : C
(&L2)

Γ ;∆/∆′ `M : A ⇓ Γ ;∆′/∆′′ ` N : B ⇓
Γ ;∆/∆′′ ` (M ⊗N) : A⊗B ⇓

(⊗R)
Γ ;∆/∆ ` ? : 1 ⇓

(1R)

Γ ;∆/∆′ `M : A ⇓
Γ ;∆/∆′ ` inl M : A⊕B ⇓

(⊕R1)
Γ ;∆/∆′ `M : B ⇓

Γ ;∆/∆′ ` inr M : A⊕B ⇓
(⊕R2)

Γ ;∆/∆′; · `M : A ⇑ ∆ = ∆′

Γ ;∆/∆ ` !M : !A ⇓
(!R)

Eventually, the focus proposition will no longer be synchronous, i.e. it’s atomic
or asynchronous. If we’re left focused on an atomic proposition we either instan-
tiate the goal or fail. Otherwise the left focus is asynchronous and we can start
inverting it. If we’re right focused on a proposition that isn’t right synchronous,
we switch to inversion as well. Three rules model these conditions:

Γ ;∆/∆′;x:A ⇓ ` x : A
(init)

Γ ;∆/∆′; · ` A ⇑
Γ ;∆/∆′ ` A ⇓

(⇓ R)

Γ ;∆/∆′;A ⇑ ` C A not atomic and not left synchronous

Γ ;∆/∆′;A ⇓ ` C
(⇓ L)

The rules written above together make the core of our synthesizer. Next, we’ll
present new rules that align and build on top of these to synthesize recursive
programs from more expressive (richer) types.

Algebraic Data Types. In its simplest form, an algebraic data type (ADT)
is a tagged sum of any type, i.e. a named type that can be instantiated by



one of many tags (or constructors) that take some value of a fixed type, which
might be, e.g., a product type (A ⊗ B), or unit (1), in practice allowing for
constructors with an arbitrary number of parameters. In the SILI language,
the programmer can define custom ADTs; as an example, we show the defi-
nition of an ADT which holds zero, one, or two values of type A, using the
syntax: data Container = None 1 | One A | Two (A * A). The grammar is
extended as (where C is an ADT constructor and T is an ADT):

M,N ::= . . . | Cn M | (case M of . . . | Cn u⇒ N)
τ, σ ::= . . . | T

The semantics of ADTs relate to those of the plus (⊕) type – both are
additive disjunctions. To construct a value of an ADT we must use one of its
constructors, similar to the way ⊕ requires only proof of either the left or right
type it consists of. Analogously, we can deconstruct a value of an ADT via
pattern matching on its constructors, where all branches of the pattern match
must have the same type – akin to the left rule for the ⊕ connective. In effect, the
inference rules for a simple ADT are a generalized form of the ⊕ rules. Therefore,
there’s one left rule for ADTs, and an arbitrary number of right rules, one for
each constructor, where ADT T and its constructors stand for any ADT defined
as data T = C1 X1 | C2 X2 | ... | Cn Xn:

Γ ;∆/∆′ `M : Xn ⇓
Γ ;∆/∆′ ` Cn M : T ⇓

(adtR)

Γ ;∆/∆′1;Ω, y1:X1 ⇑ `M1 : C y1 /∈ ∆′1
Γ ;∆/∆′2;Ω, y2:X2 ⇑ `M2 : C y2 /∈ ∆′2

. . .
Γ ;∆/∆′n;Ω, yn:Xn ⇑ `Mn : C yn /∈ ∆′n ∆′1 = ∆′2 = · · · = ∆′n

Γ ;∆/∆′1;Ω, x:T ⇑ ` case x of . . . | Cn yn →Mn : C
(adtL)

A more general formulation of ADTs says an ADT can be recursive (or
”inductively defined”), meaning constructors can take as arguments values of
the type they are defining. This change has a significant impact in the synthesis
process. Take, for instance, the ADT defined as data T = C1 T, the synthesis
goal T ( C, and part of its derivation:

. . .

Γ ;∆/∆′;Ω, y:T ⇑ ` case y of C1 z → · · · : C
(adtL)

Γ ;∆/∆′;Ω, x:T ⇑ ` case x of C1 y → · · · : C
(adtL)

Γ ;∆/∆′;Ω, x:T ` · · · : C ⇑
(⇑ R)

Using our current system, we are to apply an infinite number of times (adtL),
never closing the proof. Symmetrically, the derivation for goal T is also infinite.

(adtR)

(adtR)

(adtR)
. . .

Γ ;∆/∆′;Ω ` C1 · · · : T ⇓
Γ ;∆/∆′;Ω ` C1 · · · : T ⇓

Γ ;∆/∆′;Ω ` C1 · · · : T ⇓



To account for this situation, we impede the decomposition of an ADT in sub-
sequent proofs of its branches, and, symmetrically, don’t allow construction of
an ADT when trying to synthesize an argument for its constructor. For this,
we need two more contexts, PC for constraints on construction and PD for con-
straints on deconstruction. Together, they hold a list of ADTs that cannot be
constructed or deconstructed at a given point in the proof. For convenience, they
are represented by a single P if unused. All non-ADT rules trivially propagate
these. The ADT rules are then extended as follows, where P ′C = PC , T if T is
recursive and P ′C = PC otherwise (P ′D is dual):

(P ′C ;PD);Γ ;∆/∆′ `M : Xn ⇓ T /∈ PC
(PC ;PD);Γ ;∆/∆′ ` Cn M : T ⇓

(adtR)

T /∈ PD ∆′1 = · · · = ∆′n
(PC ;P ′D);Γ ;∆/∆′1;Ω, y1:X1 ⇑ `M1 : C y1 /∈ ∆′1

. . .
(PC ;P ′D);Γ ;∆/∆′n;Ω, yn:Xn ⇑ `Mn : C yn /∈ ∆′n

(PC ;PD);Γ ;∆/∆′1;Ω, x:T ⇑ ` case x of . . . | Cn yn →Mn : C
(adtL)

These modifications prevent the infinite derivations in the scenarios described
above. However, they also greatly limit the space of derivable programs, leaving
the synthesizer effectively unable to synthesize from specifications with recursive
types. To prevent this, we add three rules to complement the restrictions on
construction and destruction of recursive types. First, since we can’t deconstruct
some ADTs any further because of a restriction, but must utilize all propositions
linearly in some way, all propositions in Ω whose deconstruction is restricted are
to be moved to the linear context ∆. Second, without any additional rules, an
ADT in the linear context will loop back to the inversion context, jumping back
and forth between the two contexts; instead, when focusing on an ADT, we
should either instantiate the goal (provided they’re the same type), or switch
to inversion if and only if its decomposition isn’t restricted. The three following
rules ensure this:

(PC ;PD);Γ ;∆,x:T/∆′;Ω ⇑ `M : C T ∈ PD
(PC ;PD);Γ ;∆/∆′;Ω, x:T ⇑ `M : C

(adt⇑L)

P ;Γ ;∆/∆′;x:T ⇓ ` x : T
(adt-init)

(PC ;PD);Γ ;∆/∆′;x:T ⇑ `M : T T /∈ PD
(PC ;PD);Γ ;∆/∆′;x:T ⇓ `M : T

(adt⇓L)

Altogether, the rules above ensure that a recursive ADT will be deconstructed
once, and that subsequent equal ADTs will only be useable from the linear
context – essentially forcing them to be used to instantiate another proposition,
which will typically be an argument for the recursive call.



Recursion. The main idea behind synthesis of recursive programs is the labeling
of the main goal and the addition of its type, under that name, to the unrestricted
context. That is, to synthesize a recursive function of type A( B named f, the
initial judgment can be written as

. . .

Γ, f :A( B;∆/∆′;Ω `M : A( B ⇑

and, by definition, all subsequent inference rules will have (f :A ( B) in the Γ
context too. We can also force the usage of the recursive call by adding it not
only to the unrestricted context, but to the linear one as well. However, we must
restrict immediate uses of the recursive call since otherwise every goal would
have a trivial proof (a non-terminating function that just calls itself), shadowing
relevant solutions. Instead, our framework allows the use of recursion only after
having deconstructed a recursive ADT via the following invariant: the recursive
hypothesis can only be used in recursive branches of ADT deconstruction, i.e. the
recursive call should only take “smaller”, recursive, hypothesis as arguments. To
illustrate, in any recursive function with a list argument (whose type is defined as
data List = Nil | Cons (A * List)), recursive calls are only allowed when
considering a judgment of the form List ` C, i.e. when a list value is available to
produce the goal C, and only in the Cons branch. Furthermore, we also forbid
the usage of the recursive function when synthesizing arguments to use it.

Polymorphic Types. A polymorphic specification is a type of form ∀α. τ where
α is a set of variables that stand for any (non-polymorphic) type in τ . Such a
type is also called a scheme. Synthesis of a scheme comprises of turning it into a
non-quantified type, and then treating its type variables uniformly. First, type
variables are considered atomic types, then, we instantiate the bound variables
of the scheme as described by the Hindley-Milner inference method’s [21,15] in-
stantiation rule (put simply, generate fresh names for each bound type variable);
e.g. the scheme ∀α. α( α could be instantiated to α0 ( α0. We add a rule for
this, where ∀α. τ v τ ′ indicates type τ ′ is an instantiation of type scheme ∀α. τ :

P ;Γ ;∆/∆′;Ω ` τ ′ ⇑ ∀α. τ v τ ′

P ;Γ ;∆/∆′;Ω ` ∀α. τ ⇑
(∀R)

As such, the construction of a derivation in which the only rule that can derive
an atom is the init rule corresponds to the synthesis of a program where some
expressions are treated agnostically (nothing constrains their type), i.e. a poly-
morphic program. The simplest example is the polymorphic function id of type
∀α. α ( α. The program synthesized from that specification is λx.x, a lambda
abstraction that does not constrain the type of its parameter x in any way.

The main challenge of polymorphism in synthesis is the usage of schemes
from the unrestricted context. To begin with, Γ now holds both (monomorphic)
types and schemes. Consequently, after the rule decideLeft! is applied, we are
left-focused on either a type or a scheme. Since left focus on a type is already



well defined, we need only specify how to focus on a scheme. Our algorithm
instantiates bound type variables of the focused scheme with fresh existential
type variables, and the instantiated type becomes the left focus. Inspired by the
Hindley-Milner system, we also generate inference constraints on the existential
type variables (postponing the decision of what type it should be to be used in the
proof), and collect them in a new constraints context Θ that is propagated across
derivation branches the same way the linear context is (by having an input and
output context (Θ/Θ′)). In contrast to Hindley-Milner’s inference, everytime a
constraint is added it is solved against all other constraints – a branch of the proof
search is desired to fail as soon as possible. Note that we instantiate the scheme
with existential type variables (?α) rather than just type variables (α) since
the latter represent universal types during synthesis, and the former represent
a concrete instance of a scheme, that might induce constraints on other type
variables. Additionally, we require that all existential type variables are assigned
a type. These concepts are formalized with the following rules, where ∀α. τ vE τ ′

means type τ ′ is an existential instantiation of scheme ∀α. τ , ftvE(τ ′) is the set
of free existential type variables in type τ ′, ?α 7→ τx is a mapping from existential
type ?α to type τx, and unify(c,Θ) indicates wether constrain c can be unified
with those in Θ:

Θ/Θ′;P ;Γ ;∆/∆′; τ ′ ⇓ ` C
∀α. τ vE τ ′ ftvE(τ ′) ∩ {?α | (?α 7→ τx) ∈ Θ′} = ∅

Θ/Θ′;P ;Γ ;∆/∆′;∀α. τ ⇓ ` C
(∀L)

unify(?α 7→ C,Θ)

Θ/Θ, ?α 7→ C;P ;Γ ;∆/∆′;x:?α ⇓ ` x : C
(?L)

unify(?α 7→ A,Θ)

Θ/Θ, ?α 7→ A;P ;Γ ;∆/∆′;x:A ⇓ ` x :?α
(⇓?L)

Further Challenges. We now consider two more sources of infinite recursion in
the synthesis process. The first is the use of an unrestricted function to synthesize
a term of type τ that in turn will require a term of the same type τ . An example
is the sub-goal judgment (a ( b ( b); (a ( b ( b) ⇓ ` b that appears while
synthesizing foldr – we apply ((L) until we can use init (b ⇓ ` b), and then we
must synthesize an argument of type b. Without any additional restrictions, we
may become again left focused on (a( b( b), and again require b, and on and
on. The solution will be to disallow the usage of the same function to synthesize
the same goal a second time further down in the derivation.

The other situation occurs when using an unrestricted polymorphic function
that requires synthesis of a term with an existential type when the goal is an
existential type. In contrast to the previous problem, the type of the goal and
of the argument that will cause the loop won’t match exactly, since instantiated
bound variables are always fresh. For example, for ∀α, β. α ( β ( β; ?α (
?β (?β ⇓ ` ?σ, we’ll unify ?β with ?σ, and then require a term of type ?β (not



?σ). We want to forbid the usage of the same function to attain any existential
goal, provided that function might create existential sub-goals (i.e. it’s polymor-
phic). However, we noticed that, even though for most tried problems this “same
function” approach worked, context-heavy problems such as array (seen in § 2)
wouldn’t terminate in a reasonable amount of time. As such, we’ll instead define
that, given an existential2 goal C, we can only “decide left!” on a proposition
A if, altogether, the amount of times we’ve “decided left!” on an polymorphic
function to produce an existential goal is less than a constant “existential depth”
de (which controls a depth aspect of the synthesis process).

Extending the restrictions context (P ) with restrictions on using the unre-
stricted context (PL!), we modify decideLeft! to formalize the two previous
paragraphs, where isExist(C) is true if C is an existential type, isPoly(f) is
true if f is universally quantified (i.e. f has form ∀αf ′), and P ′L! = PL!, (A,C)
if A is a function and P ′L! = PL! otherwise:

(A,C) /∈ PL!

isExist(C)⇒ |{u | (f, u) ∈ PL!, isPoly(f), isExist(u)}| < de
Θ/Θ′; (PC , PD, P

′
L!);Γ,A;∆/∆′;A ⇓ ` C

Θ/Θ′; (PC , PD, PL!);Γ,A;∆/∆′; · ⇑ ` C
(decideL!)

Polymorphic ADTs. To allow type parameters and the use of universally
quantified type variables in ADT constructors, we must guarantee that the adt-
init rule can unify the type parameters and that when constructing or destruct-
ing an ADT, type variables in constructor parameters are substituted by the ac-
tual type (i.e. to construct List Int with data List a = Cons (a * List a),
we wouldn’t try to synthesize (a * List a), but rather (Int * List Int)). To
unify Tα with Tβ , the sets of type parameters α and β must satisfy |α| = |β|
together with ∀i 0 ≤ i ∧ i < |α| ∧ unify(αi 7→ βi). The constructor type substi-
tution needn’t be explicit in the rule:

unify(Tα 7→ Tβ , Θ)

Θ/Θ, Tα 7→ Tβ , P ;Γ ;∆/∆′;x:Tα ⇓ ` x : Tβ
(adt-init)

Refinement Types. Refinement types are types with a predicate (a non-
existing predicate is the same as it being true); dependent types are functions
with refinement types in which the argument type is labeled and said label can
be used in the predicates of the return type (e.g. (x : Int) ( {y : Int | y = x}
specifies a function that takes an Int and returns an Int of equal value). We
extend the types syntax with our refinement types:

τ ::= . . . | (x : τ) ( σ | {x : τ | P}
P ::= P = P | P 6= P | P ∨ P | P ∧ P | P ⇒ P | n = n | n 6= n

| n ≤ n | n ≥ n | n < n | n > n | true | false | x
n ::= n ∗ n | n+ n | n− n | 〈natural〉 | x

2 a type is existential when any of its components is an existential type variable



The addition of refinement types to the synthesizer doesn’t interfere with the
rest of the process. We define the following right and left rule, to synthesize
or consume in synthesis a refinement type, where getModel(p) is a call to
an SMT solver that returns a model of an uninterpreted function that satisfies
∀a,b,...,n ha ⇒ hb ⇒ · · · ⇒ hn ⇒ p, where n is the refinement type label and
hn its predicate, with a, . . . , n standing for the label of every refinement type in
the propositional contexts; and sat(pa ⇒ pb) is a call to an SMT solver that
determines universal satisfiability of the implication between predicates (the left
focused proposition subtypes the goal).

getModel(p) = M

Θ/Θ′;P ;Γ ;∆/∆′ `M : {a : A | p} ⇑
(refR)

sat(pa ⇒ pb)

Θ/Θ′;P ;Γ ;∆/∆′;x:({a : A | pa}) ⇓ ` x : {b : A | pb}
(refL)

Optimizations. To speed up the process and get a cleaner output, we add a
rule that lets us “skip some rules” if left focused on a !-ed proposition, and the
goal is !-ed:

Θ/Θ′;P ;Γ ;∆;x:A ⇓ `M : C

Θ/Θ′;P ;Γ ;∆;x:!A ⇓ `M : !C
(! ⇓L)

4 Architecture

The SILI synthesizer operates as part of the pipeline that processes a full pro-
gram in the SILI language, and is called to generate terms marked (by the
syntax {{ ... }}) for synthesis. The main pipeline consists of:

Parsing→ Desugaring→ Inference→ Synthesis→ Evaluation

The parsing module converts ADT declarations and top level functions writ-
ten in the language’s syntax to a list of abstract syntax trees (ASTs) understood
by the rest of the pipeline.

The desugaring module converts the frontend AST to a core AST with-
out syntatic sugar and using the locally-nameless representation [9], in which
all bound variables are represented with Debruijn indices rather than names
(i.e. using the distance to the binding site in terms of the number of traversed
binders), This way inference can be done without worrying about name conflicts.

The inference module will traverse the list of ASTs in order (top-down), and
infer the type of all functions defined by the user, checking the inferred type
against a possible user given type annotation. Whenever a synthesis mark is
found in the AST, all the inferrence context up to that point is added to the
mark, and, if not explicit, its type is inferred, essentially defining the synthesis
context and synthesis goal.



The synthesis module iterates over the marks and runs the synthesizer with
the respective context and goal for each mark. The resulting expression is checked
against the synthesis constraints defined through some keywords, continuing
synthesis if they are violated: “using” guarantees that certain functions are used
in the program body (to invalidate valid program without them), and “assert”
evaluates the given assertion within the synthesized program to a validating
boolean. Additionally, the keyword “depth” controls the existential depth (seen
in § 3), and “choose” selects a different result as long as one is available. Finally,
the expression is minimized (i.e. η-reduced), and the mark in the frontend AST
is replaced with the synthesized program.

The evaluation module evaluates the function named “main” within the com-
plete synthesized program, returning a final value. When evaluating synthesis
assertions, a timeout is used to interrupt possibly non-terminating programs.

4.1 Implementation

The implementation was carried out in Haskell. We highlight some key points.
The project and source code are available from the repository [20].

Backtracking. Although focusing reduces non-determinism during proof search,
it cannot fully eliminate it. At several points during proof construction we must
choose one of multiple rules to apply, and in the event of not being able to
construct the proof following that choice, we want to backtrack to the decision
point and attempt to derive a proof taking a different route. To this effect, our
prototype synthesizer depends on the Haskell library LogicT, ”a backtracking
logic-programming monad” [2].

SMT Solving. To typecheck and synthesize refinement types and dependent
functions, we interface with an SMT solver to check satisfiability. For this, we
use the library SBV [3]. Unfortunately, this library does not support first-order
logic with uninterpreted functions. Since this is needed for synthesis with re-
finement types when right focused, we instead use unsafe library primitives to
communicate with the solver directly, constructing the logical formulas directly.
For satisfying formulas, for instance, when typechecking, or left focused on a
refinement type, we use the library API as an oracle.

Memoization. Some proofs attempt to synthesize the same sub-goal with the
same premises more than once. Since these proof attempts might be expensive
performance-wise, and we can rely on the program’s determinism (equal calls
to synthesize result in equal outcomes), we added memoization to our synthe-
sizer – an optimization technique that stores function calls and returns cached
values for equal inputs. For our synthesizer, two calls are equivalent when con-
texts Θ,P, Γ,∆, Ω, (or alternatively the left focus), and the goal, are equivalent.
Because comparing all of these is slow, our implementation hashes the relevant
values via a hashing library (Hashable [1]) and uses the result as the key. Fur-
thermore, a branch we want to memoize might fail, not providing any result



– we also want to record synthesis failure, as it happens more often than suc-
cessful results. We ran benchmarks to measure the impact of memoization on
performance. It’s quite noticeable in synthesis with multiple functions in the
unrestricted context, or more complex specifications. For example, if we add
a new function read to the unrestricted context in the array problem seen in
§ 2, synthesis with memoization will take around 9s, while synthesis without
memoization doesn’t terminate after 15m. The implementation could be greatly
improved, but we leave such optimizations to future work.

Debugging. The rules described in the formal system (§ 3) to handle infinite
recursion might seem obvious in retrospective, however, when faced with a pro-
gram that doesn’t terminate, what went wrong is not so clear. To make the
debugging experience better, we developed a tracing system that prints infor-
mation whenever a rule is applied, alongside the stack of rules applied so far.

Interface. A simple, syntax-highlighted, web interface was developed alongside
a server to make possible experimenting with the SILI language without having
to download and compile the complete toolchain. The web interface is available
from the repository [20].
Example. To showcase the expressiveness of our synthesizer, we present as ex-
amples the input and output program for reverse. Note how we can guide the
synthesis using the assertion mechanism to supply an example:

synth reverse :: List a -o List a -o List a

| assert (reverse (Cons (1, Cons (2, Nil))) Nil) == (Cons (2, Cons (1, Nil)));

reverse b c = case b of

Nil -> c

| Cons e*f -> reverse f (Cons (e, c));

5 Related Work

Type-based program synthesis is a vast field of study and so it follows that a lot of
literature is available to inspire and complement our work. Most works [17,25,22,13]
follow some variation of the synthesis-as-proof-search approach. However, the
process is novel for each due to a variety of different rich types explored and
their corresponding logics and languages; or nuances of the synthesis process
itself, such as complementing types with program examples; or even the pro-
gramming paradigm of the output produced (e.g. generating heap manipulating
programs [26]).

Program Synthesis from Polymorphic Refinement Types. The work [25]
also studies synthesis of recursive functional programs in an “advanced” context.
Their specifications combine two rich forms of types: polymorphic and refinement
types. Their approach to refinement types consists of a new algorithm that sup-
ports decomposition of the refinement specification. We also support refinements



(and polymorphism), but they are not as integrated in the synthesis process as
in [25]. Instead, our synthesizer leverages the expressiveness of linear types and
techniques for proof-search in linear logic to guide its process.

Resourceful Program Synthesis from Graded Linear Types. The work [17]
synthesizes programs using an approach similar ours. It employs so-called graded
modal types, which are a refinement of pure linear types that allows for quan-
titative specification of resource usage, in contrast to ours either linear or un-
restricted (via the linear logic exponential) use of assumptions. Their resource
management is more complex, and so they provide solutions which adapt Hodas
and Miller’s approach [8,18]. They also use focusing as a solution to trim down
search space and to ensure that synthesis only produces well-typed programs.
However, since their underlying logic is modal rather than purely linear, it lacks
a clear correspondence with concurrent session-typed programs [7,6], which is a
crucial avenue of future work. Moreover, their use of grading effectively requires
constraint solving to be integrated with the synthesis procedure, which can limit
the effectiveness of the overall approach. Additionally, Our system extends the
focusing-based system with recursion, ADTs, polymorphism and refinements to
synthesize more expressive programs.

6 Evaluation

The benchmarks3 are separated into groups: theorems of linear logic, recursive
ADTs, refinements. The first table displays successful synthesis – for each goal
we analyze the mean time and standard deviation, the conditions used to guide
the output, and the components (other functions) used in the resulting program.

Group Goal Avg. time ±σ Keywords Components

Linear
Logic
Theor.

uncurry 133µs± 4.9µs
distributivity 179µs± 5.0µs
call by name 196µs± 4.6µs

0/1 294µs± 5.3µs

List

map 288µs± 7.2µs
append 292µs± 7.0µs

foldl 1.69ms± 5.3µs choose 1
foldr 704µs± 10µs

concat 505µs± 18µs
uncons 215µs± 15µs
reverse 17.4ms± 515µs reverse [1,2] == [2,1]

Maybe
>>= 194µs± 5.3µs
maybe 161µs± 4.8µs

State

runState 190µs± 6.8µs
>>= 979µs± 23µs
>>= ∞ using (runState)
get 133µs± 3.8µs
put 146µs± 3.4µs

modify 219µs± 4.9µs
evalState 156µs± 4.0µs

Misc either 197µs± 5.3µs

Array
depth 3 freeze, foldl

array 2 80ms± 870µs using (foldl),depth 3 newMArray,write
Refinements add3 39ms± 1.1ms +

3 ran on an Intel Core i5 machine with 8GB of RAM using the benchmarking library
Criterion, and considering the full pipeline pass, from parsing to synthesis
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A Background

Type Systems. A type system can be formally described through a set of
inference rules that inductively define a judgment of the form Γ `M : A, stating
that program expression M has type A according to the typing assumptions for
variables tracked in Γ . For instance, x:Int, y:Int ` x+y : Int states that x+y has
type Int under the assumption that x and y have type Int. An expression M is
deemed well-typed with a given type A if one can construct a typing derivation
with M : A as its conclusion, by repeated application of the inference rules.

The simply-typed λ-calculus is a typed core functional language [24] that
captures the essence of a type system in a simple and familiar environment. Its
syntax consists of functional abstraction, written λx:A.M , denoting an (anony-
mous) function that takes an argument of type A, bound to x in M ; and ap-
plication M N , with the standard meaning, and variables x. For instance, the
term λx:A.x, denoting the identity function, is a functional abstraction taking
an argument of type A and returning it back.

Propositions as Types. It turns out that the inference rules of the simply-
typed λ-calculus are closely related to those of a system of natural deduction
for intuitionistic logic [27]. This relationship, known as the Curry-Howard cor-
respondence (see [29] for a historical survey), identifies that the propositions of
intuitionistic logic can be read as types for the simply-typed λ-calculus (“propo-
sitions as types”), their proofs are exactly the program with the given type
(“proofs as programs”), and checking a proof is type checking a program (“proof
checking as type checking”).

Inference rules in natural deduction are categorized as introduction or elim-
ination rules; these correspond, respectively, to rules for constructors and de-
structors in programming languages (e.g. function abstraction vs application,
construction of a pair vs projection).

We introduce select typing rules to both show how a type system can be
formalized and to show the relationship with (intuitionistic) propositional logic.
The following rule captures the nature of a hypothetical judgment, allowing for
reasoning from assumptions:

Γ, u : A ` u : A
(var)

When seen as a typing rule for the λ-calculus, it corresponds to the rule for
typing variables – variable u has type A if the typing environment contains a
variable u of type A.

As another concrete example, let us consider the rule for implication (A→ B):

Γ, u : A `M : B

Γ ` λu.M : A→ B
(→ I)

Logically, the rule states that to prove A → B, we assume A and prove B.
Through the Curry-Howard correspondence, implication corresponds to the func-
tion type – the program λu.M has type A→ B, provided M has type B under



the assumption that u is a variable of type A. The rule shown above is an intro-
duction rule, that introduces the “implication” connective.

Finally, let us consider an elimination rule, also for implication:

Γ `M : A→ B Γ ` N : A

Γ `M N : B
(→ E)

Elimination rules are easier to think of in a top-down manner. Logically, this rule
states that if we prove A→ B and A we can prove B. Through the Curry-Howard
correspondence, implication elimination corresponds to function application, and
its type is the function return type – the application MN has type B, provided
M has type A→ B and N has type A.

The Curry-Howard correspondence generalizes beyond the simply-typed λ-
calculus and propositional intuitionistic logic. It extends to the realms of poly-
morphism (second-order logic), dependent types (first-order logic), and various
other extensions of natural deduction and simply-typed λ-calculus – which in-
clude linear logic and linear types.

Linear Logic. Linear logic [14] can be seen as a resource-aware logic, where
propositions are interpreted as resources that are consumed during the inference
process. Where in standard propositional logic we are able to use an assumption
as many times as we want, in linear logic every resource (i.e., every assump-
tion) must be used exactly once, or linearly. This usage restriction gives rise to
new logical connectives, based on the way the ambient resources are used. For
instance, conjunction, usually written as A ∧ B, appears in two forms in linear
logic: multiplicative or simultaneous conjunction (written A⊗B); and additive
or alternative conjunction (written A & B). Multiplicative conjunction denotes
the simultaneous availability of resources A and B, requiring both of them to
be used. Alternative conjunction denotes the availability of A and B, but where
only one of the two resources may be used. Similarly, implication becomes linear
implication, written A ( B, denoting a resource that will consume (exactly
one) resource A to produce a resource B.

To present the formalization of this logic, besides the new connectives, we
need to introduce the resource-aware context ∆. In contrast to the previously
seen Γ , ∆ is also a list of variables and their types, but where each and every
variable must be used exactly once during inference. So, to introduce the connec-
tive ⊗ which defines a multiplicative pair of propositions, we must use exactly
all the resources (∆1, ∆2) needed to realize the (∆1) proposition A, and (∆2)
proposition B:

∆1 `M : A ∆2 ` N : B

∆1, ∆2 ` (M ⊗N) : A⊗B
(⊗I)

Out of the logical connectives, we need to mention one more, since it augments
the form of the judgment and it’s the one that ensures logical strength i.e. we’re
able to translate intuitionistic logic into linear logic. The proposition !A (read
of course A) is used (under certain conditions) to make a resource “infinite” i.e.



to make it useable an arbitrary number of times. To distinguish the “infinite”
variables, a separate, unrestricted, context is used – Γ . So Γ holds the “infinite”
resources, and ∆ the resources that can only be used once. The linear typing
judgment for the introduction of the exponential !A takes the form:

Γ ; ∅ `M : A

Γ ; ∅ ` !M : !A
(!I)

Logically, a proof of !A cannot use linear resources since !A denotes an unbounded
(potentially 0) number of copies of A. Proofs of !A may use other unrestricted or
exponential resources, tracked by context Γ . From a computational perspective,
the type !A internalizes the simply-typed λ-calculus in the linear λ-calculus.

The elimination form for the exponential, written let !u = M in N , warrants
the use of resource A an unbounded number of times in N via the variable u:

Γ ;∆1 `M : !A Γ, u:A;∆2 ` N : C

Γ ;∆1, ∆2 ` let !u = M in N : C
(!E)

Again, through the Curry-Howard correspondence, we can view the process of
finding a proof of a proposition in linear logic as the process of synthesizing a
linear functional program of the given type.

Sequent Calculus. Inference rules in natural deduction (the ones we have con-
sidered so far) are ill-suited for bottom-up proof-search since elimination rules
work top-down and introduction rules work bottom-up. A more suited candi-
date is the equivalent sequent calculus system in which all inference rules can be
understood naturally in a bottom-up manner. The introduction and elimination
rules from natural deduction disappear, and their place is taken by right and
left rules, respectively. Right rules correspond exactly to the introduction rules
of natural deduction, which were already understood bottom-up. The inference
rule for implication introduction (⊃ is used instead of →), seen above in nat-
ural deduction under the propositions as types subsection, corresponds to the
following right rule in sequent calculus:

Γ, u : A `M : B

Γ ` λu.M : A ⊃ B
(⊃ R)

Intuitively, left rules act as the elimination rules of natural deduction, but
are altered to work bottom-up, instead of top-down. The inference rule for the
also seen above implication elimination is as follows:

Γ, u : B `M : C Γ, u:A ⊃ B ` N : A

Γ, u:A ⊃ B `M{(uN)/u} : C
(⊃ L)

As implied by their name, left rules define how to decompose or make use of a
connective on the left of the turnstile `. To use an assumption of A ⊃ B while
attempting to show some proposition C we produce a proof of A, which allows



us to use an assumption of B to prove C. In terms of the corresponding λ-terms,
the ⊃ L rule corresponds to applying the variable u to the argument N but
potentially deep in the structure of M .

We’ll define our inference rules for synthesis under the sequent calculus sys-
tem, for it simplifies the work to be done in the synthesizer.

Resource-Management. Be it from the perspective of proof checking (i.e. type
checking) or proof search linear logic poses a key challenge when compared
to the non-linear setting: When constructing a derivation (bottom-up), we are
seemingly forced to guess how to correctly split the linear context such that the
sub-derivations have access to the correct resources (e.g. the ⊗I rule above).

To solve this issue we will adopt the resource-management approach of [8,19],
which generalizes the judgment from ∆ ` M : A to ∆I ∆O ` M : A, where ∆I

is an input context and ∆O is an output context. Instead of requiring non-
deterministic guesses of resource splits during proof search, we track which re-
sources are used and which are remaining via the two contexts, leading to the
following general strategy: to prove A ⊗ B using (input) resources ∆, prove A
with input context ∆, consuming some subset of ∆, and produce as output the
leftover resources ∆′; prove B using ∆′ as its input context and then output
the remaining resources ∆′′; finally, after having proven A⊗ B, output ∆′′, for
subsequent derivations.

Focusing. Even with everything mentioned so far, non-determinism is still very
present in proof-search, e.g. at any given point, many proof rules are applicable
in general. The technique of focusing [4,10] has been previously studied as a
way to discipline proof search in linear logic – a method created to trim down
the search space of valid proofs in linear logic, by eagerly applying invertible
rules (i.e. rules whose conclusion implies the premises), and then by “focusing”
on a single connective when no more direct (invertible) rules can be applied,
that is, only applying rules that breakdown the connective under focus or its
subformulas. If the search is not successful, the procedure backtracks and another
connective is chosen as the focus.

Focusing eliminates all of the “don’t care” non-determinism from proof search,
since the order in which invertible rules are applied does not affect the outcome
of the search, leaving only the non-determinism that pertains to unknowns (or
“don’t know” non-determinism), identifying precisely the points at which back-
tracking is necessary.

B Formal System

Γ ;∆/∆′;Ω, x:A `M : B ⇑ x /∈ ∆′

Γ ;∆/∆′;Ω ` λx.M : A( B ⇑
(( R)

Γ ;∆/∆′;Ω `M : A ⇑ Γ ;∆/∆′′;Ω ` N : B ⇑ ∆′ = ∆′′

Γ ;∆/∆′;Ω ` (M &N) : A&B ⇑
(&R)



Γ ;∆/∆′;Ω ⇑ ` C C not right asynchronous

Γ ;∆/∆′;Ω ` C ⇑
(⇑R)

Γ ;∆/∆′;Ω, y:A, z:B ⇑ `M : C y, z /∈ ∆′

Γ ;∆/∆′;Ω, x:A⊗B ⇑ ` let y ⊗ z = x in M : C
(⊗L)

Γ ;∆/∆′;Ω ⇑ `M : C

Γ ;∆/∆′;Ω, x:1 ⇑ ` let ? = x in M : C
(1L)

Γ ;∆/∆′;Ω, y:A ⇑ `M : C y /∈ ∆′

Γ ;∆/∆′′;Ω, z:B ⇑ ` N : C z /∈ ∆′′ ∆′ = ∆′′

Γ ;∆/∆′;Ω, x:A⊕B ⇑ ` case x of inl y →M | inr z → N : C
(⊕L)

Γ, y:A;∆/∆′;Ω ⇑ `M : C

Γ ;∆/∆′;Ω, x:!A ⇑ ` let !y = x in M : C
(!L)

Γ ;∆,A/∆′;Ω ⇑ ` C A not left asynchronous

Γ ;∆/∆′;Ω,A ⇑ ` C
(⇑L)

Γ ;∆/∆′ ` C ⇓ C not atomic

Γ ;∆/∆′; · ⇑ ` C
(decideR)

Γ ;∆/∆′;A ⇓ ` C
Γ ;∆,A/∆′; · ⇑ ` C

(decideL)

(A,C) /∈ PL!

isExist(C)⇒ |{u | (f, u) ∈ PL!, isPoly(f), isExist(u)}| < de
Θ/Θ′; (PC , PD, P

′
L!);Γ,A;∆/∆′;A ⇓ ` C

Θ/Θ′; (PC , PD, PL!);Γ,A;∆/∆′; · ⇑ ` C
(decideL!)

Γ ;∆/∆′; y:B ⇓ `M : C Γ ;∆′/∆′′; · ` N : A ⇑
Γ ;∆/∆′′;x:A( B ⇓ `M{(xN)/y} : C

(( L)

Γ ;∆/∆′; y:A ⇓ `M : C

Γ ;∆/∆′;x:A&B ⇓ `M{(fst x)/y} : C
(&L1)

Γ ;∆/∆′; y:B ⇓ `M : C

Γ ;∆/∆′;x:A&B ⇓ `M{(snd x)/y} : C
(&L2)

Γ ;∆/∆′ `M : A ⇓ Γ ;∆′/∆′′ ` N : B ⇓
Γ ;∆/∆′′ ` (M ⊗N) : A⊗B ⇓

(⊗R)
Γ ;∆/∆ ` ? : 1 ⇓

(1R)

Γ ;∆/∆′ `M : A ⇓
Γ ;∆/∆′ ` inl M : A⊕B ⇓

(⊕R1)
Γ ;∆/∆′ `M : B ⇓

Γ ;∆/∆′ ` inr M : A⊕B ⇓
(⊕R2)

Γ ;∆/∆′; · `M : A ⇑ ∆ = ∆′

Γ ;∆/∆ ` !M : !A ⇓
(!R)

Γ ;∆/∆′;x:A ⇓ ` x : A
(init)



Γ ;∆/∆′; · ` A ⇑
Γ ;∆/∆′ ` A ⇓

(⇓ R)

Γ ;∆/∆′;A ⇑ ` C A not atomic and not left synchronous

Γ ;∆/∆′;A ⇓ ` C
(⇓ L)

(P ′
C ;PD);Γ ;∆/∆′ `M : Xn ⇓ T /∈ PC

(PC ;PD);Γ ;∆/∆′ ` Cn M : T ⇓
(adtR)

T /∈ PD ∆′
1 = · · · = ∆′

n

(PC ;P ′
D);Γ ;∆/∆′

1;Ω, y1:X1 ⇑ `M1 : C y1 /∈ ∆′
1

. . .
(PC ;P ′

D);Γ ;∆/∆′
n;Ω, yn:Xn ⇑ `Mn : C yn /∈ ∆′

n

(PC ;PD);Γ ;∆/∆′
1;Ω, x:T ⇑ ` case x of . . . | Cn yn →Mn : C

(adtL)

(PC ;PD);Γ ;∆,x:T/∆′;Ω ⇑ `M : C T ∈ PD
(PC ;PD);Γ ;∆/∆′;Ω, x:T ⇑ `M : C

(adt⇑L)

(PC ;PD);Γ ;∆/∆′;x:T ⇑ `M : T T /∈ PD
(PC ;PD);Γ ;∆/∆′;x:T ⇓ `M : T

(adt⇓L)

unify(Tα 7→ Tβ , Θ)

Θ/Θ, Tα 7→ Tβ , P ;Γ ;∆/∆′;x:Tα ⇓ ` x : Tβ
(adt-init)

P ;Γ ;∆/∆′;Ω ` τ ′ ⇑ ∀α. τ v τ ′

P ;Γ ;∆/∆′;Ω ` ∀α. τ ⇑
(∀R)

Θ/Θ′;P ;Γ ;∆/∆′; τ ′ ⇓ ` C
∀α. τ vE τ ′ ftvE(τ ′) ∩ {?α | (?α 7→ τx) ∈ Θ′} = ∅

Θ/Θ′;P ;Γ ;∆/∆′;∀α. τ ⇓ ` C
(∀L)

unify(?α 7→ C,Θ)

Θ/Θ, ?α 7→ C;P ;Γ ;∆/∆′;x:?α ⇓ ` x : C
(?L)

unify(?α 7→ A,Θ)

Θ/Θ, ?α 7→ A;P ;Γ ;∆/∆′;x:A ⇓ ` x :?α
(⇓?L)

getModel(p) = M

Θ/Θ′;P ;Γ ;∆/∆′ `M : {a : A | p} ⇑
(refR)

sat(pa ⇒ pb)

Θ/Θ′;P ;Γ ;∆/∆′;x:({a : A | pa}) ⇓ ` x : {b : A | pb}
(refL)

Θ/Θ′;P ;Γ ;∆;x:A ⇓ `M : C

Θ/Θ′;P ;Γ ;∆;x:!A ⇓ `M : !C
(! ⇓L)



C Examples

Maybe.
Input program:

data Maybe a = Nothing | Just a;

data List a = Nil | Cons (a * List a);

synth return :: a -o Maybe a;

synth empty :: Maybe a;

synth bind :: Maybe a -o (a -o Maybe b) -> Maybe b;

synth maybe :: b -> (a -o b) -> Maybe a -o b;

Output program:

return :: forall a . (a -o Maybe a);

return = Just;

empty :: forall a . Maybe a;

empty = Nothing;

bind :: forall a b . (Maybe a -o (!(a -o Maybe b) -o Maybe b));

bind c d = case c of

Nothing ->

let !e = d in Nothing

| Just f -> let !g = d in g f;

maybe :: forall a b . (!b -o (!(a -o b) -o (Maybe a -o b)));

maybe c d e = let !f = c in

let !g = d in

case e of

Nothing -> f

| Just h -> g h;

List.
Input program:

data List a = Nil | Cons (a * List a);

data Maybe a = Nothing | Just a;

synth singleton :: a -o List a;

synth append :: List a -o List a -o List a;

synth map :: (!(a -o b)) -o List a -o List b;

synth foldl :: !(b -o a -o b) -o b -o List a -o b | choose 1;

synth uncons :: List a -o Maybe (a * List a);

synth foldr :: !(a -o b -o b) -o b -o List a -o b;

synth insert :: a -o List a -o List a;

synth concat :: List (List a) -o List a;



Ouput program:

singleton :: forall a . (a -o List a);

singleton b = Cons (b, Nil);

append :: forall a . (List a -o (List a -o List a));

append b c = case b of

Nil -> c

| Cons d ->

let e*f = d in

Cons (e, append f c);

map :: forall a b . (!(a -o b) -o (List a -o List b));

map c d = let !e = c in

case d of

Nil -> Nil

| Cons f ->

let g*h = f in

Cons (e g, map (!e) h);

foldl :: forall a b . (!(b -o (a -o b)) -o (b -o (List a -o b)));

foldl c d e = let !f = c in

case e of

Nil -> d

| Cons g ->

let h*i = g in

foldl (!f) (f d h) i;

uncons :: forall a . (List a -o Maybe (a * List a));

uncons b = case b of

Nil -> Nothing

| Cons c -> let d*e = c in Just (d, e);

foldr :: forall a b . (!(a -o (b -o b)) -o (b -o (List a -o b)));

foldr c d e = let !f = c in

case e of

Nil -> d

| Cons g ->

let h*i = g in

f h (foldr (!f) d i);

insert :: forall a . (a -o (List a -o List a));

insert b c = case c of

Nil -> Cons (b, Nil)

| Cons g ->

let h*i = g in



Cons (h, insert b i);

concat :: forall a . (List (List a) -o List a);

concat b = case b of

Nil -> Nil

| Cons c ->

let d*e = c in

case d of

Nil -> concat e

| Cons k ->

let l*m = k in

Cons (l, concat (Cons (m, e)));

State. (with a slight optimization that will be added as a control keyword
futurely, that allows bind using runState to terminate in a reasonable time)
Input program:

data State b a = State (!b -o (a * !b));

synth runState :: State b a -o (!b -o (a * !b));

synth bind :: (State c a -o (a -o State c b) -o State c b) | using (runState);

synth return :: a -o State b a;

synth get :: State a a;

synth put :: !a -o (State a 1);

synth modify :: (!a -o !a) -o State a 1;

synth evalState :: State b a -o !b -o a;

Output program:

data State b a = State (!b -o (a * !b));

runState :: forall a b . (State b a -o (!b -o (a * !b)));

runState c !f = case c of

State e ->

let h*i = e (!f) in

let !j = i in (h, (!j));

bind :: forall a b c . (State c a -o ((a -o State c b) -o State c b));

bind bs bt = case bs of

State bu ->

State (\bv -> let !bw = bv in

let cu*cv = bu (!bw) in

let !cw = cv in

(let dr*ds = runState (bt cu) (!cw) in

let !dt = ds in dr, (!cw)));

return :: forall a b . (a -o State b a);



return c = State (\d -> let !e = d in

(c, (!e)));

get :: forall a . State a a;

get = State (\b -> let !c = b in

(c, (!c)));

put :: forall a . (!a -o State a 1);

put b = let !c = b in

State (\d -> let !e = d in

((), (!e)));

modify :: forall a . ((!a -o !a) -o State a 1);

modify b = State (\c -> let !d = c in

let !f = b (!d) in ((), (!f)));

evalState :: forall a b . (State b a -o (!b -o a));

evalState c d = case c of

State e ->

let !f = d in

let h*i = e (!f) in

let !j = i in h;
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