
DEPARTMENT OF
COMPUTER SCIENCE

JOÃO AFONSO OLIVEIRA PEREIRA

Bachelor in Computer Science

FEATHERWEIGHT GENERIC GO WITH
UNTYPED CONSTANTS, STRUCTURAL TYPE
DEFINITIONS AND TYPE INFERENCE

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

DEPARTMENT OF
COMPUTER SCIENCE

FEATHERWEIGHT GENERIC GO WITH
UNTYPED CONSTANTS, STRUCTURAL TYPE
DEFINITIONS AND TYPE INFERENCE

JOÃO AFONSO OLIVEIRA PEREIRA

Bachelor in Computer Science

Adviser: Bernardo Parente Coutinho Fernandes Toninho
Assistant Professor, NOVA University of Lisbon

MASTER IN COMPUTER SCIENCE

NOVA University Lisbon
November, 2021

Featherweight Generic Go with Untyped Constants, Structural Type Defini-
tions and Type Inference

Copyright © João Afonso Oliveira Pereira, NOVA School of Science and Technology, NOVA

University Lisbon.

The NOVA School of Science and Technology and the NOVA University Lisbon have the

right, perpetual and without geographical boundaries, to file and publish this dissertation

through printed copies reproduced on paper or on digital form, or by any other means

known or that may be invented, and to disseminate through scientific repositories and

admit its copying and distribution for non-commercial, educational or research purposes,

as long as credit is given to the author and editor.

Acknowledgements

A very big thank you to my advisor Prof. Bernardo Toninho for the excellent guidance,

the impressive availability and the freedom he allowed me in exploring topics not directly

related to this work.

Thanks to my family for all the support and love. Thank you Soraya for everything, I

do believe this would not be possible without you. Finally, thanks to my fishing comrades

for showing me how much fun it can be to look at a rod for hours on end.

iv

Abstract

Generics are a key ingredient of modular program design in modern programming lan-

guages. This feature, which is absent from the Go programming language, has consis-

tently been the most requested among Go developers. The Go Team has been examining

how to add generics to the language for years, and recently approved a language change

proposal that includes support for generics. The proposal suggests a design based on

type parameters, backed by the foundational work on Featherweight (Generic) Go. The

proposed design includes some features which were not investigated in a formal setting,

opening the door to unforeseen interactions between features that might only be acknowl-

edged too late into the design process.

In particular, the features to be considered are primitive types and operations, type

lists in interfaces and inference of type parameters. Primitive types present some chal-

lenges related to the heterogeneity they exhibit and the distinction Go makes between

values of primitive type and untyped constants; type lists in interfaces arise as a solution

to allow primitive operations between values of (generic) variable type, but introduce

some intricacies since they represent a form of intersection type; type parameter infer-

ence doesn’t add any functionality to the formal design, but its interference with the type

system must still be accounted for.

We have designed and developed an implementation of the above features in the

theoretically driven implementation of Featherweight (Generic) Go, which includes a

type checker, an interpreter and a monomorphiser. We show how the system can be

formally extended to account for this extended feature set. The implementation includes

run time validation of type preservation, which supports the correctness of our formal

design.

Keywords: Golang, Programming language theory, Type systems, Featherweight lan-

guages, Type lists, Bidirectional typing

v

Resumo

Os genéricos são um ingrediente chave para um desenho modular de programas em lin-

guagens de programação modernas. Esta feature, ausente da linguagem de programação

Go, tem sido consistentemente a mais pedida entre os programadores de Go. A Go Team

tem vindo a examinar como adicionar genéricos à linguagem há anos, e recentemente

aprovou uma language change proposal que inclui suporte para genéricos. A proposta su-

gere um desenho baseado em parâmetros de tipo, apoiada pelo trabalho fundamental

no Featherweight (Generic) Go. O desenho proposto inclui algumas features que não fo-

ram investigadas num contexto formal, abrindo espaço para interações imprevistas entre

features, que podem só vir a ser descobertas demasiado tarde no processo de desenho.

Em particular, as features consideradas são os tipos e operadores primitivos, as listas

de tipos em interfaces e a inferência de parâmetros de tipo. Os tipos primitivos levantam

desafios relacionados com a heterogeneidade que exibem, além da distinção que o Go faz

entre valores de tipo primitivo e untyped constants; as listas de tipos em interfaces surgem

como uma solução para permitir operações primitivas entre valores de tipos genéricos,

mas introduzem algumas dificuldades já que representam uma forma de tipo interseção;

a inferência de parâmetros de tipo não adiciona nenhuma funcionalidade ao desenho

formal, no entanto deve ter-se em conta a sua interferência com o sistema de tipos.

Desenhou-se e desenvolveu-se uma implementação destas features no protótipo gui-

ado pela teoria do Featherweight (Generic) Go, que inclui um type checker, um interpre-

tador e um monomorfizador. Neste documento mostra-se como se pode estender formal-

mente o sistema de forma a considerar este conjunto alargado de features. A implementa-

ção inclui uma verificação em run time da preservação de tipos, o que suporta a correção

deste desenho formal.

Palavras-chave: Golang, Teoria de linguagens de programação, Sistemas de tipos, Lingua-

gens peso-pluma, Listas de tipos, Tipificação bidirecional

vi

Contents

List of Figures ix

List of Listings xi

1 Introduction 1

1.1 Contributions . 2

1.2 Document Structure . 2

2 Background 3

2.1 Theory of Programming Languages . 3

2.1.1 Syntax . 4

2.1.2 Semantics . 5

2.1.3 Type Systems . 6

2.1.4 Type Safety - Formally . 8

2.1.5 Modelling Real-World Programming Languages 8

2.2 Polymorphism . 9

2.2.1 Ad-hoc polymorphism . 10

2.2.2 Subtype polymorphism . 11

2.2.3 Parametric polymorphism . 13

2.3 Bidirectional Typing . 17

2.3.1 Algorithmic typing rules . 19

2.3.2 Application to polymorphic type systems 20

3 Related Work 21

3.1 Featherweight Java . 21

3.1.1 Featherweight Generic Java . 22

3.2 Featherweight Go . 22

vii

CONTENTS

3.2.1 Go vs Java . 23

3.2.2 The Featherweight Go Language 23

3.2.3 Featherweight Generic Go . 25

4 Extending Featherweight (Generic) Go 28

4.1 Additions to Featherweight Go . 28

4.1.1 Primitive types and operations 28

4.1.2 General type definitions . 29

4.1.3 Extending Featherweight Go . 31

4.2 Additions to Featherweight Generic Go 45

4.2.1 Type lists in interfaces . 45

4.2.2 Type definitions revisited . 46

4.2.3 Extending Featherweight Generic Go 46

4.3 Adjusting the monomorphisation algorithm 53

4.3.1 Monomorphisation in Featherweight (Generic) Go 53

4.3.2 Monomorphisation and Type Declarations 57

4.3.3 Handling instantiated types in type declarations 59

4.3.4 Monomorphising interface types 61

4.3.5 Note on the remaining features 63

5 Exploring Type Argument Inference 65

5.1 Problem Statement . 65

5.2 The base algorithm . 67

5.3 Solving a set of subtype constraints . 69

5.3.1 Nontrivial constraints . 69

5.3.2 Multiple constraints over a single variable 72

5.4 Discussion and Related Work . 75

5.4.1 Inferring types for untyped constants 76

5.4.2 Typing the empty list . 78

5.4.3 Related Work . 79

6 Conclusions and Future Work 81

Bibliography 83

viii

List of Figures

2.1 Syntax of simply typed λ-calculus enriched with booleans and conditionals

(λB). 5

2.2 Evaluation rules for λB. 6

2.3 Typing rules for λB. 7

2.4 Syntax of tuples. 12

2.5 Subtyping rules for λB enriched with tuples. 12

2.6 Syntax of polymorphic extension of λB. 14

2.7 Evaluation rules for type application. 14

2.8 Typing rules for type abstraction and application. 15

3.1 Featherweight Go syntax . 24

3.2 FGG syntax . 26

4.1 Featherweight Go syntax . 31

4.2 FGe auxiliary functions . 32

4.3 FGe auxiliary functions for primitive types 33

4.4 FGe predicates . 35

4.5 FG typing . 37

4.6 The mostRestrictive function. 39

4.7 FG expressions typing . 40

4.8 FGe reduction . 42

4.9 Featherweight Generic Go (extended) syntax 47

4.10 FGGe auxiliary functions . 48

4.11 FGGe auxiliary functions for primitives . 49

4.12 FGGe (sub)typing . 51

4.13 Monomorphisation of type literals (original). 57

4.14 Computing instance sets. 59

ix

LIST OF FIGURES

4.15 Monomorphisation of types. 61

x

List of Listings

2.1 check function . 18

2.2 synth function . 18

3.1 Example program in FGG . 27

4.1 Mixing constants and typed variables . 29

4.2 FGe assignability between named types and type literals. 36

4.3 Go implicit conversions, example 1 . 38

4.4 Go implicit conversions, example 2 . 38

4.5 FGe example: why conversions are needed. 43

4.6 FGe example: why conversions are needed (2). 43

4.7 Example FGG program to be monomorphised. 54

4.8 Selector example: monomorphised (FG) program. 56

4.9 Selector that includes a predicate as its field. 58

5.1 Example program in FGG(). 66

5.2 Lists without type arguments . 70

5.3 Randomly choosing between two input values. 73

5.4 Randomly choosing between two input Lists. 74

5.5 Lists without type arguments . 77

5.6 Simulating rank-2 polymorphism in FGG(). 80

xi

1 Introduction

Generics or parametric polymorphism are an essential feature present in most current day

programming languages. They provide a powerful abstraction mechanism that allows

programmers to express algorithms and data structures agnostic to the type of values

they manipulate, promoting modularity and encouraging code reutilization.

However, the Go language infamously lacks generics, despite being the feature that

developers request the most [28, 29]. The Go Team has been studying this extension for

years now, and recently approved a language change proposal that includes generics 1.

The design 2 is based on type parameters and is supported by well-known theory [20].

However, it also includes some real-world oriented extensions whose foundations have

not yet been thoroughly studied. It is known that such discrepancies between theory and

practice may be problematic, as one might overlook unexpected interactions between

seemingly unrelated features - a popular example being the relationship between subtyp-

ing and arrays in Java [1, 35], which had to be compensated by a run-time type check,

compromising both static type safety and the performance of array stores.

In particular, the proposed design includes primitive types and a form of type lists,

a solution that enables bounding type parameters by predetermined sets of primitive

types, as a way to support generic functions that use primitive operators within their

body. Additionally, the design further includes type parameter inference, a feature that

was also not investigated in the context of Featherweight Generic Go [20].

The primitive types present some challenges related both to the heterogeneity they

exhibit - e.g., it is not possible to add an int64 to an int - and to the distinction Go makes

between values of primitive type and untyped constants. Type lists introduce a completely

different notion of interface, where one explicitly states the types that can implement

1https://github.com/golang/go/issues/43651
2https://go.googlesource.com/proposal/+/master/design/go2draft-type-parameters.md

1

https://github.com/golang/go/issues/43651
https://go.googlesource.com/proposal/+/master/design/go2draft-type-parameters.md

CHAPTER 1. INTRODUCTION

that interface instead of just specifying a set of methods, which may be implemented

by arbitrarily many types. Moreover, type lists act both as a form of union of types and

an intersection of operators, since the operators supported by the types in the list must

match. This feature can be further complicated by the ability to refer to type aliases of

primitive types in such lists, which may then have distinct methods.

Therefore it is important to understand how these extensions interact with the fea-

tures already considered in the core underlying theories of Featherweight Go and Feath-

erweight Generic Go. We find, for instance, that expanding the set of possible values

requires the addition of an unplanned feature - type conversions - in order to maintain

the type safety properties of the model languages.

1.1 Contributions

This work focuses on the problem of integrating type lists in FGG and the extensions

necessary to perform interesting experiments with it. Besides, we also study how a type

inference algorithm can be implemented in this context. The main contributions of this

work encompass the extension of the theoretically driven implementation of Feather-

weight (Generic) Go with the following features:

• Primitive types, operations and untyped constants

• General type declarations, anonymous type literals and type conversions

• Type lists in interfaces

• Monomorphisation of type declarations and type literals

• Type parameter inference

1.2 Document Structure

The remaining of this document is organized as follows. Chapter 2 introduces the back-

ground theoretical concepts, reviewing how programming languages and in particular

type systems are modelled formally. Chapter 3 discusses the two works which we will be

basing on, focusing on the model of Featherweight Generic Go and some of its current

limitations. Chapter 4 presents the main contributions of this thesis. It starts by describ-

ing and motivating each extension, and then explains how we realize them. Chapter 5

explores the problem of type argument inference in the context of (extended) Feather-

weight Generic Go and discusses the algorithm we propose to solve this problem. At last,

Chapter 6 concludes and suggests some directions for future work.

2

2 Background

2.1 Theory of Programming Languages

One of the key aspects of a programming language is the set of correctness properties the

language ensures about its programs. By imposing these properties, the language is not

only reducing the ability of the programmer to introduce errors, but also providing some

guarantees about the run-time behavior of the programs it accepts.

For instance, if a language establishes that a function is always applied to the correct

number of arguments, not only is the programmer forbidden from calling one with an

incorrect number of arguments in their code, but the programmer is also sure that if they

pass a function to foreign, unknown code (e.g. a library), the function will be applied

correctly.

Consequently, a crucial step in validating a language design is assessing whether the

expected properties indeed hold for every program expressible in the language. Moreover,

it’s an important step not only during the initial design phase, but also whenever a new

extension is to be added, ensuring the properties are preserved. As noted by Cardelli [6],

this assessment requires a great deal of rigor in order to avoid false conclusions. The

remaining of this section introduces some of the tools that enable such rigorous reasoning.

In general, the program correctness of the form mentioned above is enforced by the

language’s type system, which imposes constraints over the ways the program objects may

be manipulated [7]. These constraints might range from simple ones, e.g. not allowing an

integer to be used as a pointer, to much stronger ones such as prohibiting the mutation

of shared state [25].

The central role the type system plays in ensuring correctness suggests that a good

part of the language validation should target its type system. Indeed this is reflected by

the fact that one of the most fundamental results we can prove about a language is type

3

CHAPTER 2. BACKGROUND

safety. Informally, a language L is type safe if, given any well-typed program written

in L, it is guaranteed that a certain class of errors is ruled out in any execution of that

program. The class of errors depends on each particular language and type system, but

it always includes e.g. the use of a function with incorrect arguments and the attempted

application of a non-function [47].

Reasoning about such properties while avoiding false conclusions essentially asks for

a formal, mathematical proof that the properties really hold. In order to develop such a

proof, first it’s necessary to state the properties in a concrete and precise way. For example,

before proving the informal notion of type safety above for a particular language, one

would have to rigorously define the concept of well-typedness and a specific class of errors.

Being able to express formal statements about a language implies the language itself

has to be modeled under a mathematical framework. The universally adopted model

divides a language definition into three dimensions/components: syntax, semantics and

type system. In the following subsections we will be showing how to formalize each of

these components, referring to the canonical simply typed lambda calculus augmented

with booleans and conditionals [35] - henceforth designated as λB - in order to ground

the abstract notions in concrete examples.

We will then conclude with a formal type safety statement for the example language, fol-

lowed by a discussion on how to approach the formalization of real-world programming

languages.

2.1.1 Syntax

The syntax describes the forms of types and terms; types express static knowledge about

programs, whereas terms (statements, expressions, etc.) express the algorithmic behav-

ior [6]. The syntax is generally provided as a BNF-type grammar. It consists of a set of

rules that define how symbols are combined to obtain correctly structured terms, and

how to combine the terms themselves into more complex ones.

As an example, Figure 2.1 illustrates the syntax definition for λB. The rules on the

left define the basic form of terms and how to combine them: λx :Bool. x is a well-formed

abstraction (i.e. function definition) term, and so is λx :Bool. λy :Bool. y - in λB, all

the functions are curried. Likewise, (λx :Bool. x) true is a well-formed1 application, as

is (λx :Bool. λy :Bool. y) true. The remaining forms of terms are relatively simple. Of

particular importance is the rule for values, which defines a subset of terms that are

possible final results of evaluation [35]. Its relevance will be made clear in Section 2.1.4.

Similarly, the production rule for types (on the right) defines that a type is either the

base type Bool, which has no internal structure, or a combination of two types T1 and T2,

yielding a function type T1 → T2. The contexts and their meaning will be presented in

Section 2.1.3.

1Although the parenthesis are not part of the syntax, we use them for the sake of readability.

4

2.1. THEORY OF PROGRAMMING LANGUAGES

tF terms:
x variable
λx :T . t abstraction
t t application
true constant true
f alse constant false
if t then t else t conditional

vF values:
λx :T . t abstraction value
true true value
f alse false value

T F types:
T → T type of functions
Bool type of booleans

Γ F contexts:
∅ empty context
Γ ,x : T term variable binding

Figure 2.1: Syntax of simply typed λ-calculus enriched with booleans and conditionals
(λB).

2.1.2 Semantics

The formalization of semantics specifies how to assign meaning to a term. Intuitively, this

corresponds to defining how programs are evaluated.

While there are several techniques to formalize the semantics of a programming

language, in this presentation we adopt structural operational semantics [38, 35]. In this

approach, the behavior of a program is described through an hypothetical computer,

whose machine code is the language’s terms. A state of the machine is essentially a term

of the language (it may also include e.g. a memory store). The operation of the machine

is then defined by a transition function that, for each state, either:

• yields the next state (i.e. term) by performing a step of simplification or rewriting

on the current one

• declares the machine has halted.

The transition function is specified through a set of inductive rules that define the

valid transitions of a term based on the possible transitions of its components (i.e. sub-

terms). An example of such a set of rules is shown in Figure 2.2. These model the

semantics of λB under a call-by-value evaluation strategy, in which only the outermost

application is evaluated and it is only evaluated after its argument has been reduced to a

value.

The relation −→ defined by these rules is called the evaluation relation, where t −→ t′

reads “term t evaluates to t’ in one step”. The rules E-Congr1, E-Congr2 and E-

If (top half) are congruence rules, in the sense that they direct the evaluation to the

correct subterm: E-Congr2 can only be applied when v1 is a value, which means that

when evaluating an application t1 t2, the subterm t1 must first be reduced to a value

before proceeding. The rule E-Congr1 reinforces this order by stating that if t1 can

5

CHAPTER 2. BACKGROUND

E-Congr1

t1 −→ t′1
t1 t2 −→ t′1 t2

E-Congr2

t2 −→ t′2 v1 is a value

v1 t2 −→ v1 t
′
2

E-If

t1 −→ t′1
if t1 then t2 else t3 −→ if t′1 then t2 else t3

E-AppAbs

v2 is a value

(λx :T . t12) v2 −→ [x 7→ v2] t12

E-IfTrue

v is true

if v then t2 else t3 −→ t2

E-IfFalse

v is false

if v then t2 else t3 −→ t3

Figure 2.2: Evaluation rules for λB.

be simplified, then that simplification is the step to take. Rule E-If is defined similarly:

before selecting a branch, the condition t1 has to be simplified to a value.

The rules E-AppAbs, E-IfTrue and E-IfFalse are often called β-rules or the

computation rules. Although E-App also imposes an evaluation order - the application

can only be reduced after simplifying the argument to a value - its main purpose is to

specify the result of applying a function to an argument. The notation [x 7→ v2] t12 stands

for: replace the parameter x by the argument v2 in the body of the function, t12. Likewise,

the rules E-IfTrue and E-IfFalse stipulate the result of evaluating a conditional - i.e.

which branch to pick - based on the value of its condition.

Finally, given the definitions of both congruence and computation rules, the evalua-

tion proceeds as follows. Given an initial term t, look up the rule that is applicable to t

(if any) and apply it, producing t′. Then, repeat this process until reaching a term t′′ for

which no rule is applicable. At this point, we say t′′ is the meaning of the initial term t.

There’s one important distinction to be made here: t′′ will either be a value or simply a

term to which no rule applies, like the following:

if λx :Bool. x then true else f alse

Such a term is called a stuck state: neither has the evaluation reached a legal final result -

i.e. an abstraction or a boolean value - nor can it proceed: the abstraction can’t be simpli-

fied further and it isn’t a boolean value, hence neither of the rules for the if-construction

applies. As discussed next, the avoidance of such states is the main purpose of type

systems.

2.1.3 Type Systems

The type system is responsible for assigning types to terms. A type represents a set of

terms that share some common property. For example, the type int represents all the

terms that evaluate to an integer.

A type can also be thought of as an upper bound over the range of values that a variable

might assume during the program execution [35]. Therefore, a type can be considered

6

2.1. THEORY OF PROGRAMMING LANGUAGES

a static approximation to the run-time behavior of a term/program. This observation

allows the use of types for reasoning about the behavior of programs, in a tractable way,

without the need to run them. Having this capability enables the type system to detect a

variety of execution errors statically, at compile time.

A type system is formalized by means of a relation has-type, written Γ ` t : T to mean

“term t has type T under context Γ ”. The context Γ is essentially a set of type assignments

xi : Ti for the free variables xi in t. Resuming the λB example, its typing relation is defined

by the rules displayed in Fig. 2.3.

T-Var

x :T ∈ Γ
Γ ` x : T

T-Abs

Γ ,x :T1 ` t2 : T2

Γ ` λx :T1. t2 : T1→ T2

T-App

Γ ` t1 : T11→ T12 Γ ` t2 : T11

Γ ` t1 t2 : T12

T-True

Γ ` true : Bool

T-False

Γ ` f alse : Bool

T-If

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

Figure 2.3: Typing rules for λB.

These rules express the knowledge we have a priori about the behavior of the programs.

For instance, given a program in λB whose outermost construct is an if, i.e., a program of

the form:

if complex-term then t2 else t3

we know for sure that if complex-term doesn’t evaluate to either true or f alse, then the

program will get stuck. Although we deduce this from the evaluation rules (or from a

lack of rule for if’s with non-boolean conditions), there is nothing in them that prevents

such a program from being written and evaluated. The error would only manifest itself

during the program execution. But that is exactly what rule T-If imposes: in order to

be able to assign a type to a term of the form: if t1 then t2 else t3, its conditional t1 must

belong to type Bool, which represents all the terms that evaluate to either true or f alse

(moreover, it also enforces that the type of that term will be the type of either t2 or t3, as

long as they have the same type).

When we can assign a type to a term we say the term is well-typed. For a term t to

be well-typed means its subterms are of the appropriate types, i.e. they meet the pre-

conditions necessary not to lead the evaluation of t into a stuck state. In other words, a

term is well-typed only if its subterms are well-typed. Given this recursive definition, the

proof of well-typedness for a term naturally assumes the form of a derivation tree, where

the premises used to conclude a statement may themselves be conclusions of their own

subtree. As an example, follows the demonstration that the term (λx :Bool. x) true has

7

CHAPTER 2. BACKGROUND

type Bool:

(T-App)

(T-Abs)

(T-Var)

x :Bool ∈ Γ ,x :Bool

Γ ,x :Bool ` x : Bool

` λx :Bool. x : Bool→ Bool
(T-True)

` true : Bool

` (λx :Bool. x) true : Bool

Finally, in an actual language implementation, the type rules are enforced by a type

checking algorithm. Its job is, given a program source, to assign a type to each term - i.e.

to prove that every term in it is well-typed. If that isn’t provable, then the program may
lead to an error/stuck state, and thus it is rejected before even being evaluated. This is

the role of the type system in avoiding the execution of (possibly) erroneous programs.

2.1.4 Type Safety - Formally

Having formalized the three components, the final step in validating the language is

proving that it is type safe. A language with this property is one whose semantics and

type system are in harmony: it states that the type of a term and the type of its results

(after evaluation) should be the same, or related by some sound type relation (e.g. sub-

typing)[21].

We will be referring to λB again in order to target a specific class of errors, namely

stuck states as defined at the end of Section 2.1.2. Section 2.1.3 further defined what it

means for a term to be well-typed. Hence we are now equipped to formally state type

safety for λB:

Theorem 1 (Type safety). Given a term t of λB, if t is well-typed, then the evaluation of t
never reaches a stuck state. More precisely:

1. (Progress) If t is well-typed, then t is either a value or there exists t′ such that t −→ t′.

2. (Preservation) If t : T for some T and there exists t′ such that t −→ t′, then t′ : T .

As a side note, the type safety theorem enunciated here is the syntactic variant pro-

posed by Wright and Felleisen [47] and later simplified in textbook presentations [21, 35].

Recent research [25] suggests instead a semantic approach to type safety/soundness, argu-

ing that a syntactic technique lacks the power to identify as safe code that uses potentially

unsafe features, even if the unsafe fragment is well encapsulated inside an abstraction[12].

However the development of techniques and logics suited to model the semantics of differ-

ent type systems is still an active topic of research. For this reason, we will only consider

the syntactic variant in the remaining of this presentation.

2.1.5 Modelling Real-World Programming Languages

The previous sections demonstrated how a programming language is formally modelled

and how such a model enables rigorous reasoning over the language’s properties. The

8

2.2. POLYMORPHISM

model developed throughout those sections for λB is complete, as it addresses every sin-

gle feature of the language. Complete models are in a sense ideal: a correct proof of

type safety for that model conveys absolute certainty that no program accepted by the

typechecker will get stuck, no matter how convoluted the program is.

It is possible to devise a complete model for λB - and a relatively simple proof of its

properties - only because the language comprises a minimal set of constructs. However,

this is seldom the case for mainstream programming languages. The amount of features

they embody render the proofs for a complete model hard to effectively manage - in

general, each feature adds a new proof case. For instance, a type soundness proof for a

large subset of Java [13] had subtle errors only discovered later [44]. Some works [30,

44] resorted to machine checking to ensure the correctness of their proofs, but even that

approach poses difficulties inherent to adapting the reasoning to the proof assistant’s

language.

For that reason, when formalizing a “real” programming language one must tackle

the tension between completeness and compactness: although a complete model becomes

unworkable, the less features the model accounts for the more likely the proofs overlook

nefarious interactions between features that weren’t considered together.

Often [22, 17, 48, 20] the decision is to favor compactness over completeness, so as to get

“maximum insight for minimum investment” [22]. Chapter 3 discusses examples of such

models in detail.

2.2 Polymorphism

A polymorphic type system is one where a single piece of code can be used with many

types [35]. The motivation for such type systems arises from the observation that many

programs are in fact agnostic to the type of values they manipulate. For instance, consider

the following identity functions in λB
2 (where ↪→ indicates the type assigned to the

functions):

idBool = λx :Bool. x

↪→ Bool→ Bool

idFun = λx :Bool→ Bool. x

↪→ (Bool→ Bool)→ (Bool→ Bool)

id2Ord = λx : (Bool→ Bool)→ (Bool→ Bool). x

↪→ ((Bool→ Bool)→ (Bool→ Bool)) → ((Bool→ Bool)→ (Bool→ Bool))

2λB as presented in the previous section doesn’t account for named functions. In this section we assume
the existence of a naming mechanism that allows us to reference a previously defined function, in order
to simplify the presentation. Such mechanism could be a simple let-binder of the form let x = t1 in t2 as
presented in section 11.5 of [35].

9

CHAPTER 2. BACKGROUND

The three functions above are effectively the same, despite being assigned different

types. Albeit the example is simple and not of much interest in practice, it can be easily

mapped to the real case of array sorting functions, where one would have to write a

separate function for each element type, i.e., one for arrays of integers, another for arrays

of strings, etc.

The key insight is that we are trying to capture a common behavior that is independent

of particular types. Yet, as the type system isn’t expressive enough - it imposes that the

argument to an abstraction must have a single type -, it forces us to write one version for

each individual instance. In particular, what we would like to express with the identity

functions is a single function that given a term - whatever its type - returns that exact

same term. Similarly, in the sorting example what we intend is a sole function that, given

an array of elements of some type T and a total ordering over T , returns an array sorted

according to that ordering, regardless of the actual type of the elements.

There are diverse type system extensions that enable the expression of code applicable

to multiple types. In essence, these variants can be broadly classified into one of two

general kinds [43, 7]: universal polymorphism and ad-hoc (non-universal) polymorphism.

Universal refers to code that works uniformly for arbitrary types, and can be further

refined into parametric and subtype polymorphism. Conversely, ad-hoc concerns functions

that are applicable to a finite, known-in-advance range of types, and that may actually

exhibit different behaviors depending on the particular type that instantiates them. The

next subsections clarify these distinctions.

2.2.1 Ad-hoc polymorphism

As stated previously, ad-hoc refers to a form of polymorphism in which a portion of code

is usable by a pre-determined and finite set of types. Moreover, that code might represent

different behaviors depending on the particular type that instantiates it.

The most common form of ad-hoc polymorphism is function overloading [35], in which

a function symbol/name gets associated to different implementations. Each time the func-

tion is applied, the correct implementation is then chosen according to the types of the

operands. As an example, many languages overload the operator +, which may represent

either integer or real addition, and in some cases (e.g. Java) even string concatenation. We

call ambiguous functions of this sort polymorphic as they have several forms depending

on their arguments [43]. They are ad-hoc in the sense that an actual implementation must

be provided for each argument type we wish to support.

Considering the motivating example presented at the beginning of this section, over-

loading would reduce the burden on the programmer, but would not alleviate it com-

pletely. With overloading we would still need to write the three versions:

10

2.2. POLYMORPHISM

id = λx :Bool. x

id = λx :Bool→ Bool. x

id = λx : (Bool→ Bool)→ (Bool→ Bool). x

The advantage is that we can now assign them the same name, and upon invocation

we don’t have to specify which one we intend, as the compiler/interpreter would take

care of choosing the correct one based on the type of the argument passed to it.

Another flavor of ad-hoc polymorphism is coercion[7]. Coercion represents implicit

type conversions of the arguments to a function application, in order to assign them the

type expected by the function and hence avoid type errors. Instances of coercion can

be often found in mainstream languages where, for example, one is allowed to provide

integer values to functions expecting floats. This variant mainly represents a convenience

for the programmer, as the language implementation still has to perform (and verify the

correctness of) the type conversions.

It’s not clear how coercion would make it easier to define or call the identity functions.

One possible idea would be to only write one version for some arbitrary type T , and

for each call coerce the argument to T . But there is no way to guarantee that such type

conversion would be correct in this setting. Nonetheless, a variant of this idea - where

the type T represents more than an arbitrary choice - actually forms the basis for subtype

polymorphism, as we discuss next.

2.2.2 Subtype polymorphism

A type S is a subtype of another type T , written S <: T , if the terms of S can safely be used

in any context expecting a term of type T [35]. The concept of subtype polymorphism

then arises from the fact that a function expecting a parameter of type T can safely be

applied to a term of any type S, as long as S <: T .

At the type system level, subtyping is realized by introducing a new rule, which allows

a term of a subtype S to assume the supertype T:

T-Sub

Γ ` t : S S <: T

Γ ` t : T

and by defining what types are related through the subtype relation. The definition of <:

is best illustrated through an example. For that purpose, assume the example language λB
is now enriched with tuples [35]. The syntax is summarized in Fig. 2.4, where the ellipses

represent the forms already defined for λB in Fig. 2.1 and > stands for the maximum type

- whose role will be cleared at the end of this section. A tuple consists of an ordered list

of n elements grouped inside angle brackets, where each element ti is a term of type Ti .

11

CHAPTER 2. BACKGROUND

tF ... terms:
〈ti∈1..ni 〉 tuple
t.i projection

vF ... values:
〈vi∈1..ni 〉 tuple value

T F ... types:
〈T i∈1..ni 〉 tuple type
> maximum type

Figure 2.4: Syntax of tuples.

An empty tuple is represented as 〈〉; a 1-tuple has the form 〈t1〉 and type 〈T1〉3. The only

operation available over tuples is projection over one of its n components, which works

as expected and thus we omit its evaluation rules. The typing rules are also omitted for

similar reasons.

Now consider the following function that projects the first component - of type Bool -

from a tuple:

proj1 = λx :〈Bool〉. x.1
↪→ 〈Bool〉 → Bool

Although the function is defined as expecting terms of type 〈Bool〉, it would be safe

to accept both 〈Bool,Bool〉 and 〈Bool,Bool → Bool,Bool〉 - i.e., the function can safely

be applied to a tuple of any arity and type, as long as it has a first component of type

Bool. Generalizing: it is safe to use a tuple of type 〈T i∈1..n+k
i 〉 anywhere a type 〈T i∈1..ni 〉 is

expected. This observation is captured by the rule S-TplWidth displayed in Fig. 2.5.

S-Refl

S <: S

S-Trans

S <:U U <: T

S <: T

S-TplDepth

for each i ∈ 1..n . Si <: Ti
〈S i∈1..ni 〉 <: 〈T i∈1..ni 〉

S-TplWidth

〈T i∈1..n+k
i 〉 <: 〈T i∈1..ni 〉

S-Arrow

T1 <: S1 S2 <: T2

S1→ S2 <: T1→ T2

Figure 2.5: Subtyping rules for λB enriched with tuples.

The rules of Fig. 2.5 together define the subtype relation for the types in λB. Rules

S-Refl and S-Trans are self-explanatory given the definition of subtyping stated at

3This particular convention (the type being 〈T1〉 and not just T1) is important to avoid deriving e.g.
〈Bool,Bool〉 <: Bool, that would lead the typechecker to accept terms of the form if 〈true, f alse〉 then t2 else t3
as well-typed.

12

2.2. POLYMORPHISM

the beginning of this section. The rule S-TplDepth is straightforward as well: if S

can be used wherever T is expected, then the same applies to 〈S〉 and 〈T 〉. S-Arrow in

turn requires a more careful look. The intuition is the following: assume two functions

g : S1 → S2 and f : T1 → T2; if g is to be used in place of f , then: (1) g must accept any

element of f ’s domain (T1 <: S1), and (2) no result produced by g can surprise the context

where f is expected (S2 <: T2).

Having the subtype relation settled, subtype polymorphism can be applied to the

identity functions example (beginning of 2.2) by defining the type > as being a supertype

of every type:
S-Top

S <:>

and then writing the function as taking an argument of type >:

idTop = λx :>. x
↪→>→>

The subtype relation coupled with the rule T-Sub will now allow the application of

idTop to terms of any type. This is essentially the same idea that Java used in its legacy

“generic” libraries [5, 18], where the top of the subtype hierarchy is represented by the

type Object instead of >.

Notice however the return type of idTop: no matter the type of the term passed to it,

the function will always return it as a >. This illustrates the main caveat of resorting to

subtyping to write polymorphic code: by “promoting” a type to its supertype, the infor-

mation about the original type is effectively lost. For instance, if idTop is to be applied to

the term true, the result of the application can no longer be used as the condition in an

if term - all the typechecker knows is that idTop returns a >, whereas the typing rules

require a condition of type Bool. The usual solution to this problem is to add a casting
mechanism to the language, which has itself its own intricacies [22].

2.2.3 Parametric polymorphism

In parametric polymorphism, the ability to define polymorphic code is achieved through

the use of type parameters. The idea is that by referring to type variables instead of particu-

lar types, we can encode generic functions[7]: functions that capture a common, uniform

behavior while making no assumptions about the type of the values they manipulate.

The type parameters of a generic function can then be instantiated with concrete types,

yielding a specialized version of the function that operates over those types.

In formal terms, one can extend λB with support for parametric polymorphism by

introducing two new constructs: type abstraction and type application, depicted on the

left of Fig. 2.6. Type abstraction, written ΛX. t (where Λ is a capital λ, and X represents

13

CHAPTER 2. BACKGROUND

tF ... terms:
ΛX. t type abstraction
t [T] type application

vF ... values:
ΛX. t type abstraction value

T F ... types:
X type variable
∀X. T universal type

Γ F ... contexts:
Γ ,X type variable binding

Figure 2.6: Syntax of polymorphic extension of λB.

E-TCongr

t1 −→ t′1
t1 [T] −→ t′1 [T]

E-TApp

ΛX. t [T] −→ [X 7→ T] t

Figure 2.7: Evaluation rules for type application.

a type variable), is what enables the expression of generic functions. Conversely, type

application is written t [T] (where the argument [T] is a type expression) and represents

the instantiation of a polymorphic term with some type T .

The result of applying a type abstraction to a type argument is similar to that of

applying a λ-abstraction to a term argument: the parameter is replaced by the argument

in the body of the abstraction, as specified by the rule E-TApp in Fig. 2.7. The rule

E-TCongr is again a congruence rule.

Returning to the identity function example, this extension allows us to express it as:

id = ΛX.λx :X. x

↪→∀X.X→ X

We can now obtain type-specific identity functions by applying id to concrete types, e.g.

id [Bool], which would reduce to the following function:

λx :Bool. x

↪→ Bool→ Bool

The last step in modelling the extension concerns the typing of type abstractions. The

id abstraction above already gives an hint: applying it to Bool produces a function of

type Bool → Bool; likewise, applying it to Bool → Bool would yield a function typed

(Bool → Bool) → (Bool → Bool). In general, applying id to a type T produces a type

T → T , which means the type assigned to the generic function depends on the type

it is supplied as an argument. This dependency is captured by specifying id’s type as

14

2.2. POLYMORPHISM

T-TAbs

Γ ,X ` t : T

Γ `ΛX.t : ∀X.T

T-TApp

Γ ` t1 : ∀X.T1

Γ ` t1 [T2] : [X 7→ T2] T1

Figure 2.8: Typing rules for type abstraction and application.

∀X. X → X [35]. The rule T-TAbs displayed in Fig. 2.8 defines how types are assigned

to polymorphic functions in the general case. T-TApp specifies how an instantiation of

a polymorphic abstraction is typed (replace the occurrences of the type variable X in T1

by the type T2), while also imposing that only a type abstraction can be applied to a type

expression.

The language we obtain by adding these two constructs and their evaluation/typing

rules - and by stripping out booleans and conditionals, which add no expressive power

to the language and were introduced just to clarify the presentation - is commonly called

System F[35] or polymorphic lambda calculus[40].

This language is very expressive, allowing to type e.g. the untyped self-application term

λx. x x, to which λB can assign no type. In System F, this term becomes typable if we

define x as having a polymorphic type and instantiate it appropriately [35]:

selfApp = λx :∀X. X→ X. (x [∀X.X→ X]) x

↪→ (∀X. X→ X) → (∀X. X→ X)

The aspect of System F that enables the expression of functions like self-application

is the fact that the type variables can themselves be instantiated with polymorphic types

(i.e. types that contain quantifiers) - e.g. the subterm x [∀X.X → X] above - a feature

known as impredicativity [35, 42]. Section 2.2.3.2 discusses how this expressiveness can

be penalizing in the context of type inference.

2.2.3.1 Bounded parametric polymorphism

A yet more powerful refinement of System F is often called F<: (“F sub”)[35]. F<: ex-

tends System F by introducing bounded quantification, which combines parametric poly-

morphism with subtyping. The goal of mixing these two features is to address some

shortcomings that each of them suffer from, when used individually. In particular:

• When resorting to subtype polymorphism (Section 2.2.2) to let a function accept

many subtypes S of a type T , we lose information about the original type S. For

instance, the λB term (λx :〈Bool〉. x 〈true, f alse〉).2 would raise a type error - even

though the term passed to the identity originally had a second field, that informa-

tion was lost after promoting it to a 〈Bool〉.

15

CHAPTER 2. BACKGROUND

• Using parametric polymorphism the original types are kept, but by turning the

types into variables we also lose information that might be needed inside the poly-

morphic function.

To understand how the information lost by parametric polymorphism could be nec-

essary, consider the following example (adapted from [35]). The goal is to write a kind

of identity function for tuples of any arity ≥ 1, that takes a tuple t and returns a new

2-tuple t′, such that the first component of t′ is t.1 and the second is t itself. Using solely

parametric polymorphism, this function would look like:

ΛX.λt :X. 〈t.1, t〉
↪→ Error: expected tuple type.

As the function is encoded generically, X could be instantiated to any type - the type

checker can’t guarantee that type provides a projection operation, and thus rejects the

program.

Bounded quantification lets us express restrictions over the types that may be used to

instantiate type parameters. These restrictions are encoded through the subtype relation:

if X is a subtype of T , then X can be treated as a T , which means it offers at least the same

operations as T . Thus our goal function can be expressed in F<: as:

ΛY .ΛX<:〈Y 〉. λt :X. 〈t.1, t〉
↪→∀Y .∀X<:〈Y 〉. X→ 〈Y ,X〉

Notice the extra type parameter Y , that was added in order to accept tuples with first

components of any type. Although we don’t give F<: a formal treatment in this section,

Section 3.2 illustrates an example of a type system with bounded quantification.

2.2.3.2 Type inference for polymorphic systems

In a real programming language it would be convenient not to have to explicitly instanti-

ate polymorphic functions, when the intended instance is made obvious by the argument

to which it is applied.

For instance, instead of invoking id as id [Bool] true or id [〈Bool, Bool〉] 〈true, f alse〉, it

would be preferable to just write id true and id 〈true, f alse〉 and let the compiler infer
the correct instance from the type of the arguments - resembling what occurs in function

overloading (Section 2.2.1), but here the particular instances would all behave uniformly

and would be auto-generated by the compiler.

Taking this concept further, one could think of eliding all the type annotations and e.g.

16

2.3. BIDIRECTIONAL TYPING

express id simply as λx. x - that is, to make functions implicitly polymorphic, a distin-

guishing feature of the ML family of languages.

The drawback of eliding every type annotation is that complete type inference for

a system as expressive as System F is undecidable [46]. One alternative to overcome

the undecidability result is to restrict the allowed forms of polymorphism. The most

popular [35] restriction is the one found in Hindley-Milner type systems, allowing only

predicative polymorphism [42], i.e. imposing that type variables cannot be instantiated

with polymorphic types. This approach has the downside that it limits the expressiveness

of the system. The next section presents an alternative that takes a different compromise,

obtaining a technique scalable to powerful type system features at the cost of requiring

some explicit type annotations.

2.3 Bidirectional Typing

When implementing a set of typing rules in a real compiler there are two important

considerations to be made: first, typing rules do not necessarily describe an algorithm -

section 2.3.1 discusses this matter in detail; secondly, as mentioned in the previous section,

although the typing rules require the polymorphic types to be explicitly instantiated, it

would be convenient if the surface syntax of the language hid these details from the

programmer, allowing some type annotations to be inferred. But by resorting to pure

inference, we are limited by the undecidability result.

Bidirectional typing is a frequent solution to both these problems [14, 16]. By combining

type checking with type inference or synthesis, it is able to handle rich sets of typing features

while requiring relatively few annotations. Moreover, its algorithmic nature also makes

it easy to translate a set of bidirectional rules into an implementation.

In both checking and synthesis, the primary goal of the typing process is to prove

judgments of the form Γ ` t : T , that state the term t is well-typed. This process can be

seen as the bottom-up construction of a derivation [33]. In that sense, we can view a set

of typing rules as describing an algorithm4, where each rule defines a different case of

the algorithm based on the form of the term t in its conclusion. For example, one can

interpret the typing rule for conditionals:

(T-If)

Γ ` t1 : Bool Γ ` t2 : T Γ ` t3 : T

Γ ` if t1 then t2 else t3 : T

as describing the case for if terms in a function check or synth (resp. if checking or syn-

thesizing). Listings 2.1 and 2.2 illustrate a simplified implementation of such functions in

pseudo-code (adapted from [8]). In Listing 2.1, we check that the if-term has the provided

input type ty by verifying that: (1) t1 has type Bool, and (2) both branches t1, t2 have the

4Again, section 2.3.1 discusses why this isn’t always the case, i.e. why not every set of rules describes an
algorithm.

17

CHAPTER 2. BACKGROUND

Listing 2.1: check function

check ctx (If t1 t2 t3) (Some ty) =
case (check ctx t1 BoolTy ,

check ctx t2 ty,
check ctx t3 ty)

of
(Some BoolTy , Some ty2 , Some ty3) → Some ty
_ → None

Listing 2.2: synth function

synth ctx (If t1 t2 t3) =
case (synth ctx t1,

synth ctx t2,
synth ctx t3)

of
(Some BoolTy , Some ty2 , Some ty3) → if ty2 = ty3

then Some ty2
else None

_ → None

expected type ty. Notice that the function returns an optional type5 just for convenience

of presentation - the context where the function was called already knows the returned

type ty. The alternative was to do nothing if every term checks against the expected type,

and throw some kind of exception otherwise.

In contrast, in Listing 2.2 we first synthesize types for t1, t2 and t3. Only then we compare

the inferred type for t1 with Bool and verify that the types inferred t2 and t3 match. The

function returns a type only if this last test passes, and returns None otherwise to mean

the term is ill-typed.

The key distinction between checking and synthesizing then lies in what parts of

the judgment Γ ` t : T constitute the input to the algorithm. In checking, the goal is to

verify that a given program has a known type, hence all of (Γ , t,T) should be available

(i.e. input). Conversely, the objective of synthesizing is to determine the type of a given

program, which means T is the output of the algorithm.

Bidirectional typing combines the two approaches by splitting the typing judgment

Γ ` t : T into two mutually recursive judgments (where the inputs are marked with + and

outputs with − [33]):

• Γ + ` t+⇒ T − “under assumptions in Γ , the term t synthesizes type T ”

• Γ + ` t+⇐ T + “under assumptions in Γ , the term t checks against type T ”

5In the style of Haskell’s Maybe or Rust’s Option.

18

2.3. BIDIRECTIONAL TYPING

The point of using two judgments is that the typing algorithm will be alternating

between checking and synthesizing duty. On one hand, we want to elide as much type

annotations as possible, hence the algorithm will synthesize whenever there is enough

information in the term and the context. On the other, there are some terms whose body

(together with the context) doesn’t provide enough information (e.g. un-annotated λ-

abstractions [8]) - these are the terms that require annotations. Although an annotation

allows to trivially infer the type of the annotated term, the algorithm still needs to check
the term against that type. Of course, in the process of checking it might change to

synthesize mode if a needed type can be inferred.

As an example, consider the pair of rules for function abstraction and application -

together with rules for annotations and variables that aid in connecting the two:

BT-App

Γ ` t1⇒ T → T ′ Γ ` t2⇐ T

Γ ` t1 t2⇒ T ′

BT-Ann

Γ ` t⇐ T

Γ ` (t : T)⇒ T

BT-Abs

Γ , x :T ` t⇐ T ′

Γ ` λx. t⇐ (T → T ′)

BT-Var

(x : T) ∈ Γ

Γ ` x⇒ T

An application is a destructor[33] - it generates a result of a smaller type from a com-

ponent of a larger type - hence its type can be inferred; and if we are applying a function,

then we must already know the type of that function in advance, either through an anno-

tation (BT-Ann) or from the context (BT-Var). Notice t2 is just checked against T - T is

already known after inferring the type of t1.

An abstraction is a constructor as it produces a larger type, so its subterms don’t have

enough information - it must be checked against some type. This type will then be prop-

agated to the premise check, allowing to assume a type for the argument (in the context).

This is why bidirectional systems normally require us to annotate (the outermost) func-

tion declarations [14, 33].

2.3.1 Algorithmic typing rules

As referred in the previous section, not all sets of typing rules can be outright turned

into an algorithm by “reading” the rules bottom-up. Consider for example a type system

crafted to be type checked, offering subtyping capabilities through the rule:

T-Sub

Γ ` t : S S <: T

Γ ` t : T

The reason this rule is problematic is that it imposes no constraints over the shape of

the term t. This means that when checking any term t′ there will always be two options:

either applying the rule whose conclusion matches the form of t′, or applying T-Sub.

19

CHAPTER 2. BACKGROUND

But a deterministic algorithm would have no way of knowing which rule to employ at

each step. The key issue is that this rule was not written in a syntax-directed way - it’s not

possible to decide which rule to apply solely based on the syntactic shape of a term.

Another problematic situation arises from the rule for transitivity of subtyping:

S-Trans

S <:U U <: T

S <: T

if we were to read this rule from bottom to top, we would find ourselves in trouble while

checking the first premise: it requires us to “invent” a seemingly arbitrary type U , as we

only get S and T as input. This rule violates the principle of mode-correctness [14], which

states that the inputs to each premise should be uniquely determined by the inputs to the

conclusion and the outputs of earlier premises.

In general, bidirectional systems solve the first problem by handling subsumption

implicitly in the definition of the judgment Γ ` t⇐ T [33, 23]. In particular, one typically

defines a rule like
BT-Sub

Γ ` t⇒ S S <: T

Γ ` t⇐ T

which replaces the use of subsumption, but is only applied when no other check rule

applies. For instance, in the rule BT-App presented in the previous section, the premise

Γ ` t2⇐ T would actually represent two premises Γ ` t2⇒ S and S <: T . Notice the rule

BT-Sub is also mode-correct: as S is synthesized in the first premise, the inputs to the

second premise S <: T are both available.

The second problem is handled similarly in both bidirectional and non-bidirectional sys-

tems, making transitivity implicit by bundling together rules that could only be “pasted

together” in a derivation by the transitivity rule [35].

2.3.2 Application to polymorphic type systems

Recent work [24, 16, 14, 42] has applied the ideas of bidirectional typing to develop

bidirectional systems for languages with advanced forms of polymorphism such as first-

and higher-rank polymorphism [15, 24]; existential polymorphism and GADTs [16, 41]

and even impredicative polymorphism [42]. The key observation is that bidirectional

systems can account with relative ease for various forms of polymorphic type instantiation

through a combination of algorithmic subtyping (as seen in the previous section) and local

constraint solving. The approach is flexible enough to be able to integrate Hindley-Milner

style inference (when it can be applied) with type annotations that are needed for various

instances of higher-rank polymorphism or impredicativity.

20

3 Related Work

In this chapter we discuss the two key works that support this thesis. Both used small

languages to model the central features of industrial languages, as a way to attain man-

ageable type-safety proofs and investigate the addition of generics. Featherweight Go [20]

is discussed in greater detail as this work derives directly from it.

3.1 Featherweight Java

Featherweight Java [22] is a functional, object-oriented core of the Java language, obtained

by distilling the original language into a minimal set of features. The goal of the authors

in considering just this core language was to develop a compact model that allowed a

type safety proof as succinct as possible, while still capturing the key ideas that would

shape such a proof for full Java.

The model encompasses only five forms of expressions: variables, object creation,

field access, method invocation and casting; computation happens at the latter three.

The most interesting of these features are casts. On one hand, their operation depends

on the definition of the subtype relation, which is relevant because it is defined in a

fundamentally different way when compared to Go. In Java (and in FJ) subtyping is

nominal: a class C is a subtype of a class D if this is declared on C’s source code through

the extends keyword (or if C extends some C' such that C' is a subtype of D, i.e. it is

transitive) - and also through implements, in the case of Java. On the other hand, the

formal modelling of casts under a small-step semantics also unveiled an error in a type

soundness proof for Classic Java [22], which was solved in FJ by introducing the concept

of stupid casts.

21

CHAPTER 3. RELATED WORK

3.1.1 Featherweight Generic Java

One of the reasons for considering a small model is that it can be extended with interesting

features while retaining its compactness. This allows a rigorous study of these features

in a somewhat isolated setting, focusing on the particular aspects that characterize them.

Igarashi et al. [22] extend FJ with generics as a way to investigate how parametric

polymorphism can be integrated into Java. The main technique they use, following GJ [5],

is based on the idea of translating a language with generics (FGJ) to a language without
generics (FJ). By doing so, the formal definition of the translation specifies a semantics

for FGJ, which can be used as a specification for an implementation.

The translation essentially consists of erasing all the type parameters, replacing them

by their bounds. For example, a class declared as class C<T extends Object>{...} is erased

to class C<Object>{...}. This approach has the advantages that it is simple to implement

and that it generates only one version of the code for each parameterized type. However

it has two major drawbacks:

(1) the underlying code is shared by all the instantiations, which requires that every

type must be represented uniformly;

(2) there is no information about the types used to instantiate type parameters in run-

time.

In (1), the usual way to make representations uniform is to consider all the types as

pointers to heap-allocated objects [7]. But that implies that when instantiating a type

parameter with a primitive type, first it’s needed to wrap it in some reference type - e.g.

wrap an int in an Integer. This is both inconvenient for the programmer and a source of

runtime overhead, as it requires the introduction of boxing and unboxing operations.

The problem with (2) is mostly that it imposes some unnatural restrictions on the

source language. For example, inside a class parameterized on T it’s not possible to create

arrays with elements of type T , nor is it allowed to test if a term is an instance of the type

T .

3.2 Featherweight Go

The work on formalizing generics in Go [20] follows the footsteps laid by Featherweight

Java [22], in the sense that they also (1) restrict their model to a small functional subset

of the language (FG); and (2) formalize generics by enriching the model with parametric

polymorphism capabilities (FGG) and then translating it back to the original version (FG).

Despite that, the languages being modelled have some key differences. In particular,

while in Java there are classes, in Go there are structs; and while in Java subtyping is

nominal (Section 3.1), in Go it is structural. Besides, the two works also diverge in their

strategy for translating generic code: in FJ they resort to erasure, while in FG they use

monomorphisation.

22

3.2. FEATHERWEIGHT GO

3.2.1 Go vs Java

The main distinction between Go’s structs and Java’s classes is how they define methods.

In Java, a class has a method if that method is either present in its source code or in the

source of one of its superclasses (in which case the method is inherited). This means that

after a class is compiled, there is no way to add methods to it without having to recompile

the class’s code. While in Go a struct S defines a method if there is a declaration for

a function with a receiver of type S. For instance, the following declaration defines a

method Apply, that takes an int and returns an int, for structs of type incr (the syntax is

detailed in the next section):

type incr struct { n int }

func (this incr) Apply(x int) int {

return x + this.n

}

The other key aspect that differentiates Go from Java is the definition of the subtype

relation. In the nominal subtyping of Java, a class implements an interface only if this

is explicitly declared, either in the class itself or in one of its superclasses. Similarly, an

interface can only explicitly become a subtype of another. This means that a class has

a closed set of supertypes - only those that were declared. In contrast, Go’s structural

subtyping stipulates that a struct implicitly implements (i.e. is a subtype of) an interface

if the struct defines all the methods specified by the interface. Likewise, an interface I

implements another interface I ′ if I specifies all the methods that I ′ does - with exactly

the same signature - and possibly some more. The implicitness of structural subtyping

implies that a struct has an open set of supertypes - it’s always possible to declare a new

interface that specifies a subset of the methods defined by a struct, without having to

recompile the struct’s code.

3.2.2 The Featherweight Go Language

Figure 3.1 illustrates the syntax of Featherweight Go. The notation is standard, where f

stands for f1,, fn and similarly f t means f1 t1, ..., fn tn.

The language is a functional fragment of Go that omits burdensome-to-model imperative

features such as assignment (and side-effects in general), and concurrency-related con-

structs such as channels and green threads, for which there isn’t a standard formalization

strategy. Resembling Featherweight Java, it only has five forms of expressions: variables,

structure literals (⇔ object creation), field selection, method calls and type assertions (⇔
casts).

23

CHAPTER 3. RELATED WORK

Field name f
Method name m
Variable name x
Structure type name tS ,uS
Interface type name tI ,uI
Type name t,u ::= tS | tI
Method signature M ::= (x t) t
Method specification S ::= mM
Type Literal T ::=

Structure struct {f t}
Interface interface {S}

Declaration D ::=
Type declaration type t T
Method declaration func (x tS) mM {return e}

Program P ::= package main; D func main() {_ = e}

Expression d,e ::=
Variable x
Structure literal tS{e}
Select e.f
Method call e.m(e)
Type assertion e.(t)

Figure 3.1: Featherweight Go syntax

There’s only two forms of types: structs and interfaces. The declaration:

type incr struct { n int }

shown before introduces the type incr, a struct with a single field n of type int 1 (in FG,

as in Go, the type comes after the variable name). An interface type is introduced in an

identical way, except it declares a set of method specifications instead of fields. Notice that

in an interface a method is specified as name (m) followed by signature (M), while the

declaration of a method for a struct (i.e. declaring the struct type tS implements method

m) prefixes the method specification with the keyword func and the receiver (a variable

of type tS) of the method.

As an example, the code shown below illustrates a representation for functions of integer

domain and co-domain (ItoIFunction) and an instance of such a function (incr). The

type incr implements the interface ItoIFunction, since the second declaration defines the

method Apply - whose signature matches the one specified in the interface - for receivers

of type incr.

type ItoIFunction interface {

Apply(x int) int

}

func (this incr) Apply(x int) int {

return x + this.n

}

1FG doesn’t have integers (indeed including them is part of the purpose of this work), but we use them
to simplify the examples, which are in general adapted from the original FG paper [20].

24

3.2. FEATHERWEIGHT GO

Finally, a program in FG is composed by a set of declarations (of types and methods)

and a top-level expression. There are no declarations inside method bodies, which means

all the declarations are globally scoped.

The language is type-safe in the sense described in Section 2.1.4 [20]. For instance,

consider method calls, one of the (only) three forms of reducible expressions. First, a

method declaration is judged as being syntactically well-formed according to the following

rule:
T-Func

distinct(x,x)

tS ok t ok u ok x : tS , x : t ` e : t t <:u

func (x tS) m(x t) u {return e} ok

that is, the declaration is well-formed if: the variable names used in the receiver and the

arguments all have distinct names; the receiver, the parameters and the return typed are

all well-formed (i.e. the types are defined in the program); and if under the assumption

that the arguments are well-typed, it’s possible to conclude that the value returned by

the method has a type that implements (Section 3.2.1) the declared return type. Notice

that subtyping is used as a premise instead of including a general (non-algorithmic)

subsumption rule (Section 2.3.1). Then a method call is typed according to the rule:

T-Call

Γ ` e : t Γ ` e : t (m(x u) u) ∈methods(t) t <:u

Γ ` e.m(e) : u

which verifies that the receiver and the arguments are well-typed, checks that there is such

a method defined for the type of the receiver, and that the arguments’ types implement

the types of the parameters. It’s fairly straightforward to conclude from the previous

two typing rules, together with the following evaluation rule (where body represents an

auxiliary function that looks up the declaration of a method, given the type of the receiver

and the method name):
E-Call

(x : tS ,x : t).e = body(type(v).m)

v.m(v) −→ e[x 7→ v,x 7→ v]

that if a method call expression is assigned a type u, then the result of evaluating this

expression will also have either type u or a type t such that t <: u. A similar reasoning

can be applied to the other two reducible forms, field selection and type assertion.

3.2.3 Featherweight Generic Go

Featherweight Generic Go extends Featherweight Go with parametric polymorphism. Its

syntax is presented in Fig. 3.2, where the differences from FG are highlighted. The main

change is that type and method declarations in FGG can include bounded type parameters,

represented by type formals Φ , Ψ of the form type α τI , where α is a type parameter and

the bound τI is an interface type.

25

CHAPTER 3. RELATED WORK

Field name f
Method name m
Variable name x
Structure type name tS ,uS
Interface type name tI ,uI
Type name t,u ::= tS | tI
Type parameter α
Method signature M ::= (Ψ)(x τ) τ
Method specification S ::= mM
Type Literal T ::=

Structure struct {f τ}
Interface interface {S}

Declaration D ::=
Type declaration type t(Φ) T
Method declaration func (x tS(Φ)) mM {return e}

Program P ::= package main; D func main() {_ = e}

Type τ,σ ::=
Type parameter α
Named type t(τ)

Structure type τS ,σS ::= tS(τ)
Interface type τI ,σI ::= tI (τ)
Interface-like type τJ ,σJ ::= α | τI
Type formal Φ , Ψ ::= type α τI
Type actual φ, ψ ::= τ
Expression e ::=

Variable x
Structure literal τS{e}
Select e.f
Method call e.m(τ)(e)
Type assertion e.(τ)

Figure 3.2: FGG syntax

Type names are replaced by types τ , σ which can either be type parameters α or named

types t(τ). This is reflected in structure declarations struct {f τ} and literals τS{e}, and

type assertions e.(τ). A method call now also has to provide type arguments before the

“regular” arguments: e.m(τ)(e).

As an example, Listing 3.1 illustrates most of these constructs. It starts by declaring

the empty-interface type Any, which can be declared in plain FG, and is trivially im-

plemented by every other type (a type implements an interface if it implements all the

methods defined by the interface). It then defines the polymorphic interface Function,

parameterized on two “unbounded” type variables a,b (the bound Any imposes no con-

straints), that defines a single method Apply which receives an a and returns a b.

Next it declares an interface for polymorphic lists. This interface represents all the types

that implement the polymorphic method Map, which produces a List of b’s by apply-

ing the function f to every element of the receiver List (of a’s). Notice how the type

Function(a,b) of the argument f refers to both the type parameter of the interface, a,

and the parameter of the method, b. Following is the declaration of the structs that will

implement that interface - this encoding of lists gives a taste of the functional style of

FG/FGG. Observe that the empty list still needs to be parameterized.

Nil and Cons are defined as implementing the interface List by declaring a Map method

for them. The receiver type parameters are also specified in the method’s header, and can

be referred in the types of the method’s arguments. For a struct to implement an inter-

face, the specifications of the struct’s methods must correspond exactly (modulo variable

names [20]) to the specifications in the interface. This is the reason Nil also needs a type

parameter.

26

3.2. FEATHERWEIGHT GO

Listing 3.1: Example program in FGG

type Any interface {}
type Function(type a Any , b Any) interface {

Apply(x a) b
}

type List(type a Any) interface {
Map(type b Any)(f Function(a, b)) List(b)

}
type Nil(type a Any) struct {}
type Cons(type a Any) struct {

head a
tail List(a)

}

func (xs Nil(type a Any))
Map(type b Any)(f Function(a,b)) List(b) {

return Nil(b){}
}
func (xs Cons(type a Any))

Map(type b Any)(f Function(a,b)) List(b) {
return Cons(b)

{f.Apply(xs.head), xs.tail.Map(b)(f)}
}

func main() {
_ = Cons(int){3, Cons(int){6, Nil(int){}}}

}

Finally, the main function simply creates a list to illustrate how every instantiation of the

polymorphic structs has to explicitly provide the type arguments. Albeit not depicted

here, the explicit type arguments are also required when instantiating polymorphic meth-

ods.

The properties of type safety for FG are also enjoyed by FGG, requiring some adapta-

tions detailed in the original paper [20].

3.2.3.1 Considerations

Being a small model in the spirit of Featherweight Java, FGG doesn’t account for primitive

types. Although they may be representable in the language [19], it is not evident how

generic types and methods will interact with the primitive types of Go and the primitive

operations over them, which are not defined using methods.

Besides, as the main function in Listing 3.1 illustrates, instantiating a polymorphic type

can be very verbose, requiring explicit type arguments in every instantiation, even when

they are obvious from the context.

27

4 Extending Featherweight
(Generic) Go

This chapter describes the main contributions of this thesis: extending Featherweight

(Generic) Go with type lists. Ir order to investigate type lists in a context where they

might exhibit non-trivial behaviors, we add some extra features to F(G)G. In particular,

we add primitive types and operations, as well as a generalized form of type declarations.

Both extensions have significant implications either on the type system, the operational

semantics or the monomorphisation process. Some of these implications are independent

from the presence of generics, hence we start by exploring them in the simpler context of

Featherweight Go.

4.1 Additions to Featherweight Go

We begin by describing the features we add to Featherweight Go, explaining the key

challenges they pose, and then show how we realize them formally in the typing system

and the operational semantics. We use the inductive rules more as a form of pseudo-code

than with the intent of proving type safety over them, as the proofs are out of the scope

of this work.

4.1.1 Primitive types and operations

Primitive types in Go bear some intricacies. On one hand, it is not permitted to mix

variables of different types in a primitive operation, regardless of how safe the operation

might appear. For instance, the following function’s body is not typable:

func add(x int32, y int64) int64 { return x + y }

and likewise, it is not allowed to provide a float32-typed argument to a function expect-

ing a parameter of type float64.

28

4.1. ADDITIONS TO FEATHERWEIGHT GO

Listing 4.1: Mixing constants and typed variables

func addF(x float32) float32 {
return x + 3

}

func addI(x int64) int64 {
return x + 3.0

}

func main() {
_ = addF (10 - 0.5) // ok
_ = addI (10) // ok
_ = addI (9.5) // error

}

On the other hand, these rules are not as restrictive as they might appear when consid-

ering primitive literal (constant) values in addition to primitive-typed variables. The

program of Listing 4.1 demonstrates some examples of this. Notice that it’s possible to

sum a float32 with an “integer” constant, and so is adding an int64 with a “float” constant

(as long as its numeric value corresponds to an integer). Moreover, mixing “integer” and

“float” constants is also allowed (e.g. 10 - 0.5). Yet note that passing a “float” constant

(whose value is not an integer) to a context expecting a int64 would still raise a type error.

Although in a language with implicitly-inserted type conversions (e.g. Java, C, C++)

this behavior wouldn’t be surprising, the rigid typing rules of Go imply that constants

must be given a special treatment to achieve this kind of flexibility. In Go terms, constants

of this sort 1 are considered untyped: “An untyped constant is just a value, one not yet

given a defined type that would force it to obey the strict rules that prevent combining

differently typed values.” [37].

Therefore, a model of Go that includes primitive types should take this aspect into

account, as one needs the ability to write primitive literals in order to insert values for

the programs to manipulate. In section 4.1.3 we define typing rules that model most of

the untyped constants’ flexibility.

4.1.2 General type definitions

Another aspect of Go that is only partially modelled in FG is the general mechanism to

declare types by binding a new name to an already existing type. In Go, type declarations

have two forms: alias declarations and type definitions [45]. We won’t consider alias

declarations as they only introduce a “synonym” for another type – i.e. the alias denotes

the same type as the aliased. Instead we focus on type definitions and hence from here on

we refer to type declarations and type definitions interchangeably.

1Go allows declaring explicitly-typed constants, but this work doesn’t encompass constant declarations.

29

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

A type definition has the form:

type identif ier srcT ype

and it binds an identifier to a new, distinct type with the same underlying type and opera-

tions as the source type. Type definitions may be used as a way to enforce stronger static

checking, since they introduce new types which can’t be implicitly converted to the types

they were created from – nor to other “similar” types. For instance, in a program that

makes computations using different units of temperature, it might be helpful to introduce

two new types:

type Celsius float32

type Kelvin float32

so as to make sure the different units are not mixed, while still exploiting all the primitive

operations that float32 supports. Additionally, declaring a new type adds the possibility

of defining methods for that type – which otherwise would not be possible for base types.

Referring to the previous example, it could be useful to add methods such as ToKelvin

and ToCelsius to the respective types.

While FG includes a form of type declarations, they are a restricted version of Go’s.

They don’t allow, for example, to declare the two different types:

type Point struct { x, y float64 }

type Polar Point

The reason is that FG’s type declarations only allow creating types from type literals

(cf. Fig. 3.1, section 3.2.2). Besides, type literals can only appear in type declarations,

meaning they aren’t recognized as first class types. Thus, adapting FG’s type declarations

to match Go’s requires generalizing the source type so that it can be any type. This

generalization has two main implications: first, type literals must also be considered

types. This introduces the possibility of having parameters whose type is an “anonymous”

struct/interface type. For example, in Go we can define a function

func Fun (p struct{x,y float64}) { . . . }

which may then be called with either of the following arguments:

Fun(struct{x,y float64}{0.0, 0.0})

Fun(Point{1.1, 1.1})

Fun(Polar{2.2, 2.2})

Secondly, since a type declaration may refer to any type as its source type, including

other named types, the type system needs some general mechanism to determine, for a

given declared type, (1) what operations (primitives or e.g. field selection) it supports,

and (2) which values it accepts. This is necessary because when a type is created with a

declaration, that type is considered distinct from the type used to create it. Go solves this

30

4.1. ADDITIONS TO FEATHERWEIGHT GO

Field name f
Method name m
Variable name x
Primitive type B ::= bool | string

| int32 | . . .
Undefined primitive type BU
Type name t,u (t,u , B)
Type Literal L ::=

Structure struct {f T }
Interface interface {S}

Type T ,U ::= B | t | L
Extended Types T + ::= T | BU
Method signature M ::= (x T) T
Method specification S ::= mM
Declaration D ::=

Type declaration type t T
Method declaration func (x tS) mM {return e}

Program P ::= package main; D func main() {_ = e}

Expression d,e ::=
Primitive Literal `
Variable x
Structure literal T {e}
Select e.f
Method call e.m(e)
Type assertion e.(T)
Type conversion T +(e)
Binary operation e⊕ e
Comparison e � e

Literal ` ::=
Bool literal `B
Int literal `I
Float literal `F
String literal `S

Figure 4.1: Featherweight Go syntax

with the notion of underlying types: a type admits the same operations and values as its

underlying type. Section 4.1.3.2 formalizes how to adapt this notion to FG.

4.1.3 Extending Featherweight Go

4.1.3.1 Syntax

Figure 4.1 describes the syntax of FG enriched with the proposed extensions. We add the

primitive (or base) types bool, string, int32, int64, f loat32 and f loat64. The goal was to

have a set of types diverse enough for most of the heterogeneity issues to show up: we

have operators specific to one type (||,&&), overloaded operators (+) and, as we show in

Section 4.1.3.3, the possibility of mixing different numeric types.

As hinted in the previous section, type literals were “promoted” and thus a type T

is now either a primitive type B, a named type t or a type literal L. We also introduce a

notion of extended types T +, which augment the set of types with undefined primitive

types BU . These types, as detailed in Section 4.1.3.3, serve to model the untyped constants

and are not part of the surface syntax of the language; they are only used in typing rules.

Regarding expressions, we add the primitive literals corresponding to the supported base

types, the binary operations +, −,&& and || – these are all written as ⊕ for compactness

– and relational operations < and > (represented as �). This explicit distinction is due

to the operations’ result types: in a binary operation, it’s the same as (or related to) the

inputs’; in a comparison, it is always a boolean. Albeit not explicit in the grammar, the

operators follow the expected precedence and associativity rules.

31

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

underlying(L) = L underlying(B) = B underlying(BU) = BU

type t T ∈D underlying(T) =U

underlying(t) =U

underlying(T +) = BU
primType(T +)

underlying(T +) = B

primType(T +)

underlying(T) = struct{f T }

struct(T)

underlying(T) = interface {S}

interface(T)

underlying(T) = struct{f T }

fields(T) = f T

(func (x t) m(x T) U {return e}) ∈D
body(t.m) = (x : t,x : T).e :U

methods(BU) = ∅ methods(B) = ∅ methods(struct{f T }) = ∅

underlying(T) = interface {S}

methods(T) = S

¬interface(t)

methods(t) = {mM | (func (x t) mM {return e}) ∈D}

tdecls(D) = [t | (type t T) ∈D] mdecls(D) = [t.m | (func (x t) mM {return e}) ∈D]

mM1,mM2 ∈ S implies M1 =M2

unique(S)

Figure 4.2: FGe auxiliary functions

We further observe that expressions include a form of type conversions T +(e) - although

this was not a planned extension, it emerged as a consequence of introducing more forms

of values (cf. Fig. 4.8, sec. 4.1.3.5), and the need to distinguish between them at the type

level. This is detailed in Section 4.1.3.5.

4.1.3.2 Auxiliary functions

Figure 4.2 presents some auxiliary functions which will be used throughout the next

sections 2. We start by formalizing the notion of underlying type. It is a recursive definition,

whose base cases are the types who are not named types – for these, the underlying types

are the types themselves. For named types, the definition recurses on the type used as

source in the named type’s declaration. The definition must be recursive since we can

have, as seen before, the two declarations:

2Although this doesn’t quite follow the order in which the features were introduced in sections 4.1.1
and 4.1.2, these auxiliary functions are presented right away because they don’t depend on any additional
definition.

32

4.1. ADDITIONS TO FEATHERWEIGHT GO

type(T {v}) = T type(T (`)) = T type(`B) = boolU type(`S) = stringU

` ∈ range(int32)

type(`) = int32U

` ∈ range(int64)

type(`) = int64U

` ∈ range(f loat32)

type(`) = f loat32U

` ∈ range(f loat64)

type(`) = f loat64U

underlying(T +) = BU
tag(T +) = B

underlying(T +) = B

tag(T +) = B

primType(T +) B = tag(T +)

fitsIn(BU ,T
+)

primType(T +) isNumeric(T +) isNumeric(BU) B ≤ tag(T +)

fitsIn(BU ,T
+)

Figure 4.3: FGe auxiliary functions for primitive types

type Point struct { x, y float64 }

type Polar Point

where, although Point and Polar designate different types, their underlying type is the

same.

We then define predicates that check whether a type is a primitive, struct or inter-

face type. They essentially abstract over the underlying function – for instance, the test

struct(T) would succeed when applied to either Polar, Point or even struct{ x, y float64 }.

These predicates will be used mostly to check if a type has some desired characteristics

or, in other words, what operations it supports. Therefore primType groups BU and B

types under the same umbrella, since the (primitive) operations available for them are

the same.

The lower half of the figure consists of straightforward adaptations of the auxiliary

functions already defined in the original FG paper [20]. Here we can see, for example, the

first appearance of anonymous struct types: they always have empty method sets. Notice,

though, that anonymous interface types are also featured, but the function methods makes

no distinction between named and anonymous interfaces.

4.1.3.3 Auxiliary functions for primitives

Figure 4.3 presents definitions that mainly target undefined primitive types. Figure 4.4

introduces some predicates that will be useful in formalizing primitive operations. We

start by expanding on the definitions depicted in the former.

The upper half of Fig. 4.3 defines the function type, generalizing a function that was

also defined in the FG paper [20]. The purpose is fundamentally the same: to return the

type of a value. Morally it is a function that is only used during evaluation, but we reuse

it in the typing rules (Fig 4.7, sec. 4.1.3.4), as it factors the typing of primitive literals (or

untyped constants).

33

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

The first clause adapts the one defined in FG to also take anonymous structs into

account. The second derives from the need to separate untyped constants from typed

primitive values; this aspect is thoroughly explained on Section 4.1.3.5.

The remaining clauses specify how to type a primitive literal. Although in Go they

are referred to as untyped constants, formalizing a type system requires us to assign a

type to every form of expression.

The main idea is then to assign to a literal its least restrictive type. For instance, an integer

literal 1 would be assigned the type int32U , while the constant 2,147,483,648 would

already be typed as int64U (since it doesn’t belong to the range of values that int32

represents). The same happens for float literals, save some exceptions: in particular, a

literal such as 1.0 is initially assigned the type int32U . This fact is implied by the notation

employed – in that, for numeric literals, we write type(`) instead of type(`I) and type(`F) (`

encompasses both `I and `F) – and we further assume that the range function generates

such literals (e.g. 1.0, 1.00, . . .) when applied to integer types. 3

The undefined types are similar to the primitive types in that e.g. a int32U supports

the same operations as an int32 (e.g. addition of 32 bit integers). This is reflected by the

notation: an undefined primitive type BU is represented as a primitive type B plus an

“undefined mark” U . We introduce the function tag as a mean to allow comparing defined

and undefined types.

What distinguishes undefined primitive types is that, in a primitive operation, they

are compatible with arbitrarily many other types, while their defined counterparts are

only compatible with themselves. The relation fitsIn captures the conditions necessary

for an undefined type to be compatible with another type. It is based on the notion of

restrictiveness: int32 is less restrictive than int64 because the former can always safely be

converted to the latter. Similarly between int64 and f loat32 – although in some cases we

may lose precision, but we don’t take precision losses into consideration. We thus assume,

in f itsIn, the following order between numeric tags:

int32 < int64 < f loat32 < f loat64

As an example, a value 1 would be initially assigned the type int32U . This value may

then be added to values such as 2147483648, float64(1.5) or even Kelvin(0), since the pairs

(int32U , int64U), (int32U , f loat64) and (int32U , Kelvin) all belong to the relation fitsIn.

Notice that fitsIn also includes a clause asking for tag equality. It targets non-numeric

undefined types, since e.g. a boolU is only compatible with bool-like types.

All in all, the undefined primitive types behave very much like the primitive types

in languages with automatically-inserted conversions (e.g. the “usual arithmetic conver-

sions” of C++). They allow mixing operands of different types and, when it happens, the

operand with the least restrictive type is implicitly converted to the other type, as we will

3In the implementation this is actually realized by a “preprocessing” phase, during parsing, that trun-
cates the float literals whose fractional part consists only of zeros – effectively turning them into integer
literals.

34

4.1. ADDITIONS TO FEATHERWEIGHT GO

tag(T +) = bool

isBool(T +)

tag(T +) = string

isString(T +)

tag(T +) ∈ {int32, int64}

isInt(T +)

tag(T +) ∈ {f loat32, f loat64}

isFloat(T +)

primType(T +) tag(T +) , bool

isOrdered(T +)

isNumeric = Or(isInt, isFloat)
Or(P ,Q) = λT +. P (T +) ∨ Q(T +)

primType(T +) P (T +)

T + |= P
(Satisfies)

OpPred =

+ 7→Or(isNumeric, isString)

− 7→ isNumeric
&& 7→ isBool
|| 7→ isBool
< 7→ isOrdered
> 7→ isOrdered

Figure 4.4: FGe predicates

show in Section 4.1.3.5. On a side remark, note how the definitions tag and fitsIn use

the notation T + to indicate where an undefined type might appear. This detail will be

recurrent throughout the rest of this chapter.

Operations and predicates Figure 4.4 defines predicates akin to the predicates defined

in the previous section, in that they essentially abstract over the underlying function and

group under them the types that support the same operations. The function OpPred
takes advantage of this idea, but in reverse: it specifies, for each operator, what are the

predicates its operands must satisfy. As an example usage:

OpPred(&&) = isBool

Essentially this is an alternative way of listing which types support a given primary opera-

tion, but a mapping in this direction is useful to factor the check “operation op is defined

for type T ” – cf. rule t-binop in Fig. 4.7, Sec. 4.1.3.4. This check is formalized by the use

of OpPred together with the relation T + |= P , which reads “type T + satisfies predicate P ”.

For instance, the operation < is defined for the type int32 because OpPred(<) = isOrdered
and isOrdered(int32).

35

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Listing 4.2: FGe assignability between named types and type literals.

type R struct {} // just a dummy receiver
type Box struct {x int32}

func (this R) RetLit () struct{x int32} {
return Box {42}

}
func (this R) RetBox () Box {

return struct{x int32 }{43}
}

Surely in the FG context one could opt for the simpler version – merely writing P (T +)

to mean the same as T + |= P – but this extra indirection is convenient when we consider

type list constraints (Section 4.2). As we explain there, some types (type parameters)

satisfy a predicate iff a list of types (from the type parameter’s constraint) satisfy said

predicate. Therefore we also define |= here for consistency.

A consequence of using |= is that we must provide a single predicate as its right hand

side. But some operations naturally map to a disjunction of two predicates, as is the case

for + : it accepts either numeric or string types. For this purpose we define the “higher

order” function Or, which combines two predicates into a single one. We write it in

lambda notation to indicate that the result is a single predicate that may be applied to a

type T +. When applied, it will in turn apply both captured predicates to the same type T +

and return the disjunction of the results.

Despite both |= and Or seem overcomplicated, Section 4.2.3.3 clarifies, through examples,

the value of introducing such definitions.

4.1.3.4 Typing

Figures 4.5 and 4.7 together formalize the type system of Featherweight Go extended

with the proposed features. We start by presenting Fig 4.5.

The judgments T ok and S ok simply adapt their FG counterparts to account for the

new forms of types. We adjust the implements (<:) relation such that it only considers

interface types in its range. As a consequence, now a non-interface type T + doesn’t

implement itself anymore.

Then we introduce the relation ≺: as a means to formalize the Go concept of assignabil-
ity, where T +≺:U+ reads “type T + is assignable to type U+”. This relation can be seen as

a generalization of FG subtyping, in that it includes <: and it is the relation that we now

use to check e.g. if a method body’s type conforms to the type declared in the method’s sig-

nature (rule t-func). The rule concluding BU ≺:T + simply delegates to the fitsIn relation

(cf. Sec. 4.1.3.3). The final two clauses are the ones who relate type literals and named

types created from such literals. With these rules, the methods depicted in Listing 4.2

can now be typed.

36

4.1. ADDITIONS TO FEATHERWEIGHT GO

Well-formed types T ok

t-prim

B ok

t-und

BU ok

t-named

type t T ∈D
t ok

t-struct

distinct(f) T ok

struct {f T } ok

t-interface

unique(S) S ok

interface {S} ok

Well-formed method specifications S ok

t-specification

distinct(x) T ok T ok

m(x T) T ok

Implements T + <:U

<:I

interface(U) methods(T +) ⊇methods(U)

T + <:U

Assignable to T + ≺:U+

T + ≺: T +

T + <:U

T + ≺:U

fitsIn(BU ,T
+)

BU ≺: T +

underlying(t) = L

t ≺:L

underlying(t) = L

L≺: t

Well-formed declarations D ok

t-type

T ok

type t T ok

t-func

distinct(x,x)
t ok T ok U ok x : t, x : t ` e : T T ≺:U

func (x t) m(x T) U {return e} ok

Programs P ok

t-prog

distinct(tdecls(D)) distinct(mdecls(D)) D ok ∅ ` e : T +

package main; D func main() {_ = e} ok

Figure 4.5: FG typing

37

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Listing 4.3: Go implicit conversions, example 1

func RetI(b Box) I {
return b

}
func main() {

_ = RetI(struct{x int32 }{42}).m()
}

Listing 4.4: Go implicit conversions, example 2

type MyInt int32
func (this MyInt) m() {}

func RetI(m MyInt) I {
return m

}
func main() {

_ = RetI (1).m()
}

An important remark is that, although ≺: can be seen as a generalization of FG subtyp-

ing, it is missing the property of transitivity. To see why, assume we add to the program

of Listing 4.2 the following declarations:

type I interface { m() }

func (this Box) m() {}

i.e. we introduce an interface I that specifies a method m(), and we make Box implement

that method. Now we have that both these statements hold:

struct {x int32} ≺: Box

Box ≺: I

yet, the following is not true:

struct {x int32} ≺: I

since a type literal can’t implement any methods – and thus transitivity is broken. Note

that this also happens in Go. Furthermore, notice that in Go we can still write the program

of Listing 4.3, where the RetI function types, as expected, but its use in main might

seem odd. The insight here is that upon passing a struct{x int32} to RetI, the literal is

implicitly converted to a Box. Moreover, this is the case not only for struct literals, but

also for primitive literals, as Listing 4.4 further illustrates.

The general case is, in fact, that a type conversion may be inserted – automatically, by

the Go compiler – wherever ≺: needs to be tested. In our FG implementation we modelled

38

4.1. ADDITIONS TO FEATHERWEIGHT GO

T + ≺:U+

mostRestrictive(T +,U+) =U+

U+ ≺: T +

mostRestrictive(T +,U+) = T +

Figure 4.6: The mostRestrictive function.

this fact by making AssignableTo (the method that represents ≺:) return two values: a

boolean, the result of the test, and a coercion, in the style of coercion semantics as defined

in [35]. This coercion, which might be a no-op, is then applied to the respective term.

This means that our typechecker effectively modifies the program’s AST. For instance, the

body of the main function from Listing 4.4 would be transformed into:

_ = RetI(MyInt(1)).m()

In the formalism, we represent this fact by (conservatively) inserting type conversions,

during reduction, wherever they might be needed. The next section further details this

aspect.

Finally, the judgments D ok and P ok from Fig. 4.5 are also straightforward adjust-

ments of the FG ones. A subtle detail that we are not formalizing – but is handled in

the implementation – is that verifying that a type declaration is well formed requires

more work now. In particular, to check that the declaration is not recursive. This was in

part approached in FG – named structs can’t refer to themselves in their fields – but it’s

necessary to also eliminate cases such as:

type A B

type B A

Expressions Figure 4.7 defines how types are assigned to the different forms of expres-

sions. All the rules until t-stupid adapt the ones from FG by integrating the new sets of

types T /T + and the notion of assignability.

The general form of the judgment is written Γ ` e : T + (i.e. the result is an extended

type) since the literals are assigned undefined types, as dictated by the rule t-primlit

(cf. 4.3 and Sec. 4.1.3.3). The rules t-conv≺: and t-conv= handle type conversions. The

former covers cases where an expression is converted to a more restrictive type, such

as in MyInt64(1) or f loat32U (1). The latter is applicable when the conversion simply

changes the type but not the underlying value/representation of the expression, e.g. in

MyInt(int32(1)). Note that the rules overlap for expressions involving type literals, as in

Box(struct{x int32}{42}). In this case, an implementation might choose to apply either.

The remaining two rules show how to type binary and relational operations. They

start by typing both operands and then check that both types support the given operation

– this mechanism, that uses the function OpPred and the relation |=, is detailed at the end

39

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Expressions Γ ` e : T +

t-var

(x : T) ∈ Γ
Γ ` x : T

t-call

Γ ` e : T Γ ` e : T + (m(x U) U) ∈methods(T) T + ≺:U

Γ ` e.m(e) :U

t-structlit

T ok struct(T) Γ ` e : T + (f U) = fields(T) T + ≺:U

Γ ` T {e} : T

t-field

Γ ` e : T struct(T) (f U) = fields(T)

Γ ` e.fi :Ui

t-assertI

T ok interface(T) Γ ` e :U interface(U)

Γ ` e.(T) : T

t-assertS

T ok ¬interface(T) Γ ` e :U interface(U) T ≺:U

Γ ` e.(T) : T

t-stupid

T ok ¬interface(T) Γ ` e :U ¬interface(U)

Γ ` e.(T) : T

t-primlit

BU = type(`)

Γ ` ` : BU

t-conv≺:

T + ok Γ ` e :U+ U+ ≺: T +

Γ ` T +(e) : T +

t-conv=

T ok Γ ` e :U underlying(U) = underlying(T)

Γ ` T (e) : T

t-binop

Γ ` e1 : T +
1 Γ ` e2 : T +

2
P = OpPred(⊕) T +

1 |= P T +
2 |= P U+ = mostRestrictive(T +

1 ,T
+
2)

Γ ` e1 ⊕ e2 :U+

t-comp

Γ ` e1 : T +
1 Γ ` e2 : T +

2
P = OpPred(�) T +

1 |= P T +
2 |= P _ = mostRestrictive(T +

1 ,T
+
2)

Γ ` e1 � e2 : boolU

Figure 4.7: FG expressions typing

40

4.1. ADDITIONS TO FEATHERWEIGHT GO

of Section 4.1.3.3. Finally, the types T +
1 and T +

2 might be different if at least one of them

is an undefined type, as in either of these cases:

10 - float32(4.2)

42 < MyInt(1)

Thus we use the partial function mostRestrictive, defined in Fig 4.6, that returns a result iff
the types are compatible, i.e., if either is assignable to the other. Notice that the application

mostRestrictive(MyInt, int32)

would return no result and hence an expression such as MyInt(2) - int32(1) is ill typed.

Finally, in the rule for binary operations, the type of the expression corresponds to the

most restrictive type involved. For instance, the expression 10 - float32(4.2) would

be assigned the type f loat32. On the other hand, the Go Spec [45] determines that a

comparison always returns an untyped boolean, thus the rule t-comp ignores the result

of mostRestrictive, exploiting it just to check the compatibility of the operands’ types.

4.1.3.5 Reduction

Figure 4.8 presents the small-step reduction (or evaluation) rules for our extended version

of FG. It starts by describing the syntactic forms of values and the evaluation contexts E

in the usual way.

We define a judgment e value that holds when an expression that has the appearance

of a value has indeed finished reducing. The motivation is that reduction might encounter

an expression such as float32(1). Although it has the form of a value, T (`), the literal must

be converted to float32 representation before being used in float32-specific operations.

We consider this representation conversion to be a step of evaluation, which is in turn

captured by the rule r-convert-raw-t. The remaining two rules of the judgment

e value aren’t really necessary but we display them for completion.

The first line of rules for the judgment d −→ e are adaptations of the FG ones. They

feature an important addition: the introduction of type conversions. To motivate their

need, consider the FG program depicted in Listing 4.5, which essentially gathers the

examples shown in the previous section in a single figure. Note that this program is well

typed. Now consider what happens when we take one (small) step of evaluation over the

main’s body. The first expression to evaluate is the method call:

Dummy{}.RetI(struct{x int32}{42})

If we were to reuse the following rule for method calls, as defined in FG [20]:
r-call

(x : t, x : T).e = body(type(v).m)

v.m(v) −→ e[x := v, x := v]

we would simply substitute the method’s body for struct{x int32}{42} and return this

value. This means the main body would be reduced, in one step, to the expression:

41

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Value v ::= T {v} | T (`) | `

Evaluation context E ::=
Hole �
Method call receiver E.m(e)
Method call arguments v.m(v,E,e)
Structure T {v,E,e}
Select E.f

Type assertion E.(T)
Type convertion T +(E)
Binary operation lhs E ⊕ e
Binary operation rhs v ⊕E
Relational operation lhs E � e
Relational operation rhs v � E

Value e value

v-struct

struct(T) e value

T {e} value

v-typed

BU = type(`) tag(BU) = tag(T)

T (`) value

v-lit

` value

Reduction d −→ e

r-field

(f T) = fields(T)

T {v}.fi −→ Ti(vi)

r-call

(x : t, x : T).e :U = body(type(v).m)

v.m(v) −→U (e[x := v, x := T (v)])

r-assert

type(v) <: T

v.(T) −→ v

r-context

d −→ e

E[d] −→ E[e]

r-convert-raw-u

`′ = rawConv(`, B)

BU (`) −→ `′

r-convert-raw-t

BU = type(`) B′ = tag(T) B < B′ `′ = rawConv(`, B′)

T (`) −→ T (`′)

r-convert-typed

T (U (`)) −→ T (`)

r-convert-s

struct(T)

T (U{v}) −→ T {v}

r-convert-i

interface(T)

T (U{v}) −→U{v}

r-binop

T +
1 = type(v1) T +

2 = type(v2) U+ = mostRestrictive(T +
1 ,T

+
2) � = match(⊕, U+)

v1 ⊕ v2 −→U+(v1)�U+(v2)

r-relop

T +
1 = type(v1) T +

2 = type(v2) U+ = mostRestrictive(T +
1 ,T

+
2) ≶= match(�, U+)

v1 � v2 −→U+(v1)≶U+(v2)

Figure 4.8: FGe reduction

42

4.1. ADDITIONS TO FEATHERWEIGHT GO

Listing 4.5: FGe example: why conversions are needed.

type Dummy struct {} // dummy receiver
type I interface { m() }

type Box struct {x int32}
func (this Box) m() {}

func (this Dummy) RetI(b Box) I {
return b

}

func main() {
_ = Dummy {}. RetI(struct{x int32 }{42}).m()

}

Listing 4.6: FGe example: why conversions are needed (2).

type I interface { m() }

type MyInt int32
func (this MyInt32) m() {}

type BoxM struct {x MyInt}

func main() {
_ = BoxM {42}.x.Foo()

}

struct{x int32}{42}.m()

Yet this expression is clearly ill-typed, as the type literal struct{x int32} doesn’t define

any methods. For this reason, we need to convert struct{x int32} into a Box before sub-

stituting it in the body of the RetI method. Listing 4.6 illustrates a variation of this issue

for the case of field selection. The pattern is the same: if we were to use the original

reduction rule
r-field

(f T) = fields(T)

T {v}.fi −→ vi

the main body would be reduced into

42.m()

resulting again in a type error. It is evident that maintaining these rules would break type

safety, as programs that are initially well typed are made ill typed by evaluating them.

The insight is that type conversions might be needed wherever assignability is tested

for, since sometimes we need to distinguish the values at the type level. For instance,

43

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

we can create the struct literal BoxM{42} because BoxM takes a field of type MyInt, and 42 –

which is typed as int32U – is assignable to MyInt. Yet when projecting the field we want it

to behave as a MyInt and not as an int32U .

In this formalism we solve this problem by injecting type conversions, during reduction,

in every expression that might have asked for assignability. In particular: when projecting

a field; when calling a method – both the arguments and the result are converted to the

declared types; in binary and relational operations. Note that these directly correspond

to the typing rules that test for assignability.

The next five reduction rules (prefixed by r-convert) define the operational seman-

tics of type conversions. The first two rules employ the function rawConv, meaning that

they indeed alter the representation of the value. The rule r-convert-raw-u covers

cases such as f loat32U (42). We view the function rawConv as a black box, assuming only

the following: when it is applied to a literal ` and a tag B, it produces a literal `′ such that

the application type(`′) returns BU . For instance, rawConv(1, f loat32) would produce

a literal 1′ such that type(1′) = tf loatU . Observe that, in an implementation, rawConv
would actually change the binary representation of its argument.

Rule r-convert-raw-t is similar to the previous but it targets expressions involving

defined types, as in float64(23) – where the literal doesn’t yet have the desired representa-

tion (otherwise it would fall into v-typed). The difference is that this rule yields a typed
literal, contrarily to r-convert-raw-u which produces a literal of undefined primitive

type.

The three remaining conversion rules are mostly straightforward. r-convert-typed

reduces expressions like MyInt(int32(1)); r-convert-s handles struct type conversions

such as Point(struct{x,y float64}{1.1, 2.2}) or Polar(Point{1.1, 2.2}). The idea behind

r-convert-i is mostly the same as r-assert.

The final two rules specify the semantics of binary and relational operations, at a

quite high level. They start by converting both operands to the same, most restrictive

type. Then they refer to the function match, for which we assume the following semantics:

given a type and an operation symbol, it returns the corresponding operation specific

to that type. As an example, match(+, int64) would return “addition of 64 bit integers”.

We don’t formally model the low level details of these operations and instead just write

either e� e or e ≶ e to represent them.

44

4.2. ADDITIONS TO FEATHERWEIGHT GENERIC GO

4.2 Additions to Featherweight Generic Go

In this section we present our additions to Featherweight Generic Go. The section follows

the same overall structure as Section 4.1, where we begin by introducing the proposed

features informally and then show how to realize them in the typing system. However,

we don’t present the reduction rules since they are essentially the same as in the previous

section.

4.2.1 Type lists in interfaces

The work on Featherweight Go [20] formalized the addition of parametric polymorphism

to Go, focusing on how to integrate generics in a language where subtyping is structural.
They found that the interfaces of Go turn out to be a great fit for specifying bounds for

type parameters, as interfaces simply represent a set of methods. This is a clean way

of expressing which capabilities (methods) are assumed from a type parameter inside a

generic function. Also, it provides great flexibility for the callers of such functions, only

needing to ensure the type arguments implement the required methods. Moreover, as

the type system of FGG permits mutual recursion on the bounds of type parameters, this

language enjoys an expressive power comparable to that of other academic languages

such as Emerald [4] or Theta [10].

However, Go disallows primitive operators to be defined in terms of methods, as they

are built into the language. This means that using FGG interfaces as type parameter

constraints is not enough to express e.g. a generic min function :

func min(type T Ordered)(x T, y T) {

if x < y {

return x

} else {

return y

}

}

since we can’t define Ordered in a way that captures the operator < .

The solution proposed by the Go Team is to specify such operators indirectly. More

concretely, the idea is to explicitly list the types that may satisfy a constraint and consider

that the operators specified by that constraint are the intersection of the operators that

each of the listed types supports. For instance, if we consider just the operations listed

in Section 4.1.3.1, then the list of types: int32, f loat32, string indirectly specifies the

operators +, < and >, since both int32 and f loat32 support the operators +,−,<,>, while

string only supports +,<,>. An immediate observation we can make is that these type

lists represent both a union of types and an intersection of operators, since a type list with

e.g. int32 and string dictates that the type parameter it bounds might be instantiated by

45

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

either int32 or string, but the operations the type parameter supports are the intersection

of the operations supported by int32 and string.

Section 4.2.3 details how we added type lists to FGG interfaces and explores some of

its consequences.

4.2.2 Type definitions revisited

An interesting case that arises when we extend interfaces with type lists is that it be-

comes possible to have constraints that specify both a type list and a set of methods. I.e.,

it’s allowed to write interfaces like the following (the syntax is detailed in Sec. 4.2.3.1):

type StringerNumber interface {

type int32 , int64 , float32 , float64

String () string

}

This interface would constrain a type parameter such that it can only be instantiated

by a type that (1) has underlying type int32, int64, f loat32 or f loat64 and (2) implements

a method String() string. In general, such constraints can only be satisfied by types such

as MyInt, since primitive types can’t implement methods. As we’ve seen in Section 4.1.2,

this requires generalizing the FG type declarations so that they may refer to an arbitrary

type as the source type. This generalization has two further consequences in the context

of FGG, in particular on the process of monomorphisation, which we detail in Section 4.3.

4.2.3 Extending Featherweight Generic Go

4.2.3.1 Syntax

Figure 4.2.3.1 describes the syntax of FGG enriched with type lists in interfaces. It follows

the idea employed in Fig. 3.2 in that it highlights what has changed in comparison with

the syntax described in Fig 4.1. In particular, type and method declarations may now take

type parameters, which are bound by interface types. As such, utilizing a parameterized

type or method requires passing it type arguments φ to instantiate the parameters. The

most relevant modification is that interface types used as type parameter constraints may

optionally specify a type list.

We write type lists following the previous proposal’s syntax, i.e. a type list has the

form:

type T1, T2, . . .

The new proposal 4 that is based on the concept of type sets uses a rather different syntax

that doesn’t include the type keyword, but for our purposes the semantics are fundamen-

tally the same. This proposal also defines that, in a type list, writing a type T represents

4https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md

46

https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md

4.2. ADDITIONS TO FEATHERWEIGHT GENERIC GO

Field name f
Method name m
Variable name x
Primitive type B ::= bool | string

| int32 | . . .
Undefined primitive type BU
Type name t,u (t,u , B)
Type Literal L ::=

Structure struct {f T }
Interface interface {type T ; S}

Type parameter α
Type T ,U ::= B | t(T) | L | α
Extended Types T + ::= T | BU
Type formal Φ ,Ψ ::= type α T
Type actual φ,ψ ::= T
Method signature M ::= (Ψ)(x T) T
Method specification S ::= mM
Declaration D ::=

Type declaration type t(Φ) T
Method declaration func (x t(Φ)) mM {return e}

Program P ::= package main; D func main() {_ = e}

Expression d,e ::=
Primitive Literal `
Variable x
Structure literal T {e}
Select e.f
Method call e.m(φ)(e)
Type assertion e.(T)
Type conversion T +(e)
Binary operation e⊕ e
Comparison e � e

Literal ` ::=
Bool literal `B
Int literal `I
Float literal `F
String literal `S

Figure 4.9: Featherweight Generic Go (extended) syntax

“just the type T ” (exact matching), and it adds a new syntactic construct called an approx-
imation element, written ∼T , to mean “all the types whose underlying type is T ”. The

exact matching targets a context where type lists may also represent a form of sum types,

but we don’t consider such possibility here. Hence we don’t distinguish T from ∼T and

assume T stands for all the types whose underlying type is T .

4.2.3.2 Auxiliary functions

Figure 4.10 presents auxiliary definitions. The top of the figure repeats the functions

defined in FG [20] that return a mapping η from type formals Φ to actuals φ. Then we

adjust the function underlying to take type parameters into consideration. The main dif-

ference is that for (parameterized) named types this function also performs a substitution.

As an example, given the declaration

type Pair(type X, Y any) struct {x X, y Y}

we have that the underlying type of the instantiation Pair(int32, int32) is the type

struct{x int32, y int32}.

Next we define the function tlist∆ 5 which takes a type and returns the type list

it represents. We designate that the type list of a non-interface type is the singleton set

5The beginning of the next section explains the meaning of subscript ∆.

47

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

(type α T) = Φ η = (α := T)

(Φ := T) = η

(type α T) = Φ η = (Φ :=φ) ∆ ` (α <: T)[η]

(Φ :=∆ φ) = η

underlying(L) = L underlying(B) = B underlying(BU) = BU underlying(α) = α

type t(Φ) T ∈D U = underlying(T) η = (Φ :=φ)

underlying(t(φ)) =U [η]

¬interface(T) T , α

tlist∆(T) = {T } tlist∆(α) = tlist∆(bounds∆(α))

underlying(T) = interface {type T ; S} U =
⋃

tlist∆(Ti)

tlist∆(T) =U

T C ∅
(T ∈U) ∨ (underlying(T) ∈U)

T CU

∧
Ti CU

T CU

Figure 4.10: FGGe auxiliary functions

constituted by that type. This, together with the judgment T CU (explained below) allows

us to define the implements relation with a single rule, as we show in Section 4.2.3.4. For

an interface type that specifies a type list T , its tlist∆ is the union of each Ti ’s tlist∆. It

must be a flattened union instead of just T , since we can have, for example:

type Int interface {type int32, int64}

type Float interface {type float32, float64}

type Number interface {type Int, Float}

i.e., an interface’s type list might contain other interfaces that list types themselves. Notice

that if an interface I specifies no type list, then tlist∆(I) = ∅.
At last we define the judgment T CU , which reads “type T is represented in the set of

types U”. Essentially, it holds if either the type T or its underlying type are present in U .

The axiom T C∅ is an ad-hoc addition necessary to uniformize the treatment of interfaces

whether they specify a type list or not. This aspect is explained in Section 4.2.3.4.

The final rule sort of overloads this judgment, as its left hand side is not a type T but

a set of types T . It dictates that the whole set T is represented in U iff each type Ti is

represented in U . Thus we have, for instance:

{int32, f loat32}C {int32, f loat32, string}

{MyInt32, MyFloat32}C {int32, f loat32}

48

4.2. ADDITIONS TO FEATHERWEIGHT GENERIC GO

primType(T +) B = tag(T +)

fitsIn∆(BU , T
+)

primType(T +) isNumeric(T +) isNumeric(BU) B ≤ tag(T +)

fitsIn∆(BU , T
+)

fitsIn∆(BU , bounds∆(α))

fitsIn∆(BU , α)

interface(T) U = tlist∆(T) |U | > 0
∧

fitsIn∆(BU , Ui)

fitsIn∆(BU , T)

primType(T +) P (T +)

T + |=∆ P

bounds∆(α) |=∆ P

α |=∆ P

interface(T) U = tlist∆(T) |U | > 0
∧
Ui |=∆ P

T |=∆ P

Figure 4.11: FGGe auxiliary functions for primitives

The relation C can be thought of as an enhanced subset check ⊆ that also checks for the

presence of underlying types on its right hand side. This is useful for establishing the

implements relation between two interfaces that both specify type lists, as Section 4.2.3.4

demonstrates.

4.2.3.3 Auxiliary functions for primitives

Figure 4.11 shows the adjusted versions of the relations fitsIn and |= (Section 4.1.3.3).

Both are added a subscript ∆ to indicate that the type environment is also an input to the

rule. They both refer to the function bounds∆ which was defined in FG [20]. This function

essentially retrieves the bound of a type parameter α from the type environment ∆.

The new rules for fitsIn∆ are fairly straightforward: an undefined type BU is compati-

ble with a type parameter α iff it is compatible with every type listed in α’s bound. As an

example, given the two constraints:

type Number interface {type int32, int64, float64}

type NumberAndS interface {type int32, int64, float64, string}

we have that the type BU is compatible with Number but not with NumberAndS. Also, observe

that an undefined type is never compatible with a constraint that specifies no type list.

As we saw in Section 4.1.3.3, the fitsIn relation is responsible for determining which

types can be mixed with an undefined type in a primitive operation. Therefore, the new

definition fitsIn∆ now allows one to write the following method:

49

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

func (this Dummy) Inc(type T Number)(x T) T {

return x + 1

}

Yet note that to type the method Inc we must also verify that + is defined for the type T.

For this purpose, the relation |=∆ is adjusted in a very similar sense: it defines that a type

parameter α satisfies a predicate P iff every type listed in α’s bound satisfies P . Recalling

Section 4.1.3.3, we have that:

OpPred(+) = Or(isNumeric, isString)

One can intuitively conclude that all the types listed by Number satisfy this predicate – as

they are all numbers – from which it follows that + is defined for the type parameter T

of Inc. Now consider the following method:

func (this Dummy) Double(type T NumberAndS)(x T) T {

return x + x

}

it’s also intuitive to conclude that NumberAndS supports +. But notice the usefulness of

defining Or as an “higher order” function: checking that NumberAndS supports + amounts

to verifying that each type it lists is either numeric or a string. Without a way to compose

two predicates, we could be inclined to check something like (where Ui represents each

of the types listed by NumberAndS):(∧
Ui |=∆ isNumeric

) ∨ (∧
Ui |=∆ isString

)
but both sides of the disjunction would be false, as the types are neither all numeric nor

all strings. This would lead us to conclude NumberAndS doesn’t support +, which is clearly

wrong.

As a final remark, note that since both final clauses of fitsIn∆ and |=∆ recurse on

the respective relation in their last premises, both definitions work even for type list

constraints embedded in other constraints.

4.2.3.4 Typing

Figure 4.12 presents the adjusted judgment∆ ` T ok and the implements and assignableTo

relations. We don’t display the judgments S/D/P ok as they mostly repeat the rules de-

scribed in Section 4.1.3.4. The typing rules for expressions are also not depicted since

they essentially merge the ones defined in Fig 4.7 with the rules for FGG [20]. Instead we

focus on the main consequences of adding type lists to interfaces.

We redefine the judgment T ok so that it also takes the type environment as input.

The first line of rules are simple adjustments to take this into account. Rules t-param

and t-named are the same as in FGG and are displayed just for completion. Rule t-

interface now checks the listed types are all well formed and it prohibits the use of

50

4.2. ADDITIONS TO FEATHERWEIGHT GENERIC GO

Well-formed types ∆ ` T ok

t-prim

∅ ` B ok

t-und

∅ ` BU ok

t-struct

distinct(f) ∆ ` T ok

∆ ` struct {f T } ok

t-param

(α : T) ∈ ∆
∆ ` α ok

t-named

∆ ` T ok (type t(Φ) T) ∈D η = (Φ :=∆ T)

∆ ` t(T) ok

t-interface

T , α ∆ ` T ok unique(S) ∆ ` S ok

∆ ` interface {type T ; S} ok

Implements ∆ ` T + <:U

<:I

interface(U) methods∆(T +) ⊇methods∆(U) tlist∆(T +)C tlist∆(U)

∆ ` T + <:U

Assignable to ∆ ` T + ≺:U+

∆ ` T + ≺: T +

∆ ` T + <:U

∆ ` T + ≺:U

fitsIn∆(BU ,T
+)

∆ ` BU ≺: T +

underlying(t) = L

∆ ` t ≺:L

underlying(t) = L

∆ ` L≺: t

Figure 4.12: FGGe (sub)typing

stand-alone type parameters in a type list. The reason is that there is no way for an

outside type to be represented (Section 4.2.3.2) by such a type, since we assume that each

type parameter α is unique.

The adjusted implements relation reflects the major consequence of adding type lists

to interfaces. Now there are two conditions necessary for a type T + to implement an

interface type U : (1) T + implements the methods specified by U , and (2) the tlist∆ that

T + stands for is represented in the tlist∆ of U . By referring to the auxiliary definitions

tlist∆ and C, we are able to neatly condense all the cases of implements in a single rule.

For example, if I is an interface that only specifies methods:

type I interface { m1(); m2(); ... }

then a type T implements that interface simply by implementing those methods, as

expected, since tlist∆(I) = ∅ and the definition of C states that a type is always represented
in an empty set. Conversely, if an interface C just specifies a type list T :

type C interface { type T }

51

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

then a non-interface type T implements C (or satisfies the constraint C) if the list T contains

either T or its underlying type. Recall that if an interface type has no type list, then its

tlist∆ is the empty set, which means it wouldn’t be represented in a set T – and thus an

interface with no type list can never satisfy a type list constraint.

Finally, the most interesting case arises when both types are interfaces that specify

type lists. As an example, if we have the following two types:

type C1 interface { type int32, float32 }

type C2 interface { type int32, float32, string }

Then the definition allows us to conclude C1 <:∆ C2 (recall the end of Section 4.2.3.2).

This can be justified intuitively from two different views.

First, C2 supports a superset of the types supported by C1, hence there is no way for an

instantiation of C1 to “surprise” C2.

Secondly, code that uses a type parameter α bound by C2 can only use operations defined

for all three of int32, f loat32 and string. Thus, instantiating α with either int32 or

f loat32 (or a type defined over them) will always be safe, since α might only use a subset

of the operations supported by int32 and f loat32. To make our point clearer, consider

that we (informally) define a function Ops that, when applied to a type list constraint,

returns the set of primitive operations it supports. Hence we would have that:

Ops(C1) = {+, −, <, >}

Ops(C2) = {+, <, >}

This allows us to conclude that C1 <:∆ C2 because Ops(C1) ⊇ Ops(C2), which is exactly

the same idea already used to decide the implements relation between sets of methods.

Finally, the assignable relation is defined by exactly the same set of rules. A type

parameter is only assignable to itself and thus falls under the rule T + ≺: T +. A type

parameter is, at the same time, considered a type different from all the others, and thus

we never have that e.g. int32≺:α. This means that a method such as the following is not

allowed (recall the typing of binary operations from Section 4.1.3.4):

func (this Dummy) AddInt32(type T Number)(x T, y int32) T {

return x + y

}

The only types flexible enough to be mixed with (assignable to) type parameters are the

undefined types. This case is handled just by modifying the function fitsIn, as we showed

in the previous section.

Notice the distinction between (1) mixing type parameters and primitive types and

(2) instantiating type parameters with primitive types. While the former asks for assignabil-

ity of either α ≺:∆ int32 or int32≺:∆ α, the latter requires int32≺:∆ bounds∆(α) - which

would redirect to int32 <:∆ bounds∆(α). This is why we can’t add values of types int32

and T in the previous example, yet we would be allowed to instantiate AddInt32’s type

parameter with int32 (if AddInt32 was well typed).

52

4.3. ADJUSTING THE MONOMORPHISATION ALGORITHM

4.3 Adjusting the monomorphisation algorithm

In this section we explore how generalizing type declarations impacts the monomorphi-

sation process. We begin with an high level review of the formal algorithm as defined

originally [20]. Then, Section 4.3.2 delineates two (loose) cases that the original algo-

rithm isn’t prepared to handle. At last, in Sections 4.3.3 and 4.3.4, we show how to adapt

monomorphisation so as to account for both of these issues.

4.3.1 Monomorphisation in Featherweight (Generic) Go

The work on Featherweight Go [20] defines precise semantics for generic FGG code

by specifying a formal translation of FGG programs into their non-generic FG counter-

parts. The translation is based on the technique of monomorphisation, which means that

each instantiation of a polymorphic method/type gives rise to a different, type-specific

(monomorphic) version of the generic code. For example, given the FGG type declaration:

type List(type a Any) interface { ... }

the two instantiations List(bool) and List(string) translate to two FG types List<bool>

and List<string> 6, along with their corresponding type declarations:

type List<bool> interface {/* a/bool */}

type List<string> interface {/* a/string */}

This monomorphisation algorithm encompasses two phases. First, it collects a set of

type and method instantiations from a FGG program. Then, it generates the equivalent

(specialized) FG program, following the instance set computed in the first phase.

4.3.1.1 Instance collection

The instance collection phase is formalized by a judgment P I Ω. Here, Ω (and ω)

range over instance sets, which contain elements of closed type τ or pairs of a type with a

method and its type arguments, τ.m(ψ) 7. The judgment holds if Ω is the instance set for

the program P , and is defined by the following rule:

I-prog

∅; ∅ ` e Iω Ω = lim
n→∞

Gn∅ (ω)

package main; D func main() {_ = e}IΩ

This rule is, in turn, specified in terms of two auxiliary definitions. First, the judgment

∆; Γ ` e I ω, which holds under conditions similar to the previous – if ω is the instance

set for expression e, given environments ∆ and Γ . In essence, it recursively traverses an

expression’s AST and collects the instantiations that may be found at each node. For

6Angle brackets and commas “<,>” are assumed to be part of FG identifiers, for convenience [20].
7FG makes a clear distinction between first class types (τ) and type literals (T) – c.f. Fig. 3.2, Section 3.2.3.

We adopt the same convention in this review section.

53

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Listing 4.7: Example FGG program to be monomorphised.

type Pred interface {
Test(type a Number)(x a) bool

}

type Pos struct {}
func (p Pos) Test(type a Number)(x a) bool {

return x > 0
}

type Selector struct {}
func (s Selector) SelectI(p Pred , v, d int32) int32 {

if p.Test(int32)(v) {
return v

} else {
return d

}
}

func main() {
_ = Selector {}. SelectI(Pos{}, -5, 0)

}

instance, upon reaching a method-call node, i.e., an expression of the form e.m(ψ)(e), it

applies the rule:
I-call

∆; Γ ` e : τ ∆; Γ ` e Iω ∆; Γ ` e Iω

∆; Γ ` e.m(ψ)(e)I {τ, τ.m(ψ)} ∪ω∪ω

That is, it records the type instance τ of the receiver together with the method instanti-

ation τ.m(ψ), and proceeds inductively on the expressions of the receiver and the argu-

ments.

The second auxiliary definition is the function G, whose fixed point corresponds to

the final instance set Ω of the program. Initially, this function takes the instance set ω

collected from the top-level expression (_ = e), and then it is repeatedly applied until its

result contains all the type and method instantiations entailed by ω.

The original definition of G is depicted in Fig. 4.14 (grayed out), although the reader is

advised to consult [20] for a detailed explanation of each auxiliary function. In short,

the purpose of G is to find all the type and method instantiations necessary to monomor-

phise declarations (F-closure, M-closure) as well as to preserve the <: relation (I-closure,

S-closure).

As an example, consider the program of Listing 4.7. It defines abstract predicates over

numbers, followed by a particular one that tests if a number is positive. The predicates are

then used in the method SelectI (specialized in integers, for the sake of simplicity), which

54

4.3. ADJUSTING THE MONOMORPHISATION ALGORITHM

returns the first argument v if it satisfies the predicate, or a default value d otherwise.

Starting from main’s body, the first premise of I-prog yields:

∅; ∅ ` Selector{}.SelectI(Pos{}, -5, 0) I {Selector, Selector.SelectI(), Pos}

Then, initializing ω0 = {Selector, Selector.SelectI(), Pos}, G is applied until it returns an

ωi such that G∆(ωi) = ωi . From the first iteration we have:

ω1 = G∅(ω0) = ω0 ∪ { Pred, int32, Selector.SelectI(), Pred, Pred.Test(int32)() }

Where Pred and int result from M-closure, while the remaining instances are obtained

from S-closure. The repeator Selector.SelectI() stems from the fact that Selector im-

plements itself; Pred and Pred.Test(int)() constitute the instance set for the body of

Selector.SelectI() – note how the function S-closure is the responsible for navigating

method bodies.

The second iteration reaches a fixed point of G with ω2 = ω1 ∪ { Pos.Test(int)() },
where Pos.Test(int)() is collected via S-closure since Pos <: Pred, and thus we have that

Ω =ω2 = G∅(ω2) is the instance set for this program.

4.3.1.2 Generation of monomorphic code

After computing the instance set Ω, monomorphising a program essentially consists of

generating specialized declarations for each instantiation t(φ) or τ.m(ψ) in Ω. Besides, it is

also necessary to replace the occurrences of such instantiations by suitable FG identifiers

(e.g. List(bool) 7→ List<bool> or Pred.Test(int32) 7→ Pred.Test<int32>) 8. The formal

algorithm further includes some nuances, such as fabricating dummy methods to ensure

the preservation of subtyping, but those are not relevant for this presentation and were

already sorted out [20].

A parameterized FGG declarationD translates to zero or more specialized declarations

D, one for each instantiation of its type parameters. This is captured by the judgment

Ω `D 7→ D, where the set of monomorphised declarations D is determined by the in-

stances contained in Ω.

Declarations may introduce either types or methods; for illustrative purposes, we focus

on the case of type declarations. These are translated according to the following rule:

m-type

D=

 type t† T †
∣∣∣∣∣∣∣ t(φ) ∈Ω, η = (Φ :=φ), µ = {m(ψ) | t(φ).m(ψ) ∈Ω},
η ` t(φ) 7→ t†, η; µ ` T 7→ T †

Ω ` type t(Φ) T 7→ D

That is, for each instantiation t(φ), we record the substitution η that produces this par-

ticular type and select the set of corresponding method instances µ from Ω. The pair

8Again, we assume the parenthesis are punctuation, contrarily to the angle brackets which are part of
identifiers.

55

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Listing 4.8: Selector example: monomorphised (FG) program.

type Top struct {}

type Pred interface {
Test <int32 >(x int32) bool
Test <0>() Top

}

type Pos struct {}
func (p Pos) Test <int32 >(x int32) bool {

return x > 0
}
func (p Pos) Test <0>() Top {

return Top{}
}

type Selector struct {}
func (s Selector) SelectI(p Pred , v, d int32) int32 {

if p.Test <int32 >(v) {
return v

} else {
return d

}
}
func (s Selector) SelectI <1>() Top {

return Top{}
}

func main() {
_ = Selector {}. SelectI(Pos{}, -5, 0)

}

η; µ derived from this t(φ) (and Ω) then guides the generation of the monomorphised

identifier t† and source type T †, forming a monomorphic declaration type t† T †.

Consider, for example, the translation of the declaration for the interface type Pred

in Listing 4.7, which specifies a generic method. The whole monomorphised program

can be consulted in Listing 4.8, where dummy methods are grayed out. Ignoring dummy

method signatures, the declaration essentially translates to:

type Pred interface {

Test <int32 >(x int32) bool

}

since the type Pred is not parameterized, and the only pertinent method instance in

Ω is Pred.Test(int32). This example illustrates a particular case of the type-literal-

monomorphisation judgment η; µ ` T 7→ T †, which is characterized in Fig. 4.13. Namely,

56

4.3. ADJUSTING THE MONOMORPHISATION ALGORITHM

Type literal η; µ ` T 7→ T †

m-struct

η ` τ 7→ τ†

η; µ ` struct{f τ} 7→ struct{f τ†}

m-interface

η; µ ` S 7→ S

η; µ ` interface{S} 7→ interface{
⋃

S}

Figure 4.13: Monomorphisation of type literals (original).

it illustrates interface monomorphisation, and how it essentially consists of generating

specialized versions for each signature S the interface specifies. As shown, this process is

guided by a method instance set µ, which is aggregated while translating a type declara-

tion and passed as input to this judgment.

4.3.2 Monomorphisation and Type Declarations

The algorithm as presented in the previous section suffers from two shortcomings when

we enrich F(G)G with general type declarations.

The first emerges from the ability to refer to arbitrary types in type declarations. For

instance, consider the following declarations:

type Pair(type T1, T2 any) struct {

x T1; y T2

}

type PairInt Pair(int32 , int32)

As the instance collection phase assumes that the source of a type declaration must be a

type literal, it only navigates type declarations with the intent of finding new instantia-

tions within struct fields (function F-closure, Fig. 4.14) or method signatures (M-closure).

Yet, as the example demonstrates, now the source type can itself be a (possibly unique)

type instantiation. It is necessary to take this case into account since otherwise we would

risk generating the FG declaration:

type PairInt Pair<int32,int32>

without ever generating a specialized declaration for its source type Pair<int32,int32>.

The second issue stems from the possibility of having variables of anonymous in-

terface type. As an example, consider we change the program of Listing 4.7 such that

a Selector struct now includes a predicate as its field. Moreover, assume we declare

the type of this field as the interface literal from which Pred is created. The necessary

modifications are illustrated in Listing 4.9 (unaltered lines are grayed out).

Among other things, monomorphising this program requires translating the type

declaration for Selector into the following:

57

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

Listing 4.9: Selector that includes a predicate as its field.

type Pred interface {
Test(type a Number)(x a) bool

}

type Pos struct {}
func (p Pos) Test(type a Number)(x a) bool {

return x > 0
}

type Selector struct {
p interface{ Test(type a Number)(x a) bool }

}
func (this Selector) SelectI(v, d int32) int32 {

if this.p.Test(int32)(v) {
return v

} else {
return d

}
}

func main() {
_ = Selector{Pos {}}. SelectI(-5, 0)

}

type Selector struct {

p interface{

Test <int32 >(x int32) bool

Test <0>() Top

}

}

Furthermore, although Pred is not used in this program, its declaration should also be

monomorphised into:

type Pred interface {

Test <int32 >(x int32) bool

Test <0>() Top

}

so as to ensure the subtype relation is preserved during the translation – note that, in the

FGG program of Listing 4.9, Pred implements the anonymous interface and vice-versa.

However, there are two reasons why the original algorithm doesn’t produce the desired

result. First, the instance collection phase only considers first class (τ) types and thus will

never record an instantiation of the form:

interface{ . . .} . m(ψ)

58

4.3. ADJUSTING THE MONOMORPHISATION ALGORITHM

Instance sets ω,Ω

ω,Ω range over sets containing elements of the form τ or τ.m(ψ).

Auxiliary functions

G∆(ω) = ω ∪ T-closure∆(ω)∪F-closure(ω)∪M-closure∆(ω)∪ I-closure∆(ω)∪ S-closure∆(ω)

T-closure∆(ω) =
⋃{

T [η]
∣∣∣ t(φ) ∈ω, (type t(Φ) T) ∈D, η = (Φ :=φ)

}
F-closure(ω) =

⋃{
τ
∣∣∣ τS ∈ω, (f τ) = fields(τS)

}
M-closure∆(ω) =

⋃{
σ [η]∪ {σ [η]}

∣∣∣ τ.m(ψ) ∈ω, (m(Ψ)(x σ) σ) ∈methods∆(τ), η = (Ψ :=ψ)
}

I-closure∆(ω) =
{
τ ′I .m(ψ)

∣∣∣ τI .m(ψ) ∈ω, τ ′I ∈ω, ∆ ` τ
′
I <: τI

}
S-closure∆(ω) =

⋃{
{τ ′ .m(ψ)} ∪Ω

∣∣∣∣∣ τ.m(ψ) ∈ω, τ ′ ∈ω, ∆ ` τ ′ <: τ, ∆; x : τ ′ ,x : σ ` e IΩ

(x : τ ′ ,x : σ).e = body(τ ′ .m(ψ))

}

Figure 4.14: Computing instance sets.

but that is mostly a detail solvable by promoting type literals to first class, as discussed

in the next section. Secondly, as shown at the end of the previous section, the type-literal-

monomorphisation judgment η; µ ` T 7→ T † expects a method instance set µ as input,

assuming it is assembled during the translation of a type declaration. But, by definition,

an anonymous interface has no declaration and thus no µ is collected before translating

it – i.e., the input µ will always be empty in these cases, regardless of the instances in Ω.

4.3.3 Handling instantiated types in type declarations

We solve the first issue by extending the definition of G with an extra auxiliary func-

tion T-closure, highlighted in Figure 4.14 9. This function just collects the source type

that corresponds to a closed type instantiation t(φ), applying to it the same substitution

that originated t(φ). Note that, despite its simple definition, T-closure can even handle

(arbitrarily long) chains of declarations of the form:

type Pair(type T1, T2 any) struct {

x T1; y T2

}

type PairI1(type T2 any) Pair(int32 , T2)

type PairInt PairI1(int32)

9N.B.: using τI and τS (as original FG paper) to avoid polluting the rules with checks of the form
struct(τ)/interface(τ) (i.e. τS =⇒ struct(τS))

59

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

since the function G is applied iteratively: from PairInt, T-closure can find the instanti-

ation PairI1(int32); in the next iteration, PairI1(int32) will be part of ω and, from that

instance, T-closure can then derive Pair(int32,int32).

As a side remark, observe that by iteratively applying the substitution to the source type,

this function ensures that if a type instantiation t(φ) occurs in Ω, so will its underlying

type. For example, if Ω contains the instance List(int32), then T-closure will expand it

with the instance:

interface { Map(type b Any)(f Function(int32, b)) List(b) }

where the first type argument of Function is also instantiated to int32. In formal terms,

we represent this guarantee by the following lemma:

Lemma 4.3.1. If t(φ) ∈Ω then underlying(t(φ)) ∈Ω.

Proof outline. We haven’t proved that the addition of T-closure to G’s definition maintains

the properties of the nomono predicate [20]. As such, we assume Ω may be either finite

or infinite and thus this is a proof by coinduction [26]. The proof considers only the part

of Ω built by T-closure, but is rigorous enough for our purposes.

The set Ω is defined to be the largest set S satisfying the following property:

Property 1. If T ∈ S, then:

i. T is a base type B or a type literal L, or

ii. If T is a named type t(φ), then there exists a declaration (type t(Φ) T ′) and a substitution
η = (Φ :=φ) such that T ′[η] ∈ S.

That is, we can think of Ω as the greatest fixpoint of the operator P :

P (S) =
{
T

∣∣∣∣ (T = B∨ T = L)∨
(
T = t(φ) =⇒ ∃(type t(Φ) T ′ ∈D, η = Φ :=φ). T ′[η] ∈ S

)}
Now, we want to show that if t(φ) ∈Ω then underlying(t(φ)) ∈Ω. Suppose

t(φ) ∈Ω

Being a named type, t(φ) must be defined by some type declaration type t(Φ) T ′, where

T ′ is either a base type, a type literal or another named type. If T ′ = B or T ′ = L, then by

Property 1(i) we have that the underlying type of t(φ) is in Ω. Otherwise, if T ′ is another

named type s(φ′), then underlying(t(φ)) = underlying(s(φ′)).

But, by the coinduction hypothesis we have that underlying(s(φ′)) ∈ Ω and thus we can

also conclude underlying(t(φ)) ∈Ω.

The importance of this detail will be made clear below, in the context of interface

monomorphisation.

60

4.3. ADJUSTING THE MONOMORPHISATION ALGORITHM

Type monomorphisation η ` T 7→ T †

m-tnamed

t† = 〈t(T [η])〉
η ` t(T) 7→ t†

m-tparam

T = α[η] η ` T 7→ T †

η ` α 7→ T †

m-struct

η ` T 7→ T †

η ` struct{f T } 7→ struct{f T †}

m-prim

` B 7→ B

m-und

` BU 7→ BU

m-interface

η; µ ` S 7→ S

η; µ ` interface{S} 7→ interface{
⋃

S}

m-interface

LI = interface{S[η]} µ = {m(ψ) | LI .m(ψ) ∈Ω} η; µ ` S 7→ S

η ` interface{S} 7→ interface{
⋃

S}

Figure 4.15: Monomorphisation of types.

4.3.4 Monomorphising interface types

The second issue is solved by adapting (instead of extending) some definitions, related

both to instance collection and to the generation of monomorphic code. We begin by

promoting type literals to first class types, which requires two modifications.

First, we merge the type-monomorphisation and type-literal-monomorphisation judg-

ments into a single one, which we define with the rules presented in Figure 4.15. The

first three rules are mostly identical to the original ones [20]; the following two rules are

straightforward. Rule m-interface is detailed below.

Secondly, we rewrite rules and auxiliary functions by replacing uses of τ by T , where

T represents the set of all possible types as defined in Figure 4.9 (Section 4.2.3.1). For

instance, the function I-closure is rewritten into: 10

I-closure∆(ω) =
{
T ′I .m(ψ)

∣∣∣ TI .m(ψ) ∈ω, T ′I ∈ω, ∆ ` T
′
I <: TI

}
These two adjustments suffice to fix the instance collection phase, as it will now record

instantiations of the form interface{ . . .}.m(ψ). Moreover, together with Lemma 4.3.1 we

now have the following guarantee:

Lemma 4.3.2. Let LI = underlying(t(φ)) for some t(φ) ∈ Ω such that interface(t(φ)). If
t(φ).m(ψ) ∈Ω then LI .m(ψ) ∈Ω.

Proof outline. Follows from Lemma 4.3.1 and the definition of I-closure.

After promoting type literals, we still need to revise how interfaces are monomor-

phised. In particular, we can’t assume that the method instance set µ is collected while

10Again, TI represents a type such that interface(TI) holds.

61

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

monomorphising type declarations, since anonymous interfaces have no associated dec-

laration. As such, we propose an update to the rule m-interface, illustrated in Fig-

ure 4.15. The key idea is that instead of expecting µ as input, we now construct it within

the premises, using just the interface literal to select the appropriate method instances.

Intuitively, from Lemma 4.3.2 it follows that, for named types t(φ), assembling µ “in-

side” this rule is equivalent to the previous process, which constructed µwhile generating

a specialized type declaration for t(φ). As such, the translation of type declarations can

now be expressed by the simpler rule:

m-type

D=
{

type t† T †
∣∣∣t(φ) ∈Ω, η = (Φ :=φ), η ` t(φ) 7→ t†, η ` T 7→ T †

}
Ω ` type t(Φ) T 7→ D

4.3.4.1 Example

In order to illustrate the ramifications of these adjustments, we explore an example in

depth. Recall the program of Listing 4.9, where the Selector struct has a predicate field

represented by an anonymous interface. From the top-level expression we get that:

ω0 = { Selector, Selector.SelectI, Pos }

Then, applying G to this set yields:

G(ω0) = ω0

∪ { struct{ p interface{Test(type a Number)(x a) bool} }, struct{} }
∪ { interface{Test(type a Number)(x a) bool} }
∪ { int32 }
∪ { interface{...}, interface{...}.Test(int32)() }

Where the first set is obtained from T-closure∅(ω0) (underlying types of Selector and

Pos), the second is obtained from F-closure∅(ω0) (type of Selector’s field), the third from

M-closure∅(ω0) and the last one from S-closure∅(ω0). This last set already includes an

instance of the form interface{ . . .}.m(ψ), as desired. Note that in this case we write

interface{...} to abbreviate the only interface literal in question.

Next we apply G again, reaching a fixed point:

G(G(ω0)) = G(ω0)∪ { Pos.Test(int32)() }

Obtaining Pos.Test(int32)() via S-closure. The resulting set resembles the Ω we got at

the end of Section 4.3.1.1 – replacing Pred by interface{...} – except for the occurrence

of (underlying) type literals. Note that even though Pred <: interface{...} holds, no

method instantiations are collected for Pred via I-closure, since Pred is never added to

any ω. Nevertheless, as we show next, this is not problematic as we still collect the

instantiations pertaining to Pred’s underlying type.

Given the correct instance set, the goal we set at the end of Section 4.3.2 was to gen-

erate appropriate, specialized declarations both for Selector’s field and for Pred. We start

62

4.3. ADJUSTING THE MONOMORPHISATION ALGORITHM

with Selector’s field, whose type is declared as interface{Test(type a Number)(x a) bool}.

We monomorphise this type by applying the rule m-interface of Figure 4.15. There are

no free type variables occurring in this type, hence the substitution has no effect (indeed

η is empty) and the LI obtained is equal to the initial literal. As shown above, Ω contains

a method instantiation for this LI – Test(int32)() – and thus from this Ω we can derive:

Ω `
interface {

Test(type a Number)(x a) bool

}

7→

interface {

Test<int32>(x int32) bool

Test<0>() Top

}

allowing us to produce the appropriate FG declaration:

type Selector struct {

p interface{

Test <int32 >(x int32) bool

Test <0>() Top

}

}

The case for Pred is analogous. In order to generate a monomorphised declaration, we

monomorphise the identifier and the source type (rule m-type, p. 62). Since the source

type is an interface literal exactly equal to the one seen above, it is monomorphised into

the same FG type. This type is then plugged into the specialized declaration, yielding the

desired:

type Pred interface{

Test <int32 >(x int32) bool

Test <0>() Top

}

The insight is that by assembling µ inside m-interface, using only the literal to

select the appropriate method instantiations, this rule now becomes “self-contained” or,

in other words, modular. This means that for equal (under η) type literals we can just

reuse the same rule instance, independently of the context where we are monomorphising

said literals, since the corresponding method instance set µ will be the same.

4.3.5 Note on the remaining features

Although we extended F(G)G with other features besides generalized type definitions,

this is the only one with non-trivial implications on the monomorphisation process.

Primitive types/values are kept unaltered in FG; primitive operations only require

extending the judgment ∆; Γ ` e Iω so that it recurses in each of the operand expressions.

A type list is only used for constraining type parameters, but the types targeted by

monomorphisation are the ones resulting from instantiating such parameters. Indeed,

type parameter bounds in general are not relevant for the process of monomorphisation

and could be discarded after the type checking phase.

63

CHAPTER 4. EXTENDING FEATHERWEIGHT (GENERIC) GO

One possible optimization would be to generate, a priori, an instantiation of a type

parameter for each type listed in its constraint’s type list – with the intent of avoiding

part of the instance collection phase. However, the gains from such optimization are

not clear and it would result in certain code bloat, particularly for programs where such

type parameters are not instantiated “exhaustively”. On top of this, the point of the

FG formalism is not to model this kind of optimizations, thus we have not investigated

further.

64

5 Exploring Type Argument
Inference

This chapter describes our work on type argument inference in the context of Feather-

weight Generic Go extended with the features presented in the previous chapter. We

begin by framing the specific version of the type inference problem that we propose to

investigate, first stating it in general terms and then narrowing down the desired charac-

teristics of the solution.

After that, Section 5.2 gives some intuitions on the inner workings of the algorithm

we devised to solve this problem, ending with an high-level outline of our solution. At

the core of the algorithm stands the constraint resolution mechanism; as such, we devote

Section 5.3 to the in-depth exploration of this mechanism.

Finally, the algorithm we devised is a relatively simple adaptation of techniques bor-

rowed from Hindley-Milner as well as bidirectional systems. Yet, most of these techniques

were developed targeting idealized languages and thus didn’t have to deal with the pe-

culiarities of an industrial language like Go. This indicates there is some novelty to our

work, but it also means our solution has some limitations, particularly in the presence of

untyped constants. Section 5.4 discusses these limitations as well as possible solutions

for them, and finishes by comparing our solution to works that solve similar problems

through the use of bidirectional techniques.

The whole chapter follows a rather informal style of presentation, contrasting with

the previous one, as the formalization of this system is out of the scope of this thesis and

is instead left for future work.

5.1 Problem Statement

The problem we propose to solve consists of inferring correct type arguments for

unannotated instantiations of generic types and methods. For example, given the program

65

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

Listing 5.1: Example program in FGG().
type Dummy struct {}

type Box(type a Any) struct {
value a

}

type Unboxer struct {}

func (u Unboxer) Unbox(type a Any)(box Box(a)) a {
return box.value

}

func main() {
_ = Unboxer {}. Unbox ()(Box(){ Dummy{} })

}

in Listing 5.1 – where the type arguments were omitted in the top-level expression –, the

goal is to figure out types T1 and T2 to fill the instantiations:

Unboxer{}.Unbox(T1)(Box(T2){ Dummy{} })

such that the resulting expression is well typed. Intuitively, in this case we would infer

that T1 = T2 = Dummy. Note that we could also have inferred the type arguments to be

interface{}, the supertype of all types. However that would make us lose static infor-

mation, assigning the type interface{} to the result of the call Unboxer.Unbox(), instead

of the more precise Dummy. As such, we don’t just want types that make the expressions

well-typed – we want the smallest types that do so [5, 36].

More precisely, we now consider a new external language FGG() similar to FGG, but

where expressions contain no explicit type instantiations – i.e., method calls have the form

e.m()(e) instead of e.m(ψ)(e) and named types occur in expressions (e.g. struct literals) in

the form t() instead of t(φ). Note that declarations and method signatures are still fully

type-annotated in FGG().

Our goal is then to design a type inference algorithm that maps FGG() expressions to FGG

ones by reconstructing the elided type information [32]. Ideally 1, the algorithm should

enjoy the following property: for any FGG expression e and its FGG() counterpart e(), if e

type-checks, then so must the mapping for e(), where annotations are replaced by inferred

types. That is, no program that was previously typeable will now cease to be so [27].

The above constitutes the general problem statement. In addition to that, we impose a

restriction on the solution: the algorithm should be able to infer types locally [32, 36], i.e.,

inferring the type of an expression requires only inferring types for its subexpressions.

We believe this is a reasonable requirement since top-level type and method declarations

are fully type-annotated (type parameters and types of bound variables); furthermore,

1Section 5.4 discusses some examples of why this is not the case.

66

5.2. THE BASE ALGORITHM

FGG doesn’t permit local declarations within method bodies. This effectively means that

we know, a priori, the “type schemes” [9] for every generic type and method.

In summary, our aim is to study – and devise a prototype solution for – the problem

of local type inference in the context of FGG, which exhibits the following characteristics:

• declarations and method signatures are fully annotated;

• method bodies cannot contain local declarations;

• expressions never contain explicit type instantiations;

• subtyping is structural (and not nominal);

• all the “type constructors” are nonvariant.

5.2 The base algorithm

This section presents the base algorithm we devised to solve the problem described in

the previous section. It is a relatively simple algorithm, derived from the application of

well established inference techniques [9, 36, 35] to this particular context. We go over an

easy example that showcases most of the fundamental ideas, and end with the algorithm

outline by generalizing from the example.

Consider again the top-level expression of the program in Listing 5.1, but now focus

just on the subexpression:

Box(){ Dummy{} }

As we’ve seen, the goal is to find a type T such that the resulting expression

Box(T){ Dummy{} }

is well-typed. The algorithm proceeds as follows. Upon reaching an expression of this

form (a struct literal), it starts by instantiating, with fresh type variables, all the type

parameters found in the struct type’s declaration. The declaration for Box refers a single

type parameter a, so we generate a new type variable, say X1, and record its bound Any.

This type variable is then used to instantiate the struct type, yielding Box(X1) – whose

underlying type is struct{ value X1 }. Note that, in general, we may generate zero (for

non-parameterized types) or more fresh variables here. This step mimics the technique

used in implementations of Hindley-Milner systems [35], assuming the type declaration

provides the “generalized” type scheme.

So now we have an expression of the form e(X), namely

Box(X1){ Dummy{} }

67

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

as well as a type environment ∆ = { X1 <: Any }, and want to resolve a suitable value for

the type variable X1. The key idea is that we will take advantage of the type information

provided by the term arguments to constrain the possible values that X1 might take.

As such, we begin by inferring the smallest type for the argument value Dummy{}, obtaining

the type Dummy. Following the base type-checking rules, the expression above is well-

typed iff the argument’s type, Dummy, is a subtype of (assignable to) the corresponding

struct field’s type, X1. Here, we represent this by a subtype constraint of the form

Dummy ≤∆ X1

which must be solved by finding a substitution η, mapping type variables to types, such

that the assignable to judgment

∆ ` Dummy ≺: X1[η]

holds. It’s worth noting that some constraints can’t be solved – in this case, type inference

fails. In theory, this happens when there is no type annotation that would make the

expression well-typed.

Resuming the example, the constraint is straightforwardly satisfied by the substitution

η = { X1 7→ Dummy }. The inference process then ends by applying this substitution to the

instantiated expression Box(X1){ Dummy{} }, yielding the well-typed FGG expression

Box(Dummy){ Dummy{} }

This example already illustrates the essence of the algorithm. We focused on struct lit-

erals, but the procedure is identical for method calls. The remaining forms of expressions

don’t directly involve type/method instantiations, so we just recurse on their subexpres-

sions – while also verifying that the basic conditions for well-typedness are met. For

instance, the expression:

Box(){ Dummy{} }.value

is at the top-level a field selection, thus if there are type arguments to infer then it must

be in its struct-literal subexpression. However, after inferring the correct type arguments

for it, we still need to verify that this struct indeed contains a value field to ensure the

whole expression is well-typed.

As a recap, we now give an high-level description of the algorithm. Focusing on struct

literals and method calls, i.e. expressions of the form t(){e} and e.m()(e), and ignoring

basic verifications as the one above, the algorithm proceeds as follows:

1. Instantiate the corresponding declaration’s type parameters with fresh type vari-

ables, X0 . . .Xn, obtaining an instantiated type t(X0, . . . ,Xn) or method e.m(X0, . . . ,Xn)

and the corresponding expression (of the form e(X)).

68

5.3. SOLVING A SET OF SUBTYPE CONSTRAINTS

2. From the instantiated type/method, extract a set of formal parameters P involving

the fresh variables, corresponding to the struct’s fields’ types or to the method’s

parameters’ types.

3. Infer types A for the argument expressions e.

4. Generate a set of subtype constraints C, each of the form Ai ≤∆ Pi , relating the

arguments’ types to the formal parameters’ types.

5. Solve the set of constraints C, one by one, obtaining a final substitution η. If any

constraint is not satisfiable, then fail.

6. Apply η to the instantiated expression e(X), obtaining the final, well-typed FGG

expression.

Yet this description doesn’t tell the whole story. In fact, the backbone of a type infer-

ence system is the constraint resolution mechanism [39], which we have left unspecified

so far. Therefore, this is the subject of the next section.

5.3 Solving a set of subtype constraints

Although the constraint shown in the previous section was trivially solvable by making

the type variable equal to the type that was constraining it (i.e., by the substitution

X1 7→ Dummy), resolving constraints is not so straightforward in the general case. This is

mainly due to two reasons:

• a constraint might relate more elaborate types

• there may exist more than one constraint referencing the same type variable

The following two sections expand on each of these issues, detailing our solutions and

suggesting possible improvements which were not included in the prototype implemen-

tation.

5.3.1 Nontrivial constraints

In general, subtype constraints relate not only types to type variables, but may also

relate types to named types instantiated with type variables. Listing 5.2 illustrates a

program that leads to the generation of such constraints, where the relevant inference

targets are underlined. This program is an adaptation of the Map examples already seen in

previous chapters, slightly tweaked in order to showcase the two possible forms of non-

trivial constraints. The difference is that MapDup maps each list element to two duplicated,

consecutive elements in the result.

The goal is to infer that the type argument to both underlined instantiations is the type

parameter b, “inherited” from the context (i.e. the method signature). Note that the type

69

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

Listing 5.2: Lists without type arguments

type Func(type a Any , b Any) interface {
Apply(x a) b

}

type List(type a Any) interface {
MapDup(type b Any)(f Func(a, b)) List(b)

}
type Nil(type a Any) struct {}
type Cons(type a Any) struct {

head a
tail List(a)

}

func (xs Nil(type a Any)) MapDup(type b Any)(f Func(a,b)) List(b) {
return Nil (){}

}

func (xs Cons(type a Any)) MapDup(type b Any)(f Func(a,b)) List(b){
return Cons(){

f.Apply(xs.head),
Cons (){f.Apply(xs.head), xs.tail.MapDup()(f)}

}
}

func main() {...}

parameter b must not be instantiated while typing the body of the method MapDup, since

there it actually represents a type and not a variable that must be substituted. Therefore

we keep a strict separation between type parameters and type variables while typing

methods’ bodies; this idea is formalized in e.g. Section 6 of [31], by including the type

parameters in a V set that is input to the inference judgments.

As we show in Sections 5.3.1.1 and 5.3.1.2, we conclude that the omitted type argu-

ment is b in two different ways, one for each of the underlined instantiations. We first

explore the case for the inner expression, xs.tail.MapDup()(f), and then look at the outer

one.

5.3.1.1 Introducing equality constraints

According to the algorithm described previously, we infer the type argument for MapDup()

as follows. We start by generating a fresh variable X3 (the two enclosing Cons instantiations

get X1 and X2) and instantiate the expression with it, yielding:

xs.tail.MapDup(X3)(f)

where the method MapDup(X3) gets the signature:

MapDup(X3)(f Func(a, X3)) List(X3)

70

5.3. SOLVING A SET OF SUBTYPE CONSTRAINTS

Next, we infer the type Func(a,b) for the argument f by looking in the context. After this,

we generate the constraint relating the argument’s type to the formal parameter of the

instance MapDup(X3):

Func(a,b) ≤∆ Func(a,X3)

and we reach a nontrivial subtype constraint, whose right hand side is a named type

instantiated with the variable X3.

The solution for this sort of constraints derives from the following observation: sub-

typing in FGG is invariant. This means that for any named type t and two other types S

and T , we have that t(S)≺: t(T) iff S = T . As such, we now introduce equality constraints
as a way to further constrain type variables that occur in such positions. Thus solving the

subtype constraint above entails the creation and resolution of the two equations:

{ a =∆ a ; b =∆ X3 }

which we solve by standard first-order unification [35], producing the final substitution

{ X3 7→ b }, as intended.

5.3.1.2 Solving constraints by unifying method signatures

We now look at the outer expression. Again, according to the algorithm we start by

generating a fresh variable X1 and instantiate the expression with it, obtaining:

Cons(X1){ f.Apply(xs.head), Cons(){f.Apply(xs.head), xs.tail.MapDup()(f)} }

where the type Cons(X1) has underlying type struct{head X1; tail List(X1)}. Then we go

onto inferring types for the arguments. The first argument f.Apply(xs.head) is straight-

forwardly assigned the type b, since there are no type arguments to reconstruct.

Regarding the second argument, we’ve seen in the previous section that the missing type

argument in MapDup() is inferred to be b, thus we may consider that the expression is

actually the reconstructed:

Cons(){f.Apply(xs.head), xs.tail.MapDup(b)(f)}

which is eventually inferred to be of type Cons(b) after solving the inequalities

{ b ≤∆ X2 ; List(b) ≤∆ List(X2) }

using the same mechanism seen above 2. Now, onto the interesting part. After inferring

types for the inner expressions, we generate the following constraints:

{ b ≤∆ X1 ; Cons(b) ≤∆ List(X1) }

2Indeed this is the reason we had to use MapDup instead of the simpler Map for this exposition.

71

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

where the second illustrates a new case: the right hand side is a named type instantiated

with a type variable, yet it is not the same name as in the left hand side.

Following the typing rules, for any two named types – say S and T – we have that

S ≺: T if and only if T is an interface type and S implements that interface. Moreover,

S implements the interface iff S defines all the methods specified in it, with exactly-

matching signatures (modulo variable names). Therefore, we solve constraints such as

the one above by unifying the method signatures. More concretely, we have (where we

renamed the method’s type parameter to avoid confusion):

methods∆(Cons(b)) = { MapDup(type b’ Any)(f Func(b, b’)) List(b’) }
methods∆(List(X1)) = { MapDup(type b’ Any)(f Func(X1, b’)) List(b’) }

from which we extract the equality constraints:

{ Any =∆ Any ; Func(b, b’) =∆ Func(X1, b’) ; List(b’) =∆ List(b’) }

that is, we unify type parameter bounds, formal parameter’s types and return types. Note

that due to the invariance of subtyping, solving an equality constraint of the form

Func(b, b’) =∆ Func(X1, b’)

i.e., one that relates two instances of a named type, is the same as if it was a subtype

constraint instead. As such, we solve this equation by reducing it to the simpler (as we’ve

seen in the previous section):

{ b =∆ X1 ; b’ =∆ b’ }

which we resolve with the substitution { X1 7→ b }, allowing us to conclude the missing

type argument is b once again, but this time we got there by unifying method signatures.

5.3.2 Multiple constraints over a single variable

The second issue mentioned at the beginning of Section 5.3 is that there may exist

multiple constraints referring to the same type variable. When this is the case, solving

these constraints usually requires finding a best type that satisfies all the constraints

simultaneously. As an example, consider the program of Listing 5.3, which defines a

method Choose that randomly chooses between its two input values 3. Following our

algorithm, inferring the type argument for the call to Choose() would lead us to generate

the two inequalities:

{ Dummy ≤∆ X1 ; Any ≤∆ X1 }

both constraining the variable X1. The typical solution found in the literature [11, 35, 36,

39] is to merge both these constraints into a single one:

3We assume the existence of a random number generator as well as local variable declarations for ease
of presentation.

72

5.3. SOLVING A SET OF SUBTYPE CONSTRAINTS

Listing 5.3: Randomly choosing between two input values.
type Chooser struct {}

func (c Chooser) Choose(type a Any)(v1, v2 a) a {
if rand.Float64 () < 0.5 {

return v1
} else {

return v2
}

}

func main() {
var x Any = 5
_ = Chooser {}. Choose ()(Dummy{}, x)

}

Dummy t Any ≤∆ X1

where the operator t, called a join, takes the least upper bound of its two arguments –

i.e., the smallest type that is a supertype of both Dummy and Any. In this case, we have that

Dummy t Any = Any. Equivalently, we could also consider that when two constraints give

rise to two substitutions, e.g.

{ X1 7→ Dummy ; X1 7→ Any }

we can merge both substitutions into the single

{ X1 7→ Dummy t Any }

which can also be simplified into { X1 7→ Any }.
As a side remark, note that in a language like FGG (and Go), where the subtyping

relation is structural or “implicit”, calculating a join T1 t T2 essentially amounts to deter-

mining which type is a supertype of the other. We can’t assume the existence of a type J

different from T1 and T2 that is a supertype of both without defaulting to J = interface{}.

This contrasts with e.g. what happens in GJ [5], where one can traverse the subtype

hierarchy looking for a common ancestor, concluding for instance that

Integer t Float = Number

In our case, this means that when inferring the type argument for an expression like 4:

Chooser{}.Choose()(int32(1), float32(1.5))

we would conclude that the omitted type argument is the less satisfactory interface{}.

It’s worth nothing, however, that if the formal type parameter a in Choose() had a more

4We explicitly provide types for the numeric literals to avoid addressing untyped constants, which are
somewhat problematic in the context of type inference. Section 5.4.1 discusses the matter in detail.

73

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

Listing 5.4: Randomly choosing between two input Lists.

func (c Chooser) ChooseL(type a Any)(l1, l2 List(a)) List(a) {
if rand.Float64 () < 0.5 {

return l1
} else {

return l2
}

}

func main() {
var x Any = 5
var l1 List(Dummy) = Cons (){ Dummy{}, Nil (){}}
var l2 List(Any) = Cons (){x, Nil (){}}

_ = Recv {}. ChooseL ()(l1, l2)
}

restrictive bound such as Number (cf. p. 48) instead of Any, then inference would fail

since the only common supertype of int32 and float32 – the empty interface – doesn’t

implement the bound Number.

Returning to the main subject: even though we can merge two substitutions by taking

the join of the two types – following the conventional solution – this generally happens

in the context of purely functional languages where type constructors are covariant by

default. Yet, this is not the case in FGG and we’ve recently found a counter-example due

to [3] that shows this solution is still unsound. Listing 5.4 illustrates this case, where

ChooseL now chooses between two lists, and is called in main with two arguments of type

List(Dummy) and List(Any). The point is that inferring the type argument for ChooseL()

would lead to generating the constraints:

{ List(Dummy) ≤∆ List(X1) ; List(Any) ≤∆ List(X1) }

which would eventually simplify into:

{ Dummy =∆ X1 ; Any =∆ X1 }

originating again the substitutions

{ X1 7→ Dummy ; X1 7→ Any }

However, if we were to merge these substitutions into { X1 7→ Dummy t Any } and conse-

quently into { X1 7→ Any }, we would conclude that the missing type argument for ChooseL()

is the type Any. But the instantiation ChooseL(Any) is effectively a method that receives

arguments of type List(Any), therefore passing it an argument of type List(Dummy) is vio-

lating the typing rules!

The insight is that we need to distinguish whether a substitution originates from a

subtype or from an equality constraint, so as to identify which substitutions may be

74

5.4. DISCUSSION AND RELATED WORK

merged. We follow the solution devised in [3] for an equivalent problem, by marking the

target types of substitutions accordingly. For instance, from the constraints

{ Dummy =∆ X1 ; Any =∆ X1 }

we extract the marked substitutions

{ X1 7→ Dummy= ; X1 7→ Any= }

both indicating that they can only be merged with substitutions mapping to the same

type. As they mention different types, it’s not possible to reconciliate them and thus

inference fails. On the other hand, the constraints seen at the beginning of the section

{ Dummy ≤∆ X1 ; Any ≤∆ X1 }

produce the substitutions

{ X1 7→ Dummy<: ; X1 7→ Any<: }

signaling they may be merged with substitutions mapping to types to which Dummy (resp.

Any) can be converted. By definition both types can be converted to Dummy t Any and

hence these substitutions may safely be merged. We may even merge substitutions with

different marks, for instance two substitutions

{ X1 7→ Dummy<: ; X1 7→ Any= }

combine into the single, more restrictive { X1 7→ Any= }. However, note that the similar

pair

{ X1 7→ Any<: ; X1 7→ Dummy= }

contains two incompatible substitutions since Any cannot be converted to Dummy and thus

leads to failure. For more details and examples, see Section 4.1 of [3].

5.4 Discussion and Related Work

The present chapter described our algorithm for inferring type arguments for instanti-

ations of generic methods and types. We adopt a rather informal style of presentation,

starting with an high-level outline of the algorithm and then expand on the constraint

solving mechanism that stands at its core. We show how to settle trivial constraints and

how to leverage the distinctive subtyping of FGG to guide the resolution of nontrivial

ones. The latter case invariably reduces to solving sets of equality constraints, either to

unify type arguments or method signatures, taking advantage of the ubiquitous nonva-
riance of FGG (and Go). As subtype constraints may originate equality constraints, but

equality constraints never go back to subtype ones, we have strong reasons to believe our

constraint solver always terminates.

75

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

Despite the simplicity and apparent good behavior of our solution, it still has some

limitations. In particular, the algorithm rests on two fundamental assumptions that do

not hold for every FGG()program that “should be typable”, which means the algorithm

does not enjoy the property enunciated in Section 5.1.

First, we assume that every expression has an unique manifest type[36], meaning that we

can infer or synthesize an unique, smallest type for any form of expression regardless of

where it occurs. However, neither FGG nor Go enjoy such property due to the particular-

ities of untyped constants; Section 5.4.1 elaborates on this aspect and its consequences.

The second assumption, which enables such a simple constraint solving mechanism,

is that constraints may only contain type variables on their right hand side. This is

equivalent to saying that the inference procedure always returns a solved expression – i.e.

one where all the type variables were already substituted away – since we recursively infer

types for the argument expression at step 3. of the algorithm (p. 69) before generating

the constraints in the next step. However, this is not the case for every program, as some

(valid) expressions contain no arguments that allow us to constrain their type variables.

In practical implementations the solution is to disable inference for such cases and instead

require explicit type annotations. Nevertheless, our intent is to consider a context without

such annotations, thus we explore some possible solutions in Section 5.4.2.

At last, we end this chapter by framing our solution within the body of research aiming

to solve problems similar to ours by resorting to bidirectional techniques.

5.4.1 Inferring types for untyped constants

As we hinted above, the treatment of untyped constants is somewhat problematic in the

context of type inference. The reason is that a literal such as 1 may be assigned any of

the following types: int32, int64, f loat32, MyInt, etc., depending on the context. In the

previous chapter, we handled this by assigning such literals an undefined type int32U ,

which can posteriorly be converted to any of the types listed above. However, when

inferring types for expressions we need a more definitive answer, as we show below. For

an example, consider the FGG() program in Listing 5.5, which maps the identity function

for 64-bit integers over a singleton list containing the literal 1. Intuitively, this should be

typable – indeed the FGG version is, by annotating every instantiation with int64.

Now consider what happens when we try to type this expression using the inference

algorithm. Starting by the Cons expression, we would instantiate it:

Cons(X1){1, Nil(){}}

and infer the type int32U for 1. For now, ignore how Nil is typed – we explore that in the

next section. By solving the constraints we would reconstruct this expression as

Cons(int32U){1, Nil(int32U){}}

But now, inferring an argument for the Map call, i.e., for the expression

76

5.4. DISCUSSION AND RELATED WORK

Listing 5.5: Lists without type arguments
type IdInt64 struct {}

func (this IdInt64) Apply(x int64) int64 {
return x

}

func main() {
_ = Cons (){1, Nil (){}}. Map()(IdInt64 {})

}

Cons(int32U){...}.Map()(IdInt64{})

entails the resolution of the constraint

IdInt64 ≤∆ Func(int32U, X2)

and consequently of:

{ int64 =∆ int32U ; int64 =∆ X2 }

where the first constraint is unsatisfiable – it relates two different types and neither

mentions a type variable – and thus we deem the whole expression ill-typed. The problem

is that inferring the type int32U as the argument to a type instantiation is pointless: as

subtyping is invariant, a List(int32U) cannot be used wherever either e.g. a List(int32)

or a List(int64) is expected. Moreover, there is no FGG equivalent for such instantiation,

as the programmer cannot express undefined types in source code.

As shown, the idea of undefined types does not blend well with inference, therefore

we now examine some solutions. The candidates are:

• Relax invariance by internally allowing “some covariance”, such that t(S)≺: t(T) as

long as S is an undefined type and S ≺: T .

• Associate a default type to primitive literals.

• Devise a non local inference algorithm that assigns to a literal a type variable instead

of an undefined type, that will later be solved depending on its context.

The first solution is promptly rejected as the primary goal of the FGG formalism is to

model the Go language, an imperative language where mutability is pervasive – which

does not combine well with covariance. The second solution is the simplest, although it

is also rather unsatisfactory. For example, if we associate the type int32 with the literal 1,

the program of Listing 5.5 would still not be typable, as it would lead to the unsatisfiable

constraint int32 =∆ int64. Moreover, it would mean that innocuous expressions such as

1 + 1.5 would also be ill-typed, since we can’t mix different types.

77

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

The third solution seems to be the most complete, in the sense it would accept the

most programs, yet it is also the most difficult to implement. As a side remark, the

solution described in the “Type Parameter Proposal” 5 is a mixture of the second and

third solutions: the method is non-local since they perform two passes over an expression,

where they ignore untyped constants in the first pass and hope “in some cases later

arguments can determine the type of an untyped constant”. If not, then they default to

the predefined type in the second pass.

We finish by noting that this problem doesn’t generally occur in other industrial lan-

guages with a form of local inference (Java, C++, C]) because they allow decorating literals

with suffixes like l and f, making the type of such literals unequivocal.

5.4.2 Typing the empty list

The other limitation of our algorithm concerns the typing of expressions that don’t convey

enough information to infer their missing type arguments. The canonical example is the

empty list, Nil(){}: we know it is missing a type argument because its declaration is

parameterized, yet the struct has no field types that allow us to constrain the instantiated

type variable. In general, the necessary type information can only be retrieved from the

surrounding context. For instance, in a non-empty list, the other elements of the list

provide enough information.

This is not a new problem and the literature already suggests solutions, consisting of

either: (1) eagerly assigning the empty list a type that is made compatible with the other

list types, or (2) keep the empty list’s type argument variable, and solve it later.

Regarding the first class of solutions, there are two variations of this idea. The first [34,

36] is to introduce the type Bot, make it a subtype of every other type, and consider that

type constructors are covariant. The consequence is that the type Nil(Bot) is a subtype

of List(T) for any type T. However, this solution was devised in the context of purely

functional languages, where covariance is mostly harmless.

The second variation arises in a context closer to ours, GJ [5], where subtyping is invariant

by default. They also introduce a ’bottom’ type ∗ that is only used internally, and consider

a restricted form of covariance, where types instantiated with ∗ subsume instances of the

same type where ∗ is replaced by an arbitrary type. That is, t(∗) <: t(T) for any t and

T . This solution is potentially applicable to our setting, although it is not clear what a

bottom type means in the context of Go. For instance, its dual Top (or Object) is generally

presented as an axiom or an ad-hoc addition in other languages, while in Go the top of

the subtype hierarchy – the empty interface – is a consequence of the subtyping rules.

The second class of solutions is closer to traditional Hindley-Milner systems, where

constraints are not solved locally but instead are first recorded and then solved only after

traversing the entire program. We have implemented a prototype of this solution, where

5https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#
function-argument-type-inference

78

https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#function-argument-type-inference
https://go.googlesource.com/proposal/+/refs/heads/master/design/43651-type-parameters.md#function-argument-type-inference

5.4. DISCUSSION AND RELATED WORK

type variables that escape their scope, such as the one we would generate for Nil(), are

given some priority. For instance, from the instantiated expression:

Cons(X1){Dummy{}, Nil(X2){}}

we would extract the substitution X2 7→ X1 and not the other way around. In a sense, we

can draw a parallel between this idea and the ordered typing contexts used in [15], where

if a variable α̂ occurs to the left of another variable β̂, then they solve β̂ to α̂ and not the

contrary [14].

The drawback of this solution is that we lose the locality of our algorithm and break the

assumption that type variables only occur on the right hand side of constraints, which

may threaten the decidability of the constraint solving algorithm.

5.4.3 Related Work

We now conclude the exposition by situating our work among the wider context of re-

search in local or bidirectional type inference. We take inspiration from some of the

papers we will refer, although we consider a rather unique setting imposed by the restric-

tions inherited from the Go language itself.

Closest to our work is the foundational Local Type Inference [36], as well as some

applications of its ideas to more practical contexts such as GJ [5] and (Featherweight)

C] [2, 3]. In particular, they all solve a problem similar to ours: inferring type arguments

for instantiations of generic types and methods/functions, in the presence of bounded

quantification, while assuming that generic declarations are fully annotated. In this

setting, a bidirectional technique arises naturally.

A further similarity between our system and the one developed in Local Type Inference
is that they also define both subtyping and equality constraints. However, in their sys-

tem the equality constraints arise from the fact that they consider the “Kernel” version

of F≤ [35], where two quantified types ∀X <:B. S and ∀X <:B. T stand in the subtype

relation iff the bounds B on the quantified variables are identical.

The subtype constraints also differ from ours, as they record both lower and upper bounds

for the type variables. The reason being that they also infer type arguments mentioned

in the output type of functions, while we only infer arguments that are mentioned in

the input types. For example, to make the function type X → X a subtype of A→ B, its

necessary to have both A <: X and X <: B, which they merge into the single three-place

constraint A <: X <: B.

Even though their constraints slightly differ from ours, either in meaning or in shape,

having these two kinds of constraints implies there must be some way of combining them.

For that purpose they define how to combine, via meets, two constraints that mention the

same type variables – although in this presentation we adopted a more practical style

closer to the one on C] [3], by showing instead how to combine substitutions.

79

CHAPTER 5. EXPLORING TYPE ARGUMENT INFERENCE

Listing 5.6: Simulating rank-2 polymorphism in FGG().
type IdFun interface {

Apply(type a any)(x a) a
}

func (this Dummy) ApplyHR(f IdFun) Pair(bool , string) {
return Pair (){

f.Apply ()(true),
f.Apply ()("hello")

}
}

The distinguishing aspect of our work is the subtype relation we considered and how

we use it to guide the constraint solving mechanism. Subtyping in [36] only relates

function types, Top and Bot. The works on GJ and C] consider a richer relation, modelling

the typical object-oriented subtyping, but in these languages subtyping is nominal, as

opposed to FGG.

Higher rank polymorphism On a separate note, our work can also be compared to bidi-

rectional systems aimed at higher ranks of polymorphism [15, 16, 24], as FGG interfaces

specifying generic methods can simulate a form of rank-2 polymorphism. As an example,

consider the program in Listing 5.6 (adapted from [24]). If we were to assign a “Haskell

type” to method ApplyHR, it would be something like

ApplyHR :: Dummy -> (forall a. a -> a) -> Pair Bool String

which is a rank-2 type [24].

One of the central themes in these works is that subtyping actually represents a relation

of “more polymorphic than”. As such, much of their efforts are directed at finding in-

stantiations that make a polymorphic type a subtype of another possibly polymorphic

type. This is done either by instantiating quantifies eagerly using skolemization [24], or

lazily, by keeping unsolved unification/existential variables in an ordered context [15,

16]. However, our situation is much simplified by the FGG subtype relation, which never

relates a polymorphic type to a monomorphic one. For example, we have that IdFun never

implements its specializations, e.g. the identity for bools:

type IdBool interface {

Apply(x bool) bool

}

Therefore we need not to apply such sophisticated techniques in order to solve our prob-

lem.

80

6 Conclusions and Future Work

The two main goals of this work were to extend the FG/FGG implementations with

(1) type list constraints, and (2) type parameter inference. Chapter 4 encompasses the

bulk of our work, showing how we realize the former. There, we present the extensions

in the form of inductive rules, which act as a form of pseudo code while also trying to

prepare ground for future work.

We add primitive types in order to investigate the usage of type lists, which in turn

also required us to model the notion of untyped constants in Go. We find that they

behave pretty much like primitive types do in languages with implicitly inserted type

conversions - an interesting duality since one of the reasons for the strictness of Go type

system is to avoid surprising, automatically inserted conversions.

We generalize F(G)G’s type declarations in order to experiment with types such as

MyInt - the only class of types that may satisfy a constraint that specifies both a type list

and a set of methods. We explore the consequences of this generalization, finding an

aspect that was overlooked in FG – the need to model implicitly inserted type conversions

– which is due to them only considering one form of value.

We also find that this generalization has further consequences in the monomorphisation

algorithm, requiring the definition of an extra auxiliary function (T-closure) for type

instance collection, as well as a reformulation of the rule responsible for interface type

monomorphisation. The fact that we were able to reformulate this rule instead of adding

a separate one targeting only anonymous interfaces, together with the interplay between

this rule and T-closure, indicate this was indeed a generalization of the original algorithm.

For completeness, we also sketch a proof for the correctness of our modifications over the

monomorphisation process.

After presenting and discussing the extensions mentioned above, we turned our at-

tention to the problem of type argument inference in the context of FGG extended with

81

CHAPTER 6. CONCLUSIONS AND FUTURE WORK

the described features, in Chapter 5. There, we devise an algorithm based on traditional

bidirectional inference techniques and discuss its limitations. Among these limitations,

we highlight the fact that there seems to be no satisfactory solution to locally infer types

for untyped constants, as the definite type of such expressions generally depends on the

context where they occur.

Future work will include proving that the developed type system together with the

operational semantics enjoy the properties of type safety. On a related note, it will also

include the formalization of the type inference algorithm and a rigorous study of its

properties.

Other possible direction is to study how to generalize interfaces containing type lists

so that they can also represent a form of untagged sum types, which is an hot topic of

discussion in Go’s issues tracker. A last aspect we didn’t investigate is what the Go Team

calls “structural constraint” - a type list constraint that specifies a single, composite type

- and how it influences type argument inference.

82

Bibliography

[1] J. A. Bank, A. C. Myers, and B. Liskov. “Parameterized Types for Java”. In: Confer-
ence Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Papers Presented at the Symposium, Paris, France, 15-
17 January 1997. Ed. by P. Lee, F. Henglein, and N. D. Jones. ACM Press, 1997,

pp. 132–145. doi: 10.1145/263699.263714. url: https://doi.org/10.1145/2636

99.263714 (cit. on p. 1).

[2] G. M. Bierman, E. Meijer, and M. Torgersen. “Lost in translation: formalizing

proposed extensions to C#”. In: Proceedings of the 22nd Annual ACM SIGPLAN
Conference on Object-Oriented Programming, Systems, Languages, and Applications,
OOPSLA 2007, October 21-25, 2007, Montreal, Quebec, Canada. Ed. by R. P. Gabriel

et al. ACM, 2007, pp. 479–498. doi: 10.1145/1297027.1297063. url: https:

//doi.org/10.1145/1297027.1297063 (cit. on p. 79).

[3] G. Bierman. “Formalizing and extending C# type inference”. In: Proceedings of
FOOL. Citeseer. 2007 (cit. on pp. 74, 75, 79).

[4] A. P. Black et al. “Distribution and Abstract Types in Emerald”. In: IEEE Trans.
Software Eng. 13.1 (1987), pp. 65–76. doi: 10.1109/TSE.1987.232836. url: https:

//doi.org/10.1109/TSE.1987.232836 (cit. on p. 45).

[5] G. Bracha et al. “Making the Future Safe for the Past: Adding Genericity to the Java

Programming Language”. In: Proceedings of the 1998 ACM SIGPLAN Conference
on Object-Oriented Programming Systems, Languages & Applications (OOPSLA ’98),
Vancouver, British Columbia, Canada, October 18-22, 1998. Ed. by B. N. Freeman-

Benson and C. Chambers. ACM, 1998, pp. 183–200. doi: 10.1145/286936.286957.

url: https://doi.org/10.1145/286936.286957 (cit. on pp. 13, 22, 66, 73, 78, 79).

[6] L. Cardelli. “Type Systems”. In: The Computer Science and Engineering Handbook.

Ed. by A. B. Tucker. CRC Press, 1997, pp. 2208–2236 (cit. on pp. 3, 4).

83

https://doi.org/10.1145/263699.263714
https://doi.org/10.1145/263699.263714
https://doi.org/10.1145/263699.263714
https://doi.org/10.1145/1297027.1297063
https://doi.org/10.1145/1297027.1297063
https://doi.org/10.1145/1297027.1297063
https://doi.org/10.1109/TSE.1987.232836
https://doi.org/10.1109/TSE.1987.232836
https://doi.org/10.1109/TSE.1987.232836
https://doi.org/10.1145/286936.286957
https://doi.org/10.1145/286936.286957

BIBLIOGRAPHY

[7] L. Cardelli and P. Wegner. “On Understanding Types, Data Abstraction, and Poly-

morphism”. In: ACM Comput. Surv. 17.4 (1985), pp. 471–522. doi: 10.1145/6041

.6042. url: https://doi.org/10.1145/6041.6042 (cit. on pp. 3, 10, 11, 13, 22).

[8] D. R. Christiansen. Bidirectional typing rules: A tutorial. Accessed: 2021-02-21.

2013. url: http://davidchristiansen.dk/tutorials/bidirectional.pdf (cit. on

pp. 17, 19).

[9] L. Damas and R. Milner. “Principal Type-Schemes for Functional Programs”. In:

Conference Record of the Ninth Annual ACM Symposium on Principles of Programming
Languages, Albuquerque, New Mexico, USA, January 1982. Ed. by R. A. DeMillo.

ACM Press, 1982, pp. 207–212. doi: 10.1145/582153.582176. url: https://doi.

org/10.1145/582153.582176 (cit. on p. 67).

[10] M. Day et al. “Subtypes vs. Where Clauses: Constraining Parametric Polymor-

phism”. In: OOPSLA’95, Proceedings of the Tenth Annual Conference on Object-
Oriented Programming Systems, Languages, and Applications, Austin, Texas, USA,
October 15-19, 1995. Ed. by R. Wirfs-Brock. ACM, 1995, pp. 156–168. doi: 10.114

5/217838.217852. url: https://doi.org/10.1145/217838.217852 (cit. on p. 45).

[11] S. Dolan and A. Mycroft. “Polymorphism, subtyping, and type inference in MLsub”.

In: Proceedings of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, POPL 2017, Paris, France, January 18-20, 2017. Ed. by G. Castagna

and A. D. Gordon. ACM, 2017, pp. 60–72. doi: 10.1145/3009837.3009882. url:

https://doi.org/10.1145/3009837.3009882 (cit. on p. 72).

[12] D. Dreyer et al. What Type Soundness Theorem Do You Really Want to Prove? Accessed:

2021-02-10. Oct. 2019. url: https://blog.sigplan.org/2019/10/17/what-type-

soundness-theorem-do-you-really-want-to-prove/ (cit. on p. 8).

[13] S. Drossopoulou and S. Eisenbach. “Java is Type Safe - Probably”. In: ECOOP’97
- Object-Oriented Programming, 11th European Conference, Jyväskylä, Finland, June
9-13, 1997, Proceedings. Ed. by M. Aksit and S. Matsuoka. Vol. 1241. Lecture Notes

in Computer Science. Springer, 1997, pp. 389–418. doi: 10.1007/BFb0053388. url:

https://doi.org/10.1007/BFb0053388 (cit. on p. 9).

[14] J. Dunfield and N. Krishnaswami. “Bidirectional Typing”. In: CoRR abs/1908.05839

(2019). arXiv: 1908.05839. url: http://arxiv.org/abs/1908.05839 (cit. on pp. 17,

19, 20, 79).

[15] J. Dunfield and N. R. Krishnaswami. “Complete and easy bidirectional typecheck-

ing for higher-rank polymorphism”. In: ACM SIGPLAN International Conference
on Functional Programming, ICFP’13, Boston, MA, USA - September 25 - 27, 2013.

Ed. by G. Morrisett and T. Uustalu. ACM, 2013, pp. 429–442. doi: 10.1145/25003

65.2500582. url: https://doi.org/10.1145/2500365.2500582 (cit. on pp. 20, 79,

80).

84

https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
https://doi.org/10.1145/6041.6042
http://davidchristiansen.dk/tutorials/bidirectional.pdf
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/582153.582176
https://doi.org/10.1145/217838.217852
https://doi.org/10.1145/217838.217852
https://doi.org/10.1145/217838.217852
https://doi.org/10.1145/3009837.3009882
https://doi.org/10.1145/3009837.3009882
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://blog.sigplan.org/2019/10/17/what-type-soundness-theorem-do-you-really-want-to-prove/
https://doi.org/10.1007/BFb0053388
https://doi.org/10.1007/BFb0053388
https://arxiv.org/abs/1908.05839
http://arxiv.org/abs/1908.05839
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1145/2500365.2500582

BIBLIOGRAPHY

[16] J. Dunfield and N. R. Krishnaswami. “Sound and complete bidirectional type-

checking for higher-rank polymorphism with existentials and indexed types”. In:

Proc. ACM Program. Lang. 3.POPL (2019), 9:1–9:28. doi: 10.1145/3290322. url:

https://doi.org/10.1145/3290322 (cit. on pp. 17, 20, 80).

[17] A. D. Gordon and D. Syme. “Typing a multi-language intermediate code”. In:

Conference Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, London, UK, January 17-19, 2001. Ed. by C.

Hankin and D. Schmidt. ACM, 2001, pp. 248–260. doi: 10.1145/360204.360228.

url: https://doi.org/10.1145/360204.360228 (cit. on p. 9).

[18] J. Gosling, W. N. Joy, and G. L. S. Jr. The Java Language Specification. Addison-

Wesley, 1996. isbn: 0-201-63451-1 (cit. on p. 13).

[19] R. Griesemer et al. “Featherweight Go”. In: CoRR abs/2005.11710 (2020). arXiv:

2005.11710. url: https://arxiv.org/abs/2005.11710 (cit. on p. 27).

[20] R. Griesemer et al. “Featherweight go”. In: Proc. ACM Program. Lang. 4.OOPSLA

(2020), 149:1–149:29. doi: 10.1145/3428217. url: https://doi.org/10.1145/342

8217 (cit. on pp. 1, 9, 21, 22, 24–27, 33, 41, 45, 47, 49, 50, 53–55, 60, 61).

[21] R. Harper. Practical Foundations for Programming Languages (2nd. Ed.) Cambridge

University Press, 2016. isbn: 9781107150300. url: https://www.cs.cmu.edu/%5

C%7Erwh/pfpl/index.html (cit. on p. 8).

[22] A. Igarashi, B. C. Pierce, and P. Wadler. “Featherweight Java: a minimal core

calculus for Java and GJ”. In: ACM Trans. Program. Lang. Syst. 23.3 (2001), pp. 396–

450. doi: 10.1145/503502.503505. url: https://doi.org/10.1145/503502.50350

5 (cit. on pp. 9, 13, 21, 22).

[23] C. Jenkins. “Bidirectional Type Inference in Programming Languages”. In: (2018).

Accessed: 2021-02-23. url: https://homepage.cs.uiowa.edu/~cwjnkins/assets/

Jen18_Qualifying-Exam.pdf (cit. on p. 20).

[24] S. L. P. Jones et al. “Practical type inference for arbitrary-rank types”. In: J. Funct.
Program. 17.1 (2007), pp. 1–82. doi: 10.1017/S0956796806006034. url: https:

//doi.org/10.1017/S0956796806006034 (cit. on pp. 20, 80).

[25] R. Jung et al. “RustBelt: securing the foundations of the rust programming lan-

guage”. In: Proc. ACM Program. Lang. 2.POPL (2018), 66:1–66:34. doi: 10.1145/3

158154. url: https://doi.org/10.1145/3158154 (cit. on pp. 3, 8).

[26] D. Kozen and A. Silva. “Practical coinduction”. In: Math. Struct. Comput. Sci. 27.7

(2017), pp. 1132–1152. doi: 10.1017/S0960129515000493. url: https://doi.org/

10.1017/S0960129515000493 (cit. on p. 60).

[27] S. Krishnamurthi. Programming languages - application and interpretation. e-book,

2003. url: http://www.cs.brown.edu/%5C%7Esk/Publications/Books/ProgLangs/

(cit. on p. 66).

85

https://doi.org/10.1145/3290322
https://doi.org/10.1145/3290322
https://doi.org/10.1145/360204.360228
https://doi.org/10.1145/360204.360228
https://arxiv.org/abs/2005.11710
https://arxiv.org/abs/2005.11710
https://doi.org/10.1145/3428217
https://doi.org/10.1145/3428217
https://doi.org/10.1145/3428217
https://www.cs.cmu.edu/%5C%7Erwh/pfpl/index.html
https://www.cs.cmu.edu/%5C%7Erwh/pfpl/index.html
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://doi.org/10.1145/503502.503505
https://homepage.cs.uiowa.edu/~cwjnkins/assets/Jen18_Qualifying-Exam.pdf
https://homepage.cs.uiowa.edu/~cwjnkins/assets/Jen18_Qualifying-Exam.pdf
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1017/S0956796806006034
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
https://doi.org/10.1017/S0960129515000493
http://www.cs.brown.edu/%5C%7Esk/Publications/Books/ProgLangs/

BIBLIOGRAPHY

[28] T. Kulesza. Go Developer Survey 2019 Results. The Go Blog. Apr. 2020 [Online].

url: https://go.dev/blog/survey2019-results (cit. on p. 1).

[29] A. Merrick. Go Developer Survey 2020 Results. The Go Blog. Mar. 2021 [Online].

url: https://go.dev/blog/survey2020-results (cit. on p. 1).

[30] T. Nipkow and D. von Oheimb. “Javalight is Type-Safe - Definitely”. In: POPL ’98,
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, San Diego, CA, USA, January 19-21, 1998. Ed. by D. B. MacQueen

and L. Cardelli. ACM, 1998, pp. 161–170. doi: 10.1145/268946.268960. url:

https://doi.org/10.1145/268946.268960 (cit. on p. 9).

[31] M. Odersky and K. Läufer. “Putting Type Annotations to Work”. In: Conference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, Papers Presented at the Symposium, St. Petersburg Beach,
Florida, USA, January 21-24, 1996. Ed. by H. Boehm and G. L. S. Jr. ACM Press,

1996, pp. 54–67. doi: 10.1145/237721.237729. url: https://doi.org/10.1145/2

37721.237729 (cit. on p. 70).

[32] M. Odersky, C. Zenger, and M. Zenger. “Colored local type inference”. In: Confer-
ence Record of POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Princi-
ples of Programming Languages, London, UK, January 17-19, 2001. Ed. by C. Hankin

and D. Schmidt. ACM, 2001, pp. 41–53. doi: 10 . 1145 / 360204 . 360207. url:

https://doi.org/10.1145/360204.360207 (cit. on p. 66).

[33] F. Pfenning. Lecture notes for 15-312: Foundations of Programming Languages. Ac-

cessed: 2021-02-21. 2004. url: https://www.cs.cmu.edu/~fp/courses/15312-f04

/handouts/15-bidirectional.pdf (cit. on pp. 17–20).

[34] B. C. Pierce. Bounded quantification with bottom. Tech. rep. Citeseer, 1997 (cit. on

p. 78).

[35] B. C. Pierce. Types and programming languages. MIT Press, 2002. isbn: 978-0-262-

16209-8 (cit. on pp. 1, 4–6, 8–11, 15–17, 20, 39, 67, 71, 72, 79).

[36] B. C. Pierce and D. N. Turner. “Local type inference”. In: ACM Trans. Program.
Lang. Syst. 22.1 (2000), pp. 1–44. doi: 10.1145/345099.345100. url: https:

//doi.org/10.1145/345099.345100 (cit. on pp. 66, 67, 72, 76, 78–80).

[37] R. Pike. Constants. The Go Blog. Aug. 2014 [Online]. url: https://go.dev/blog/

constants (cit. on p. 29).

[38] G. D. Plotkin. “A structural approach to operational semantics”. In: J. Log. Alge-
braic Methods Program. 60-61 (2004), pp. 17–139 (cit. on p. 5).

[39] F. Pottier. “Simplifying Subtyping Constraints: A Theory”. In: Inf. Comput. 170.2

(2001), pp. 153–183. doi: 10.1006/inco.2001.2963. url: https://doi.org/10.10

06/inco.2001.2963 (cit. on pp. 69, 72).

86

https://go.dev/blog/survey2019-results
https://go.dev/blog/survey2020-results
https://doi.org/10.1145/268946.268960
https://doi.org/10.1145/268946.268960
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/237721.237729
https://doi.org/10.1145/360204.360207
https://doi.org/10.1145/360204.360207
https://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
https://www.cs.cmu.edu/~fp/courses/15312-f04/handouts/15-bidirectional.pdf
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://doi.org/10.1145/345099.345100
https://go.dev/blog/constants
https://go.dev/blog/constants
https://doi.org/10.1006/inco.2001.2963
https://doi.org/10.1006/inco.2001.2963
https://doi.org/10.1006/inco.2001.2963

BIBLIOGRAPHY

[40] J. C. Reynolds. “Towards a theory of type structure”. In: Programming Symposium,
Proceedings Colloque sur la Programmation, Paris, France, April 9-11, 1974. Ed. by B.

Robinet. Vol. 19. Lecture Notes in Computer Science. Springer, 1974, pp. 408–423.

doi: 10.1007/3-540-06859-7_148. url: https://doi.org/10.1007/3-540-06859

-7%5C_148 (cit. on p. 15).

[41] T. Schrijvers et al. “Complete and decidable type inference for GADTs”. In: Proceed-
ing of the 14th ACM SIGPLAN international conference on Functional programming,
ICFP 2009, Edinburgh, Scotland, UK, August 31 - September 2, 2009. Ed. by G. Hut-

ton and A. P. Tolmach. ACM, 2009, pp. 341–352. doi: 10.1145/1596550.1596599.

url: https://doi.org/10.1145/1596550.1596599 (cit. on p. 20).

[42] A. Serrano et al. “A quick look at impredicativity”. In: Proc. ACM Program. Lang.
4.ICFP (2020), 89:1–89:29. doi: 10.1145/3408971. url: https://doi.org/10.1145

/3408971 (cit. on pp. 15, 17, 20).

[43] C. Strachey. “Fundamental Concepts in Programming Languages”. In: High. Order
Symb. Comput. 13.1/2 (2000), pp. 11–49. doi: 10.1023/A:1010000313106. url:

https://doi.org/10.1023/A:1010000313106 (cit. on p. 10).

[44] D. Syme. “Proving Java Type Soundness”. In: Formal Syntax and Semantics of Java.

Ed. by J. Alves-Foss. Vol. 1523. Lecture Notes in Computer Science. Springer, 1999,

pp. 83–118. doi: 10.1007/3-540-48737-9_3. url: https://doi.org/10.1007/3-

540-48737-9%5C_3 (cit. on p. 9).

[45] The Go Programming Language Specification. July 2021 [Online]. url: https://go.

dev/ref/spec (cit. on pp. 29, 41).

[46] J. B. Wells. “Typability and Type-Checking in the Second-Order lambda-Calculus

are Equivalent and Undecidable”. In: Proceedings of the Ninth Annual Symposium on
Logic in Computer Science (LICS ’94), Paris, France, July 4-7, 1994. IEEE Computer

Society, 1994, pp. 176–185. doi: 10.1109/LICS.1994.316068. url: https://doi.

org/10.1109/LICS.1994.316068 (cit. on p. 17).

[47] A. K. Wright and M. Felleisen. “A Syntactic Approach to Type Soundness”. In:

Inf. Comput. 115.1 (1994), pp. 38–94. doi: 10.1006/inco.1994.1093. url: https:

//doi.org/10.1006/inco.1994.1093 (cit. on pp. 4, 8).

[48] D. Yu, A. Kennedy, and D. Syme. “Formalization of generics for the .NET common

language runtime”. In: Proceedings of the 31st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2004, Venice, Italy, January 14-16,
2004. Ed. by N. D. Jones and X. Leroy. ACM, 2004, pp. 39–51. doi: 10.1145/96400

1.964005. url: https://doi.org/10.1145/964001.964005 (cit. on p. 9).

This document was created using the (pdf/Xe/Lua)LATEX processor, based on the NOVAthesis template, developed at the Dep. Informática of FCT-NOVA by João M. Lourenço. [1]

[1] J. M. Lourenço. The NOVAthesis LATEX Template User’s Manual. NOVA University Lisbon. 2021. URL: https://github.com/joaomlourenco/novathesis/raw/master/template.pdf (cit. on p. 87).

87

https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1007/3-540-06859-7%5C_148
https://doi.org/10.1007/3-540-06859-7%5C_148
https://doi.org/10.1145/1596550.1596599
https://doi.org/10.1145/1596550.1596599
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971
https://doi.org/10.1145/3408971
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1023/A:1010000313106
https://doi.org/10.1007/3-540-48737-9_3
https://doi.org/10.1007/3-540-48737-9%5C_3
https://doi.org/10.1007/3-540-48737-9%5C_3
https://go.dev/ref/spec
https://go.dev/ref/spec
https://doi.org/10.1109/LICS.1994.316068
https://doi.org/10.1109/LICS.1994.316068
https://doi.org/10.1109/LICS.1994.316068
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1006/inco.1994.1093
https://doi.org/10.1145/964001.964005
https://doi.org/10.1145/964001.964005
https://doi.org/10.1145/964001.964005
https://github.com/joaomlourenco/novathesis
http://www.di.fct.unl.pt
https://docentes.fct.unl.pt/joao-lourenco
https://github.com/joaomlourenco/novathesis/raw/master/template.pdf

	Front Matter
	Cover
	Front Page
	Copyright
	Acknowledgements
	Abstract
	Resumo
	Contents
	List of Figures
	List of Listings

	1 Introduction
	1.1 Contributions
	1.2 Document Structure

	2 Background
	2.1 Theory of Programming Languages
	2.1.1 Syntax
	2.1.2 Semantics
	2.1.3 Type Systems
	2.1.4 Type Safety - Formally
	2.1.5 Modelling Real-World Programming Languages

	2.2 Polymorphism
	2.2.1 Ad-hoc polymorphism
	2.2.2 Subtype polymorphism
	2.2.3 Parametric polymorphism

	2.3 Bidirectional Typing
	2.3.1 Algorithmic typing rules
	2.3.2 Application to polymorphic type systems

	3 Related Work
	3.1 Featherweight Java
	3.1.1 Featherweight Generic Java

	3.2 Featherweight Go
	3.2.1 Go vs Java
	3.2.2 The Featherweight Go Language
	3.2.3 Featherweight Generic Go

	4 Extending Featherweight (Generic) Go
	4.1 Additions to Featherweight Go
	4.1.1 Primitive types and operations
	4.1.2 General type definitions
	4.1.3 Extending Featherweight Go

	4.2 Additions to Featherweight Generic Go
	4.2.1 Type lists in interfaces
	4.2.2 Type definitions revisited
	4.2.3 Extending Featherweight Generic Go

	4.3 Adjusting the monomorphisation algorithm
	4.3.1 Monomorphisation in Featherweight (Generic) Go
	4.3.2 Monomorphisation and Type Declarations
	4.3.3 Handling instantiated types in type declarations
	4.3.4 Monomorphising interface types
	4.3.5 Note on the remaining features

	5 Exploring Type Argument Inference
	5.1 Problem Statement
	5.2 The base algorithm
	5.3 Solving a set of subtype constraints
	5.3.1 Nontrivial constraints
	5.3.2 Multiple constraints over a single variable

	5.4 Discussion and Related Work
	5.4.1 Inferring types for untyped constants
	5.4.2 Typing the empty list
	5.4.3 Related Work

	6 Conclusions and Future Work
	Bibliography
	Back Matter
	Back Cover

