
Lectures Notes on
Abstract Data Types

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

5 April, 2022

These notes focus on the implementation and verification of abstract data types (ADT). ADTs
were introduced in the 70s of last century, by Liskov and Zilles [2], as building blocks for pro-
gram construction that extend data types that are usually built-in in any programming lan-
guage. We will add to this the construction and verification of ADTs using the object-oriented
features of Dafny. You can (and should) use external references such as [1] to complement your
knowledge of the language besides these notes.

Before we get into ADTs, lets first briefly address the issue of verification with machine
integers (discussed in last week’s lecture).

1 Verification with Machine Integers

All automated or semi-automated reasoning we have done so far with numbers has involved
the Dafny type int, which denotes mathematical, arbitrary precision integers. This means that
all our correctness proofs up until now have assumed that there is no largest or smallest integer,
and that adding two positive (respectively negative) integers will always result in a positive
(resp. negative) integer. This does not fundamentally break our proofs, but makes them only
valid in settings where these assumptions hold true: whenever the manipulated integer values
are “small enough”.

We can strengthen our results, or address this potential limitation, in a few ways:

• We can bypass the limitation entirely and simply work with arbitrary precision integer
libraries (e.g. Java’s BigInteger library). This solution is plausible, but suffers from per-
formance considerations and may not be generally applicable. For instance, one cannot
create an array whose size is determined by such a number.

• We can complementary or separately verify that all our operations on integers preserve
the appropriate machine bounds.

Focusing on the latter, our goal is to then prove that a program is safe with respect to integer
overflow. Focusing on 32-bit signed integers in twos-complement representation, we must en-
sure that all integers are between−231 and 231− 1. Specifically, if the mathematical (i.e. arbitrary
precision) result of an operation fits in the range, then it will be the computed result. Otherwise,
an overflow or underflow occurs. The concrete program behavior that arises in this situation is
machine and language dependent. We say that a program is safe with respect to overflows if no
overflow (or underflow) can occur.

1



1.1 Bounded Integers in Dafny 2

1.1 Bounded Integers in Dafny

Dafny allows us to introduce new types to the language, which are refined versions of existing
base types:

newtype int32 = x: int | -2_147_483_648 ≤ x ≤ 2_147_483_647

The code above defines a type int32 which consists of integers within the specified range,
corresponding to the 32-bit encoding of signed machine integers. We can then use type int32
over int when we want to verify that an implementation is safe with respect to overflows.

For instance, we can verify that a naive implementation of binary search is not safe (we
make use of the sorted predicate from before):

method BSearch(a: array<int>, n: int32, value: int) returns (pos: int32)
requires 0 ≤ n as int ≤ a.Length ∧ sorted(a, n as int)
∧ a.Length ≤ 2_147_483_647

ensures 0 ≤ pos =⇒ pos < n ∧ a[pos] = value
ensures pos < 0 =⇒ ∀ i • (0 ≤ i < n) =⇒ a[i] 6= value
{
var low: int32 := 0;
var high: int32 := n;
while low < high
decreases high - low
invariant 0 ≤ low ≤ high ≤ n
invariant ∀ i • 0 ≤ i < n ∧ i < low =⇒ a[i] 6= value
invariant ∀ i • 0 ≤ i < n ∧ high ≤ i =⇒ a[i] 6= value
{

var mid: int32 := (high+low)/2;
if a[mid] < value { low := mid + 1; }
else if value < a[mid] { high := mid; }
else { return mid; }

}
return -1;

}

The code above will signal an error in the addition high+low since the operation might
overflow. Changing the operation to low + (high-low)/2makes the verification go through.

We highlight the following: when verifying code with machine integers, we generally need
to assume data structures manipulate quantities that can be represented with the appropriate
precision. In the case of binary search and 32-bit signed integers, the algorithm can only be
correct for arrays with up to 231 − 1 positions. Also note that in operations that expect math-
ematical integers, we use the Dafny explicit conversion operator as, to convert between type
int32 and int.

Dafny also supports bit vectors to reason directly about bit-level representations. We will not
discuss bit-vectors in these notes.

2 Abstract Data Types

An abstract data type consists of a denomination for the data elements of said data type, and
a set of operations over the elements of said data type. A fullfledge software system can be
defined as a composition of abstract data types at different levels of abstraction. ADTs promote

LECTURE NOTES 5 April, 2022



ABSTRACT DATA TYPES 3

crucial properties of software development such as modularity, information hiding, and hence
promote the reusability of code, modifiability, and the functional correctness of their implemen-
tations. Quoting the original work of Liskov, we may observe that the user of an ADT is not
usually concerned with the internal representation of a data type, but only with the available
operations and how they can be used.

Also, one can generally not decompose ADT values into its constituents but only use con-
structor and destructor operations to define and inspect them.

Taking an external view of an ADT, it comprises a public and opaque type, usually bound
to an identifier in the programming language and a set of operations that create, manipulate,
and inspect the newly defined data type. Notice that by being opaque, they may be used in any
program as if it was a primitive type.

The theory of ADTs says that the type is opaque, and its internal details are hidden from the
developer using it in a program. In practice, the visibility mechanisms incorporated in the pro-
gramming languages are used in the definition of the ADTs so that their internal representation
cannot be inspected or modified, except through the available operations.

For example, in the programming language C, a module with a header file (.h) can have the
declarations

typedef *Date;

Date* createDate(int day, int month, int year);
Date* today();
int daysBetween(Date* d1, Date*d2);
int daysOf(Date* d);
int monthOf(Date* d);
int yearOf(Date* d);

in this case, the internal representation is unknown to the client module, and the recommended
way to manipulate values of type Date is through the operations declared by the module

The pre-conditions and post-conditions of each operation can only be expressed using the
ADT and its (pure) operations. They form a contract between the client module and the im-
plementation of the ADT that allows one to switch between implementations without breaking
the functionality of the client module. The external and opaque view, is complemented by an
internal view (and implementation). Each ADT is implemented using a representation data
type in the underlying level of abstraction. For instance the ADT Date above can be internally
represented by three values of type int, or by a single value of type long. One particularly
important observation is that, not all possible valuations for the internal representation form a
valid ADT value. For instance, the tuple of three integer values (0, 0, 0) does not form a valid
date.

Each one of the available operations is implemented with relation to the internal representa-
tion data type. The implementation must maintain the consistency of the abstract state, that is,
they must always produce valid ADT values. Thus, the specification of an ADT (pre-conditions
and post-conditions) that are visible in the client module must be mapped onto assertions ex-
pressed in the representation state. The representation states of the ADT, that are observable by
the client module, must be valid ADT values.

Besides the opaque type and the all operations, the ADT implementation also comprises a
representation invariant, which is a condition that denotes the allowed values of the represen-
tation type. The condition defines a set of possible values, the domain and target sets of all
operations on the ADT. This set defines the set of safe concrete states for the ADT internal rep-
resentation. It also includes an abstraction function, which maps abstract states to concrete

LECTURE NOTES 5 April, 2022



IMPLEMENTING ADTS WITH OBJECTS 4

states. The pre- and post-conditions must be expressed for both the representation type and the
abstract type.

A functional way of defining an ADT, of name Set is to define a list of functions that accom-
pany it. Each operation has a name, a set of parameters and a return value.

constructor : void −→ Set
add : Set × int −→ Set
contains : Set × int −→ bool
size : Set −→ int
maxSize : Set −→ int

3 Implementing ADTs with objects

Object-oriented languages provide native isolation and visibility mechanisms that are suitable
to implementing ADTs. For instance, consider the following class prototype written in Dafny
that describes the ADT Set .

class Set {
// creation operation given a max capacity
constructor(n: int)

// adds a new element to the set if the set capacity permits
method add(v: int)

// checks if a given element is in the set
method contains(v: int) returns (b: bool)

// returns the number of elements in the set
function size() : int

// returns the maximum number of elements in the set
function maxSize() : int

}

The concrete state of a possible implementation of the ADT Set uses as representation type
an array store of integer values, initialized with a number of positions greater than one, and
an integer variable nelems that counts the significant positions in the array, corresponding to
the elements stored in the set.

The domain of the variables in the representation type are restricted by the following condi-
tions, in order to fullfil the properties of a set:

0 < store.Length
∧ 0 ≤ nelems ≤ a.Length
∧ ∀ i,j • 0 ≤ i < j ≤ nelems =⇒ store[i] 6= store[j]

All valid arrays are the ones with more than one position of capacity, the ones where the integer
value in variable nelems is between 0 and the actual size of the array. Moreover, since a set
does not store multiple copies of the same value, we restrict the contents of the array to only
allow distinct values to be stored.

LECTURE NOTES 5 April, 2022



IMPLEMENTING ADTS WITH OBJECTS 5

This condition can be isolated properly in a predicate that defines the representation invari-
ant of this ADT (recall that predicates in Dafny are no more than functions whose return type is
bool):

predicate RepInv()
reads this,a;

{
0 < store.Length
∧ 0 ≤ nelems ≤ a.Length
∧ ∀ i,j • 0 ≤ i < j ≤ nelems =⇒ store[i] 6= store[j]

}

The predicate RepInv is to be used in every operation to explicitly specify that all operations
should assume and subsequently enforce a sound state of the ADT (concrete and abstract). This
boilerplate can actually be circumvented by means of special declarations, which we will detail
in subsequent lectures when we study the problem of framing in Hoare logic and Dafny.

In the case of the constructor, the representation invariant is used as post-condition:

constructor(n: int)
requires 0 < n
ensures RepInv()

{
store := new int[n];
nelems := 0;

}

All other (public) operation should include the invariant in their pre-condition and post-
condition. Consider the implementation below for class Set:

1 class Set {
2

3 var store: array<int>;
4 var nelems: int;
5

6 predicate RepInv()
7 reads store, ‘store, ‘nelems
8 {
9 0 < store.Length

10 ∧ 0 ≤ nelems ≤ store.Length
11 ∧ ∀ i,j • 0 ≤ i < j < nelems =⇒ store[i] 6= store[j]
12 }
13

14 // the construction operation
15 constructor(n: int)
16 requires 0 < n
17 ensures RepInv()
18 {
19 store := new int[n];
20 nelems := 0;
21 }
22

23 // returns the number of elements in the set

LECTURE NOTES 5 April, 2022



IMPLEMENTING ADTS WITH OBJECTS 6

24 function method size(): int
25 requires RepInv()
26 ensures RepInv()
27 reads store, ‘store, ‘nelems
28 { nelems }
29

30 // returns the maximum number of elements in the set
31 function method maxSize(): int
32 requires RepInv()
33 ensures RepInv()
34 reads store, ‘store, ‘nelems
35 { store.Length }
36

37 // checks if the element given is in the set
38 method contains(v: int) returns (b: bool)
39 requires RepInv()
40 ensures RepInv()
41 ensures b ⇐⇒ ∃ j • (0 ≤ j < nelems) ∧ v = store[j];
42 {
43 var i := find(v);
44 return i ≥ 0;
45 }
46

47 // adds a new element to the set if space available
48 method add(v: int)
49 requires RepInv()
50 requires size() < maxSize()
51 ensures RepInv()
52 modifies store, ‘nelems
53 {
54 var f: int := find(v);
55 if (f < 0) {
56 store[nelems] := v;
57 nelems := nelems + 1;
58 }
59 }
60

61 // private method that should not be in the
62 method find(x: int) returns (r: int)
63 requires RepInv()
64 ensures RepInv()
65 ensures r < 0 =⇒ ∀ j • (0≤j<nelems) =⇒ x 6= store[j];
66 ensures r ≥0 =⇒ r < nelems ∧ store[r] = x;
67 {
68 var i: int := 0;
69 while (i<nelems)
70 decreases nelems-i
71 invariant 0≤i≤nelems;
72 invariant ∀ j • (0≤j<i) =⇒ x 6= store[j];

LECTURE NOTES 5 April, 2022



MAPPING TO AN ABSTRACT STATE 7

73 {
74 if (store[i]=x) { return i; }
75 i := i + 1;
76 }
77 return -1;
78 }
79 }

Notice functions size and maxSize in lines 24 and 31, which simply return some informa-
tion. These functions are used to abstract the real implementation of the Set, and can be used
in the specification of all other operations without revealing the existence of fields size and
store. Each of these functions has a reads clause, which specifies the values from dynami-
cally allocated memory that are touched (but not modified) by the function. As before, when
some mutable memory location is read by a program fragment is read, it must be declared to
enable the reasoning about assignments in general. In this case, we must refer separately to the
fields of the class, and to the contents of the array, which are in a different area of the heap. The
reads clause

reads ‘store

specifies that the function will read the value of the field store, which amounts to the pointer
to the array and its size. It is equivalent to

reads this‘store

And is subsumed by the more general declaration:

reads this

Note that the read clauses in lines 27 and 34 include also the field nelems. They also include
the clause

reads ‘store

which amount to reading the contents of the array. This can also be written

reads this.store

4 Mapping to an Abstract State

Notice that in the example above, not much information about the elements of the set is given
to the client code of class Set .

To define an abstract state, one that can be used to verify client code and does not reveal the
representation type (the internal structure of the ADT), we use ghost code. Ghost variables and
methods are definitions that are used at verification time only. Ghost code is not included in the
compiled output code.

Thus, we can define an abstract representation using Dafny’s native set data structures, and
use their declarative operations to specify our class methods. We need to define the abstract
invariant based on an abstract state.

Consider the implementation below:

1 class Set {
2

LECTURE NOTES 5 April, 2022



MAPPING TO AN ABSTRACT STATE 8

3 var store: array<int>;
4 var nelems: int;
5

6 ghost var s: set<int>;
7

8 predicate RepInv()
9 reads store, ‘store, ‘nelems

10 {
11 0 < store.Length
12 ∧ 0 ≤ nelems ≤ store.Length
13 ∧ ∀ i,j • 0 ≤ i < j < nelems =⇒ store[i] 6= store[j]
14 }
15

16 predicate Sound()
17 reads ‘store, store, ‘nelems, ‘s
18 requires RepInv()
19 { ∀ x • (x in s) ⇐⇒ ∃ p • (0≤p<nelems) ∧ (store[p] = x) }
20

21 predicate Valid()
22 reads ‘store, store, ‘nelems, ‘s
23 { RepInv() ∧ Sound() }
24

25 // the construction operation
26 constructor(n: int)
27 requires 0 < n
28 ensures AbsInv() ∧ s = {}
29 {
30 store := new int[n];
31 nelems := 0;
32 s := {};
33 }
34

35 // returns the number of elements in the set
36 function method size(): int
37 requires AbsInv()
38 ensures AbsInv()
39 reads store, ‘store, ‘nelems, ‘s
40 { nelems }
41

42 // returns the maximum number of elements in the set
43 function method maxSize(): int
44 requires AbsInv()
45 reads store, ‘store, ‘nelems, ‘s
46 { store.Length }
47

48 method find(x: int) returns (r: int)
49 requires AbsInv()
50 ensures AbsInv()
51 ensures r < 0 =⇒ ∀ j • (0≤j<nelems) =⇒ x 6= store[j];

LECTURE NOTES 5 April, 2022



MAPPING TO AN ABSTRACT STATE 9

52 ensures r ≥0 =⇒ r < nelems ∧ store[r] = x;
53 {
54 var i: int := 0;
55 while (i<nelems)
56 decreases nelems-i
57 invariant 0≤i≤nelems;
58 invariant ∀ j • (0≤j<i) =⇒ x 6= store[j];
59 {
60 if (store[i]=x) { return i; }
61 i := i + 1;
62 }
63 return -1;
64 }
65

66 // checks if the element given is in the set
67 method contains(v: int) returns (b: bool)
68 requires AbsInv()
69 ensures AbsInv() ∧ b ⇐⇒ v in s
70 {
71 var i := find(v);
72 return i ≥ 0 ;
73 }
74

75 // adds a new element to the set if space available
76 method add(v: int)
77 requires AbsInv()
78 requires nelems < store.Length
79 ensures AbsInv() ∧ s = old(s) + {v}
80 modifies store, ‘nelems, ‘s
81 {
82 var f: int := find(v);
83 if (f < 0) {
84 store[nelems] := v;
85 nelems := nelems + 1;
86 s := s + {v};
87 assert ∀ i • (0 ≤ i < nelems-1) =⇒ (store[i] = old(store[i]));
88 }
89 }
90 }

The abstract state is defined in line 6, by a set of integer values. The correspondence between
abstract and concrete state is expressed by predicate Sound, lines 16-19, which states that all
elements of the array are included in the set and vice-versa. Then, predicate Valid expresses
that the abstract invariant comprises the representation invariant and its correspondence to an
abstract state.

Notice that all functions manipulate the abstract state in sync with the concrete state. You can
find that in lines 32 and 86. Notice also that the abstract state is used in the public specification
of the ADT, in lines 28, 69, and 79.

In a last note, notice the assert in line 87, which is a lemma (intermediate proof) that Dafny

LECTURE NOTES 5 April, 2022



REFERENCES 10

needs to prove its pre-condition. As a rule of thumb, it is always good to ensure that Dafny is
capable of framing the unchanged positions in arrays.

In subsequent lectures we will discuss the frame problem and framing in more detail, as
well a general design pattern that we can use to specify an object’s memory footprint while
preserving modularity in verification.

References

[1] K. Rustan M. Leino. Developing verified programs with dafny. In Proceedings of the 2013
International Conference on Software Engineering, ICSE ’13, page 1488–1490. IEEE Press, 2013.

[2] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In Proceedings
of the ACM SIGPLAN Symposium on Very High Level Languages, page 50–59, New York, NY,
USA, 1974. Association for Computing Machinery.

LECTURE NOTES 5 April, 2022


	Verification with Machine Integers
	Bounded Integers in Dafny

	Abstract Data Types
	Implementing ADTs with objects
	Mapping to an Abstract State

