
Handout 1
Multiplication and Division

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

29 March, 2022

This handout is due on Sunday, April 16, at 23h59m. The exact details on how to turn in
your solution will be made available at a later date, but you will only have to submit a single
Dafny file with your answers.

The handout consists of two verification exercises where you will implement and verify two
simple algorithms: one which computes the multiplication of two integers and another which
computes the integer (or Euclidian) division of two integers. Simple enough. . . right?

1 Multiplication

The algorithm we have in mind is one which calculates the result of multiplying any two inte-
gers a and b (with b positive), only by performing addition, multiplication by two and division
by two. Variations of this algorithm have existed since ancient Egypt, so here’s the basic idea:
to calculate a × b we instead compute (2 × a) × b

2 , if b is even, and a + (2 × a) × (b−1)
2 if b is

odd (where the fraction stands for real division). In both cases, the multiplier is going down by
a factor of two or more, at the cost of one halving, one doubling and possibly one addition. Of
course, the algorithm computes each successive multiplication using this approach, so that in
the end we obtain our result while performing less work than the “traditional” approach.

This algorithm is often dubbed Russian Peasant Multiplication in the literature, although its
origins likely pre-date its russian naming. As mentioned above, similar procedures have been
found in historical documents from ancient Egypt and Ethiopia. Lets see how the algorithm
works by trying it out with two large, but not too large, integers: lets calculate 93 × 39 using
this approach. Since 39 is odd, we want to calculate 93× 39 by calculating:

93 + (2× 93)× 38

2
= 93 + (186× 19)

Well, now we keep going to calculate 186× 19:

186× 19 = 186 + (2× 186)× 18

2
= 186 + (372× 9)

and again for 372× 9:

372× 9 = 372 + (2× 372)× 8

2
= 372 + (744× 4)

1

MULTIPLICATION 2

and again, but now note that our second operand is even:

744× 4 = (2× 744)× 4

2
= 1488× 2 = (2× 1488)× 1 = 2976 + 0

What we did was just unroll our initial multiplication all the way until our second operand
became 0, at which point we dont have any multiplications left. Putting it all together, with the
conveniently highlighted numbers in bold:

93× 39 = 93 + 186 + 372 + 2976 = 3627

And so we have simplified our “complicated” multiplication down to a few additions (and
some “easy” multiplications and divisions by two). In fact, if we assume that halving, doubling
and addition are all constant-time operations we can show that the algorithm’s running time is
Θ(log b), which is better than the traditional linear-time algorithm (or quadratic if we reason at
the level of bits, using Ω(k) time to add k bits).

While the procedure above was described in a recursive fashion, it is not so hard to see how
to turn it into an iterative procedure: effectively what we need to do to multiply a and b is
repeatedly double a and halve b or b − 1, depending on whether b is even or odd, respectively.
When b is even, we keep going, when b is odd, we add the current a to our running total. We
stop this procedure once b reaches 0. Moreover, if we stick to using only integers and integer
operations, we don’t need to worry about the subtraction at all, just use integer division of b by
2 regardless.

Another way to understand what the algorithm is doing is to realize that the successive di-
visions by two are actually converting the number to binary and effectively multiplying each
non-zero bit by 93, which produces the correct result due to the distributive property of multi-
plication. Lets see how it works: 39 is 100111 in base 2. If we expand back to decimal we have
that 39 = 1 · 25 + 0 · 24 + 0 · 23 + 1 · 22 + 1 · 21 + 1 · 20 and so:

93× 39 = 93× (25 + 22 + 21 + 20) = 2976 + 372 + 186 + 93

Essentially, the cases where the remainder of the division by two is 1 correspond to a 1 bit,
whereas no remainder corresponds to a 0 bit.

So there you have it – now all you need to do is prove this procedure is correct. Write a
Dafny method:

method peasantMult(a: int, b: int) returns (r: int)

that implements the procedure described above, specifying and verifying the appropriate weak-
est pre- and strongest post-conditions. Note that for the sake of the verification, it is easier for
the automation if you don’t use negation in your code (i.e. don’t test if the remainder of the
division is different from zero, test what it should be equal to in that case).

Note that you will have to help Dafny with this verification, since it doesn’t know outright
that halving and multiplying preserves the value of multiplication. As indicated above, the
property that makes this entire procedure work is (for positive b):

a× b =

(2× a)× b

2
if b is even

a + (2× a)× b− 1

2
if b is odd

Note: If you can’t manage to convince Dafny that this property holds, you may assume it holds
(remember that lemmas without bodies are assumed to hold in Dafny). However, if you do this
you will not get full credit for the exercise.

LECTURE NOTES 29 March, 2022

EUCLIDIAN DIVISION 3

As a side note, you may be wondering why this algorithm matters at all, especially when
modern machines can multiply numbers in hardware. While this is definitely true, it is only
the case for some fixed bit length representation of numbers (32 bits, 64 bits, etc.)! Sometimes,
we need to work with arbitrarily large numbers and perform arithmetical operations on them
(e.g. cryptography where we need to work with large primes, scientific computing, etc.). This
is where these techniques kick in! While the algorithm above still relies on multiplication and
division, it only uses a special case: halving and doubling,which can be implemented efficiently
using other (specialized) techniques.

However, in reality, multiplication of arbitrary precision integers is not implemented using
this algorithm. A common approach is to use different algorithms depending on the magni-
tudes of the numbers involved: if the numbers are “not too big” (e.g. less than 50 “words”
in length), use the long multiplication algorithm, also known as the “grade school” algorithm
(i.e. literally the one you learn in school), which is quadratic in the number of words or bits
(just as the one above). For larger numbers, more sophisticated algorithms exist. The Karatsuba
algorithm [KO62] is one such algorithm, the first shown to perform less than n2 elementary
operations to multiply two n-digit numbers (O(nlog(3)) elementary operations). The algorithm
uses a recursive divide-and-conquer approach. While asymptotically faster than long multipli-
cation, the algorithm typically runs slower for small values of n, due to the use of extra additions
and shifts.

For “intermediately large” numbers (e.g. above 240 words in length), Toom-Cook multipli-

cation [Knu97] is generally the chosen algorithm, using Θ(n
log(5)
log(3)) ≈ Θ(n1.46) elementary oper-

ations. The algorithm uses much more sophisticated operations than Karatsuba multiplication
and so only “catches up” for larger numbers. For really large numbers, the asymptotically faster
Schönhage-Strassen algorithm [SS71] is the best choice (Θ(n · log n · log log n)). This algorithm
uses Fast Fourier transforms in rings with 2n + 1 elements and outperforms Toom-Cook multi-
plication for numbers (approximately) beyond 22

15

(over 9000 decimal digits).

2 Euclidian Division

Now that we know all about how multiplication was done in antiquity, lets think of division. In
particular euclidian division. Given two integers a and b (with b 6= 0), one can prove that there
exist unique integers q and r such that:

a = b× q + r

and 0 ≤ r <| b |, where | b | stands for the absolute value of b. In the statement above, a is
called the dividend, b the divisor, q the quotient and r the remainder, with the computation of
the quotient and the remainder from the dividend and the divisor called Euclidian division.

For the purposes of computation, we do not care about the uniqueness part of the state-
ment. Lets think of a constructive proof of the above existence statement and see what kind
of algorithm it suggests. First, observe that we need only consider strictly positive b and non-
negative a: If b is negative, we consider b′ = −b and q′ = −b and rewrite the equation above as
a = b′ × q′ + r and the inequality as 0 ≤ r <| b′ |. If a < 0 we can consider a′ = −a, q′ = −q − 1
and r′ = b− r and perform a similar rewrite.

So, without loss of generality, let us consider a ≥ 0 and b > 0. Let q′ = 0 and r′ = a. It is
clearly the case that a = b× q′ + r′. If r′ < b then we are done, so lets consider r′ ≥ b. Then we
can set q′′ = q′ + 1 and r′′ = r′ − b and observe that a = b × q′′ + r′′ with 0 ≤ r′′ < r′. Since
there are only r′ non-negative integers less than r′, we can repeat this process at most ′ times to

LECTURE NOTES 29 March, 2022

REFERENCES 4

reach the final quotient and remainder, and so we have that for some k ≤ r′, a = b× qk + rk and
0 ≤ rk <|b′ |.

Your task now is to prove this algorithm correct! That is, write a Dafny method:

method euclidianDiv(a: int,b : int) returns (q: int,r: int)

that implements Euclidian division. Write the appropriate pre- and post-conditions and show
your algorithm satisfies its specification.

The algorithm described above is quite slow, since it performs Ω(a/b) elementary operations
to compute its result (and is actually exponential if we think of costs at the level of bits). For
the arbitrary precision case, Knuth’s D algorithm [Knu97] is often used (a form of long division
that is O(n2) at the bit level). For very large numbers (860 words or more), Burnikel-Ziegler
recursive division [BZ98] is a better choice, with running time 2K(n) + O(n log n) for division
of a 2n-digit number by an n-digit number, where K(n) is the Karatsuba multiplication time.

References

[BZ98] Christoph Burnikel and Joachim Ziegler. Fast recursive division, 1998.

[Knu97] Donald E. Knuth. The Art of Computer Programming, Volume 2 (3rd Ed.): Seminumerical
Algorithms. Addison-Wesley Longman Publishing Co., Inc., USA, 1997.

[KO62] A. Karatsuba and Yu. Ofman. Multiplication of many-digital numbers by automatic
computers. Dokl. Akad. Nauk SSSR, 145(2):293–294, 1962.

[SS71] Arnold Schönhage and Volker Strassen. Schnelle multiplikation großer zahlen. Com-
puting, 7(3-4):281–292, 1971.

LECTURE NOTES 29 March, 2022

	Multiplication
	Euclidian Division

