
Lectures Notes on
Loops and Proofs in Hoare Logic

Construction and Verification of Software
FCT-NOVA

Bernardo Toninho

22 March, 2022

1 Hoare Logic Revisited

Recall the rules of Hoare Logic defined over triples, of the form {P} S {Q}, capturing the effect
of program fragments of a small imperative language with loops (S) and assertions over a set
of predefined state variables as pre-conditions (P ) and post-conditions (Q).

A Hoare triple {P} S {Q} can be understood as “If program statement S is executed in a
state where the pre-condition P holds, then, if the execution of S terminates, it is guaranteed
that the post-condition Q holds in its final state”. Of course, this statement says nothing about
whether a final state is actually reachable and provides no guarantees in the case where the
program does not terminate. The rules that comprise this system of Hoare logic, presented
earlier, are the following:

{A} skip {A}
(Skip)

{A} P {B} {B} Q {C}
{A} P ;Q {C}

(Sequence)

{A ∧ E} P {B} {A ∧ ¬E} Q {B}
{A} if E then P else Q {B}

(Conditional)
{A[E/x]} x := E {A}

(Assign)

A′ ⇒ A {A} P {B} B ⇒ B′

{A′} P {B′}
(Consequence)

In general, rule (Assign) also allows for the deduction

{true} x := E {x = E}

whose proof results from combining the rule (Assign) and rule (Consequence) in a derivation
with the form

(E = E)⇒ true {E = E} x := E {x = E}
{true} x := E {x = E}

We have also intuitively discussed a notion of strongest post-condition and its dual concept,
weakest pre-condition. The strongest post-condition is an assertion A such that all other valid

1



LOOPS AND LOOP INVARIANTS 2

post-conditions for the given program statement are implied by A. Dually, the weakest pre-
condition B is such that all other valid pre-conditions of the program statement imply it. Gen-
erally, we want pre-conditions to be as weak as possible (i.e., as unrestrictive as they can, while
the correctness of the code) and post-conditions to be as strong as possible (i.e., to provide the
most precise constraint possible on the outcome of the execution of a program).

2 Loops and Loop Invariants

We now address the component that was left out of the presentation from last week – the rule
that governs loops in Hoare logic. To understand how the rule works, it is instructive to think
of a loop as if it were unfolded into an arbitrarily deep nesting of conditionals as follows:

while E do S , if E then S;
if E then S;

if E then S, ...
else skip

else skip
else skip

With this structure in mind, let us now consider an assertion I as the strongest post-condition
for S, the body of the loop. We can then see that it must also be the pre-condition for the next
iteration of the loop, which is just another execution of S.

Using the rule (Conditional ) as a reference, we can see that all the conditional statements
should have the same approximate post-condition and that the pre-condition of all these state-
ments matches their post-condition together with the condition in the loops guard. Also, we
know that after the last iteration of the loop (assuming there is one), the loop condition must be
false. This reasoning is represented in the following rule:

{I ∧ E} P {I }
{I } while E do P {I ∧ ¬E}

(Iteration)

where the assertion I is called the loop invariant. A loop invariant is a condition that (1) must
hold at the entry point of a loop, (2) is valid at the start of each iteration (as well as the loop’s
guard condition), (3) must be valid at the end of each iteration, and (4) is valid at the exit point
of the loop (together with the negation of the guard of the loop).

The verification of a loop is related to the use of induction in the verification of programs.
To verify a loop, we must show that the invariant I holds at the entry point of the loop, which
is akin to showing the inductive base case. We then show that, assuming I (and the loop condi-
tion) we can show that I holds after one execution of the loop body. This is essentially showing
the inductive case: we assume the property of interest I holds of the previous iteration and
show that it holds after one more execution of the loop body. This provides a sound proof tech-
nique for loops in just the same way that mathematical induction is a sound proof technique for
natural numbers: For any given (finite) number of iterations of the loop, we know that the in-
variant will hold afterwards: if the loop body is never executed, then the fact that the invariant
I held before the loop means that it must still hold (and that the loop condition is false); if the
loop runs for one iteration, then we know the loop body preserves I , and since I held at loop
entry, we know it will hold after the iteration. And so on for any given number of iterations the
loop runs for.

Note that, just as finding the right inductive property that makes our intended result go
through can often require a great deal of ingenuity, loop invariants cannot be automatically

LECTURE NOTES 22 March, 2022



LOOPS AND LOOP INVARIANTS 3

inferred in the general case and require human input. In most cases (but not all), a good rule
of thumb is that the loop invariant can be determined from the post-condition of the loop by
replacing the limits of the loop by its cursor.

Consider the following example of a Hoare triple for a program that iteratively counts up
from 0 to n:

{0 ≤ n}
i := 0;
while i < n do {

i := i+ 1
}
{i = n}

If we write intermediate assertions in this program, we obtain the listing below (we write Hoare
triples in a more compact form for the sake of conciseness):

{0 ≤ n}
i := 0;
{i = 0 ∧ 0 ≤ n}
{0 ≤ i ≤ n}
while i < n do {
{0 ≤ i ≤ n ∧ i < n}
{0 ≤ i < n}
{0 ≤ i+ 1 ≤ n}
i := i+ 1
{0 ≤ i ≤ n}

}
{0 ≤ i ≤ n ∧ i >= n}
{i = n}

Notice the assertion {0 ≤ i ≤ n} that can be proven true before the loop is such that, if assumed
at the start of the loop body, can be established as a post-condition for the loop body. This means
that {0 ≤ i ≤ n} is an invariant for the loop. Moreover, when combined with the negated loop
guard i >= n we can deduce that i = n, which is the post-condition we want. The general
reasoning technique consists of establishing the loop invariant before the loop, then breaking
the invariant (to “make progress”) and re-establishing it at the end of the loop body.

We now consider a slightly more interesting loop: the sum of all numbers from 0 to n and
the proof that the sum of consecutive n numbers is given

n(n+ 1)

2

The Dafny code that computes the sum is:

1 method SumIter(n: int) returns (res: int)
2 requires n ≥ 0
3 ensures res = n * (n+1) / 2
4 {
5 var s := 0;
6 var i := 0;
7 assert s = i * (i+1) / 2;
8 while i < n
9 decreases n - i

LECTURE NOTES 22 March, 2022



CASE STUDY: FAST EXPONENTIATION 4

10 invariant 0 ≤ i ≤ n
11 invariant s = i * (i+1) / 2
12 {
13 i := i + 1;
14 assert s = (i-1) * ((i-1)+1) / 2;
15 s := s + i;
16 assert s = i * (i+1) / 2;
17 }
18 assert i = n;
19 assert s = n * (n+1) / 2;
20 res := s;
21 }

The loop invariant, declared in line 11, is valid at the beginning of each iteration, is broken by
the increment of line 13, and re-established by the assignment of line 15. Notice that we need
an extra invariant 0 ≤ i ≤ n that helps to frame the possible values of variable i. The conclusion
i = n in line 18, derived from the invariant above and the negation of the condition, support the
post-condition of the method.

Notice that loop invariants are usually intuitive conditions over the “progress” of a loop.
They are part of common developer intuitive reasoning when building such programs, but for-
mulating them precisely and in the “right way” can require some practice. For instance, when
determining the maximum value of the array, a common loop invariant is that “all elements to
the left of the cursor are smaller or equal to the value computed up to any point in the loop”;
when searching an unsorted array, the invariant can be that “all elements to the left of the cur-
sor are different from the value being searched”; when searching a sorted array using binary
search, the invariant should say that “the searched element is between the lower and the higher
limits (cursors)”; when sorting an array it should be possible to maintain the information that
“all elements to the left of the cursor are already sorted”; and when reversing a list we know
that “that all elements to the left of the cursor are already placed on the right-hand side of the
resulting list”.

A quick note on a difference between Dafny and Hoare logic: the decreases clause in line 9
provides a measure that can be shown to strictly decrease with each loop iteration. Moreover,
the value can be shown to be bounded, so that it cannot decrease forever. This means that Dafny
actually proves that the loop terminates, and so proves something stronger than the Hoare logic
rule for loops given above. In most situations, Dafny can find the right termination measure
automatically (e.g. in this example, omitting line 9 will not make the verification fail), but the
undecidability of the halting problem means that it will not always be able to do so.

3 Case Study: Fast Exponentiation

We now carry out an extended verification example of an implementation of “fast” exponen-
tiation, which computes an exponent of an integer using fewer multiplications than the naive
implementation of exponentiation (which performs as many multiplications as the value of the
exponent). The algorithm actually computes blog(n)c squares and at most blog(n)c multiplica-
tions, where b·c is the floor function and n is the value of the exponent.

Before looking at the code, and certainly before verifying it, we must first understand the key
insights of the algorithm. The algorithm reduces the number of multiplications by exploiting
the observation that, when exponents are powers of two, we can perform the overall calculation
by repeated squaring: to calculate a number of the form b2

n

, for some positive n, we compute a

LECTURE NOTES 22 March, 2022



CASE STUDY: FAST EXPONENTIATION 5

square n times (e.g. 316 = 32
4

= (32)8 = 98 = (92)4 = (812)2 = 65612 = 43046721). Of course,
not all exponents powers of two, but all natural numbers can be expressed as a sum of powers
of two, and so we can always write an exponent as a sum of powers of two (think of writing a
number in base 2). This means that we can calculate arbitrary powers using this approach, even
those that are not of the form b2

n

, by first writing the exponent as a sum of powers of two and
then calculating the product of the corresponding powers of two. For example, if we consider
318, we can write 18 as 16+ 2 = 24 +2 and therefore 318 = 3(2+16) = 32 · 316, which we can now
compute using the repeated squaring approach:

32 = 9,

316 = 32
4

= (32)8 = 98 = (92)4 = 814 = (812)2 = 65612 = 43046721

and so we now simply compute 32 × 316 = 9× 43046721 = 387420489.
In fact, we can do even better. Instead of first going through the repeated squaring and

then multiplying the various powers we can actually combine both steps in a single iterative
process. In each iteration we compute a square and at the same time determine whether or
not that power of two is used in the exponent as a sum of powers, effectively exploiting the
following property of all natural numbers n:

xn =

{
x× (x2)

n−1
2 if n is odd

(x2)
n
2 if n is even

(1)

Note that, when dealing with integers in code, the property above essentially states that if the
exponent n is even, then xn = (x2)(n/2), where / denotes euclidian (or integer) division. If n is
odd, then xn = x ∗ (x2)(n/2).

Using this revised approach, we can calculate 318 as follows: Consider the variables r for
the result, and c for the current base. Start with r ← 1, which is 30 and c← 3, which is 31. Since
18 is even, square c (c ← c ∗ c) and c is now 9 = (32) and halve the exponent to 9. Since 9 is
odd, our result r is updated to r ← r ∗ c = (30) ∗ (32), the exponent is updated to 4 and c is
squared c ← c ∗ c = 92. Since 4 is even, square c (c ← c ∗ c = 812) and halve the exponent to 2.
Since 2 is even, square c one more time (c = 65612 = 316) and halve the exponent to 1. Since 1
is odd, update r (r ← r ∗ c = (30) ∗ (32) ∗ (316)) and we have now computed our result. Note
how we update r exactly when we have computed one of the powers we were interested in. As
foreshadowing for what comes next, it is helpful to think of the relationship between xn, r and
c, throughout the execution of the loop.

Now that we understand the algorithm, here is the code in Dafny (without any verification
or specification hints):

method FastExp(x: int, n: int) returns (r: int)
{

var i := n;
var c := x;
r := 1;

while i > 0
{

if(i % 2 6= 0) {
r := r * c;
i := i - 1;

}

LECTURE NOTES 22 March, 2022



CASE STUDY: FAST EXPONENTIATION 6

c := c * c;
i := i / 2;

}
}

Since we want to prove the method calculates exponents, lets define a suitable functional
specification:

function exp(x: int, n: nat): int
decreases n

{
if n = 0 then 1
else x * exp(x,n-1)

}

and so we have the following pre- and post-conditions for FastExp:

method FastExp(x: int, n: int) returns (r: int)
requires n ≥ 0
ensures r = exp(x,n)

{ . . . }

Now comes the tricky part, the loop invariant: at the end of the loop, we want r =exp(x,n)
to hold, but this is not good enough as a loop invariant. The trick is realizing that we are build-
ing up to exp(x,n) by roughly cutting i in half and squaring c with each iteration, but mul-
tiplying our “running total” r by c for odd exponents. With some thought, we can see that the
property r * exp(c,i) =exp(x,n) gives us exactly what we need: first we can see that it
holds at loop entry since r=1, i=n and c=x; second, we can see that when the loop terminates,
since i=0, the post condition follows immediately from the loop invariant.

Let us now observe that the loop invariant is preserved by the loop body: we start by
assuming r * exp(c,i)=exp(x,n) (or in a more readable form, r × ci = xn) holds and
must show that the same property holds after all the updates to r, i and c. Lets assume
that i is odd and update the assertion we need to prove accordingly, due to the assignments
in the conditional and the update to c and i afterwards. We end up with having to prove:
(r*c) * exp(c*c,(i-1)/2)=exp(x,n), or in more readable form r×c× (c2)(i−1)/2. Now
remember Property 1 from the previous page: for odd i we have that ci = c× (c2)(i−1)/2, and so
what we need to prove can be further simplified to r× ci, which equals xn by the loop invariant
we started with! On the other hand, If i is even, our variable assignments are such that we
end up with having to prove: r * exp(c*c,i/2)=exp(x,n), or r × (c2)i/2 = xn, which by
Property 1 is the same as r × ci = xn, which again is exactly the loop invariant we started out
with! And we are done!

Actually, we are almost done. The reasoning we just did is too clever for Dafny. Specifically,
Property 1 is something that Dafny doesn’t know is true, and so we must help the verification
process with a lemma, which we prove by induction on n, performing case analysis on whether
n is odd or even and appealing to the appropriate inductive hypothesis (the conditions n > 0
and n > 1 are necessary to ensure that n− 2 ≥ 0 in both cases):

lemma expLemma(x: int, n: int)
requires n ≥ 0
ensures n % 2 = 0 =⇒ exp(x,n) = exp(x*x,n/2)
ensures n % 2 6= 0 =⇒ exp(x,n) = x * exp(x*x,(n-1)/2)

{

LECTURE NOTES 22 March, 2022



CASE STUDY: FAST EXPONENTIATION 7

if(n % 2 = 0 ∧ n > 0) {
expLemma(x,n-2);

}
if(n % 2 6= 0 ∧ n > 1) {

expLemma(x,n-2);
}

}

If the above reasoning seems strange, try to prove the property by hand and it will become
clearer (noting that appeals to the induction hypothesis map to recursive calls in Dafny).

We can finally conclude our verification by simply calling the lemma at the start of the loop
and let Dafny’s automation do the rest:

method FastExp(x: int, n: int) returns (r: int)
requires n ≥ 0
ensures r = exp(x,n)

{
var i := n;
var c := x;

r := 1;

while i > 0
decreases i
invariant 0 ≤ i ≤ n
invariant r * exp(c,i) = exp(x,n)
{
expLemma(c,i);
if(i % 2 6= 0) {

r := r * c;
i := i - 1;

}
c := c * c;
i := i / 2;

}
}

This extended example may seem like a lot: the algorithm is probably something you’ve
not seen before and understanding how and why it works is not trivial, and we can only prove
the implementation correct if we actually understand how it works! Not only that, we had
to convince Dafny of a mathematical property, which ultimately requires understanding how
to prove it inductively. Indeed, there was some work involved in these last 3 pages, but the
hardest part is really producing the right invariant, which ultimately arises from understanding
the relationship between the three variables and our intended result throughout the iterations
of the loop. The rest is just a bit of math.

If you think this is completely out of reach, think again: this was actually the first graded
exercise from the 2020/2021 edition of this course, and you will be happy to know that last year
over 70% of all submissions were essentially completely correct.

LECTURE NOTES 22 March, 2022



ALGORITHMIC APPROACH TO VERIFICATION 8

4 Algorithmic Approach to Verification

The inference system defined by the rules of Hoare logic is not syntax directed, that is, it is not
possible to directly implement the rules as if they were an algorithm. While the rule for sequenc-
ing, when read bottom-up, requires inventing the intermediate assertion B, the real culprit is
the rule of consequence, which can be applied at any point during a Hoare logic proof, for any
program fragment.

However, it is possible to implement reasoners that do so-called forward or backward rea-
soning with Hoare logic rules, either starting from the pre-conditions and computing the most
general post-condition, or starting from a post-condition and determining the weakest pre-
condition that supports it. Dijkstra [Dij75] proposed such a strategy based on backward reason-
ing that produces proof obligations from an input Hoare triple. Proof obligations are assertions
that must be proven correct for its source Hoare triple to be valid.

Dijkstra’s approach defines the algorithm called “weakest pre-condition”, which is induc-
tively (recursively) defined on the possible cases of the program fragment given as input. It
also takes as input the post-condition for the program fragment. It eliminates the need for the
use of the non-algorithmic rule of Consequence, making the reasoning fully determined by the
program fragment under consideration. The output of such function is an assertion that is the
weakest pre-condition necessary to support the given post-condition.

A′ = wp(P, B)

So, if one starts with a Hoare Triple

{A} P {B}
We can prove it valid if A⇒ wp(P, B) = A′. This implication is the generated proof obligation.

The original algorithm is defined for a more general programming language, the so-called
language of guarded commands. The following cases, defined for the our language of interest,
are very similar to the rules of Hoare logic, but they crucially will not need to use the rule of
Consequence to build the proof obligation.

Skip. The case for skip does not add any information to the post-condition.

wp(skip, A) , A

Sequencing. The case for the sequencing of statements computes the intermediate assertion as
the weakest pre-condition of the second statement. Which, unlike in the sequence rule of Hoare
Logic, is deterministic. This means that we don’t need to “guess” any intermediate assertion.

wp(P ;Q, C) , wp(P, wp(Q, C))

Assignment. The case for assignment implements the backward reasoning of Hoare’s formu-
lation:

wp(x := E, B) , B[E/x]

Conditional. The common post-condition B is used as input in computing the weakest pre-
condition of both sub-statements, just as in the Hoare logic rule. The rule of Consequence is
embedded in the reasoning by using two implications that must hold as pre-condition:

wp(if E then P else Q, B) , E ⇒ wp(P, B) ∧ ¬E ⇒ wp(Q, B)

LECTURE NOTES 22 March, 2022



4.1 Example 9

Loops. In loops, we have a loop invariant (I) as input and determine three proof obligations
as the computed pre-conditions, as follows: the loop invariant must be valid before the loop (as
its pre-condition); the loop invariant must support the body of the loop together with the guard
of the loop; and, the loop invariant must support the post-condition together with the negated
loop guard.

wp(while E do P, B) , I ∧ ((E ∧ I)⇒ wp(P, I)) ∧ (¬E ∧ I ⇒ B)

4.1 Example

Consider the program P below:

P , i := 0;
s := 0;
while i < n do {
i := i+ 1
s := s+ i
}

From the Hoare triple {0 ≤ n} P {s =
∑n

0 j}, we can use the weakest pre-condition algorithm to
generate proof obligations. We will also use as input the loop invariant I = 0 ≤ i ≤ n∧s =

∑i
0 j,

which states that “up to iteration i”, the value of s contains the sum of all numbers from 0 to i.
The first step is to break the program into a sequence of two assignments and a while loop, and
apply the case for sequencing (twice):

wp(P, s =
∑n

0 j) = wp(i := 0, wp(s := 0, wp(P ′, s =
∑n

0 j)))

with P ′ = while i < n do ...

The next step is to use the post-condition and invariant and compute the weakest pre-condition
for the while loop:

wp(P ′, s =
∑n

0 j) = I ∧ ((i < n ∧ I)⇒ wp(Q, I)) ∧ (i ≥ n ∧ I ⇒ s =
∑n

0 j)

with Q = (i := i+ 1 ; s := s+ i)

and I = (0 ≤ i ≤ n ∧ s =
∑i

0 j)

Now, we compute the weakest pre-condition of the loop body in the expression above
(wp(Q, I)) in two steps:

wp(Q, I) = wp(i := i+ 1, wp(s := s+ i, I))

wp(s := s+ i, I) = 0 ≤ i ≤ n ∧ s+ i =
∑i

0 j

wp(i := i+ 1, 0 ≤ i ≤ n ∧ s+ i =
∑i

0 j) = 0 ≤ i+ 1 ≤ n ∧ s+ i =
∑i+1

0 j

Finally, we can simplify the pre-condition (which usually is only done in the end),

LECTURE NOTES 22 March, 2022



TOTAL CORRECTNESS – TERMINATION 10

wp(P ′, s =
∑n

0 j)

= 0 ≤ i ≤ n ∧ s =
∑i

0 j

∧ i < n ∧ 0 ≤ i ≤ n ∧ s =
∑i

0 j ⇒ 0 ≤ i+ 1 ≤ n ∧ s+ i =
∑i+1

0 j

∧ i ≥ n ∧ 0 ≤ i ≤ n ∧ s =
∑i

0 j ⇒ s =
∑n

0 j

= 0 ≤ i ≤ n ∧ s =
∑i

0 j

∧ 0 ≤ i < n ∧ s =
∑i

0 j ⇒ 0 ≤ i+ 1 ≤ n ∧ s+ i =
∑i+1

0 j

∧ i = n ∧ s =
∑i

0 j ⇒ s =
∑n

0 j

= 0 ≤ i ≤ n ∧ s =
∑i

0 j
∧ true
∧ true
= 0 ≤ i ≤ n ∧ s =

∑i
0 j

To apply this pre-condition as post-condition of the first step

wp(P, s =
n∑
0
j) = wp(i := 0, wp(s := 0, 0 ≤ i ≤ n ∧ s =

i∑
0
j))

By applying the case for assignment twice we obtain.

wp(P, s =
n∑
0
j) = 0 ≤ 0 ≤ n ∧ 0 =

0∑
0
j = 0 ≤ n

Which is exactly the pre-condition of the initial triple. The resulting proof obligation is the
trivial expression 0 ≤ n⇒ 0 ≤ n.

5 Total correctness – Termination

To show total correctness of a program fragment with a while loop, we also need to prove
termination. Like in the case of loop invariants, we need to have as input to the verification
reasoning an integer function (T ), called the loop variant, defined on the state of the program.
The case of wp using the variant function can then be defined as follows

wp(while E do P, B) , ∀V .


I
∧ (E ∧ I ⇒ T > 0)
∧ ((E ∧ I ∧ T = V )⇒ wp(P, I ∧ T < V ))
∧ (¬E ∧ I ⇒ B)

Notice the quantification over an integer value V . The first case of the pre-condition refers to the
loop invariant (I). The second case states that the loop variant must be strictly positive before
every iteration, which means that the loop invariant and the guard must imply that. The third
case states that besides supporting the loop invariant as post condition, the loop invariant and
the guard must state that the the value of the loop variant decreases in one iteration. Finally, the
negated guard and the loop invariant must imply the post-condition of the loop.

This variant function is the expression that the Dafny verifier expects (or often computes) in
the decreases clause in loops and recursive definitions.

LECTURE NOTES 22 March, 2022



5.1 Example 11

5.1 Example

Using the same example as above, we can see that the first step is the same,

wp(P, s =
∑n

0 j) = wp(i := 0, wp(s := 0, wp(P ′, s =
∑n

0 j)))

with P ′ = while i < n do ...

And that the next step is to analyze the while loop given a loop invariant and a loop variant
function.

wp(P ′, s =
∑n

0 j) = ∀V .I ∧ (i < n ∧ I ⇒ T )
∧ (i < n ∧ I ∧ T = V ⇒ wp(Q, I ∧ T < V ))
∧ (i ≥ n ∧ I ⇒ s =

∑n
0 j)

with Q = (i := i+ 1 ; s := s+ i)

and I = (0 ≤ i ≤ n ∧ s =
∑i

0 j)

and T = n− i
The next step is to compute the weakest pre-condition of the loop’s body in the expression
above (wp(Q, I ∧ T < V )), including the loop variant, in two steps

wp(Q, I ∧ T < V ) = wp(i := i+ 1, wp(s := s+ i, I ∧ T < V ))

wp(s := s+ i, I ∧ T < V ) = 0 ≤ i ≤ n ∧ s+ i =
∑i

0 j ∧ n− i < V

wp(i := i+ 1, 0 ≤ i ≤ n ∧ s+ i =
∑i

0 j ∧ n− i < V ) = 0 ≤ i+ 1 ≤ n ∧ s+ i =
∑i+1

0 j ∧ n− (i+ 1) < V

Finally, we can simplify the pre-condition so far (which usually is only done in the end),

wp(P ′, s =
∑n

0 j)

= ∀V . 0 ≤ i ≤ n ∧ s =
∑i

0 j

∧ i < n ∧ 0 ≤ i ≤ n ∧ s =
∑i

0 j ∧ n− i = V ⇒ 0 ≤ i+ 1 ≤ n ∧ s+ i =
∑i+1

0 j ∧ n− (i+ 1) < V

∧ i ≥ n ∧ 0 ≤ i ≤ n ∧ s =
∑i

0 j ⇒ s =
∑n

0 j

= ∀V . 0 ≤ i ≤ n ∧ s =
∑i

0 j

∧ 0 ≤ i < n ∧ s =
∑i

0 j ∧ n− i = V ⇒ 0 ≤ i+ 1 ≤ n ∧ s+ i =
∑i+1

0 j ∧ n− (i+ 1) < V

∧ i = n ∧ s =
∑i

0 j ⇒ s =
∑n

0 j

= ∀V . 0 ≤ i ≤ n ∧ s =
∑i

0 j

∧ 0 ≤ i < n ∧ s =
∑i

0 j ∧ n = V + i⇒ 0 ≤ i+ 1 ≤ n ∧ s+ i = i+
∑i

0 j =
∑i+1

0 j ∧ V − 1 < V

∧ true
= ∀V . 0 ≤ i ≤ n ∧ s =

∑i
0 j

∧ true
∧ true
= 0 ≤ i ≤ n ∧ s =

∑i
0 j

The remaining reasoning follows as previously, which establishes that the fragment will termi-
nate for any value of n which is greater or equal than 0.

LECTURE NOTES 22 March, 2022



EXERCISES 12

6 Exercises

1. Specify and write an iterative method that computes the n-th Fibonacci number. Use the
following recursive definition as a specification:

function fib(n : nat) : nat
{

if (n=0) then 1 else
if (n=1) then 1 else fib(n-1)+fib(n-2)

}

You will need to write a while loop with an appropriate loop invariant that establishes the
post-condition.

2. Specify and write an iterative method that computes the maximum of a (non-empty) array
of integers, with the following signature:

method maxArray(arr : array<int>) returns (max: int)
{

. . .
}

You will have to specify the weakest pre-condition and the strongest post-condition for
the method. Use quantifiers in the post-condition and the loop invariant (universal quan-
tifiers in dafny take the form forall x :: formula, where formula is a logical for-
mula in which x can occur).

3. Are you sure your specification ensures the returned value is the maximum element of the
array and not just a supremum of all the elements? You can determine this by checking
your specification against the following implementation:

method supremumArray(arr : array<int>) returns (sup: int)
requires arr.Length > 0;
ensures . . .

{
sup := arr[0];
var i := 1;
while (i < arr.Length)

invariant . . .
{

if arr[i] > sup {
sup := arr[i] + 1000;

}
i := i+1;

}
}

If the method above satisfies your specification then that means your specification can be
made more precise. Specifically, you must find a way of asserting (and proving) that the
return value of your original method is an element of the array. Go ahead and fix your
specification accordingly.

LECTURE NOTES 22 March, 2022



REFERENCES 13

4. It is likely you wrote your maximum method with a cursor starting at 0. Try to do it
the other way around: Compute the maximum element of an array, starting from the last
element in the array down to the first.

5. Write a recursive function sum(n) that computes the sum of all natural numbers between
0 and n, starting from n (i.e. n+ (n− 1) + · · ·+ 1) and then fill out the following method:

method sumBackwards(n: nat) returns (r: nat)
ensures r = sum(n)

{
. . .

}

6. [??] Now lets see if we can combine our thought processes. . . Implement and specify a
method sumAndMax that returns the sum of all elements in an array and its maximum
element.
Hint: Use a specification function with the signature:

function sumLimits(a: array<int>,up: int,down: int) : int
reads a
requires 0 ≤ down ≤ up < a.Length

which computes the sum of all element of a between indices up and down.

7. Implement a method called search that takes an array of integers and an integer and
returns either −1 if the integer is not in the array and the index into the array where the
integer can be found. Try to write the strongest post-condition possible. Note: We can
actually write this method generically in Dafny, with the signature:

method search<T(=)>(a: array<T>,e: T) returns (res: int)
{. . .}

References

[Dij75] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation of
programs. Commun. ACM, 18(8):453–457, aug 1975.

LECTURE NOTES 22 March, 2022


	Hoare Logic Revisited
	Loops and Loop Invariants
	Case Study: Fast Exponentiation
	Algorithmic Approach to Verification
	Example

	Total correctness – Termination
	Example

	Exercises

